Sample records for maintaining high resolution

  1. Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging

    PubMed Central

    Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.

    2013-01-01

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554

  2. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    DTIC Science & Technology

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  3. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  4. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  5. Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery

    Treesearch

    Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell

    2014-01-01

    We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...

  6. Detailed sensory memory, sloppy working memory.

    PubMed

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  7. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  8. Applying an Empirical Hydropathic Forcefield in Refinement May Improve Low-Resolution Protein X-Ray Crystal Structures

    PubMed Central

    Koparde, Vishal N.; Scarsdale, J. Neel; Kellogg, Glen E.

    2011-01-01

    Background The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. Methodology An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. Results The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool. PMID:21246043

  9. Unification of some advection schemes in two dimensions

    NASA Technical Reports Server (NTRS)

    Sidilkover, D.; Roe, P. L.

    1995-01-01

    The relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of the control volume type applicable on structured cartesian meshes. It resulted in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases. Another one is the fluctuation splitting approach, which is well suited for triangular (and possibly) unstructured meshes. Understanding the relationship between these two approaches allows us to formulate here a new fluctuation splitting high resolution (i.e. possible use of artificial compression, while maintaining positivity property) scheme. This scheme is shown to be linearity preserving in inhomogeneous as well as homogeneous cases.

  10. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  11. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  12. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  13. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo

    2018-03-01

    Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.

  14. Visual working memory capacity for color is independent of representation resolution.

    PubMed

    Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang

    2014-01-01

    The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.

  15. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  16. An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.

    2017-11-01

    This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.

  17. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  18. Off-axis electron holography combining summation of hologram series with double-exposure phase-shifting: Theory and application.

    PubMed

    Boureau, Victor; McLeod, Robert; Mayall, Benjamin; Cooper, David

    2018-06-04

    In this paper we discuss developments for Lorentz mode or "medium resolution" off-axis electron holography such that it is now routinely possible obtain very high sensitivity phase maps with high spatial resolution whilst maintaining a large field of view. Modifications of the usual Fourier reconstruction procedure have been used to combine series of holograms for sensitivity improvement with a phase-shifting method for doubling the spatial resolution. In the frame of these developments, specific attention is given to the phase standard deviation description and its interaction with the spatial resolution as well as the processing of reference holograms. An experimental study based on Dark-Field Electron Holography (DFEH), using a SiGe/Si multilayer epitaxy sample is compared with theory. The method's efficiency of removing the autocorrelation term during hologram reconstruction is discussed. Software has been written in DigitalMicrograph that can be used to routinely perform these tasks. To illustrate the real improvements made using these methods we show that a strain measurement sensitivity of  ±  0.025 % can be achieved with a spatial resolution of 2 nm and  ±  0.13 % with a spatial resolution of 1 nm whilst maintaining a useful field of view of 300 nm. In the frame of these measurements a model of strain noise for DFEH has also been developed. Copyright © 2018. Published by Elsevier B.V.

  19. Two micron pore size MCP-based image intensifiers

    NASA Astrophysics Data System (ADS)

    Glesener, John; Estrera, Joseph

    2010-02-01

    Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.

  20. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter

    NASA Astrophysics Data System (ADS)

    Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua

    2018-04-01

    Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.

  1. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    PubMed

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  2. Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles

    NASA Astrophysics Data System (ADS)

    van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.

    2016-08-01

    A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.

  3. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  4. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  5. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  6. The Cost of Empathy: Parent-Adolescent Conflict Predicts Emotion Dysregulation for Highly Empathic Youth

    ERIC Educational Resources Information Center

    Van Lissa, Caspar J.; Hawk, Skyler T.; Koot, Hans M.; Branje, Susan; Meeus, Wim H. J.

    2017-01-01

    Empathy plays a key role in maintaining close relationships and promoting prosocial conflict resolution. However, research has not addressed the potential emotional cost of adolescents' high empathy, particularly when relationships are characterized by more frequent conflict. The present 6-year longitudinal study (N = 467) investigated whether…

  7. Electrodeless discharge lamp is easily started, has high stability

    NASA Technical Reports Server (NTRS)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  8. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    NASA Astrophysics Data System (ADS)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  9. Implementing Photodissociation in an Orbitrap Mass Spectrometer

    PubMed Central

    Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.

    2011-01-01

    We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052

  10. Sub-micron resolution selected area electron channeling patterns.

    PubMed

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Chromatic Modulator for High Resolution CCD or APS Devices

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  12. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansteen, V.; Pontieu, B. De; Carlsson, M.

    2015-10-01

    Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less

  13. SRRF: Universal live-cell super-resolution microscopy.

    PubMed

    Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo

    2018-08-01

    Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.

    PubMed

    Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua

    2018-01-01

    fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Optical coherence microscope for invariant high resolution in vivo skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, S.; Lee, K. S.; Meemon, P.; Rolland, J. P.

    2008-02-01

    A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume.

  16. High resolution and deep tissue imaging using a near infrared acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit

    2018-02-01

    It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.

  17. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  18. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  19. Considering low-rank, sparse and gas-inflow effects constraints for accelerated pulmonary dynamic hyperpolarized 129Xe MRI

    NASA Astrophysics Data System (ADS)

    Xiao, Sa; Deng, He; Duan, Caohui; Xie, Junshuai; Zhang, Huiting; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2018-05-01

    Dynamic hyperpolarized (HP) 129Xe MRI is able to visualize the process of lung ventilation, which potentially provides unique information about lung physiology and pathophysiology. However, the longitudinal magnetization of HP 129Xe is nonrenewable, making it difficult to achieve high image quality while maintaining high temporal-spatial resolution in the pulmonary dynamic MRI. In this paper, we propose a new accelerated dynamic HP 129Xe MRI scheme incorporating the low-rank, sparse and gas-inflow effects (L + S + G) constraints. According to the gas-inflow effects of HP gas during the lung inspiratory process, a variable-flip-angle (VFA) strategy is designed to compensate for the rapid attenuation of the magnetization. After undersampling k-space data, an effective reconstruction algorithm considering the low-rank, sparse and gas-inflow effects constraints is developed to reconstruct dynamic MR images. In this way, the temporal and spatial resolution of dynamic MR images is improved and the artifacts are lessened. Simulation and in vivo experiments implemented on the phantom and healthy volunteers demonstrate that the proposed method is not only feasible and effective to compensate for the decay of the magnetization, but also has a significant improvement compared with the conventional reconstruction algorithms (P-values are less than 0.05). This confirms the superior performance of the proposed designs and their ability to maintain high quality and temporal-spatial resolution.

  20. A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R.

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns themore » beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.« less

  1. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.

    PubMed

    Park, Jong Kang; Rowlands, Christopher J; So, Peter T C

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.

  2. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device

    PubMed Central

    Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484

  3. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    PubMed

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  4. Recovering NOAA 1,2,3,4 Infrared and visible high resolution data, 1974-1977.

    NASA Astrophysics Data System (ADS)

    Campbell, G. G.

    2017-12-01

    The NOAA satellites 1 to 4 (1974-1977) had high resolution visible and infrared detectors which made daily observations of the Earth from sun-synchronous orbits so both day and night observations were made. Here we describe the recovery of this data at 25 km resolution by digitizing the half tome prints from publication NOAA #54 which provides daily composites of the scan observations. The infrared images can be calibrated using the 280 km resolution digital archive still maintained by NOAA from this Scanning Radiometer data. This is an extension of our recovery of the ESSA 1,3,5,7 and 9 data from 1966 to 1974. This much higher resolution product provides much richer detail about the Earth in the 1970's. As a particular example we will discuss the large polynya in the sea ice in the Wedell sea first noted in the Electrically Scanned Microwave Radiometer observations from 1974 to 1976. The visible data verify the presence of the large open water region in the middle of the pack ice in the winters of 1974, 5 and 6. In addition we will discuss the cloud fields and motions over this region apparent from the recovered high resolution observations. One can also see hints of this phenomenon occurring in 2016 and 2017.

  5. Fast high resolution reconstruction in multi-slice and multi-view cMRI

    NASA Astrophysics Data System (ADS)

    Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Cardiac magnetic resonance imaging (cMRI) is an useful tool in diagnosis, prognosis and research since it functionally tracks the heart structure. Although useful, this imaging technique is limited in spatial resolution because heart is a constant moving organ, also there are other non controled conditions such as patient movements and volumetric changes during apnea periods when data is acquired, those conditions limit the time to capture high quality information. This paper presents a very fast and simple strategy to reconstruct high resolution 3D images from a set of low resolution series of 2D images. The strategy is based on an information reallocation algorithm which uses the DICOM header to relocate voxel intensities in a regular grid. An interpolation method is applied to fill empty places with estimated data, the interpolation resamples the low resolution information to estimate the missing information. As a final step a gaussian filter that denoises the final result. A reconstructed image evaluation is performed using as a reference a super-resolution reconstructed image. The evaluation reveals that the method maintains the general heart structure with a small loss in detailed information (edge sharpening and blurring), some artifacts related with input information quality are detected. The proposed method requires low time and computational resources.

  6. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction.

    PubMed

    Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan

    2017-04-04

    Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity

    PubMed Central

    Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E.L.

    2011-01-01

    Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input. PMID:21164173

  9. Deep skin structural and microcirculation imaging with extended-focus OCT

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Grajciar, Branislav; Huber, Robert; Leitgeb, Rainer A.

    2012-02-01

    We present an extended focus OCT system for dermatologic applications that maintains high lateral resolution over a large depth range by using Bessel beam illumination. More, Bessel beams exhibit a self-reconstruction property that is particularly useful to avoid shadowing from surface structures such as hairs. High lateral resolution and high-speed measurement, thanks to a rapidly tuning swept source, allows not only for imaging of small skin structures in depth but also for comprehensive visualization of the small capillary network within the human skin in-vivo. We use this information for studying temporal vaso-responses to hypothermia. In contrast to other perfusion imaging methods such as laser Doppler imaging (LDI), OCT gives specific access to vascular responses in different vascular beds in depth.

  10. Graded zooming

    DOEpatents

    Coffland, Douglas R.

    2006-04-25

    A system for increasing the resolution in the far field resolution of video or still frame images, while maintaining full coverage in the near field. The system includes a camera connected to a computer. The computer applies a specific zooming scale factor to each of line of pixels and continuously increases the scale factor of the line of pixels from the bottom to the top to capture the scene in the near field, yet maintain resolution in the scene in the far field.

  11. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  12. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  13. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.

  14. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  15. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition. [Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1982-01-01

    An examination of the possibilities of using Landsat data to simulate NOAA-6 Advanced Very High Resolution Radiometer (AVHRR) data on two channels, as well as using actual NOAA-6 imagery, for large-scale hydrological studies is presented. A running average was obtained of 18 consecutive pixels of 1 km resolution taken by the Landsat scanners were scaled up to 8-bit data and investigated for different gray levels. AVHRR data comprising five channels of 10-bit, band-interleaved information covering 10 deg latitude were analyzed and a suitable pixel grid was chosen for comparison with the Landsat data in a supervised classification format, an unsupervised mode, and with ground truth. Landcover delineation was explored by removing snow, water, and cloud features from the cluster analysis, and resulted in less than 10% difference. Low resolution large-scale data was determined useful for characterizing some landcover features if weekly and/or monthly updates are maintained.

  16. Extreme ultraviolet performance of a multilayer coated high density toroidal grating

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.

    1991-01-01

    The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.

  17. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  18. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  19. Time stamping of single optical photons with 10 ns resolution

    NASA Astrophysics Data System (ADS)

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; Hodges, Diedra R.; Nguyen, Jayke; Nomerotski, Andrei

    2017-05-01

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc.1-5 Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Photon counting is already widely used in X-ray imaging,6 where the high energy of the photons makes their detection easier. TimepixCam is a novel optical imager,7 which achieves high spatial resolution using an array of 256×256 55 μm × 55μm pixels which have individually controlled functionality. It is based on a thin-entrance-window silicon sensor, bump-bonded to a Timepix ASIC.8 TimepixCam provides high quantum efficiency in the optical wavelength range (400-1000 nm). We perform the timestamping of single photons with a time resolution of 20 ns, by coupling TimepixCam to a fast image-intensifier with a P47 phosphor screen. The fast emission time of the P479 allows us to preserve good time resolution while maintaining the capability to focus the optical output of the intensifier onto the 256×256 pixel Timepix sensor area. We demonstrate the capability of the (TimepixCam + image intensifier) setup to provide high-resolution single-photon timestamping, with an effective frame rate of 50 MHz.

  20. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    PubMed

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.

    2017-12-01

    Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.

  2. High current table-top setup for femtosecond gas electron diffraction.

    PubMed

    Zandi, Omid; Wilkin, Kyle J; Xiong, Yanwei; Centurion, Martin

    2017-07-01

    We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  3. High current table-top setup for femtosecond gas electron diffraction

    DOE PAGES

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; ...

    2017-05-08

    Here, we have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We also present here a device that uses pulse compression tomore » overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. Finally, the high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.« less

  4. Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases

    NASA Technical Reports Server (NTRS)

    Matthews, E.

    1984-01-01

    A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.

  5. A strategy for compression and analysis of massive geophysical data sets

    NASA Technical Reports Server (NTRS)

    Braverman, A.

    2001-01-01

    This paper describes a method for summaraizing data in a way that approximately preserves high-resolution data structure while reducing data volume and maintaining global integrity of very large, remote sensing data sets. The method is under development for one of Terra's instruments, the Multi-angle Imaging SpectroRadiometer (MISR).

  6. Map Scale, Proportion, and Google[TM] Earth

    ERIC Educational Resources Information Center

    Roberge, Martin C.; Cooper, Linda L.

    2010-01-01

    Aerial imagery has a great capacity to engage and maintain student interest while providing a contextual setting to strengthen their ability to reason proportionally. Free, on-demand, high-resolution, large-scale aerial photography provides both a bird's eye view of the world and a new perspective on one's own community. This article presents an…

  7. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  8. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  9. Accelerated damage visualization using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2017-07-01

    Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  10. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  11. Harmonium: An Ultrafast Vacuum Ultraviolet Facility.

    PubMed

    Arrell, Christopher A; Ojeda, José; Longetti, Luca; Crepaldi, Alberto; Roth, Silvan; Gatti, Gianmarco; Clark, Andrew; van Mourik, Frank; Drabbels, Marcel; Grioni, Marco; Chergui, Majed

    2017-05-31

    Harmonium is a vacuum ultraviolet (VUV) photon source built within the Lausanne Centre for Ultrafast Science (LACUS). Utilising high harmonic generation, photons from 20-110 eV are available to conduct steady-state or ultrafast photoelectron and photoion spectroscopies (PES and PIS). A pulse preserving monochromator provides either high energy resolution (70 meV) or high temporal resolution (40 fs). Three endstations have been commissioned for: a) PES of liquids; b) angular resolved PES (ARPES) of solids and; c) coincidence PES and PIS of gas phase molecules or clusters. The source has several key advantages: high repetition rate (up to 15 kHz) and high photon flux (1011 photons per second at 38 eV). The capabilities of the facility complement the Swiss ultrafast and X-ray community (SwissFEL, SLS, NCCR MUST, etc.) helping to maintain Switzerland's leading role in ultrafast science in the world.

  12. The robustness of T2 value as a trabecular structural index at multiple spatial resolutions of 7 Tesla MRI.

    PubMed

    Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H

    2018-04-15

    To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.

  13. How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands

    PubMed Central

    Allon, Ayala S.; Balaban, Halely; Luria, Roy

    2014-01-01

    In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026

  14. Scientific Visualization of Landscapes and Landforms

    DTIC Science & Technology

    2012-01-01

    on high resolution elevation data readily available in laboratory and mobile environments. Acknowledgements The authors would like to gratefully... The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

  15. A High Resolution Ammunition Resupply Model.

    DTIC Science & Technology

    1982-03-01

    LOU ............... 104 3. Requests for Resupply . . ........ 108 a. Weapon Systems . . . . . . . . . . . . 108 b. Platoon . ... 109 c. Company...essence, the fundamental question, "Can it be done?", is never adequately answered. B. LOGISTICS MODELS Current logistics models then, although...19 .._ " Development of a detailed model that responds to requests for ammunition resupply, maintains a simplified stockage system , and models the

  16. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.

    PubMed

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-11

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  17. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  18. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (

  19. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  20. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.

  1. Serial isoelectric focusing as an effective and economic way to obtain maximal resolution and high-throughput in 2D-based comparative proteomics of scarce samples: proof-of-principle.

    PubMed

    Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A

    2005-01-01

    In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.

  2. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  3. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  4. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  5. Accelerated defect visualization of microelectronic systems using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2018-04-01

    The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  6. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  7. Sublimation Formation on Mercury

    NASA Image and Video Library

    2017-12-08

    Located in the crater Eminescu, this high-resolution image shows part of the mountainous peak ring, as well as an example of the extensive formation of hollows located within the crater. Hollows maintain an air of mystery in the realm of planetary science. Though the exact formation mechanism is unknown, most scientists agree sublimation of volatiles holds the answer. This image highlights the prevalence of these hollows on and around the peak ring, as well as captures the beauty of such enigmatic formations. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.

    PubMed

    Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K

    2014-02-01

    Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.

  9. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select anmore » element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.« less

  10. Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.

    2016-01-01

    Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less

  11. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.

  12. NHDPlusHR: A national geospatial framework for surface-water information

    USGS Publications Warehouse

    Viger, Roland; Rea, Alan H.; Simley, Jeffrey D.; Hanson, Karen M.

    2016-01-01

    The U.S. Geological Survey is developing a new geospatial hydrographic framework for the United States, called the National Hydrography Dataset Plus High Resolution (NHDPlusHR), that integrates a diversity of the best-available information, robustly supports ongoing dataset improvements, enables hydrographic generalization to derive alternate representations of the network while maintaining feature identity, and supports modern scientific computing and Internet accessibility needs. This framework is based on the High Resolution National Hydrography Dataset, the Watershed Boundaries Dataset, and elevation from the 3-D Elevation Program, and will provide an authoritative, high precision, and attribute-rich geospatial framework for surface-water information for the United States. Using this common geospatial framework will provide a consistent basis for indexing water information in the United States, eliminate redundancy, and harmonize access to, and exchange of water information.

  13. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  14. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  15. A voltage to frequency converter for astronomical photometry

    NASA Technical Reports Server (NTRS)

    Dunham, E.; Elliot, J. L.

    1978-01-01

    A voltage to frequency converter (VFC) for general use with photomultipliers is described. For high light levels, when the dead-time corrections for a photon counter would be excessive, the VFC maintains a linear response and allows the recording of data at high time resolution. Results of laboratory tests are given for the signal-to-noise characteristics, linearity, stability, and transient response of the VFC when used in conjunction with EMI 9658 and RCA C31034 photomultipliers.

  16. New geospatial approaches for efficiently mapping forest biomass logistics at high resolution over large areas

    Treesearch

    John Hogland; Nathaniel Anderson; Woodam Chung

    2018-01-01

    Adequate biomass feedstock supply is an important factor in evaluating the financial feasibility of alternative site locations for bioenergy facilities and for maintaining profitability once a facility is built. We used newly developed spatial analysis and logistics software to model the variables influencing feedstock supply and to estimate and map two components of...

  17. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  18. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    NASA Astrophysics Data System (ADS)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  19. Opto-mechanical design of a new cross dispersion unit for the CRIRES+ high resolution spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena

    2014-07-01

    CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.

  20. High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Wei, Ming; Lin, Yuan; Jia, Quanxi; Zhi, Dan; Dho, Joonghoe; Blamire, Mark G.; MacManus-Driscoll, Judith L.

    2005-02-01

    High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable.

  1. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Topping, D.J.; Rubin, D.M.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    High-resolution monitoring of sand mass balance in the Colorado River below Glen Canyon Dam, Arizona, USA, is needed for environmental management. In the Grand Canyon, frequent collection of suspended-sediment samples from cableways is logistically complicated, costly and provides limited spatial and temporal resolution. In situ laser sensors were tested in the Colorado River as an alternative method for monitoring the river's suspended transport. LISST data were collected at a fixed-depth, near-shore site while isokinetic measurements were simultaneously made from a nearby cableway. Diurnal variations in LISST grain size and concentration data compared well with depth-integrated, cross-section data. Tbe LISST was also successfully used to electronically trigger an ISCO 6712 pump sampler to provide continuous monitoring during periods when suspended concentrations exceeded the LISST's measurement range. Initial results indicate that the LISST can provide useful high-resolution suspended-sediment data within the Colorado River, when optics are maintained on a weekly basis.

  2. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  3. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  4. The extreme ultraviolet spectrograph: A radial groove grating, sounding rocket-borne, astronomical instrument

    NASA Technical Reports Server (NTRS)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1993-01-01

    The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.

  5. Advanced SLMs for microscopy

    NASA Astrophysics Data System (ADS)

    Linnenberger, A.

    2018-02-01

    Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.

  6. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; ...

    2015-11-05

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  7. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  8. Accelerated high-resolution photoacoustic tomography via compressed sensing

    NASA Astrophysics Data System (ADS)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  9. High Spatiotemporal Resolution Dynamic Contrast-Enhanced MR Enterography in Crohn Disease Terminal Ileitis Using Continuous Golden-Angle Radial Sampling, Compressed Sensing, and Parallel Imaging.

    PubMed

    Ream, Justin M; Doshi, Ankur; Lala, Shailee V; Kim, Sooah; Rusinek, Henry; Chandarana, Hersh

    2015-06-01

    The purpose of this article was to assess the feasibility of golden-angle radial acquisition with compress sensing reconstruction (Golden-angle RAdial Sparse Parallel [GRASP]) for acquiring high temporal resolution data for pharmacokinetic modeling while maintaining high image quality in patients with Crohn disease terminal ileitis. Fourteen patients with biopsy-proven Crohn terminal ileitis were scanned using both contrast-enhanced GRASP and Cartesian breath-hold (volume-interpolated breath-hold examination [VIBE]) acquisitions. GRASP data were reconstructed with 2.4-second temporal resolution and fitted to the generalized kinetic model using an individualized arterial input function to derive the volume transfer coefficient (K(trans)) and interstitial volume (v(e)). Reconstructions, including data from the entire GRASP acquisition and Cartesian VIBE acquisitions, were rated for image quality, artifact, and detection of typical Crohn ileitis features. Inflamed loops of ileum had significantly higher K(trans) (3.36 ± 2.49 vs 0.86 ± 0.49 min(-1), p < 0.005) and v(e) (0.53 ± 0.15 vs 0.20 ± 0.11, p < 0.005) compared with normal bowel loops. There were no significant differences between GRASP and Cartesian VIBE for overall image quality (p = 0.180) or detection of Crohn ileitis features, although streak artifact was worse with the GRASP acquisition (p = 0.001). High temporal resolution data for pharmacokinetic modeling and high spatial resolution data for morphologic image analysis can be achieved in the same acquisition using GRASP.

  10. High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset

    Treesearch

    Christopher Daly; Melissa E. Slater; Joshua A. Roberti; Stephanie H. Laseter; Lloyd W. Swift

    2017-01-01

    A 69-station, densely spaced rain gauge network was maintained over the period 1951–1958 in the Coweeta Hydrologic Laboratory, located in the southern Appalachians in western North Carolina, USA. This unique dataset was used to develop the first digital seasonal and annual precipitation maps for the Coweeta basin, using elevation regression functions and...

  11. Distinct Pattern Separation Related Transfer Functions in Human CA3/Dentate and CA1 Revealed Using High-Resolution fMRI and Variable Mnemonic Similarity

    ERIC Educational Resources Information Center

    Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E. L.

    2011-01-01

    Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while…

  12. Display screen and method of manufacture therefor

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)

    2002-01-01

    A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. Compatible screen structures, along with methods for fabricating high resolution prescreens and methods and devices for maintaining the desired relationship between the prescreen and the diffusion screen are contemplated.

  13. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems

    PubMed Central

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192

  14. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  15. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    NASA Astrophysics Data System (ADS)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  16. Medical image enhancement using resolution synthesis

    NASA Astrophysics Data System (ADS)

    Wong, Tak-Shing; Bouman, Charles A.; Thibault, Jean-Baptiste; Sauer, Ken D.

    2011-03-01

    We introduce a post-processing approach to improve the quality of CT reconstructed images. The scheme is adapted from the resolution-synthesis (RS)1 interpolation algorithm. In this approach, we consider the input image, scanned at a particular dose level, as a degraded version of a high quality image scanned at a high dose level. Image enhancement is achieved by predicting the high quality image by classification based linear regression. To improve the robustness of our scheme, we also apply the minimum description length principle to determine the optimal number of predictors to use in the scheme, and the ridge regression to regularize the design of the predictors. Experimental results show that our scheme is effective in reducing the noise in images reconstructed from filtered back projection without significant loss of image details. Alternatively, our scheme can also be applied to reduce dose while maintaining image quality at an acceptable level.

  17. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  18. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  19. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; hide

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  20. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  1. Geomorphological diversity of Dong-Sha Atoll based on spectrum and texture analysis in high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Chen, Jianyu; Mao, Zhihua; He, Xianqiang

    2009-01-01

    Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.

  2. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  3. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  4. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-11-07

    Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm  ×  3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180  ±  2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm  ×  3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204  ±  1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.

  5. Investigation of spatial resolution improvement by use of a mouth-insert detector in the helmet PET scanner.

    PubMed

    Ahmed, Abdella M; Tashima, Hideaki; Yamaya, Taiga

    2018-03-01

    The dominant factor limiting the intrinsic spatial resolution of a positron emission tomography (PET) system is the size of the crystal elements in the detector. To increase sensitivity and achieve high spatial resolution, it is essential to use advanced depth-of-interaction (DOI) detectors and arrange them close to the subject. The DOI detectors help maintain high spatial resolution by mitigating the parallax error caused by the thickness of the scintillator near the peripheral regions of the field-of-view. As an optimal geometry for a brain PET scanner, with high sensitivity and spatial resolution, we proposed and developed the helmet-chin PET scanner using 54 four-layered DOI detectors consisting of a 16 × 16 × 4 array of GSOZ scintillator crystals with dimensions of 2.8 × 2.8 × 7.5 mm 3 . All the detectors used in the helmet-chin PET scanner had the same spatial resolution. In this study, we conducted a feasibility study of a new add-on detector arrangement for the helmet PET scanner by replacing the chin detector with a segmented crystal cube, having high spatial resolution in all directions, which can be placed inside the mouth. The crystal cube (which we have named the mouth-insert detector) has an array of 20 × 20 × 20 LYSO crystal segments with dimensions of 1 × 1 × 1 mm 3 . Thus, the scanner is formed by the combination of the helmet and mouth-insert detectors, and is referred to as the helmet-mouth-insert PET scanner. The results show that the helmet-mouth-insert PET scanner has comparable sensitivity and improved spatial resolution near the center of the hemisphere, compared to the helmet-chin PET scanner.

  6. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    PubMed Central

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  7. The scale dependence of optical diversity in a prairie ecosystem

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  8. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assessment of MRI-Based Marker of Dopaminergic Integrity as a Biological Indicator of Gulf War Illness

    DTIC Science & Technology

    2016-10-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...SUBJECT TERMS Gulf war illness; magnetic resonance imaging; dopamine; diffusion tensor imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...nigra, basal ganglia and cortex as markers of integrity of the nigro-striatal dopaminergic pathway using high resolution diffusion tensor imaging (DTI

  10. A review of future remote sensing satellite capabilities

    NASA Technical Reports Server (NTRS)

    Calabrese, M. A.

    1980-01-01

    Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.

  11. Coercion and Reconciliation: Post-Conflict Resolution After the American Civil War

    DTIC Science & Technology

    2016-05-26

    Approved for public release; distribution is unlimited Coercion and Reconciliation: Post -Conflict Resolution After the American Civil War A...Reconciliation: Post -Conflict Resolution After 5a. CONTRACT NUMBER The American Civil War 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...policies. The conclusion is that during post -conflict resolution, having a moderate coercive body to maintain security, while allowing for political

  12. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  13. Comparison of high resolution x-ray detectors with conventional FPDs using experimental MTFs and apodized aperture pixel design for reduced aliasing

    NASA Astrophysics Data System (ADS)

    Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.

  14. The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.; hide

    2003-01-01

    EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.

  15. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  16. A Coarse-to-Fine Geometric Scale-Invariant Feature Transform for Large Size High Resolution Satellite Image Registration

    PubMed Central

    Chang, Xueli; Du, Siliang; Li, Yingying; Fang, Shenghui

    2018-01-01

    Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy. PMID:29702589

  17. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  18. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  19. Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad

    2014-01-01

    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266

  20. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  1. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  2. Development of a balloon-borne device for analysis of high-altitude ice and aerosol particulates: Ice Cryo Encapsulator by Balloon (ICE-Ball)

    NASA Astrophysics Data System (ADS)

    Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.; Magee, N. B.

    2016-12-01

    We report on details of continuing instrument development and deployment of a novel balloon-borne device for capturing and characterizing atmospheric ice and aerosol particles, the Ice Cryo Encapsulator by Balloon (ICE-Ball). The device is designed to capture and preserve cirrus ice particles, maintaining them at cold equilibrium temperatures, so that high-altitude particles can recovered, transferred intact, and then imaged under SEM at an unprecedented resolution (approximately 3 nm maximum resolution). In addition to cirrus ice particles, high altitude aerosol particles are also captured, imaged, and analyzed for geometry, chemical composition, and activity as ice nucleating particles. Prototype versions of ICE-Ball have successfully captured and preserved high altitude ice particles and aerosols, then returned them for recovery and SEM imaging and analysis. New improvements include 1) ability to capture particles from multiple narrowly-defined altitudes on a single payload, 2) high quality measurements of coincident temperature, humidity, and high-resolution video at capture altitude, 3) ability to capture particles during both ascent and descent, 4) better characterization of particle collection volume and collection efficiency, and 5) improved isolation and characterization of capture-cell cryo environment. This presentation provides detailed capability specifications for anyone interested in using measurements, collaborating on continued instrument development, or including this instrument in ongoing or future field campaigns.

  3. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    PubMed

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  4. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning

    PubMed Central

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A.; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M.

    2008-01-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome. PMID:18477713

  5. An efficient photogrammetric stereo matching method for high-resolution images

    NASA Astrophysics Data System (ADS)

    Li, Yingsong; Zheng, Shunyi; Wang, Xiaonan; Ma, Hao

    2016-12-01

    Stereo matching of high-resolution images is a great challenge in photogrammetry. The main difficulty is the enormous processing workload that involves substantial computing time and memory consumption. In recent years, the semi-global matching (SGM) method has been a promising approach for solving stereo problems in different data sets. However, the time complexity and memory demand of SGM are proportional to the scale of the images involved, which leads to very high consumption when dealing with large images. To solve it, this paper presents an efficient hierarchical matching strategy based on the SGM algorithm using single instruction multiple data instructions and structured parallelism in the central processing unit. The proposed method can significantly reduce the computational time and memory required for large scale stereo matching. The three-dimensional (3D) surface is reconstructed by triangulating and fusing redundant reconstruction information from multi-view matching results. Finally, three high-resolution aerial date sets are used to evaluate our improvement. Furthermore, precise airborne laser scanner data of one data set is used to measure the accuracy of our reconstruction. Experimental results demonstrate that our method remarkably outperforms in terms of time and memory savings while maintaining the density and precision of the 3D cloud points derived.

  6. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.

    PubMed

    Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome

    2007-10-01

    We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.

  7. Low-resolution simulations of vesicle suspensions in 2D

    NASA Astrophysics Data System (ADS)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  8. The Design & Development of the Ocean Color Instrument Precision Superduplex Hybrid Bearing Cartridge

    NASA Technical Reports Server (NTRS)

    Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey

    2018-01-01

    A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.

  9. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    PubMed Central

    Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-01-01

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods. PMID:29596393

  10. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  11. Wide-field optical coherence tomography based microangiography for retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  12. Wide-field optical coherence tomography based microangiography for retinal imaging.

    PubMed

    Zhang, Qinqin; Lee, Cecilia S; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N; Wang, Ruikang K

    2016-02-25

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S.; Domowicz, Miriam

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflectmore » local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.« less

  14. Challenges and Alternatives in Tsunami Water Levels Processing in NOAA/NCEI-CO Global Water-Level Data Repository

    NASA Astrophysics Data System (ADS)

    Mungov, G.; Dunbar, P. K.; Stroker, K. J.; Sweeney, A.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information is data repository for high-resolution, integrated water-level data to support tsunami research, risk assessment and mitigation to protect life and property damages along the coasts. NCEI responsibilities include, but are not limited to process, archiv and distribut and coastal water level data from different sourcesg tsunami and storm-surge inundation, sea-level change, climate variability, etc. High-resolution data for global historical tsunami events are collected by the Deep-ocean Assessment and Reporting of Tsunami (DART®) tsunameter network maintained by NOAA's National Data Buoy Center NDBC, coastal tide-gauges maintained by NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) and Tsunami Warning Centers, historic marigrams and images, bathymetric data, and from other national and international sources. NCEI-CO water level database is developed in close collaboration with all data providers along with NOAA's Pacific Marine Environmental Laboratory. We outline here the present state in water-level data processing regarding the increasing needs for high-precision, homogeneous and "clean" tsunami records from data different sources and different sampling interval. Two tidal models are compared: the Mike Foreman's improved oceanographic model (2009) and the Akaike Bayesian Information Criterion approach applied by Tamura et al. (1991). The effects of filtering and the limits of its application are also discussed along with the used method for de-spiking the raw time series.

  15. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  16. Mechanistic Basis for High Reactivity of (salen)Co–OTs in the Hydrolytic Kinetic Resolution of Terminal Epoxides

    PubMed Central

    Nielsen, Lars P. C.; Zuend, Stephan J.; Ford, David D.; Jacobsen, Eric N.

    2012-01-01

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co–OH catalyst and a Lewis acidic (salen)Co–X catalyst. The commonly used (salen)Co–OAc and (salen)Co–Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co–OH, and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co–OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co–X precatalysts, and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co–OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction. PMID:22292515

  17. Mechanistic basis for high reactivity of (salen)Co-OTs in the hydrolytic kinetic resolution of terminal epoxides.

    PubMed

    Nielsen, Lars P C; Zuend, Stephan J; Ford, David D; Jacobsen, Eric N

    2012-03-02

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.

  18. Photonic instantaneous frequency measurement of wideband microwave signals.

    PubMed

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang

    2017-01-01

    We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.

  19. Full-Spectrum-Analysis Isotope ID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.

    2017-06-28

    FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less

  20. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  1. Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment

    DTIC Science & Technology

    2011-05-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...REPORT Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Soil...cells). Thus, a method is required to downscale intermediate-resolution patterns to finer resolutions. Fortunately, fine-resolution variations in

  2. Design and Construction of an Entity Resolution System that Supports Entity Identity Information Management and Asserted Resolution

    ERIC Educational Resources Information Center

    Nelson, Eric Derrand

    2011-01-01

    This work describes the design and construction of an open source, entity resolution system that enables users to assign and maintain persistent identifiers for master data items. Two key features of this system that are not available in current ER systems and that make persistent identification possible are (1) The capture and management of…

  3. Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.

    PubMed

    Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S

    2017-01-01

    The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.

  4. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2007-09-30

    APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the detection of thin layers of...phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution profiling of water...the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler to maintain this

  5. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  6. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  7. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  8. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  9. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions

    PubMed Central

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-01-01

    Background Phase-amplitude coupling (PAC) – the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm – has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. New method To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques – such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. Comparison with existing methods We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Conclusions Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. PMID:24452055

  10. DLA based compressed sensing for high resolution MR microscopy of neuronal tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Khieu-Van; Li, Jing-Rebecca; Radecki, Guillaume; Ciobanu, Luisa

    2015-10-01

    In this work we present the implementation of compressed sensing (CS) on a high field preclinical scanner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random growth model. When applied to a library of images this approach performs better than the traditional undersampling based on the polynomial probability density function. In addition, we show that the method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times while maintaining the image quality necessary for identifying the majority of neurons via an automatic cell segmentation algorithm.

  11. Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)

    NASA Astrophysics Data System (ADS)

    MoIIberg, Bernard H.

    1981-11-01

    The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.

  12. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  13. Evaluation of the low dose cardiac CT imaging using ASIR technique

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  14. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  15. Adaptive optics improves multiphoton super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  16. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less

  17. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael

    2014-06-15

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.« less

  18. High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.

    2003-05-01

    We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).

  19. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  20. Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus

    PubMed Central

    Zhang, Jie; Chen, Yuewen; Shao, Yong; Wu, Qi; Guan, Ming; Zhang, Wei; Wan, Jun; Yu, Bo

    2012-01-01

    Background. TNFα-induced protein 3 (TNFAIP3) interacting with protein 1 (TNIP1) acts as a negative regulator of NF-κB and plays an important role in maintaining the homeostasis of immune system. A recent genome-wide association study (GWAS) showed that the polymorphism of TNIP1 was associated with the disease risk of SLE in Caucasian. In this study, we investigated whether the association of TNIP1 with SLE was replicated in Chinese population. Methods. The association of TNIP1 SNP rs7708392 (G/C) was determined by high resolution melting (HRM) analysis with unlabeled probe in 285 SLE patients and 336 healthy controls. Results. A new SNP rs79937737 located on 5 bp upstream of rs7708392 was discovered during the HRM analysis. No association of rs7708392 or rs79937737 with the disease risk of SLE was found. Furthermore, rs7708392 and rs79937737 were in weak linkage disequilibrium (LD). Hypotypes analysis of the two SNPs also showed no association with SLE in Chinese population. Conclusions. High resolution melting analysis with unlabeled probes proves to be a powerful and efficient genotyping method for identifying and screening SNPs. No association of rs7708392 or rs79937737 with the disease risk of SLE was observed in Chinese population. PMID:22852072

  1. Pre-processing liquid chromatography/high-resolution mass spectrometry data: extracting pure mass spectra by deconvolution from the invariance of isotopic distribution.

    PubMed

    Krishnan, Shaji; Verheij, Elwin E R; Bas, Richard C; Hendriks, Margriet W B; Hankemeier, Thomas; Thissen, Uwe; Coulier, Leon

    2013-05-15

    Mass spectra obtained by deconvolution of liquid chromatography/high-resolution mass spectrometry (LC/HRMS) data can be impaired by non-informative mass-over-charge (m/z) channels. This impairment of mass spectra can have significant negative influence on further post-processing, like quantification and identification. A metric derived from the knowledge of errors in isotopic distribution patterns, and quality of the signal within a pre-defined mass chromatogram block, has been developed to pre-select all informative m/z channels. This procedure results in the clean-up of deconvoluted mass spectra by maintaining the intensity counts from m/z channels that originate from a specific compound/molecular ion, for example, molecular ion, adducts, (13) C-isotopes, multiply charged ions and removing all m/z channels that are not related to the specific peak. The methodology has been successfully demonstrated for two sets of high-resolution LC/MS data. The approach described is therefore thought to be a useful tool in the automatic processing of LC/HRMS data. It clearly shows the advantages compared to other approaches like peak picking and de-isotoping in the sense that all information is retained while non-informative data is removed automatically. Copyright © 2013 John Wiley & Sons, Ltd.

  2. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  3. Quantity not quality: The relationship between fluid intelligence and working memory capacity

    PubMed Central

    Fukuda, Keisuke; Vogel, Edward; Mayr, Ulrich; Awh, Edward

    2010-01-01

    A key motivation for understanding capacity in working memory (WM) is its relationship with fluid intelligence. Recent evidence has suggested a 2-factor model that distinguishes between the number of representations that can be maintained in WM and the resolution of those representations. To determine how these factors relate to fluid intelligence, we conducted an exploratory factor analysis on multiple number-limited and resolution-limited measures of WM ability. The results strongly supported the 2-factor model, with fully orthogonal factors accounting for performance in the number-limited and resolution-limited conditions. Furthermore, the reliable relationship between WM capacity and fluid intelligence was exclusively supported by the number factor (r = .66), while the resolution factor made no reliable contribution (r = −.05). Thus, the relationship between WM capacity and standard measures of fluid intelligence is mediated by the number of representations that can be simultaneously maintained in WM rather than by the precision of those representations. PMID:21037165

  4. In vivo deep tissue fluorescence imaging of the murine small intestine and colon

    NASA Astrophysics Data System (ADS)

    Crosignani, Viera; Dvornikov, Alexander; Aguilar, Jose S.; Stringari, Chiara; Edwards, Roberts; Mantulin, Williams; Gratton, Enrico

    2012-03-01

    Recently we described a novel technical approach with enhanced fluorescence detection capabilities in two-photon microscopy that achieves deep tissue imaging, while maintaining micron resolution. This technique was applied to in vivo imaging of murine small intestine and colon. Individuals with Inflammatory Bowel Disease (IBD), commonly presenting as Crohn's disease or Ulcerative Colitis, are at increased risk for developing colorectal cancer. We have developed a Giα2 gene knock out mouse IBD model that develops colitis and colon cancer. The challenge is to study the disease in the whole animal, while maintaining high resolution imaging at millimeter depth. In the Giα2-/- mice, we have been successful in imaging Lgr5-GFP positive stem cell reporters that are found in crypts of niche structures, as well as deeper structures, in the small intestine and colon at depths greater than 1mm. In parallel with these in vivo deep tissue imaging experiments, we have also pursued autofluorescence FLIM imaging of the colon and small intestine-at more shallow depths (roughly 160μm)- on commercial two photon microscopes with excellent structural correlation (in overlapping tissue regions) between the different technologies.

  5. Timing performance of the CMS ECAL and prospects for the future

    NASA Astrophysics Data System (ADS)

    del Re, Daniele

    2015-02-01

    The CMS electromagnetic calorimeter (ECAL) is made of about 75000 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as time measurements from the data collected in proton-proton collisions with high energy electrons and photons. The stability of the time measurement required to maintain the energy resolution is on the order of 1 ns. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The time resolution achieved with the data collected in proton-proton collisions at the LHC is presented. The time precision achieved is used in important physics measurements and also allows the study of subtle calorimetric effects, such as the time response of different crystals belonging to the same electromagnetic shower. In addition, we present prospects for the high luminosity phase of the LHC, where we expect an average of 140 concurrent interactions per bunch crossing (pile-up). It is currently being studied how precision time could be exploited for pileup mitigation and for the assignment of the collision vertex for photons. In this respect, a detailed understanding of the time performance and of the limiting factors in time resolution will be important.

  6. Coarse-to-fine construction for high-resolution representation in visual working memory.

    PubMed

    Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende

    2013-01-01

    This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.

  7. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  8. Old and modern Lippmann photography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Jeong, Tung H.; Ro, Raymond J.

    1998-02-01

    At the end of the last century, Gabriel Lippmann was experimenting with color photography. His photographic color recording technique, Lippmann photography, produced very beautiful photographs and the fact that the colors are preserved in the early Lippmann photographs indicates something about their archival properties. Recent progress in color reflection holography has made it possible to take a new look at this one hundred year old photographic technique. Today, high-resolution panchromatic recording materials suitable for Lippmann photography are on the market. In particular, the Slavich panchromatic ultra-high- resolution silver-halide holographic materials have been investigated for modern Lippmann photography. Since the color photographs contain no dyes or pigments their archival stability may be high. In addition, a Lippmann photograph is difficult to copy which makes it a unique color photographic recording. Both of these features must attract a photographer interested in creating beautiful art photographs. It is also shown that Lippmann photographs can be made without the mercury reflector, instead by using the reflection from the gelatin-air interface. This eliminates the complications in dealing with mercury, while still maintaining the high resolution and picture quality at the expense of longer exposure times. Security application is a potential field for Lippmann photographs as well as optical filters. Another advantage is that no expensive equipment, such as lasers, is needed to explore this photographic recording technique; only a modified camera is required.

  9. High-resolution barotropic tide modelling in the South China Sea

    NASA Astrophysics Data System (ADS)

    Luu, Quang-Hung; Tkalich, Pavel

    2016-04-01

    The South China Sea (SCS) links two of the largest open oceans, the Pacific and the Indian, mainly through the Luzon-Taiwan Straits in the northeast and the Malacca-Karimata Straits in the southwest, respectively. It has a rhino-like shape of 3000-km long, whose belly is contiguous to Vietnam and back leans on the Philippines. The highly irregular topography includes the Gulf of Tonkin in the north, the Gulf Thailand in the southwest, and several small islands in the middle of SCS (i.e., the Spratly and the Paracels) resulting in complicated astronomic tides and tidal dynamics in this region. In this study, we present high-resolution simulation of tides in the SCS using the Semi-Implicit Eulerian-Lagrangian Finite-Element (SELFE) model. We derive the bathymetry from the Shuttle Radar Topography Mission (SMRT) 15-arc second dataset, one of the finest global topography data sources. Our particular interest is to resolve small bathymetry features and islands in the middle of the SCS which we obtained by digitizing very-high resolution satellite images (30-m accuracy). An unstructured triangular mesh comprising of up to 5 million nodes is generated to resolve these features with very high accuracy, while maintaining fairly coarse resolution in rest of the domain. The model is configured to run in barotropic mode by forcing harmonic oscillations from FES2012 global tide predictions along open boundaries, adjusted to account for volume transport at key channels in the SCS. Computed surface elevations and currents agree well with available tide predictions and measurements. Sensitivity study is performed to analyze the role of the small bathymetry features on distorting tides in the SCS.

  10. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  11. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  12. USGS Releases Landsat Orthorectified State Mosaics

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) National Remote Sensing Data Archive, located at the USGS Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota, maintains the Landsat orthorectified data archive. Within the archive are Landsat Enhanced Thematic Mapper Plus (ETM+) data that have been pansharpened and orthorectified by the Earth Satellite Corporation. This imagery has acquisition dates ranging from 1999 to 2001 and was created to provide users with access to quality-screened, high-resolution satellite images with global coverage over the Earth's landmasses.

  13. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2013-07-01

    observed data at one location include variability caused by small -scale atmospheric convec- tion and wind variations that cannot be resolved by the... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the

  14. Fourier-transform optical microsystems

    NASA Technical Reports Server (NTRS)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  15. In-situ, Nanosecond, High Resolution TEM Instrumentation for Multi-Disciplinary Research and Education in Nanomaterials

    DTIC Science & Technology

    2014-10-30

    rotation of the tilt table (Figure 3b). A torsion spring pushes the tilt table against the push bar, so that contact is maintained (Figure 3a). The tilt...designed flexible circuit board (Figure 3a), composed of copper conductors patterned on top of vacuum-compatible kapton polymer. The flexibility of...this board is important so that it does not hinder rotation of the tilt-table. The flexible PCB extends into the hollow holder shaft, and interfaces

  16. Quasi-periodic Reversals of Radio Polarization at 17 GHz Observed in the 2002 April 21 Solar Event

    NASA Astrophysics Data System (ADS)

    Huang, Guangli; Lin, Jun

    2006-03-01

    We investigate high spatial resolution radio polarization data obtained by the Nobeyama Radioheliograph (NoRH) and high time resolution data observed with the Nobeyama Radio Polarimeters (NoRP) during the well-studied flare/CME event of 2002 April 21. A 17 GHz radio source at the loop top was seen by NoRH to move upward together with the expanding flare loops at a speed of around 10 km s-1. In the 5 minutes before the source began its upward motion, the Stokes V of the radio signals at 17 GHz showed quasi-periodic reversals between left-circular polarization (LCP) and right-circular polarization (RCP). Following this interval, the polarizations gradually turned to LCP. During this period, the polarization of the corresponding footpoint source maintained the RCP sense. The reversal of Stokes V between RCP and LCP was also detected at lower frequencies (1-2 GHz) by NoRP, without spatial resolution. The observed reversals between RCP and LCP of the radio signals from the top of the flare loop system can be taken as evidence that magnetic energy is released or energetic particles are produced at the magnetic reconnection site in a quasi-periodic fashion.

  17. Antenna Electronics Concept for the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Shillue, Bill; Jackson, James; Selina, Rob

    2018-01-01

    The National Radio Astronomy Observatory (NRAO) is considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milliarcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.The design of the antenna electronics, reference signal distribution, and data transmission systems will be construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. With the size of the array, design effort on manufacturability and integration of components can lead to reduced lifecycle costs. With current uncertainty in the feasibility of wideband receivers, and advancements in digitizer technology, the architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizer ICs. The focus of the presentation will be a proposed architecture for the electronics system, parameter tradeoffs within the system specification, and areas where technical advances are required when compared to existing array designs.

  18. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  19. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Automated Generation of the Alaska Coastline Using High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roth, G.; Porter, C. C.; Cloutier, M. D.; Clementz, M. E.; Reim, C.; Morin, P. J.

    2015-12-01

    Previous campaigns to map Alaska's coast at high resolution have relied on airborne, marine, or ground-based surveying and manual digitization. The coarse temporal resolution, inability to scale geographically, and high cost of field data acquisition in these campaigns is inadequate for the scale and speed of recent coastal change in Alaska. Here, we leverage the Polar Geospatial Center (PGC) archive of DigitalGlobe, Inc. satellite imagery to produce a state-wide coastline at 2 meter resolution. We first select multispectral imagery based on time and quality criteria. We then extract the near-infrared (NIR) band from each processed image, and classify each pixel as water or land with a pre-determined NIR threshold value. Processing continues with vectorizing the water-land boundary, removing extraneous data, and attaching metadata. Final coastline raster and vector products maintain the original accuracy of the orthorectified satellite data, which is often within the local tidal range. The repeat frequency of coastline production can range from 1 month to 3 years, depending on factors such as satellite capacity, cloud cover, and floating ice. Shadows from trees or structures complicate the output and merit further data cleaning. The PGC's imagery archive, unique expertise, and computing resources enabled us to map the Alaskan coastline in a few months. The DigitalGlobe archive allows us to update this coastline as new imagery is acquired, and facilitates baseline data for studies of coastal change and improvement of topographic datasets. Our results are not simply a one-time coastline, but rather a system for producing multi-temporal, automated coastlines. Workflows and tools produced with this project can be freely distributed and utilized globally. Researchers and government agencies must now consider how they can incorporate and quality-control this high-frequency, high-resolution data to meet their mapping standards and research objectives.

  1. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    PubMed

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification.

    PubMed

    Kim, Young Hoon; Song, Kwang Yong

    2017-06-26

    A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.

  3. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  4. A forestry GIS-based study on evaluating the potential of imaging spectroscopy in mapping forest land fertility

    NASA Astrophysics Data System (ADS)

    Mõttus, Matti; Takala, Tuure

    2014-12-01

    Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.

  5. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  6. 76 FR 51890 - Release of Information From Department of Veterans Affairs Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... requires resolution prior to processing. Reading room means space made available, as needed, in VA... component providing a public reading room space will be the component that maintains the record. Record... reading rooms and discretionary disclosures. (a) VA maintains a public reading room electronically at its...

  7. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less

  8. 24 CFR 7.5 - EEO Alternative Dispute Resolution Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Statement regarding Alternative Dispute Resolution (ADR) located on the Department's website and 29 CFR 1614.102(b)(2), the Department shall establish and maintain an ADR program that addresses, at a minimum, EEO matters at the pre-complaint and formal complaint stages of the EEO process. ADR is a non...

  9. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  10. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  11. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  12. High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer

    PubMed Central

    Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson

    2006-01-01

    Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314

  13. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson

    2007-04-01

    Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.

  14. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less

  15. Multi-scale investigation of shrub encroachment in southern Africa

    NASA Astrophysics Data System (ADS)

    Aplin, Paul; Marston, Christopher; Wilkinson, David; Field, Richard; O'Regan, Hannah

    2016-04-01

    There is growing speculation that savannah environments throughout Africa have been subject to shrub encroachment in recent years, whereby grassland is lost to woody vegetation cover. Changes in the relative proportions of grassland and woodland are important in the context of conservation of savannah systems, with implications for faunal distributions, environmental management and tourism. Here, we focus on southern Kruger National Park, South Africa, and investigate whether or not shrub encroachment has occurred over the last decade and a half. We use a multi-scale approach, examining the complementarity of medium (e.g. Landsat TM and OLI) and fine (e.g. QuickBird and WorldView-2) spatial resolution satellite sensor imagery, supported by intensive field survey in 2002 and 2014. We employ semi-automated land cover classification, involving a hybrid unsupervised clustering approach with manual class grouping and checking, followed by change detection post-classification comparison analysis. The results show that shrub encroachment is indeed occurring, a finding evidenced through three fine resolution replicate images plus medium resolution imagery. The results also demonstrate the complementarity of medium and fine resolution imagery, though some thematic information must be sacrificed to maintain high medium resolution classification accuracy. Finally, the findings have broader implications for issues such as vegetation seasonality, spatial transferability and management practices.

  16. Improving spatial and spectral resolution of TCV Thomson scattering

    NASA Astrophysics Data System (ADS)

    Hawke, J.; Andrebe, Y.; Bertizzolo, R.; Blanchard, P.; Chavan, R.; Decker, J.; Duval, B.; Lavanchy, P.; Llobet, X.; Marlétaz, B.; Marmillod, P.; Pochon, G.; Toussaint, M.

    2017-12-01

    The recently completed MST2 upgrade to the Thomson scattering (TS) system on TCV (Tokamak à Configuration Variable) at the Swiss Plasma Center aims to provide an enhanced spatial and spectral resolution while maintaining the high level of diagnostic flexibility for the study of TCV plasmas. The MST2 (Medium Sized Tokamak) is a work program within the Eurofusion ITER physics department, aimed at exploiting Europe's medium sized tokamak programs for a better understanding of ITER physics. This upgrade to the TCV Thomson scattering system involved the installation of 40 new compact 5-channel spectrometers and modifications to the diagnostics fiber optic design. The complete redesign of the fiber optic backplane incorporates fewer larger diameter fibers, allowing for a higher resolution in both the core and edge of TCV plasmas along the laser line, with a slight decrease in the signal to noise ratio of Thomson measurements. The 40 new spectrometers added to the system are designed to cover the full range of temperatures expected in TCV, able to measure electron temperatures (Te) with high precision between (6 eV and 20 keV) . The design of these compact spectrometers stems originally from the design utilized in the MAST (Mega Amp Spherical Tokamak) TS system located in Oxfordshire, United Kingdom. This design was implemented on TCV with an overall layout of optical fibers and spectrometers to achieve an overall increase in the spatial resolution, specifically a resolution of approximately 1% of the minor radius within the plasma pedestal region. These spectrometers also enhance the diagnostic spectral resolution, especially within the plasma edge, due to the low Te measurement capabilities. These additional spectrometers allow for a much greater diagnostic flexibility, allowing for quality full Thomson profiles in 75% of TCV plasma configurations.

  17. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.

    PubMed

    Barnett, Patrick D; Angel, S Michael

    2017-05-01

    A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

  18. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    PubMed

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  20. Magellan radar to reveal secrets of enshrouded Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. Stephen

    1990-01-01

    Imaging Venus with a synthetic aperture radar (SAR) with 70 percent global coverage at 1-km optical line-pair resolution to provide a detailed global characterization of the volcanic land-forms on Venus by an integration of image data with altimetry is discussed. The Magellan radar system uses navigation predictions to preset the radar data collection parameters. The data are collected in such a way as to preserve the Doppler signature of surface elements and later they are transmitted to the earth for processing into high-resolution radar images. To maintain high accuracy, a complex on-board filter algorithm allows the altitude control logic to respond only to a narrow range of expected photon intensity levels and only to signals that occur within a small predicted interval of time. Each mapping pass images a swath of the planet that varies in width from 20 to 25 km. Since the orbital plane of the spacecraft remains fixed in the inertial space, the slow rotation of Venus continually brings new areas into view of the spacecraft.

  1. In vivo photoacoustic imaging of mouse embryos

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  2. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  3. Speckle reduction in optical coherence tomography using two-step iteration method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Liu, Xinyu; Wang, Nanshuo; Yu, Xiaojun; Bo, En; Chen, Si; Liu, Linbo

    2017-02-01

    Optical coherence tomography (OCT) provides high resolution and cross-sectional images of biological tissue and is widely used for diagnosis of ocular diseases. However, OCT images suffer from speckle noise, which typically considered as multiplicative noise in nature, reducing the image resolution and contrast. In this study, we propose a two-step iteration (TSI) method to suppress those noises. We first utilize augmented Lagrange method to recover a low-rank OCT image and remove additive Gaussian noise, and then employ the simple and efficient split Bregman method to solve the Total-Variation Denoising model. We validated such proposed method using images of swine, rabbit and human retina. Results demonstrate that our TSI method outperforms the other popular methods in achieving higher peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) while preserving important structural details, such as tiny capillaries and thin layers in retinal OCT images. In addition, the results of our TSI method show clearer boundaries and maintains high image contrast, which facilitates better image interpretations and analyses.

  4. The Extended Range X-Ray Telescope center director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.

    1985-01-01

    An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.

  5. DLA based compressed sensing for high resolution MR microscopy of neuronal tissue.

    PubMed

    Nguyen, Khieu-Van; Li, Jing-Rebecca; Radecki, Guillaume; Ciobanu, Luisa

    2015-10-01

    In this work we present the implementation of compressed sensing (CS) on a high field preclinical scanner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random growth model. When applied to a library of images this approach performs better than the traditional undersampling based on the polynomial probability density function. In addition, we show that the method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times while maintaining the image quality necessary for identifying the majority of neurons via an automatic cell segmentation algorithm. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Role of Prominence in Pronoun Resolution: Active versus Passive Representations

    ERIC Educational Resources Information Center

    Foraker, Stephani; McElree, Brian

    2007-01-01

    A prominent antecedent facilitates anaphor resolution. Speed-accuracy tradeoff modeling in Experiments 1 and 3 indicated that clefting did not affect the speed of accessing an antecedent representation, which is inconsistent with claims that discourse-focused information is actively maintained in focal attention [e.g., Gundel, J. K. (1999). "On…

  7. 18 CFR 385.604 - Alternative means of dispute resolution (Rule 604).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., operate, and maintain a hydroelectric project pursuant to the Federal Power Act or the Public Utility... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Alternative means of dispute resolution (Rule 604). 385.604 Section 385.604 Conservation of Power and Water Resources FEDERAL...

  8. 18 CFR 385.604 - Alternative means of dispute resolution (Rule 604).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., operate, and maintain a hydroelectric project pursuant to the Federal Power Act or the Public Utility... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Alternative means of dispute resolution (Rule 604). 385.604 Section 385.604 Conservation of Power and Water Resources FEDERAL...

  9. 18 CFR 385.604 - Alternative means of dispute resolution (Rule 604).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., operate, and maintain a hydroelectric project pursuant to the Federal Power Act or the Public Utility... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Alternative means of dispute resolution (Rule 604). 385.604 Section 385.604 Conservation of Power and Water Resources FEDERAL...

  10. 18 CFR 385.604 - Alternative means of dispute resolution (Rule 604).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., operate, and maintain a hydroelectric project pursuant to the Federal Power Act or the Public Utility... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Alternative means of dispute resolution (Rule 604). 385.604 Section 385.604 Conservation of Power and Water Resources FEDERAL...

  11. Study and optimisation of SIMS performed with He+ and Ne+ bombardment

    NASA Astrophysics Data System (ADS)

    Pillatsch, L.; Vanhove, N.; Dowsett, D.; Sijbrandij, S.; Notte, J.; Wirtz, T.

    2013-10-01

    The combination of the high-brightness He+/Ne+ atomic level ion source with the detection capabilities of secondary ion mass spectrometry (SIMS) opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope (HIM). A feasibility study with He+ and Ne+ ion bombardment is presented in order to determine the performance of SIMS analyses using the HIM. Therefore, the sputtering yields, useful yields and detection limits obtained for metallic (Al, Ni and W) as well as semiconductor samples (Si, Ge, GaAs and InP) were investigated. All the experiments were performed on a Cameca IMS4f SIMS instrument which was equipped with a caesium evaporator and oxygen flooding system. For most of the elements, useful yields in the range of 10-4 to 3 × 10-2 were measured with either O2 or Cs flooding. SIMS experiments performed directly on the ORION with a prototype secondary ion extraction and detection system lead to results that are consistent with those obtained on the IMS4f. Taking into account the obtained useful yields and the analytical conditions, such as the ion current and typical dwell time on the ORION HIM, detection limits in the at% range and better can be obtained during SIMS imaging at 10 nm lateral resolution with Ne+ bombardment and down to the ppm level when a lateral resolution of 100 nm is chosen. Performing SIMS on the HIM with a good detection limit while maintaining an excellent lateral resolution (<50 nm) is therefore very promising.

  12. Ion Mass Spectroscopy for the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Reisenfeld, D. B.; Elphic, R. C.; McComas, D. J.; Nordholt, J. E.; Steinberg, J. T.; Wiens, R. C.

    2001-01-01

    A proven method for determination of the exospheric and surface composition of moons and comets is ion mass spectroscopy. Ions are produced via sputtering of surface constituents by the ambient plasma (solar wind or planetary magnetospheres), and via photo- and electron impact ionization of neutral exospheric/atmospheric constituents. A promising emergent technology in the field of space-based ion mass spectrometry is the low-cost, miniaturized but high-performance ion mass spectrometer (IMS) as exhibited by the Plasma Experiment for Planetary Exploration (PEPE) on Deep Space 1 (DS-1). A technology demonstration instrument, the PEPE IMS realized a mass resolution (M/delta(M)) of approximately 10. Its energy range extends from 5 eV to 9 keV at this mass resolution, and up to 33.5 keV in a lower mass resolution mode. With minimal development, these capabilities can be greatly extended. Already, we have produced a fully functional engineering model having a M/delta(M) = 20 and an energy range extending to 18 keV in the high-mass resolution mode. Further design modifications anticipate extending the mass resolution to 30-40 while still maintaining a miniaturized design. This makes possible many more isotopic and molecular differentiations than achievable with the original PEPE design. A PEPE-class spectrometer can address a significant number of the OPP key strategic objectives. In particular, in situ cometary nucleus analysis, studies of Triton's atmospheric and surface composition, and Europa surface composition analysis, can all be performed through IMS measurements. Additional information is contained in the original extended abstract.

  13. Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.

    2017-09-01

    Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.

  14. Theoretical considerations for mapping activation in human cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2013-06-01

    Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning withmore » a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.« less

  16. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    PubMed

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  17. Water relations of Calycanthus flowers: Hydraulic conductance, capacitance, and embolism resistance.

    PubMed

    Roddy, Adam B; Simonin, Kevin A; McCulloh, Katherine A; Brodersen, Craig R; Dawson, Todd E

    2018-03-30

    For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers. Transpiration from flowers frequently exceeded transpiration from leaves, and flowers were unable to limit transpiration under conditions of high vapour pressure deficit. As a result, they rely heavily on hydraulic capacitance to prevent water potential declines. Despite having high water potentials at turgor loss, flowers were very resistant to embolism formation, with no embolism apparent until tepal water potentials had declined to -2 MPa. Although Calycanthus flowers remain connected to the stem xylem and have high hydraulic capacitance, their inability to curtail transpiration leads to turgor loss. These results suggest that extreme climate events may cause flower failure, potentially preventing successful reproduction. © 2018 John Wiley & Sons Ltd.

  18. Late Permian Forest Composition And Climate Revealed From High-Resolution Carbon Isotopes In Fossil Tree Rings

    NASA Astrophysics Data System (ADS)

    Gulbranson, E.; Isbell, J. L.; Taylor, E. L.; Ryberg, P. E.; Taylor, T. N.

    2012-12-01

    Late Permian forests from Antarctica are one of a few examples of polar forest biomes in Earth history. We present a paleoforestry and geochemical study of three contemporaneous Late Permian fossil forests and geochemical analysis of fossil wood specimens from the Permian-Triassic contact in Antarctica. Late Permian paleoforestry analysis suggests that these forests responded to disturbance in exactly the opposite manner as compared to modern boreal forests, with forest thinning and loss of understory vegetation occurring towards areas of disturbance. New high-resolution carbon isotope data from 6 permineralized stumps, 32 tree rings studied in total, indicate that these forests were mixed evergreen and deciduous, but dominated by deciduous trees. Moreover, intra-tree ring and ring-to-ring variation of δ13C values suggest that the Late Permian polar climate maintained wet winters, with precipitation in the austral winter being a factor of three greater than the austral summer. Such seasonality in precipitation implies the development of a temperate-like climate at polar latitudes following the demise of the late Paleozoic ice age. High-resolution carbon isotopes in tree rings in a stratigraphic succession of Late Permian fossil wood to fossil wood at the Permian-Triassic contact indicates that Antarctica experienced a change in precipitation patterns around the time of the Permian-Triassic boundary, marked by intervals of pronounced drying juxtaposed against wetter conditions.

  19. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic.

    PubMed

    Rowan, W L; Houshmandyar, S; Phillips, P E; Austin, M E; Beno, J H; Hubbard, A E; Khodak, A; Ouroua, A; Taylor, G

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  20. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.« less

  1. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    DOE PAGES

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; ...

    2016-09-07

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Here, blackbody radiation sources are provided for in situ calibration.« less

  2. X-ray verification of an optically-aligned off-plane grating module

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  3. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  4. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  5. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  7. Jet Engine Operating and Support Cost Estimating Relationship Development.

    DTIC Science & Technology

    1985-09-01

    0 H COX UCSSFE SEP 85 RFIT/GSM/LSY/85S-S F/G 14/1 M liiiI~ 1.8 2. I...~ 0 1.8 11111 ~ *& 11110 .8 MICR~OCOPY RESOLUTION TEST CHART N AT-N AL BUEA O... testing equipment, and more highly skilled laborers to maintain the engines. Variables indicative of technology and performance are specific fuel...Qualification Test (MlOT) date. October 1942 was slected because it was the date when the first US turbojet- 50 powered aircraft -Flew (26s14. Another time

  8. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  9. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager

    PubMed Central

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T.; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen

    2011-01-01

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained. PMID:23505330

  10. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  11. Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy.

    PubMed

    Marro, M; Nieva, C; Sanz-Pamplona, R; Sierra, A

    2014-09-01

    In breast cancer the presence of cells undergoing the epithelial-to-mesenchymal transition is indicative of metastasis progression. Since metabolic features of breast tumour cells are critical in cancer progression and drug resistance, we hypothesized that the lipid content of malignant cells might be a useful indirect measure of cancer progression. In this study Multivariate Curve Resolution was applied to cellular Raman spectra to assess the metabolic composition of breast cancer cells undergoing the epithelial to mesenchymal transition. Multivariate Curve Resolution analysis led to the conclusion that this transition affects the lipid profile of cells, increasing tryptophan but maintaining a low fatty acid content in comparison with highly metastatic cells. Supporting those results, a Partial Least Square-Discriminant analysis was performed to test the ability of Raman spectroscopy to discriminate the initial steps of epithelial to mesenchymal transition in breast cancer cells. We achieved a high level of sensitivity and specificity, 94% and 100%, respectively. In conclusion, Raman microspectroscopy coupled with Multivariate Curve Resolution enables deconvolution and tracking of the molecular content of cancer cells during a biochemical process, being a powerful, rapid, reagent-free and non-invasive tool for identifying metabolic features of breast cancer cell aggressiveness at first stages of malignancy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. First Keck Interferometer measurements in self-phase referencing mode: spatially resolving circum-stellar line emission of 48 Lib

    NASA Astrophysics Data System (ADS)

    Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.

    2010-07-01

    Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.

  13. An Integrated Photogrammetric and Photoclinometric Approach for Pixel-Resolution 3d Modelling of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Wu, B.

    2018-04-01

    High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.

  14. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  15. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  16. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Gubarev, M.; Schwartz, R. A.; Steslicki, M.; Ryan, D.; Turin, P.; Warmuth, A.; White, S. M.; Veronig, A.; Vilmer, N.; Dennis, B. R.

    2016-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a recently proposed Small Explorer (SMEX) mission that will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of two individual x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This SMEX mission is made possible by past experience with similar instruments on two sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI will image the Sun with a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 to 100 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  17. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  18. Development and Applications of a New, High-Resolution, Operational MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Kalashnikova, O.

    2014-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the operational MISR algorithm performs well, with about 75% of MISR AOD retrievals falling within 0.05 or 20% × AOD of the paired validation data from the ground-based Aerosol Robotic Network (AERONET), and is able to distinguish aerosol particles by size and sphericity, over both land and water. These attributes enable a variety of applications, including aerosol transport model validation and global air quality assessment. Motivated by the adverse impacts of aerosols on human health at the local level, and taking advantage of computational speed advances that have occurred since the launch of Terra, we have implemented an operational MISR aerosol product with 4.4 km spatial resolution that maintains, and sometimes improves upon, the quality of the 17.6 km resolution product. We will describe the performance of this product relative to the heritage 17.6 km product, the global AERONET validation network, and high spatial density AERONET-DRAGON sites. Other changes that simplify product content, and make working with the data much easier for users, will also be discussed. Examples of how the new product demonstrates finer spatial variability of aerosol fields than previously retrieved, and ways this new dataset can be used for studies of local aerosol effects, will be shown.

  19. Leveraging multi-layer imager detector design to improve low-dose performance for megavoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hu, Yue-Houng; Rottmann, Joerg; Fueglistaller, Rony; Myronakis, Marios; Wang, Adam; Huber, Pascal; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross

    2018-02-01

    While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)—the detectability index (d‧)—are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2  ×  2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d‧.

  20. Double-tilt in situ TEM holder with ultra-high stability.

    PubMed

    Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing

    2018-05-06

    A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Two-dimensional directional synthetic aperture focusing technique using acoustic-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Park, Jihoon; Kim, Chulhong

    2018-02-01

    Photoacoustic microscopy (PAM) is a hybrid imaging technology using optical illumination and acoustic detection. PAM is divided into two types: optical-resolution PAM (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). Among them, AR-PAM has a great advantage in the penetration depth compared to OR-PAM because ARPAM relies on the acoustic focus, which is much less scattered in biological tissue than optical focus. However, because the acoustic focus is not as tight as the optical focus with a same numerical aperture (NA), the AR-PAM requires acoustic NA higher than optical NA. The high NA of the acoustic focus produces good image quality in the focal zone, but significantly degrades spatial resolution and signal-to-noise ratio (SNR) in the out-of-focal zone. To overcome the problem, synthetic aperture focusing technique (SAFT) has been introduced. SAFT improves the degraded image quality in terms of both SNR and spatial resolution in the out-of-focus zone by calculating the time delay of the corresponding signals and combining them. To extend the dimension of correction effect, several 2D SAFTs have been introduced, but there was a problem that the conventional 2D SAFTs cannot improve the degraded SNR and resolution as 1D SAFT can do. In this study, we proposed a new 2D SAFT that can compensate the distorted signals in x and y directions while maintaining the correction performance as the 1D SAFT.

  2. Labeling proteins inside living cells using external fluorophores for microscopy.

    PubMed

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-12-09

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.

  3. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    PubMed

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  4. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  5. Efficient Data Mining for Local Binary Pattern in Texture Image Analysis

    PubMed Central

    Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.

    2015-01-01

    Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332

  6. High-resolution panoramic images with megapixel MWIR FPA

    NASA Astrophysics Data System (ADS)

    Leboucher, Vincent; Aubry, Gilles

    2014-06-01

    In the continuity of its current strategy, HGH maintains a deep effort in developing its most recent product family: the infrared (IR) panoramic 360-degree surveillance sensors. During the last two years, HGH optimized its prototype Middle Wave IR (MWIR) panoramic sensor IR Revolution 360 HD that gave birth to Spynel-S product. Various test campaigns proved its excellent image quality. Cyclope, the software associated with Spynel, benefitted from recent image processing improvements and new functionalities such as target geolocalization, long range sensor slue to cue and facilitated forensics analysis. In the frame of the PANORAMIR project sustained by the DGA (Délégation Générale de l'Armement), HGH designed a new extra large resolution sensor including a MWIR megapixel Focal Plane Array (FPA) detector (1280×1024 pixels). This new sensor is called Spynel-X. It provides outstanding resolution 360-degree images (with more than 100 Mpixels). The mechanical frame of Spynel (-S and -X) was designed with the collaboration of an industrial design agency. Spynel got the "Observeur du Design 2013" label.

  7. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  8. Varying Levels of Automation on UAS Operator Responses to Traffic Resolution Advisories in Civil Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin; Fern, Lisa

    2012-01-01

    Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and Fully Automated conditions.

  9. Axial field shaping under high-numerical-aperture focusing

    NASA Astrophysics Data System (ADS)

    Jabbour, Toufic G.; Kuebler, Stephen M.

    2007-03-01

    Kant reported [J. Mod. Optics47, 905 (2000)] a formulation for solving the inverse problem of vector diffraction, which accurately models high-NA focusing. Here, Kant's formulation is adapted to the method of generalized projections to obtain an algorithm for designing diffractive optical elements (DOEs) that reshape the axial point-spread function (PSF). The algorithm is applied to design a binary phase-only DOE that superresolves the axial PSF with controlled increase in axial sidelobes. An 11-zone DOE is identified that axially narrows the PSF central lobe by 29% while maintaining the sidelobe intensity at or below 52% of the peak intensity. This DOE could improve the resolution achievable in several applications without significantly complicating the optical system.

  10. High frame-rate resolution of cell division during Candida albicans filamentation

    PubMed Central

    Thomson, Darren D.; Berman, Judith; Brand, Alexandra C.

    2016-01-01

    The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division. PMID:26854071

  11. EUV Cross-Calibration Strategies for the GOES-R SUVI

    NASA Astrophysics Data System (ADS)

    Darnel, Jonathan; Seaton, Daniel

    2016-10-01

    The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.

  12. The scope and control of attention: Sources of variance in working memory capacity.

    PubMed

    Chow, Michael; Conway, Andrew R A

    2015-04-01

    Working memory capacity is a strong positive predictor of many cognitive abilities, across various domains. The pattern of positive correlations across domains has been interpreted as evidence for a unitary source of inter-individual differences in behavior. However, recent work suggests that there are multiple sources of variance contributing to working memory capacity. The current study (N = 71) investigates individual differences in the scope and control of attention, in addition to the number and resolution of items maintained in working memory. Latent variable analyses indicate that the scope and control of attention reflect independent sources of variance and each account for unique variance in general intelligence. Also, estimates of the number of items maintained in working memory are consistent across tasks and related to general intelligence whereas estimates of resolution are task-dependent and not predictive of intelligence. These results provide insight into the structure of working memory, as well as intelligence, and raise new questions about the distinction between number and resolution in visual short-term memory.

  13. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    PubMed

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Development of a multiplexed readout with high position resolution for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  15. Rotavirus architecture at subnanometer resolution.

    PubMed

    Li, Zongli; Baker, Matthew L; Jiang, Wen; Estes, Mary K; Prasad, B V Venkataram

    2009-02-01

    Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.

  16. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  17. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    PubMed

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is transformed into Fe(2+), while the local Fe-O coordination number of 4-5 is maintained, suggesting that the reduction involves a rearrangement of the oxygen neighbours rather than their removal. In conclusion, the variogram-based analysis of Fe K-edge spectra proves to be very useful in catalysis research.

  18. Laboratory simulation of high-frequency GPR responses of damaged tunnel liners

    NASA Astrophysics Data System (ADS)

    Siggins, A. F.; Whiteley, Robert J.

    2000-04-01

    Concrete lined tunnels and pipelines commonly suffer from damage due to subsidence or poor drainage in the surrounding soils, corrosion of reinforcement if present, and acid vapor leaching of the lining. There is a need to conduct tunnel condition monitoring using non-destructive testing methods (NDT) on a regular basis in many buried installations, for example sewers and storm water drains. A wide variety of NDT methods have been employed in the past to monitor these linings including closed circuit TV (CCTV) inspection, magnetic and various electromagnetic and seismic methods. Ground penetrating radar, GPR, is a promising technique for this application, however there are few systems currently available that can provide the high resolution imaging needed to test the lining. A recently developed Australian GPR system operating at 1400 MHz offers the potential to overcome many of these limitations while maintaining adequate resolution to the rear of the linings which are typically less than 0.5 meters thick. The new high frequency GPR has a nominal resolution of 0.03 m at the center of the pulse band-width. This is a significant improvement over existing radars with the possible exception of some horn based systems. This paper describes the results of a laboratory study on a model tunnel lining using the new 1.4 GHz radar. The model simulated a concrete lining with various degrees of damage including, heavily leached sections, voids and corroded reinforcing. The test results established that the new GPR was capable of imaging subtle variations in the concrete structure and that simulated damage could be detected throughout the liner depth. Furthermore, resolution was found to exceed 0.02 m which was significantly better than expected.

  19. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron. Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.

  20. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelley, Martin; Parsons, David; Women's and Children's Health Research Institute, Adelaide, South Australia

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, andmore » deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron.Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.« less

  1. Seasonal and high-resolution variability in hydrochemistry of the Andes-Amazon

    NASA Astrophysics Data System (ADS)

    Burt, E.; West, A. J.

    2017-12-01

    Stream hydrochemistry acts as a record of integrated catchment processes such as the amount of time it takes precipitation to flow through the subsurface and become streamflow (water transit times), water-rock interaction and biogeochemical cycling. Although it is understood that sampling interval affects observed patterns in hydrochemistry, most studies collect samples on a weekly, bi-weekly or monthly schedule due to lack of resources or the difficulty of maintaining automated sampling devices. Here, we attempt to combine information from two sampling time scales, comparing a year-long hydrochemical time series to data from a recent sub-daily sampling campaign. Starting in April 2016, river, soil and rain waters have been collected every two weeks at five small catchments spanning the tropical Andes and Amazon - a natural laboratory for its gradients in topography, erosion rates, precipitation, temperature and flora. Between January and March, 2017, we conducted high frequency sampling for approximately one week at each catchment, sampling at least every four hours including overnight. We will constrain young water fractions (Kirchner, 2016) and storm water fluxes for the experimental catchments using stable isotopes of water as conservative tracers. Major element data will provide the opportunity to make initial constraints on geochemical and hydrologic coupling. Preliminary results suggest that in the Amazon, hydrochemistry patterns are dependent on sampling frequency: the seasonal cycle in stable isotopes of water is highly damped, while the high resolution sampling displays large variability. This suggests that a two-week sampling interval is not frequent enough to capture rapid transport of water, perhaps through preferential flow networks. In the Andes, stable isotopes of water are highly damped in both the seasonal and high resolution cycle, suggesting that the catchment behaves as a "well-mixed" system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan S; Bugbee, Bruce; Gotseff, Peter

    Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping tomore » select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.« less

  3. A system for the analysis of foot and ankle kinematics during gait.

    PubMed

    Kidder, S M; Abuzzahab, F S; Harris, G F; Johnson, J E

    1996-03-01

    A five-camera Vicon (Oxford Metrics, Oxford, England) motion analysis system was used to acquire foot and ankle motion data. Static resolution and accuracy were computed as 0.86 +/- 0.13 mm and 98.9%, while dynamic resolution and accuracy were 0.1 +/- 0.89 and 99.4% (sagittal plane). Spectral analysis revealed high frequency noise and the need for a filter (6 Hz Butterworth low-pass) as used in similar clinical situations. A four-segment rigid body model of the foot and ankle was developed. The four rigid body foot model segments were 1) tibia and fibula, 2) calcaneus, talus, and navicular, 3) cuneiforms, cuboid, and metatarsals, and 4) hallux. The Euler method for describing relative foot and ankle segment orientation was utilized in order to maintain accuracy and ease of clinical application. Kinematic data from a single test subject are presented.

  4. 33 Years of Near-Global Daily Precipitation from Multisatellite Observations and its Application to Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.; Knapp, K. R.; Cecil, L. D.

    2013-12-01

    PERSIANN Climate Data Record (PERSIANN-CDR) is a new retrospective satellite-based precipitation data set that is constructed for long-term hydrological and climate studies. The PERSIANN-CDR is a near-global (60°S-60°N) long-term (1980-2012), multi-satellite, high-resolution precipitation product that provides rain rate estimates at 0.25° and daily spatiotemporal resolution. PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high resolution precipitation data set for studying the spatial and temporal variations and changes of precipitation patterns, particularly in a scale relevant to climate extremes at the global scale. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data from the International Satellite Cloud Climatology Project (ISCCP). PERSIANN-CDR is adjusted using the Global Precipitation Climatology Project (GPCP) monthly precipitation to maintain consistency of two data sets at 2.5° monthly scale throughout the entire reconstruction period. PERSIANN-CDR daily precipitation data demonstrates considerable consistency with both GPCP monthly and GPCP 1DD precipitation products. Verification studies over Hurricane Katrina show that PERSIANN-CDR has a good agreement with NCEP Stage IV radar data, noting that PERSIANN-CDR has better spatial coverage. In addition, the Probability Density Function (PDF) of PERSIANN-CDR over the contiguous United States was compared with the PDFs extracted from CPC gauge data and the TMPA precipitation product. The experiment also shows good agreement of the PDF of PERSIANN-CDR with the PDFs of TMPA and CPC gauge data. The application of PERSIANN-CDR in regional and global drought monitoring is investigated. Consisting of more than three decades of high-resolution precipitation data, PERSIANN-CDR makes us capable of long-term assessment of droughts at a higher resolution (0.25°) than previously possible. The results will be presented at the meeting.

  5. Unraveling the mystery of natural rubber biosynthesis. Part II. Composition and growth of in vitro natural rubber using high-resolution size exclusion chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Cheng Ching K.; Barkakaty, Balaka; Puskas, Judit E.

    The superior properties of natural rubber (cis-1,4-polyisoprene [NR]) are a function of its structure and composition, properties that still remain a mystery and that are irreplaceable by any synthetic rubber. NR from guayule (Parthenium argentatum) has been gaining special interest for its hypoallergenic properties while maintaining superior mechanical properties that are commonly associated with the Brazilian rubber tree (Hevea brasiliensis), the most common source of NR. Techniques exist to isolate washed rubber particles (WRPs) that contain enzymatically active rubber transferase, to study NR biosynthesis, and previous work on the in vitroNRgrowth in Hevea has demonstrated the presence of around 50wt%ofmore » a low molecular weight ([MW], Mn <10 000 g/mol) fraction. Structural and compositional analyses of this low MW fraction in Hevea are challenging due to the high protein content. Here, we discuss the analysis and composition of guayule latex and WRPs using high-resolution Size Exclusion Chromatography. We also discuss the composition of the soluble fraction of inactive guayule latex using matrix-assisted laser desorption ionization/time of flight mass spectrometry.« less

  6. Advances in algorithm fusion for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-11-01

    Along with other sensors, the Navy uses high-resolution sonar to detect and classify sea mines in mine-hunting operations. Scientists and engineers have devoted substantial effort to the development of automated detection and classification (D/C) algorithms for these high-resolution systems. Several factors spurred these efforts, including: (1) aids for operators to reduce work overload; (2) more optimal use of all available data; and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and manmade clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms (Algorithm Fusion) have been studied. To date, the results have been remarkable, including reliable robustness to new environments. In this paper a brief history of existing Algorithm Fusion technology and some techniques recently used to improve performance are presented. An exploration of new developments is presented in conclusion.

  7. High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) for the characterisation of pathogenic leptospires: intra-serovar divergence, inter-serovar convergence, and evidence of attenuation in Leptospira reference collections.

    PubMed

    Tulsiani, S M; Craig, S B; Graham, G C; Cobbold, R C; Dohnt, M F; Burns, M-A; Jansen, C C; Leung, L K-P; Field, H E; Smythe, L D

    2010-07-01

    High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less

  9. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design cost efficient and effective management strategies. The high-resolution dataset means that there are new opportunities to explore the associated uncertainties in monitoring water quality and assessing ecological status and how that relates to current monitoring networks. For example, concurrent grab samples at the high-resolution sampling stations allow the assessment of the uncertainties which would be generated through coarser sampling strategies. This is just the beginning of the project, however, as the project progresses, the high resolution dataset will provide higher statistical power compared with previous data collection schemes and allow the employment of more complex methods such as signal decomposition e.g. wavelet analysis, which can allow us to start to decipher the complex interactions occurring at sub-catchment scale which may not be immediately detectable in bulk signals. In this paper we outline our methodological approach, present some of the initial findings of this research and how we can quantify changes to nutrient loads whilst taking account the main uncertainties and the inherent natural variability.

  10. Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.

    2017-12-01

    In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.

  11. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  12. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  13. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  14. A flexible touch-pressure sensor array with wireless transmission system for robotic skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  15. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.

    PubMed

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  16. Rapid Detection Method for the Four Most Common CHEK2 Mutations Based on Melting Profile Analysis.

    PubMed

    Borun, Pawel; Salanowski, Kacper; Godlewski, Dariusz; Walkowiak, Jaroslaw; Plawski, Andrzej

    2015-12-01

    CHEK2 is a tumor suppressor gene, and the mutations affecting the functionality of the protein product increase cancer risk in various organs. The elevated risk, in a significant percentage of cases, is determined by the occurrence of one of the four most common mutations in the CHEK2 gene, including c.470T>C (p.I157T), c.444+1G>A (IVS2+1G>A), c.1100delC, and c.1037+1538_1224+328del5395 (del5395). We have developed and validated a rapid and effective method for their detection based on high-resolution melting analysis and comparative-high-resolution melting, a novel approach enabling simultaneous detection of copy number variations. The analysis is performed in two polymerase chain reactions followed by melting analysis, without any additional reagents or handling other than that used in standard high-resolution melting. Validation of the method was conducted in a group of 103 patients with diagnosed breast cancer, a group of 240 unrelated patients with familial history of cancer associated with the CHEK2 gene mutations, and a 100-person control group. The results of the analyses for all three groups were fully consistent with the results from other methods. The method we have developed improves the identification of the CHEK2 mutation carriers, reduces the cost of such analyses, as well as facilitates their implementation. Along with the increased efficiency, the method maintains accuracy and reliability comparable to other more labor-consuming techniques.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less

  18. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  19. The AVIRIS Low Altitude Option-An Approach to Increase Geometric Resolution and Improve Operational Flexibility Simultaneously

    NASA Technical Reports Server (NTRS)

    Sarture, Charles M.; Chovit, Christopher J.; Chrien, Thomas G.; Eastwood, Michael L.; Green, Robert O.; Kurzwell, Charles G.

    1998-01-01

    From 1987 through 1997 the Airborne Visible-InfraRed Imaging Spectrometer has matured into a remote sensing instrument capable of producing prodigious amounts of high quality data. Using the NASA/Ames ER-2 high altitude aircraft platform, flight operations have become very reliable as well. Being exclusively dependent on the ER-2, however, has limitations: the ER-2 has a narrow cruise envelope which fixes the AVIRIS ground pixel at 20 meters; it requires a significant support infrastructure; and it has a very limited number of bases it can operate from. In the coming years, the ER-2 will also become less available for AVIRIS flights as NASA Earth Observing System satellite underflights increase. Adapting AVIRIS to lower altitude, less specialized aircraft will create a much broader envelope for data acquisition, i.e., higher ground geometric resolution while maintaining nearly the ideal spatial sampling. This approach will also greatly enhance flexibility while decreasing the overall cost of flight operations and field support. Successful adaptation is expected to culminate with a one-month period of demonstration flights.

  20. Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, E.

    2014-02-01

    The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA)more » and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.« less

  1. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  2. Protein-Protein Interactions in Clathrin Vesicular Assembly: Radial Distribution of Evolutionary Constraints in Interfaces

    PubMed Central

    Gadkari, Rupali A.; Srinivasan, Narayanaswamy

    2012-01-01

    In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism. PMID:22384024

  3. Resolution No. 598-87, Regulations for the Functioning of the Land Tenure Registry, 27 October 1987.

    PubMed

    1988-01-01

    This Resolution sets forth Regulations for the Land Tenancy Registry of Cuba. It provides that the Registry is part of a scheme for exercising control over legal land tenure and has the following objectives: maintaining control of national land; determining the legal situation of holders of land; recognizing the number of legal holders of land; furnishing information on acquisition, exploitation, and buildings; issuing certificates; and analyzing and processing records in appeals. Further provisions of the Resolution lay down details about these functions. full text

  4. A resolution recognizing the democratic accomplishments of the people of Albania and expressing the hope that the parliamentary elections on June 28, 2009, maintain and improve the transparency and fairness of democracy in Albania.

    THOMAS, 111th Congress

    Sen. Kerry, John F. [D-MA

    2009-06-10

    Senate - 06/19/2009 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:

  5. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  6. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  7. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  8. An optimized method for neurotransmitters and their metabolites analysis in mouse hypothalamus by high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry.

    PubMed

    Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying

    2016-02-15

    Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. WINERED: a warm near-infrared high-resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Motohara, Kentaro; Minami, Atsushi

    2006-06-01

    We are developing a new near-infrared high-resolution (R max = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the following two novel approaches in the optical system: (1) portable design with a ZnSe immersion grating and (2) warm optics without any cold stops. These concepts result in several essential advantages as follows: easy to build, align, and maintain; these result in a short development time and low cost. WINERED employs a VIRGO HgCdTe 2k × 2k array by Raytheon as the detector. We are developing our own array control system that aims at a low readout noise (< 10 e -) with a readout time of about 3 sec. Our goal is to achieve a high sensitivity of R = 100,000 for a NIR spectroscopy of 15 mag and 17 mag point sources with 4 m and 10 m telescopes, respectively. We have just finalized the optical design and produced a prototype electronics, which are described in the companion papers by Yasui et al. and Kondo et al., respectively. We plan to complete this instrument by the end of 2008 and hope to attach it to various 4 to 10 m telescopes as a PI-type instrument.

  10. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    NASA Astrophysics Data System (ADS)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

  11. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 × 512, 1024 × 1024, and 2048 × 2048.

    PubMed

    Hata, Akinori; Yanagawa, Masahiro; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki

    2018-01-16

    This study aimed to assess the effect of matrix size on the spatial resolution and image quality of ultra-high-resolution computed tomography (U-HRCT). Slit phantoms and 11 cadaveric lungs were scanned on U-HRCT. Slit phantom scans were reconstructed using a 20-mm field of view (FOV) with 1024 matrix size and a 320-mm FOV with 512, 1024, and 2048 matrix sizes. Cadaveric lung scans were reconstructed using 512, 1024, and 2048 matrix sizes. Three observers subjectively scored the images on a three-point scale (1 = worst, 3 = best), in terms of overall image quality, noise, streak artifact, vessel, bronchi, and image findings. The median score of the three observers was evaluated by Wilcoxon signed-rank test with Bonferroni correction. Noise was measured quantitatively and evaluated with the Tukey test. A P value of <.05 was considered significant. The maximum spatial resolution was 0.14 mm; among the 320-mm FOV images, the 2048 matrix had the highest resolution and was significantly better than the 1024 matrix in terms of overall quality, solid nodule, ground-glass opacity, emphysema, intralobular reticulation, honeycombing, and clarity of vessels (P < .05). Both the 2048 and 1024 matrices performed significantly better than the 512 matrix (P < .001), except for noise and streak artifact. The visual and quantitative noise decreased significantly in the order of 512, 1024, and 2048 (P < .001). In U-HRCT scans, a large matrix size maintained the spatial resolution and improved the image quality and assessment of lung diseases, despite an increase in image noise, when compared to a 512 matrix size. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Neural network control of focal position during time-lapse microscopy of cells.

    PubMed

    Wei, Ling; Roberts, Elijah

    2018-05-09

    Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.

  13. a New High-Resolution Elevation Model of Greenland Derived from Tandem-X

    NASA Astrophysics Data System (ADS)

    Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S.

    2016-06-01

    In this paper we present for the first time the new digital elevation model (DEM) for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement) mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR) DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite) elevations as ground control points (GCPs) are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  14. 3D AUV Microseismic Implementation for Deepwater Seabed Investigations

    NASA Astrophysics Data System (ADS)

    George, R.; Taylor, M. W.; Gravely, J. G.

    2005-05-01

    Autonomous Underwater Vehicle (AUV) technology, developed commercially over the past 5 years, allows for the geophysical investigation of the seabed on the deepwater continental slope at resolutions, data densities and timelines not previously attainable. High-resolution geophysical systems normally employed on deepwater survey AUVs consist of multibeam bathymetry, side scan sonar and subbottom profiler. Inertial navigation allows positioning accuracies on the order of plus or minus 3 meters in depths up to 2,000 meters. C & C Technologies, Inc. owns and operates the C-Surveyor I AUV, which has collected more than 40,000 km of geohazard survey data on the continental slopes of the Gulf of Mexico, Mediterranean Sea, Brazil and West Africa. The oil and gas industry routinely engineers deepwater platform-mooring systems and other bottom founded subsea systems for exploration and production developments. Resolute subbottom imaging of the foundation zone in order to identify the near-seafloor geologic conditions at these deepwater development sites is critical in order to maintain system integrity. The paper describes the methodology and post-processing techniques used to create a high-resolution (2-8 kHz) 3D seismic cube from subbottom profiler data collected from an AUV system. Data examples of the multibeam bathymetry, side scan sonar and 2D seismic profiles will be provided to complement the results of the 3D seismic cube processing. Examples of inlines, crosslines, arbitrary lines, seafloor amplitude extraction and time slices are presented for the 4-meter binned data set. Advantages, disadvantages and suggested improvements for the survey acquisition technique and post processing are discussed.

  15. High Performance Computing-based Assessment of the Impacts of Climate Change on the Santa Cruz and San Pedro River Basin at Very High Resolution

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2012-12-01

    Assessing the impact of climate change on large river basins in the southwestern United States is important given the natural water scarcity in the region. The bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on the hydrological consequences of climate change in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). These river systems support rich ecological communities along riparian corridors that provide habitat to migratory birds and support recreational and economic activities. Determining the climate impacts on riparian communities involves assessing how river flows and groundwater recharge will change with altered temperature and precipitation regimes. In this study, we use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios from WRF at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization using sub-basin partitioning with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. For the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. We also evaluate the WRF forcing outcomes with respect to meteorological inputs from ground rain gauges and the North American Land Data Assimilation System (NLDAS). We then analyze the high-resolution spatiotemporal predictions of soil moisture, evapotranspiration, runoff generation and recharge under past conditions and for the climate change scenario. A comparison with the historical period will yield a first-of-its-kind assessment at very high spatiotemporal resolution on the impacts of climate change on the hydrologic response of two large semiarid river basins of the southwestern United States.

  16. Dynamic scan control in STEM: Spiral scans

    DOE PAGES

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...

    2016-06-13

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  17. REAP (raster e-beam advanced process) using 50-kV raster e-beam system for sub-100-nm node mask technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.

    2002-07-01

    A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.

  18. Dynamic scan control in STEM: Spiral scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  19. Advanced diagnosis of the temporal characteristics of ultra-short electron beams

    NASA Astrophysics Data System (ADS)

    Otake, Yuji

    2011-05-01

    Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.

  20. Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector Using Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.

    2018-04-01

    We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at < 1 mm position resolution and O(10) eV energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.

  1. Efficiency, dispersion and straylight performance tests of immersed gratings for high resolution spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernandez-Saldivar, J.; Culfaz, F.; Angli, N.; Bhatti, I.; Lobb, D.; Baister, G.; Touzet, B.; Desserouer, F.; Guldimann, B.

    2017-11-01

    New immersed grating technology is needed particularly for use in imaging spectrometers that will be used in sensing the atmosphere O2A spectral band (750nm - 775 nm) at spectral resolution in the order of 0.1 nm whilst ensuring a high efficiency and maintaining low stray light. In this work, the efficiency, dispersion and stray light performance of an immersed grating are tested and compared to analytical models. The grating consists of an ion-beam etched grating in a fused-silica substrate of 120 mm x 120mm immersed on to a prism of the same material. It is designed to obtain dispersions > 0.30°/nm-1 in air and >70% efficiency. The optical performance of the immersed grating is modelled and methods to measure its wavefront, efficiency, dispersion and scattered radiance are described. The optical setup allows the measurement of an 80mm beam diameter to derive the bidirectional scatter distribution function (BSDF) from the immersed grating from a minimum angle of 0.1° from the diffracted beam with angular resolution of 0.05°. Different configurations of the setup allow the efficiency and dispersion measurements using a tuneable laser in the 750nm-775nm range. The results from the tests are discussed with the suitability of the immersed gratings in mind for future space based instruments for atmospheric monitoring.

  2. Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557

  3. Development and Implementation of the DTOPLATS-MP land surface model over the Continental US at 30 meters

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.

    2014-12-01

    The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.

  4. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope

    NASA Astrophysics Data System (ADS)

    Johnston, Simon; Kerr, Matthew

    2018-03-01

    Over the past 13 yr, the Parkes radio telescope has observed a large number of pulsars using digital filter bank backends with high time and frequency resolution and the capability for Stokes recording. Here, we use archival data to present polarimetry data at an observing frequency of 1.4 GHz for 600 pulsars with spin-periods ranging from 0.036 to 8.5 s. We comment briefly on some of the statistical implications from the data and highlight the differences between pulsars with high and low spin-down energy. The data set, images and table of properties for all 600 pulsars are made available in a public data archive maintained by the CSIRO.

  5. Augmented Reality for Maintenance and Repair (ARMAR)

    DTIC Science & Technology

    2007-08-01

    800×600 resolution monocular display, whose small size and lack of an opaque “ frame ”, provides the closest experience to an eyeglass form factor, and...Alternatively, fiducials could be mounted on lightweight rigid frames that are attached to predetermined points on the maintained system. Figure...stereo at 800×600 resolution, thirty frames per second, creating a compelling experience of an augmented workspace. Based on our preliminary

  6. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  7. Denoised ordered subset statistically penalized algebraic reconstruction technique (DOS-SPART) in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong

    2017-03-01

    Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.

  8. Help Teens Manage Diabetes

    MedlinePlus

    ... teens' coping and communication skills, healthy behaviors, and conflict resolution. The CST training helps diabetic teens to ... decisions about drugs and alcohol, and facing personal conflicts. Those teens who receive CST maintain better metabolic ...

  9. Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    BéRanger, Karine; Drillet, Yann; Houssais, Marie-NoëLle; Testor, Pierre; Bourdallé-Badie, Romain; Alhammoud, Bahjat; Bozec, Alexandra; Mortier, Laurent; Bouruet-Aubertot, Pascale; CréPon, Michel

    2010-12-01

    The impact of the atmospheric forcing on the winter ocean convection in the Mediterranean Sea was studied with a high-resolution ocean general circulation model. The major areas of focus are the Levantine basin, the Aegean-Cretan Sea, the Adriatic Sea, and the Gulf of Lion. Two companion simulations differing by the horizontal resolution of the atmospheric forcing were compared. The first simulation (MED16-ERA40) was forced by air-sea fields from ERA40, which is the ECMWF reanalysis. The second simulation (MED16-ECMWF) was forced by the ECMWF-analyzed surface fields that have a horizontal resolution twice as high as those of ERA40. The analysis of the standard deviations of the atmospheric fields shows that increasing the resolution of the atmospheric forcing leads in all regions to a better channeling of the winds by mountains and to the generation of atmospheric mesoscale patterns. Comparing the companion ocean simulation results with available observations in the Adriatic Sea and in the Gulf of Lion shows that MED16-ECMWF is more realistic than MED16-ERA40. In the eastern Mediterranean, although deep water formation occurs in the two experiments, the depth reached by the convection is deeper in MED16-ECMWF. In the Gulf of Lion, deep water formation occurs only in MED16-ECMWF. This larger sensitivity of the western Mediterranean convection to the forcing resolution is investigated by running a set of sensitivity experiments to analyze the impact of different time-space resolutions of the forcing on the intense winter convection event in winter 1998-1999. The sensitivity to the forcing appears to be mainly related to the effect of wind channeling by the land orography, which can only be reproduced in atmospheric models of sufficient resolution. Thus, well-positioned patterns of enhanced wind stress and ocean surface heat loss are able to maintain a vigorous gyre circulation favoring efficient preconditioning of the area at the beginning of winter and to drive realistic buoyancy loss and mixing responsible for strong convection at the end of winter.

  10. Mapping High Biomass Corridors for Climate and Biodiversity Co-Benefits

    NASA Astrophysics Data System (ADS)

    Jantz, P.; Goetz, S. J.; Laporte, N. T.

    2013-12-01

    A key issue in global conservation is how climate mitigation activities can secure biodiversity co-benefits. Tropical deforestation releases significant amounts of CO2 to the atmosphere and results in widespread biodiversity loss. The dominant strategy for forest conservation has been protected area designation. However, maintaining biodiversity in protected areas requires ecological exchange with ecosystems in which they are embedded. At current funding levels, existing conservation strategies are unlikely to prevent further loss of connectivity between protected areas and surrounding landscapes. The emergence of REDD+, a mechanism for funding carbon emissions reductions from deforestation in developing countries, suggests an alignment of goals and financial resources for protecting forest carbon, maintaining biodiversity in protected areas, and minimizing loss of forest ecosystem services. Identifying, protecting and sustainably managing vegetation carbon stocks between protected areas can provide both climate mitigation benefits through avoided CO2 emissions from deforestation and biodiversity benefits through the targeted protection of forests that maintain connectivity between protected areas and surrounding ecosystems. We used a high resolution, pan-tropical map of vegetation carbon stocks derived from MODIS, GLAS lidar and field measurements to map corridors that traverse areas of highest aboveground biomass between protected areas. We mapped over 13,000 corridors containing 49 GtC, accounting for 14% of unprotected vegetation carbon stock in the tropics. In the majority of cases, carbon density in corridors was commensurate with that of the protected areas they connect, suggesting significant opportunities for achieving climate mitigation and biodiversity co-benefits. To further illustrate the utility of this approach, we conducted a multi-criteria analysis of corridors in the Brazilian Amazon, identifying high biodiversity, high vegetation carbon stock corridors with low opportunity costs which may be good candidates for inclusion in climate mitigation activities like those being considered under REDD+.

  11. Creating and Maintaining Team-Taught Interdisciplinary General Education.

    ERIC Educational Resources Information Center

    Seabury, Marcia Bundy; Barrett, Karen A.

    2000-01-01

    Describes the University of Hartford's All-University Curriculum, which includes 25 interdisciplinary courses, most team taught. Addresses institutional buy-in, resources, team formation, conflict resolution, institutional policies, and ongoing development. (SK)

  12. Development of low-cost high-performance multispectral camera system at Banpil

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  13. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-29

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  14. Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less

  15. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak

    NASA Astrophysics Data System (ADS)

    Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.

    2017-09-01

    Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.

  16. Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study

    NASA Astrophysics Data System (ADS)

    Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian

    2016-11-01

    Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.

  17. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  18. Spectral feature design in high dimensional multispectral data

    NASA Technical Reports Server (NTRS)

    Chen, Chih-Chien Thomas; Landgrebe, David A.

    1988-01-01

    The High resolution Imaging Spectrometer (HIRIS) is designed to acquire images simultaneously in 192 spectral bands in the 0.4 to 2.5 micrometers wavelength region. It will make possible the collection of essentially continuous reflectance spectra at a spectral resolution sufficient to extract significantly enhanced amounts of information from return signals as compared to existing systems. The advantages of such high dimensional data come at a cost of increased system and data complexity. For example, since the finer the spectral resolution, the higher the data rate, it becomes impractical to design the sensor to be operated continuously. It is essential to find new ways to preprocess the data which reduce the data rate while at the same time maintaining the information content of the high dimensional signal produced. Four spectral feature design techniques are developed from the Weighted Karhunen-Loeve Transforms: (1) non-overlapping band feature selection algorithm; (2) overlapping band feature selection algorithm; (3) Walsh function approach; and (4) infinite clipped optimal function approach. The infinite clipped optimal function approach is chosen since the features are easiest to find and their classification performance is the best. After the preprocessed data has been received at the ground station, canonical analysis is further used to find the best set of features under the criterion that maximal class separability is achieved. Both 100 dimensional vegetation data and 200 dimensional soil data were used to test the spectral feature design system. It was shown that the infinite clipped versions of the first 16 optimal features had excellent classification performance. The overall probability of correct classification is over 90 percent while providing for a reduced downlink data rate by a factor of 10.

  19. A high-resolution anatomical ontology of the developing murine genitourinary tract

    PubMed Central

    Little, Melissa H.; Brennan, Jane; Georgas, Kylie; Davies, Jamie A.; Davidson, Duncan R.; Baldock, Richard A.; Beverdam, Annemiek; Bertram, John F.; Capel, Blanche; Chiu, Han Sheng; Clements, Dave; Cullen-McEwen, Luise; Fleming, Jean; Gilbert, Thierry; Houghton, Derek; Kaufman, Matt H.; Kleymenova, Elena; Koopman, Peter A.; Lewis, Alfor G.; McMahon, Andrew P.; Mendelsohn, Cathy L.; Mitchell, Eleanor K.; Rumballe, Bree A.; Sweeney, Derina E.; Valerius, M. Todd; Yamada, Gen; Yang, Yiya; Yu., Jing

    2007-01-01

    Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17 to 27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided. PMID:17452023

  20. Evaluating the Tongue-Hold Maneuver Using High-Resolution Manometry and Electromyography

    PubMed Central

    Hammer, Michael J.; Jones, Corinne A.; Mielens, Jason D.; Kim, Chloe H.; McCulloch, Timothy M.

    2014-01-01

    The tongue-hold maneuver is a widely used clinical technique designed to increase posterior pharyngeal wall movement in individuals with dysphagia. It is hypothesized that the tongue-hold maneuver results in increased contraction of the superior pharyngeal constrictor. However, an electromyographic study of the pharynx and tongue during the tongue-hold is still needed to understand whether and how swallow muscle activity and pressure may change with this maneuver. We tested eight healthy young participants using simultaneous intramuscular electromyography with high-resolution manometry during three task conditions including (a) saliva swallow without maneuver, (b) saliva swallow with the tongue tip at the lip, and (c) saliva swallow during the tongue-hold maneuver. We tested the hypothesis that tongue and pharyngeal muscle activity would increase during the experimental tasks, but that pharyngeal pressure would remain relatively unchanged. We found that the pre-swallow magnitude of tongue, pharyngeal constrictor, and cricopharyngeus muscle activity increased. During the swallow, the magnitude and duration of tongue and pharyngeal constrictor muscle activity each increased. However, manometric pressures and durations remained unchanged. These results suggest that increased superior pharyngeal constrictor activity may serve to maintain relatively stable pharyngeal pressures in the absence of posterior tongue movement. Thus, the tongue-hold maneuver may be a relatively simple but robust example of how the medullary swallow center is equipped to dynamically coordinate actions between tongue and pharynx. Our findings emphasize the need for combined modality swallow assessment to include high-resolution manometry and intramuscular electromyography to evaluate the potential benefit of the tongue-hold maneuver for clinical populations. PMID:24969727

  1. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. 0-6775 : NTCIP-based traffic signal evaluation and optimization toolbox.

    DOT National Transportation Integrated Search

    2014-08-01

    Routine maintenance of traffic signals requires : identification and resolution of hardware faults : and operational inefficiencies. Like most : agencies in charge of operating and maintaining : traffic signals scattered over large geographic : regio...

  3. Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR.

    PubMed

    Ge, Lan; Kino, Aya; Griswold, Mark; Mistretta, Charles; Carr, James C; Li, Debiao

    2009-10-01

    First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. In this study we investigated the feasibility of using a method that combines sliding window and CG-HYPR methods (SW-CG-HYPR) to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MRI. This method allows an increased number of slices, reduced motion artifacts, and preserves the relatively high SNR and spatial resolution of the "composite images." Results from eight volunteers demonstrate the feasibility of SW-CG-HYPR for accelerated myocardial perfusion imaging with accurate signal intensity changes of left ventricle blood pool and myocardium. Using this method the acquisition time per cardiac cycle was reduced by a factor of 4 and the number of slices was increased from 3 to 8 as compared to the conventional technique. The SNR of the myocardium at peak enhancement with SW-CG-HYPR (13.83 +/- 2.60) was significantly higher (P < 0.05) than the conventional turbo-FLASH protocol (8.40 +/- 1.62). Also, the spatial resolution of the myocardial perfection images was significantly improved. SW-CG-HYPR is a promising technique for myocardial perfusion MRI. (c) 2009 Wiley-Liss, Inc.

  4. Abdominal applications of 3.0-T MR imaging: comparative review versus a 1.5-T system.

    PubMed

    Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Ji Youn; Jones, Alun C; de Becker, Jan; van Cauteren, Marc

    2008-01-01

    With the development of dedicated receiver coils and increased gradient performance, 3.0-T magnetic resonance (MR) systems are gaining wider acceptance in clinical practice. The expected twofold increase in signal-to-noise ratio (SNR) compared with that of 1.5-T MR systems may help improve spatial resolution or increase temporal resolution when used with parallel acquisition techniques. Several issues must be considered when applying 3.0-T MR in the abdomen, including the alteration of the radiofrequency field and relaxation time, increase in energy deposition and susceptibility effects, and problems associated with motion artifacts. For the evaluation of liver lesions, higher SNR and greater resolution achieved with the 3.0-T system could translate into better detection of malignant lesions on T2-weighted images obtained with adjusted imaging parameters. For the evaluation of pancreatic and biliary diseases, high-resolution T2-weighted imaging using single-shot turbo spin-echo sequences is useful; improvement in SNR was noticeable on two-dimensional MR cholangiopancreatographic images. For the preoperative imaging of rectal cancer, a single-shot sequence is useful for dramatically decreasing imaging time while maintaining image quality. Substantial modification of examination protocols, with optimized imaging parameters and sequence designs along with ongoing development of hardware, could contribute to an increased role of the 3.0-T system for abdominal MR examinations.

  5. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  6. The Multi-Spectral Imaging Diagnostic on Alcator C-MOD and TCV

    NASA Astrophysics Data System (ADS)

    Linehan, B. L.; Mumgaard, R. T.; Duval, B. P.; Theiler, C. G.; TCV Team

    2017-10-01

    The Multi-Spectral Imaging (MSI) diagnostic is a new instrument that captures simultaneous spectrally filtered images from a common sight view while maintaining a large tendue and high spatial resolution. The system uses a polychromator layout where each image is sequentially filtered. This procedure yields a high transmission for each spectral channel with minimal vignetting and aberrations. A four-wavelength system was installed on Alcator C-Mod and then moved to TCV. The system uses industrial cameras to simultaneously image the divertor region at 95 frames per second at f/# 2.8 via a coherent fiber bundle (C-Mod) or a lens-based relay optic (TCV). The images are absolutely calibrated and spatially registered enabling accurate measurement of atomic line ratios and absolute line intensities. The images will be used to study divertor detachment by imaging impurities and Balmer series emissions. Furthermore, the large field of view and an ability to support many types of detectors opens the door for other novel approaches to optically measuring plasma with high temporal, spatial, and spectral resolution. Such measurements will allow for the study of Stark broadening and divertor turbulence. Here, we present the first measurements taken with this cavity imaging system. USDoE awards DE-FC02-99ER54512 and award DE-AC05-06OR23100, ORISE, administered by ORAU.

  7. Evaluation of an Area-Based matching algorithm with advanced shape models

    NASA Astrophysics Data System (ADS)

    Re, C.; Roncella, R.; Forlani, G.; Cremonese, G.; Naletto, G.

    2014-04-01

    Nowadays, the scientific institutions involved in planetary mapping are working on new strategies to produce accurate high resolution DTMs from space images at planetary scale, usually dealing with extremely large data volumes. From a methodological point of view, despite the introduction of a series of new algorithms for image matching (e.g. the Semi Global Matching) that yield superior results (especially because they produce usually smooth and continuous surfaces) with lower processing times, the preference in this field still goes to well established area-based matching techniques. Many efforts are consequently directed to improve each phase of the photogrammetric process, from image pre-processing to DTM interpolation. In this context, the Dense Matcher software (DM) developed at the University of Parma has been recently optimized to cope with very high resolution images provided by the most recent missions (LROC NAC and HiRISE) focusing the efforts mainly to the improvement of the correlation phase and the process automation. Important changes have been made to the correlation algorithm, still maintaining its high performance in terms of precision and accuracy, by implementing an advanced version of the Least Squares Matching (LSM) algorithm. In particular, an iterative algorithm has been developed to adapt the geometric transformation in image resampling using different shape functions as originally proposed by other authors in different applications.

  8. Thermophysical modelling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-07-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavourable illumination conditions such as little-to-no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment, and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disc-integrated and disc-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  9. Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure-Activity Studies, Biological and X-ray Structural Analysis.

    PubMed

    Ghosh, Arun K; R Nyalapatla, Prasanth; Kovela, Satish; Rao, Kalapala Venkateswara; Brindisi, Margherita; Osswald, Heather L; Amano, Masayuki; Aoki, Manabu; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T; Mitsuya, Hiroaki

    2018-05-24

    The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.

  10. Thermophysical modeling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-04-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  11. Liquid Chromatography Combined with Mass Spectrometry Utilising High-Resolution, Exact Mass, and Multi-Stage Fragmentation for the Identification of Oxysterols in Rat Brain

    PubMed Central

    Karu, Kersti; Hornshaw, Martin; Woffendin, Gary; Bodin, Karl; Hamberg, Mats; Alvelius, Gunvor; Sjövall, Jan; Turton, John; Wang, Yuqin; Griffiths, William J.

    2008-01-01

    In man the brain accounts for about 20% of the body's free cholesterol, most of which is synthesised de novo in brain. To maintain cholesterol balance throughout life, cholesterol becomes metabolised to 24S-hydroxycholesterol principally in neurons. In mouse, rat, and probably human, metabolism to 24S-hydroxycholesterol accounts for about 50% of cholesterol turnover, however, the route by which the remainder is turned over has yet to be elucidated. Here we describe a novel liquid chromatography (LC) – multi-stage fragmentation mass spectrometry (MSn) methodology for the identification, with high sensitivity (low pg), of cholesterol metabolites in rat brain. The methodology includes derivatisation to enhance ionisation, exact mass analysis at high-resolution to identify potential metabolites, and LC-MS3 to allow their characterisation. 24S-Hydroxycholesterol was confirmed as a major oxysterol in rat brain, while other oxysterols identified for the first time in brain included 24,25-, 24,27-, 25,27-, 6,24, 7α,25-, and 7α,27-dihydroxycholesterols. In addition, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al and its aldol, two molecules linked to amyloidogenesis of proteins, were characterised in rat brain. PMID:17251593

  12. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, E., E-mail: emmanuel.brun@esrf.fr; Grandl, S.; Sztrókay-Gaul, A.

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer basedmore » phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.« less

  14. Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

    PubMed Central

    Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter

    2013-01-01

    Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen. PMID:24204327

  15. Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation

    NASA Technical Reports Server (NTRS)

    Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R

    2006-01-01

    The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.

  16. Super-resolved terahertz microscopy by knife-edge scan

    NASA Astrophysics Data System (ADS)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  17. A Comparison of Spectral Element and Finite Difference Methods Using Statically Refined Nonconforming Grids for the MHD Island Coalescence Instability Problem

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.

    2009-04-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.

  18. A VCSEL based system for on-site monitoring of low level methane emission

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Hodgkinson, J.; Gillard, R. G.; Riley, R. J.; Tatam, R. P.

    2011-03-01

    Continuous monitoring of methane emissions has assumed greater significance in the recent past due to increasing focus on global warming issues. Many industries have also identified the need for ppm level methane measurement as a means of gaining carbon credits. Conventional instruments based on NDIR spectroscopy are unable to offer the high selectivity and sensitivity required for such measurements. Here we discuss the development of a robust VCSEL based system for accurate low level measurements of methane. A possible area of application is the measurement of residual methane whilst monitoring the output of flare stacks and exhaust gases from methane combustion engines. The system employs a Wavelength Modulation Spectroscopy (WMS) scheme with second harmonic detection at 1651 nm. Optimum modulation frequency and ramp rates were chosen to maintain high resolution and fast response times which are vital for the intended application. Advanced data processing techniques were used to achieve long term sensitivity of the order of 10-5 in absorbance. The system is immune to cross interference from other gases and its inherent design features makes it ideal for large scale commercial production. The instrument maintains its calibration and offers a completely automated continuous monitoring solution for remote on site deployment.

  19. Thermally Driven Josephson Effect

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso

    2008-01-01

    A concept is proposed of the thermally driven Josephson effect in superfluid helium. Heretofore, the Josephson effect in a superfluid has been recognized as an oscillatory flow that arises in response to a steady pressure difference between two superfluid reservoirs separated by an array of submicron-sized orifices, which act in unison as a single Josephson junction. Analogously, the thermally driven Josephson effect is an oscillatory flow that arises in response to a steady temperature difference. The thermally driven Josephson effect is partly a consequence of a quantum- mechanical effect known as the fountain effect, in which a temperature difference in a superfluid is accompanied by a pressure difference. The thermally driven Josephson effect may have significance for the development of a high-resolution gyroscope based on the Josephson effect in a superfluid: If the pressure-driven Josephson effect were used, then the fluid on the high-pressure side would become depleted, necessitating periodic interruption of operation to reverse the pressure difference. If the thermally driven Josephson effect were used, there would be no net flow and so the oscillatory flow could be maintained indefinitely by maintaining the required slightly different temperatures on both sides of the junction.

  20. Technical considerations for designing low-cost, long-wave infrared objectives

    NASA Astrophysics Data System (ADS)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  1. Design of an ultra-thin dual band infrared system

    NASA Astrophysics Data System (ADS)

    Du, Ke; Cheng, Xuemin; Lv, Qichao; Hu, YiFei

    2014-11-01

    The ultra-thin imaging system using reflective multiple-fold structure has smaller volume and less weight while maintaining high resolution compared with conventional optical systems. The multi-folded approach can significantly extend focal distance within wide spectral range without incurring chromatic aberrations. In this paper, we present a dual infrared imaging system of four-folded reflection with two air-spaced concentric reflective surfaces. The dual brand IR system has 107mm effective focal length, 0.7NA, +/-4° FOV, and 50mm effective aperture with 80mm outer diameter into a 25mm total thickness, which spectral response is 3~12μm.

  2. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints

    PubMed Central

    Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.

    2015-01-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  3. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  4. Optical coherence tomography of lymphatic vessel endothelial hyaluronan receptors in vivo

    NASA Astrophysics Data System (ADS)

    Si, Peng; Sen, Debasish; Dutta, Rebecca; Yousefi, Siavash; Dalal, Roopa; Winetraub, Yonatan; Liba, Orly; de la Zerda, Adam

    2018-02-01

    Optical Coherence Tomography (OCT) imaging of living subjects offers millimeters depth of penetration into tissue while maintaining high spatial resolution. However, because most molecular biomarkers do not produce inherent OCT contrast signals, exogenous contrast agents must be employed to achieve molecular imaging. Here we demonstrate that microbeads (μBs) can be used as effective contrast agents to target cellular biomarkers in lymphatic vessels and can be detected by OCT using a phase variance algorithm. We applied this technique to image the molecular dynamics of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in vivo, which showed significant down-regulation during tissue inflammation.

  5. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  6. Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES

    NASA Astrophysics Data System (ADS)

    Brast, Maren; Schemann, Vera; Neggers, Roel

    2017-04-01

    In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.

  7. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid

    PubMed Central

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A.; Bandera, Antonio

    2016-01-01

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms. PMID:27898029

  8. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid.

    PubMed

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A; Bandera, Antonio

    2016-11-26

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms.

  9. Monitoring African savanna water use and water stress from local to regional scale: supporting rangeland management (pilot experience in Kruger National Park, South Africa).

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Dube, Timothy; Nieto, Hector; González-Dugo, Maria P.; Hülsmann, Stephan

    2017-04-01

    Drought periods and erratic rainfall patterns across large parts of Africa result in water-limited environments like savannas, highly sensitive to land management practices and changes in climate. Over the Southern part of the continent, savannas are key productive landscapes supporting livestock, crops and rural livelihoods. Monitoring water use and the natural vegetation stress over these semi-arid complex ecosystems can support rangeland management, to maintain long-term productivity. However, the precision/resolution/accuracy of the information required for management will differ at each scale: farm-local (e.g. evaluating the effect of management practices, livestock densities, crop production and grazing), to watershed (e.g. evaluating the effect of fire, detection of vulnerable areas) and regional (e.g. early prediction of drought). To overcome these constrains, TIGER project 401 combines two approaches that take advantage of different conceptual and operational capabilities of Earth Observation data sources. Sentinel 2 high spatial (10 m) and temporal ( 5 days) resolution VIS/NIR images are used for a continuous monitoring of vegetation cover and unstressed evapotranspiration (ET - using Kc-FAO56 method). This methodology will provide the required resolution for farm-local scales, tracking separately the seasonal variations of each canopy layer growth (grass and trees). Meanwhile, lower spatial resolution (1 km) MODIS thermal data allow to determine a regional water stress index (ratio between actual ET, estimated using Two Source Energy Balance-TSEB, and potential ET), supporting the detection of vulnerable areas. The model framework was tested and validated over savanna-type experimental areas (Skukuza & Malopeni), and later applied over the whole Kruger National Park during 2015-2016.

  10. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data

    DOE PAGES

    Ginn, Helen M.; Messerschmidt, Marc; Ji, Xiaoyun; ...

    2015-03-09

    The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and proteinmore » core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.« less

  11. Extending the Capture Volume of an Iris Recognition System Using Wavefront Coding and Super-Resolution.

    PubMed

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen

    2016-12-01

    Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.

  12. The Once and Future Battles of Thor and the Midgard Serpent (or the Southern Ocean's Role in Climate)

    NASA Astrophysics Data System (ADS)

    Russell, J. L.

    2017-12-01

    Floats deployed by oceanographers are giving us all ringside seats to the epic battle between the wind and the deep ocean around Antarctica which will determine the rate of global atmospheric warming over the next century. The poleward-shift and intensification of the Southern Hemisphere westerly winds has been shown to maintain the connection between the surface ocean and the atmosphere with the deep ocean even as the surface ocean warms. This "doorway" allows the vast deep ocean reservoir to play a significant role in the transient global climate response to increasing atmospheric greenhouse gases. Coupled climate and earth system models at low and high resolution all simulate poleward-shifted and intensified Southern Hemisphere surface westerly winds when subjected to an atmospheric carbon dioxide doubling. Comparisons of these simulations reveal how stratification, resolution and eddies affect the transient global climate response to increasing atmospheric greenhouse gases - and our collective fate.

  13. Impact of Adoption on Birth Parents

    MedlinePlus

    ... resolution • Maintaining contact • Resources Use your smartphone to access this factsheet online. Child Welfare Information Gateway Children’s ... about possible contact. SEARCH AND REUNION AND THE INTERNET With seemingly everything available on the Internet, birth ...

  14. Intensive care unit referring physician usage of PACS workstation functions based on disease categories

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Kundel, Harold L.; Shile, Peter E.; Carey, Bruce; Seshadri, Sridhar B.; Feingold, Eric R.

    1994-05-01

    As part of a study of the use of a PACS workstation compared to film in a Medical Intensive Care Unit, logs of workstation activity were maintained. The software for the workstation kept track of the type of user (i.e., intern, resident, fellow, or attending physician) and also of the workstation image manipulation functions used. The functions logged were: no operation, brightness/contrast adjustment, invert video, zoom, and high resolution display (this last function resulted in the display of the full 2 K X 2 K image rather than the usual subsampled 1 K X 1 K image. Associated data collection allows us to obtain the diagnostic category of the examination being viewed (e.g., location of tubes and lines, rule out: pneumonia, congestive heart failure, pneumothorax, and pleural effusion). The diagnostic categories and user type were then correlated with the use of workstation functions during viewing of images. In general, there was an inverse relationship between the level of training and the number of workstation uses. About two-thirds of the time, there was no image manipulation operation performed. Adjustment of brightness/contrast had the highest percentage of use overall, followed by zoom, video invert, and high resolution display.

  15. Depth of focus extended microscope configuration for imaging of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells

    NASA Astrophysics Data System (ADS)

    Fessl, Tomas; Ben-Yaish, Shai; Vacha, Frantisek; Adamec, Frantisek; Zalevsky, Zeev

    2009-07-01

    Imaging of small objects such as single molecules, DNA clusters and single bacterial cells is problematic not only due to the lateral resolution that is obtainable in currently existing microscopy but also, and as much fundamentally limiting, due to the lack of sufficient axial depth of focus to have the full object focused simultaneously. Extension in depth of focus is helpful also for single molecule steady state FRET measurements. In this technique it is crucial to obtain data from many well focused molecules, which are often located in different axial depths. In this paper we present the implementation of an all-optical and a real time technique of extension in the depth of focus that may be incorporated in any high NA microscope system and to be used for the above mentioned applications. We demonstrate experimentally how after the integration of special optical element in high NA 100× objective lens of a single molecule imaging microscope system, the depth of focus is significantly improved while maintaining the same lateral resolution in imaging applications of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells.

  16. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  17. Development of supercritical carbon dioxide extraction with a solid phase trap for dioxins in soils and sediments.

    PubMed

    Miyawaki, Takashi; Kawashima, Ayato; Honda, Katsuhisa

    2008-01-01

    A method involving supercritical fluid extraction (SFE) with a solid phase trap containing activated alumina was investigated for the rapid analysis of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin like polychlorinated biphenyls (DL-PCBs) in soils and sediments. The samples were extracted by using supercritical carbon dioxide with water (2% versus CO(2) flow velocity) being used as an entrainer at a pressure of 30 MPa and a temperature of 130 degrees C for 50 min. The extracts were adsorbed on an activated alumina trap that was maintained at a temperature of 150 degrees C, and then, PCDD/DFs and DL-PCBs were eluted with 20 ml of hexane at 60 degrees C. After concentration, they were measured with a high-resolution gas chromatograph interfaced to a high-resolution mass spectrometric detector. The average concentrations of PCDD/DFs and DL-PCBs corresponded to the results obtained by the conventional method, and the reproducibility of this SFE method was below 21% of the relative standard deviations for all samples. The total time required for the analysis of the pretreatment of this method was only 2 h.

  18. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  19. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    PubMed

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  20. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.

    PubMed

    Kim, In-Ho; Jeon, Haemin; Baek, Seung-Chan; Hong, Won-Hwa; Jung, Hyung-Jo

    2018-06-08

    Bridge inspection using unmanned aerial vehicles (UAV) with high performance vision sensors has received considerable attention due to its safety and reliability. As bridges become obsolete, the number of bridges that need to be inspected increases, and they require much maintenance cost. Therefore, a bridge inspection method based on UAV with vision sensors is proposed as one of the promising strategies to maintain bridges. In this paper, a crack identification method by using a commercial UAV with a high resolution vision sensor is investigated in an aging concrete bridge. First, a point cloud-based background model is generated in the preliminary flight. Then, cracks on the structural surface are detected with the deep learning algorithm, and their thickness and length are calculated. In the deep learning method, region with convolutional neural networks (R-CNN)-based transfer learning is applied. As a result, a new network for the 384 collected crack images of 256 × 256 pixel resolution is generated from the pre-trained network. A field test is conducted to verify the proposed approach, and the experimental results proved that the UAV-based bridge inspection is effective at identifying and quantifying the cracks on the structures.

  1. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  2. Quadrilinear CCD sensors for the multispectral channel of spaceborne imagers

    NASA Astrophysics Data System (ADS)

    Materne, Alex; Gili, Bruno; Laubier, David; Gimenez, Thierry

    2001-12-01

    The PLEIADES-HR Earth Observation satellites will combine a high resolution panchromatic channel -- 0.7 m at nadir -- and a multispectral channel allowing a 2.8 m resolution. This paper presents the main specifications, design and performances of a 52 microns pitch quadrilinear CCD sensor developed by ATMEL under CNES contract, for the multispectral channel of the PLEIADES-HR instrument. The monolithic CCD device includes four lines of 1500 pixels, each line dedicated to a narrow spectral band within blue to near infra red spectrum. The design of the photodiodes and CCD registers, with larger size than those developed up to now for CNES spaceborne imagers, needed some specific structures to break the large equipotential areas where charge do not flow properly. Results are presented on the options which were experimented to improve sensitivity, maintain transfer efficiency and reduce power dissipation. The four spectral bands are achieved by four stripe filters made by SAGEM-REOSC PRODUCTS on a glass substrate, to be assembled on the sensor window. Line to line spacing on the silicon die takes into account the results of straylight analysis. A mineral layer, with high optical absorption performances is deposited between photosensitive lines to further reduce straylight.

  3. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging.

    PubMed

    Hagen, Wim J H; Wan, William; Briggs, John A G

    2017-02-01

    Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Rodriguez, M.; Paschalidis, N.; Jones, S.; Sittler, E.; Chornay, D.; Uribe, P.; Cameron, T.

    2016-01-01

    To increase the number of single point in-situ measurements of thermosphere and exosphere ion and neutral composition and density, miniaturized instrumentation is in high demand to take advantage of the increasing platform opportunities available in the smallsat/cubesat industry. The INMS (Ion-Neutral Mass Spectrometer) addresses this need by providing simultaneous measurements of both the neutral and ion environment, essentially providing two instruments in one compact model. The 1.3U volume, 570 gram, 1.8W nominal power INMS instrument makes implementation into cubesat designs (3U and above) practical and feasible. With high dynamic range (0.1-500eV), mass dynamic range of 1-40amu, sharp time resolution (0.1s), and mass resolution of MdM16, the INMS instrument addresses the atmospheric science needs that otherwise would have required larger more expensive instrumentation. INMS-v1 (version 1) launched on Exocube (CalPoly 3U cubesat) in 2015 and INMS-v2 (version 2) is scheduled to launch on Dellingr (GSFC 6U cubesat) in 2017. New versions of INMS are currently being developed to increase and add measurement capabilities, while maintaining its smallsat/cubesat form.

  5. Large image microscope array for the compilation of multimodality whole organ image databases.

    PubMed

    Namati, Eman; De Ryk, Jessica; Thiesse, Jacqueline; Towfic, Zaid; Hoffman, Eric; Mclennan, Geoffrey

    2007-11-01

    Three-dimensional, structural and functional digital image databases have many applications in education, research, and clinical medicine. However, to date, apart from cryosectioning, there have been no reliable means to obtain whole-organ, spatially conserving histology. Our aim was to generate a system capable of acquiring high-resolution images, featuring microscopic detail that could still be spatially correlated to the whole organ. To fulfill these objectives required the construction of a system physically capable of creating very fine whole-organ sections and collecting high-magnification and resolution digital images. We therefore designed a large image microscope array (LIMA) to serially section and image entire unembedded organs while maintaining the structural integrity of the tissue. The LIMA consists of several integrated components: a novel large-blade vibrating microtome, a 1.3 megapixel peltier cooled charge-coupled device camera, a high-magnification microscope, and a three axis gantry above the microtome. A custom control program was developed to automate the entire sectioning and automated raster-scan imaging sequence. The system is capable of sectioning unembedded soft tissue down to a thickness of 40 microm at specimen dimensions of 200 x 300 mm to a total depth of 350 mm. The LIMA system has been tested on fixed lung from sheep and mice, resulting in large high-quality image data sets, with minimal distinguishable disturbance in the delicate alveolar structures. Copyright 2007 Wiley-Liss, Inc.

  6. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  7. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Global Multi-Resolution Topography (GMRT) Synthesis - Recent Updates and Developments

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Morton, J. J.; Celnick, M.; McLain, K.; Nitsche, F. O.; Carbotte, S. M.; O'hara, S. H.

    2017-12-01

    The Global Multi-Resolution Topography (GMRT, http://gmrt.marine-geo.org) synthesis is a multi-resolution compilation of elevation data that is maintained in Mercator, South Polar, and North Polar Projections. GMRT consists of four independently curated elevation components: (1) quality controlled multibeam data ( 100m res.), (2) contributed high-resolution gridded bathymetric data (0.5-200 m res.), (3) ocean basemap data ( 500 m res.), and (4) variable resolution land elevation data (to 10-30 m res. in places). Each component is managed and updated as new content becomes available, with two scheduled releases each year. The ocean basemap content for GMRT includes the International Bathymetric Chart of the Arctic Ocean (IBCAO), the International Bathymetric Chart of the Southern Ocean (IBCSO), and the GEBCO 2014. Most curatorial effort for GMRT is focused on the swath bathymetry component, with an emphasis on data from the US Academic Research Fleet. As of July 2017, GMRT includes data processed and curated by the GMRT Team from 974 research cruises, covering over 29 million square kilometers ( 8%) of the seafloor at 100m resolution. The curated swath bathymetry data from GMRT is routinely contributed to international data synthesis efforts including GEBCO and IBCSO. Additional curatorial effort is associated with gridded data contributions from the international community and ensures that these data are well blended in the synthesis. Significant new additions to the gridded data component this year include the recently released data from the search for MH370 (Geoscience Australia) as well as a large high-resolution grid from the Gulf of Mexico derived from 3D seismic data (US Bureau of Ocean Energy Management). Recent developments in functionality include the deployment of a new Polar GMRT MapTool which enables users to export custom grids and map images in polar projection for their selected area of interest at the resolution of their choosing. Available for both the south and north polar regions, grids can be exported from GMRT in a variety of formats including ASCII, GeoTIFF and NetCDF to support use in common mapping software applications such as ArcGIS, GMT, Matlab, and Python. New web services have also been developed to enable programmatic access to grids and images in north and south polar projections.

  9. Precise Alignment and Permanent Mounting of Thin and Lightweight X-ray Segments

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; Chan, Kai-Wing; Hong, Melinda N.; Mazzarella, James R.; McClelland, Ryan S.; Norman, Michael J.; Saha, Timo T.; Zhang, William W.

    2012-01-01

    To provide observations to support current research efforts in high energy astrophysics. future X-ray telescope designs must provide matching or better angular resolution while significantly increasing the total collecting area. In such a design the permanent mounting of thin and lightweight segments is critical to the overall performance of the complete X-ray optic assembly. The thin and lightweight segments used in the assemhly of the modules are desigued to maintain and/or exceed the resolution of existing X-ray telescopes while providing a substantial increase in collecting area. Such thin and delicate X-ray segments are easily distorted and yet must be aligned to the arcsecond level and retain accurate alignment for many years. The Next Generation X-ray Optic (NGXO) group at NASA Goddard Space Flight Center has designed, assembled. and implemented new hardware and procedures mth the short term goal of aligning three pairs of X-ray segments in a technology demonstration module while maintaining 10 arcsec alignment through environmental testing as part of the eventual design and construction of a full sized module capable of housing hundreds of X-ray segments. The recent attempts at multiple segment pair alignment and permanent mounting is described along with an overview of the procedure used. A look into what the next year mll bring for the alignment and permanent segment mounting effort illustrates some of the challenges left to overcome before an attempt to populate a full sized module can begin.

  10. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  11. Acousto-optic time- and space-integrating spotlight-mode SAR processor

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.

    1993-09-01

    The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.

  12. Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices.

    PubMed

    Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won

    2017-03-02

    Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.

  13. Development of nanoimprint lithography templates for the contact hole layer application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ichimura, Koji; Hikichi, Ryugo; Harada, Saburo; Kanno, Koichi; Kurihara, Masaaki; Hayashi, Naoya

    2017-04-01

    Nanoimprint lithography, NIL, is gathering much attention as one of the most potential candidates for the next generation lithography for semiconductor. This technology needs no pattern data modification for exposure, simpler exposure system, and single step patterning process without any coat/develop truck, and has potential of cost effective patterning rather than very complex optical lithography and/or EUV lithography. NIL working templates are made by the replication of the EB written high quality master templates. Fabrication of high resolution master templates is one of the most important issues. Since NIL is 1:1 pattern transfer process, master templates have 4 times higher resolution compared with photomasks. Another key is to maintain the quality of the master templates in replication process. NIL process is applied for the template replication and this imprint process determines most of the performance of the replicated templates. Expectations to the NIL are not only high resolution line and spaces but also the contact hole layer application. Conventional ArF-i lithography has a certain limit in size and pitch for contact hole fabrication. On the other hand, NIL has good pattern fidelity for contact hole fabrication at smaller sizes and pitches compared with conventional optical lithography. Regarding the tone of the templates for contact hole, there are the possibilities of both tone, the hole template and the pillar template, depending on the processes of the wafer side. We have succeeded to fabricate both types of templates at 2xnm in size. In this presentation, we will be discussing fabrication or our replica template for the contact hole layer application. Both tone of the template fabrication will be presented as well as the performance of the replica templates. We will also discuss the resolution improvement of the hole master templates by using various e-beam exposure technologies.

  14. Pathfinder Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.

    2016-02-01

    Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, A M; Ritz, K; Nunan, N

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecologicalmore » function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of research most likely to benefit from the high resolving power attainable with this new approach.« less

  16. Sample-Based Surface Coloring

    PubMed Central

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2011-01-01

    In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392

  17. Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology

    NASA Astrophysics Data System (ADS)

    Guthrie, Anne

    In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.

  18. Development and characterization of non-resonant multiphoton photoacoustic spectroscopy (NMPPAS) for brain tumor margining

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir

    During tumor removal surgery, due to the problems associated with obtaining high-resolution, real-time chemical images of where exactly the tumor ends and healthy tissue begins (tumor margining), it is often necessary to remove a much larger volume of tissue than the tumor itself. In the case of brain tumor surgery, however, it is extremely unsafe to remove excess tissue. Therefore, without an accurate image of the tumor margins, some of the tumor's finger-like projections are inevitably left behind in the surrounding parenchyma to grow again. For this reason, the development of techniques capable of providing high-resolution real-time images of tumor margins up to centimeters below the surface of a tissue is ideal for the diagnosis and treatment of tumors, as well as surgical guidance during brain tumor excision. A novel spectroscopic technique, non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), is being developed with the capabilities of obtaining high-resolution subsurface chemical-based images of underlying tumors. This novel technique combines the strengths of multiphoton tissue spectroscopy and photoacoustic spectroscopy into a diagnostic methodology that will, ultimately, provide unparalleled chemical information and images to provide the state of sub-surface tissues. The NMPPAS technique employs near-infrared light (in the diagnostic window) to excite ultraviolet and/or visible light absorbing species deep below the tissue's surface. Once a multiphoton absorption event occurs, non-radiative relaxation processes generates a localized thermal expansion and subsequent acoustic wave that can be detected using a piezoelectric transducer. Since NMPPAS employs an acoustic detection modality, much deeper diagnoses can be performed than that is possible using current state of the art high-resolution chemical imaging techniques such as multiphoton fluorescence spectroscopy. NMPPAS was employed to differentiate between excised brain tumors (astrocytoma III) and healthy tissue with over 99% accuracy. NMPPAS spectral features showed evident differences between tumor and healthy tissues, and ratiometric analysis ensured that only a few wavelengths could be used for excitation instead of using numerous wavelength excitations to create spectra. This process would significantly reduce the analysis time while maintaining the same degree of accuracy. Tissue phantoms were fabricated in order to characterize the properties of NMPPAS. Scattering particles were doped into the phantoms to simulate their light scattering properties to real tissues. This allowed for better control over shape, size, reproducibility and doping in the sample while maintaining the light-tissue interaction properties of real tissue. To make NMPPAS viable for clinical applications, the technique was characterized to determine the spatial (lateral and longitudinal) resolution, depth of penetration and its ability to image in three-dimension through layers of tissue. Both resolutions were determined to be near-cellular level resolution (50-70 microm), obtained initially with the aid of the technique of multiphoton fluorescence, and later verified using NMPPAS imaging. Additionally, the maximum depth of penetration and detection was determined to be about 1.4cm, making the technique extremely suitable to margin tumors from underlying tissues in the brain. The capability of NMPPAS to detect and image layers that lie beneath other structures and blood vessels was also investigated. Three-dimensional images were obtained for the first time using NMPPAS. The images were obtained from different depths and structures were imaged through other layers of existing structures in the sample. This verified that NMPPAS was capable of detecting and imaging structures that lie embedded within the tissues. NMPPAS images of embedded structures were also obtained with the presence of hemoglobin, which is potentially the largest source of background in blood-perfused tissues, thus showing that the technique is capable of detecting and differentiating in blood-perfused samples.

  19. DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging

    PubMed Central

    Wiener, R.I.; Surti, S.; Karp, J.S.

    2013-01-01

    Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2–3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr3:Ce, CeBr3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm3 LaBr3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr3[5%Ce]/LaBr3[30%Ce] detector of total size 4×4×30mm3, exploiting the dependence of scintillator rise time on [Ce] in LaBr3:Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture. PMID:24403611

  20. DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging.

    PubMed

    Wiener, R I; Surti, S; Karp, J S

    2013-06-01

    Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2-3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr 3 :Ce, CeBr 3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm 3 LaBr 3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr 3 [5%Ce]/LaBr 3 [30%Ce] detector of total size 4×4×30mm 3 , exploiting the dependence of scintillator rise time on [Ce] in LaBr 3 :Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture.

  1. The Pulse of Allegheny County and Pittsburgh.

    DOT National Transportation Integrated Search

    2016-01-01

    Cities are increasingly equipped with low-resolution cameras. They are cheap to : buy, install, and maintain, and thus are usually the choice of departments of : transportation and their contractors. Pittsburgh or New York City have networks of : hun...

  2. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  3. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  4. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

    PubMed Central

    2013-01-01

    Background As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Methods Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. Conclusions The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination. PMID:23398628

  5. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland.

    PubMed

    Cohen, Justin M; Dlamini, Sabelo; Novotny, Joseph M; Kandula, Deepika; Kunene, Simon; Tatem, Andrew J

    2013-02-11

    As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination.

  6. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    NASA Astrophysics Data System (ADS)

    Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.

    2005-05-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

  7. Packaged silica microsphere-taper coupling system for robust thermal sensing application.

    PubMed

    Yan, Ying-Zhan; Zou, Chang-Ling; Yan, Shu-Bin; Sun, Fang-Wen; Ji, Zhe; Liu, Jun; Zhang, Yu-Guang; Wang, Li; Xue, Chen-Yang; Zhang, Wen-Dong; Han, Zheng-Fu; Xiong, Ji-Jun

    2011-03-28

    We propose and realize a novel packaged microsphere-taper coupling structure (PMTCS) with a high quality factor (Q) up to 5×10(6) by using the low refractive index (RI) ultraviolet (UV) glue as the coating material. The optical loss of the PMTCS is analyzed experimentally and theoretically, which indicate that the Q is limited by the glue absorption and the radiation loss. Moreover, to verify the practicability of the PMTCS, thermal sensing experiments are carried out, showing the excellent convenience and anti-jamming ability of the PMTCS with a high temperature resolution of 1.1×10(-3) ◦C. The experiments also demonstrate that the PMTCS holds predominant advantages, such as the robustness, mobility, isolation, and the PMTCS can maintain the high Q for a long time. The above advantages make the PMTCS strikingly attractive and potential in the fiber-integrated sensors and laser.

  8. A preliminary evaluation of a dual crystal positron camera

    NASA Astrophysics Data System (ADS)

    Holte, S.; Ostertag, H.; Kesselberg, M.

    1987-03-01

    A dual crystal whole body camera based on Bi4Ge3O12 and Gd2SiO5 was built. Spatial transaxial resolution is better than 5 mm FWH1, with maintained high sensitivity. The system can be equipped with up to four rings to give sufficient coverage of the organs under study. It can perform true dynamic function studies with frame rates of the order of 1 sec or less and can handle high data acquisition rates, encountered in cerebral blood flow studies and in perfusion studies of the heart, with low dead time losses. High sampling redundancy is achieved by wobbling over two detector channels. Fast image reconstructions is achieved by an array processor. Tilting and rotating capabilities of the gantry facilitate the anatomical alignment of the image plane. A rotating line source is used for accurate transmission images with a low scatter level.

  9. ATLID beam steering mechanism and derived new piezoelectric-based devices for optical applications

    NASA Astrophysics Data System (ADS)

    Bourgain, F.; Barillot, F.; Belly, C.; Claeyssen, F.

    2015-09-01

    In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APA® and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APA® technology, which allows the combination of long stroke while maintaining high resolution positioning of optical elements, is presented with experimental performances.

  10. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    PubMed

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  11. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    PubMed

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  12. Ultraflexible organic amplifier with biocompatible gel electrodes

    PubMed Central

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm−2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  13. Plasmonics and metamaterials based super-resolution imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowei

    2017-05-01

    In recent years, surface imaging of various biological dynamics and biomechanical phenomena has seen a surge of interest. Imaging of processes such as exocytosis and kinesin motion are most effective when depth is limited to a very thin region of interest at the edge of the cell or specimen. However, many objects and processes of interest are of size scales below the diffraction limit for safe, visible wavelength illumination. Super-resolution imaging methods such as structured illumination microscopy and others have offered various compromises between resolution, imaging speed, and bio-compatibility. In this talk, I will present our most recent progress in plasmonic structured illumination microscopy (PSIM) and localized plasmonic structured illumination microscopy (LPSIM), and their applications in bio-imaging. We have achieved wide-field surface imaging with resolution down to 75 nm while maintaining reasonable speed and compatibility with biological specimens. These plasmonic enhanced super resolution techniques offer unique solutions to obtain 50nm spatial resolution and 50 frames per second wide imaging speed at the same time.

  14. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  15. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T.

    PubMed

    Sengupta, S; Fritz, F J; Harms, R L; Hildebrand, S; Tse, D H Y; Poser, B A; Goebel, R; Roebroeck, A

    2018-03-01

    Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80mm 3 ) in a wide-bore 9.4T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60μm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B 0 and B 1 homogeneity and multi-contrast sampling to perform quantitative T 2 * mapping over the same volume at 200μm. Markov Chain Monte Carlo sampling provided maximum posterior estimates of quantitative T 2 * and their uncertainty, allowing delineation of the stria of Gennari over the entire length and width of the calcarine sulcus. We discuss how custom RF receive coil arrays built to specific large post mortem sample sizes can provide a platform for UHF cortical layer-specific quantitative MRI over large fields of view. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A deployable telescope for sub-meter resolutions from microsatellite platforms

    NASA Astrophysics Data System (ADS)

    Dolkens, D.; Kuiper, J. M.

    2017-11-01

    Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.

  17. Using High Resolution Satellite Precipitation fields to Assess the Impacts of Climate Change on the Santa Cruz and San Pedro River Basins

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2013-05-01

    Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. In addition, for the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. The model comparisons during the historical and future periods will yield a first-of-its-kind assessment on the impacts of climate change on the hydrology of two large semiarid river basins of the southwestern United States

  18. Reliability and Maintainability Analysis of Fluidic Back-Up Flight Control System and Components.

    DTIC Science & Technology

    1981-09-01

    industry. 2 r ~~m~ NADC 80227- 60 Maintainability Review of FMEA worksheets indicates that the standard hydraulic components of the servoactuator will...achieved. Procedures for conducting the FMEA and evaluating the 6 & | I NADC 80227- 60 severity of each failure mode are included as Appendix A...KEYSER N62269-81-M-3047 UNCLASSIFIED NADC-80227- 60 NL 66 11111.5 .4 11 6 MICROCOPY RESOLUTION TEST CHART N~ATIONAL BUR[AU Of STANDARDS 1%3A, REPORT

  19. Pressure-induced phase transitions of exposed curved surface nano-TiO{sub 2} with high photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao

    We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less

  20. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  1. A resolution expressing the sense of the Senate that effective sharing of passenger information from inbound international flight manifests is a crucial component of our national security and that the Department of Homeland Security must maintain the information sharing standards required under the 2007 Passenger Name Record Agreement between the United States and the European Union.

    THOMAS, 112th Congress

    Sen. Lieberman, Joseph I. [ID-CT

    2011-05-09

    Senate - 05/18/2011 Resolution agreed to in Senate without amendment and an amended preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:

  2. Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa

    NASA Astrophysics Data System (ADS)

    Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman

    2017-08-01

    Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.

  3. Image quality in low-dose coronary computed tomography angiography with a new high-definition CT scanner.

    PubMed

    Kazakauskaite, Egle; Husmann, Lars; Stehli, Julia; Fuchs, Tobias; Fiechter, Michael; Klaeser, Bernd; Ghadri, Jelena R; Gebhard, Catherine; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-02-01

    A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

  4. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    PubMed

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  5. Novel laser-processed CsI:Tl detector for SPECT

    PubMed Central

    Sabet, H.; Bläckberg, L.; Uzun-Ozsahin, D.; El-Fakhri, G.

    2016-01-01

    Purpose: The aim of this work is to demonstrate the feasibility of a novel technique for fabrication of high spatial resolution CsI:Tl scintillation detectors for single photon emission computed tomography systems. Methods: The scintillators are fabricated using laser-induced optical barriers technique to create optical microstructures (or optical barriers) inside the CsI:Tl crystal bulk. The laser-processed CsI:Tl crystals are 3, 5, and 10 mm in thickness. In this work, the authors focus on the simplest pattern of optical barriers in that the barriers are created in the crystal bulk to form pixel-like patterns resembling mechanically pixelated scintillators. The monolithic CsI:Tl scintillator samples are fabricated with optical barrier patterns with 1.0 × 1.0 mm2 and 0.625 × 0.625 mm2 pixels. Experiments were conducted to characterize the fabricated arrays in terms of pixel separation and energy resolution. A 4 × 4 array of multipixel photon counter was used to collect the scintillation light in all the experiments. Results: The process yield for fabricating the CsI:Tl arrays is 100% with processing time under 50 min. From the flood maps of the fabricated detectors exposed to 122 keV gammas, peak-to-valley (P/V) ratios of greater than 2.3 are calculated. The P/V values suggest that regardless of the crystal thickness, the pixels can be resolved. Conclusions: The results suggest that optical barriers can be considered as a robust alternative to mechanically pixelated arrays and can provide high spatial resolution while maintaining the sensitivity in a high-throughput and cost-effective manner. PMID:27147372

  6. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers.

    PubMed

    Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S

    2017-01-01

    Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

  7. iGen: An automated generator of simplified models with provable error bounds.

    NASA Astrophysics Data System (ADS)

    Tang, D.; Dobbie, S.

    2009-04-01

    Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.

  8. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  9. Simulation of the last sapropel event using high-regional oceanic model

    NASA Astrophysics Data System (ADS)

    Vadsaria, Tristan; Ramstein, Gilles; Li, Laurent; Dutay, jean-Claude

    2017-04-01

    Since decades, the simulation of sapropel events remains a challenge. These events, occurring periodically in the Mediterranean Sea produce a strong stratification of the water column and break intermediate and deep convection, thereby leading to a decrease in deep water oxygen, of which evidence are recorded in marine sediment cores. Data from Mediterranean sediments have thus helped to better understand the anoxia process, in particular for the last sapropel event, S1, lasting 3000 years about 10 kyrs ago. However the causal link between insolation changes and the African monsoon variations - thought to be the trigger of sapropel events -, and anoxia has still to be quantified. From a modelling point of view, a requisite for studying sapropel events is to capture seasonal winds that are instrumental in producing convection in the Med Sea. Recently, the development of high-resolution several models studies intend to fill this gap, building different scenarios (Grimm et al, 2015). Combining an atmospheric GCM (LMDZ4) and a high-resolution oceanic model (NEMOMED8, resolution of 1/8 degree) dedicated to the Med Sea, our first objective is to test whether monsoon precipitation triggered by insolation changes can increase the Nile run-off enough to stratify the East Mediterranean Sea. We notably show that a 15 mSv Nile runoff increase triggers a large decrease of convection in the whole Eastern Mediterranean Sea associated with strong anoxia in bottom waters.. Comparisons of our first experiments with δ18O and ɛ-Nd data will also be presented. Future work includes extending our simulations to investigate whether sapropel events can be maintained on longer time scales.

  10. Overview of Sentinel-2

    NASA Astrophysics Data System (ADS)

    Fernandez, Valerie; Martimort, Philippe; Spoto, Francois; Sy, Omar; Laberinti, Paolo

    2013-10-01

    GMES is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. ESA's role in GMES is to provide the definition and the development of the space- and ground-related system elements. GMES Sentinel-2 mission provides continuity to services relying on multi-spectral highresolution optical observations over global terrestrial surfaces. The key mission objectives for Sentinel-2 are: (1) to provide systematic global acquisitions of high-resolution multi-spectral imagery with a high revisit frequency, (2) to provide enhanced continuity of multi-spectral imagery provided by the SPOT series of satellites, and (3) to provide observations for the next generation of operational products such as landcover maps, land change detection maps, and geophysical variables. Consequently, Sentinel-2 will directly contribute to the Land Monitoring, Emergency Response, and Security services. The corresponding user requirements have driven the design towards a dependable multi-spectral Earthobservation system featuring the MSI with 13 spectral bands spanning from the visible and the near infrared to the short wave infrared. The spatial resolution varies from 10 m to 60 m depending on the spectral band with a 290 km field of view. This unique combination of high spatial resolution, wide field of view and large spectral coverage will represent a major step forward compared to current multi-spectral missions. The mission foresees a series of satellites, each having a 7.25-year lifetime (extendable to 12 years) over a 20-year period starting with the launch of Sentinel-2A foreseen by mid-2014. During full operations two identical satellites will be maintained in the same sun synchronous orbit with a phase delay of 180° providing a revisit time of five days at the equator.

  11. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics

    PubMed Central

    Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J.; Wentzel, Jolanda J.

    2016-01-01

    Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5 mm, 1 mm, 2 mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6±3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8±4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3±4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2±4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81±0.55 mW) was significantly higher than those based on down-sampled CFD (0.25±0.19 mW, p=0.03), down-sampled CFD with noise (0.49±0.26 mW, p=0.03) and 4D flow MRI (0.56±0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492

  12. Temperature dependence of a superconducting tunnel junction x-ray detector

    NASA Astrophysics Data System (ADS)

    Hiller, Lawrence J.; Labov, Simon E.; Mears, Carl A.; Barfknecht, Andrew T.; Frank, Matthias A.; Netel, Harrie; Lindeman, Mark A.

    1995-09-01

    Superconducting tunnel junctions can be used as part of a high-resolution, energy-dispersive x- ray detector. The energy of the absorbed x ray is used to break superconducting electron pairs, producing on the order of 10(superscript 6) excitations, called quasiparticles. The number of quasiparticles produced is proportional to the energy of the absorbed x ray. When a bias voltage is maintained across the barrier, these quasiparticles produce a net tunneling current. Either the peak tunneling current or the total tunneled charge may be measured to determine the energy of the absorbed x ray. The tunneling rate, and therefore the signal, is enhanced by the use of a quasiparticle trap near the tunnel barrier. The trapping efficiency is improved by decreasing the energy gap, though this reduces the maximum temperature at which the device may operate. In our niobium/aluminum configuration, we can very the energy gap in the trapping layer by varying its thickness. This paper examines the performance of two devices with 50 nm aluminum traps at temperatures ranging from 100 mK to 700 mK. We found that this device has a very good energy resolution of about 12 eV FWHM at 1 keV. This energy resolution is independent of temperature for much of this temperature range.

  13. A Coupled Surface Nudging Scheme for use in Retrospective ...

    EPA Pesticide Factsheets

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem modeling. This scheme is known as the flux-adjusting surface data assimilation system (FASDAS) developed by Alapaty et al. (2008). This scheme provides continuous adjustments for soil moisture and temperature (via indirect nudging) and for surface air temperature and water vapor mixing ratio (via direct nudging). The simultaneous application of indirect and direct nudging maintains greater consistency between the soil temperature–moisture and the atmospheric surface layer mass-field variables. The new method, FASDAS, consistently improved the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as well as for high resolution regional climate predictions. This new capability has been released in WRF Version 3.8 as option grid_sfdda = 2. This new capability increased the accuracy of atmospheric inputs for use air quality, hydrology, and ecosystem modeling research to improve the accuracy of respective end-point research outcome. IMPACT: A new method, FASDAS, was implemented into the WRF model to consistently improve the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as wel

  14. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    PubMed

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  15. Real-time distributed video coding for 1K-pixel visual sensor networks

    NASA Astrophysics Data System (ADS)

    Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian

    2016-07-01

    Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.

  16. Addressing model uncertainty through stochastic parameter perturbations within the High Resolution Rapid Refresh (HRRR) ensemble

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Jankov, I.; Beck, J.; Carson, L.; Frimel, J.; Harrold, M.; Jiang, H.

    2016-12-01

    It is well known that global and regional numerical weather prediction ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system for addressing the deficiencies in ensemble modeling is the use of stochastic physics to represent model-related uncertainty. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), Stochastic Perturbation of Physics Tendencies (SPPT), or some combination of all three. The focus of this study is to assess the model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) when using stochastic approaches. For this purpose, the test utilized a single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model, with ensemble members produced by employing stochastic methods. Parameter perturbations were employed in the Rapid Update Cycle (RUC) land surface model and Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme. Results will be presented in terms of bias, error, spread, skill, accuracy, reliability, and sharpness using the Model Evaluation Tools (MET) verification package. Due to the high level of complexity of running a frequently updating (hourly), high spatial resolution (3 km), large domain (CONUS) ensemble system, extensive high performance computing (HPC) resources were needed to meet this objective. Supercomputing resources were provided through the National Center for Atmospheric Research (NCAR) Strategic Capability (NSC) project support, allowing for a more extensive set of tests over multiple seasons, consequently leading to more robust results. Through the use of these stochastic innovations and powerful supercomputing at NCAR, further insights and advancements in ensemble forecasting at convection-permitting scales will be possible.

  17. Erosion in vineyards and LiDAR: new opportunities for anthropogenic terraced landscapes

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia; Calligaro, Simone; Prosdocimi, Massimo; Preti, Federico; Dalla Fontana, Giancarlo

    2014-05-01

    Vineyard landscapes are a relevant part of the European cultivated land, and several authors concluded that they are the agricultural practice that causes the highest soil loss. Since grape quality depends on the availability of water for the vineyards, and since soil erosion is an important parameter dictating the sustainability of vineyards, soil and water conservation are often implemented. The most widely used measure for soil conservation for vineyards in hilly/mountainous landscapes is terracing. However, while improving vineyards stability, the same changes in hillslope hydrology caused by these anthropogenic structures to favor agricultural activities, often result in situations that may lead to local instabilities. Terraces, in fact, when not properly maintained can create hazards for people and settlements, but also for cultivations and for the related economy. Agricultural roads also serve terraced lands, and the construction of these types of anthropogenic features can have deep effects on water flows, in a way similar to the one already registered for forest roads. The goal of this research is to use LiDAR data for the high-resolution hydro-geomorphological analysis of vineyards, underlining the capability of high-resolution topography to provide new tools for a correct management of vineyards terraced landscapes. The work focus on terraced- and road-induced erosion, and it considers a methodology successfully applied to a different environmental context (the RPII index, Tarolli et al. 2013). The index is applied to two study areas, located in the center of Italy, where soil erosion and terrace failures represent a critical issue. The results highlight the effectiveness of high-resolution topography in the analysis of surface erosion, thus providing useful tool to schedule a suitable environmental planning for a sustainable development, and so, to mitigate the consequences of the anthropogenic alterations induced by the terraces structures and agricultural roads. References Tarolli, P., Calligaro, S., Cazorzi, F., Dalla Fontana, G. (2013). Recognition of surface flow processes influeced by roads and trails in mountain areas using high-resolution topography. European Journal of Remote Sensing, 46, 176-197, doi:10.5721/EuJRS20134610.

  18. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  19. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  20. The use of EO Optical data for the Italian Supersites volcanoes monitoring

    NASA Astrophysics Data System (ADS)

    Silvestri, Malvina

    2016-04-01

    This work describes the INGV experience in the capability to import many different EO optical data into in house developed systems and to maintain a repository where the acquired data have been stored. These data are used for generating selected products which are functional to face the different volcanic activity phases. Examples on the processing of long time series based EO data of Mt Etna activity and Campi Flegrei observation by using remote sensing techniques and at different spatial resolution data (ASTER - 90mt, AVHRR -1km, MODIS-1km, MSG SEVIRI-3km) are also showed. Both volcanoes belong to Italian Supersites initiative of the geohazard scientific community. In the frame of the EC FP7 MED-SUV project (call FP7 ENV.2012.6.4-2), this work wants to describe the main activities concerning the generation of brightness temperature map from the satellite data acquired in real-time from INGV MEOS Multi-mission Antenna (for MODIS, Moderate Resolution Imaging Spectroradiometer and geostationary satellite data) and AVHRR-TERASCAN (for AVHRR, Advanced Very High Resolution Radiometer data). The advantage of direct download of EO data by means INGV antennas (with particular attention to AVHRR and MODIS) even though low spatial resolution offers the possibility of a systematic data processing having a daily updating of information for prompt response and hazard mitigation. At the same time it has been necessary the use of large archives to inventory and monitor dynamic and dangerous phenomena, like volcanic activity, globally.

  1. Moist Baroclinic Life Cycles in an Idealized Model with Varying Hydrostasy

    NASA Astrophysics Data System (ADS)

    Hsieh, T. L.; Garner, S.; Held, I.

    2016-12-01

    Baroclinic life cycles are simulated in a limited-area model having varying degrees of hydrostasy to examine their interaction with explicitly resolved moist convection. The life cycles are driven by an idealized sea surface temperature field in an f-plane channel, and no convective parameterization is used. The hydrostasy is controlled by rescaling the model equations following the hypohydrostatic rescaling and by changing the resolution. In experiments having the same ratio between the grid spacing and the rescaling factor, the simulated convection is shown to have the same hydrostasy, suggesting that the low resolution models have been rescaled to be as nonhydrostatic as the high resolution model without additional computational cost. The nonhydrostatic convective cells in the rescaled models are found to be wider and slower than those in the unscaled models, consistent with predictions of the similarity theory. For the same resolution, although the wider cells in the rescaled models have better resolved structure, the total latent heating is insensitive to the rescaling factor. This is because latent heating is constrained by long-wave cooling which is found to be insensitive to the model hydrostasy, requiring a non-similarity in the frequency and distribution of convection. Consequently, the resolved nonhydrostatic convection maintains the same stability profile as the unresolved hydrostatic convection, so the statistics of the life cycles are also insensitive to the rescaling factor. The findings suggest that the mean climate and internal variability would be unaffected by the hypohydrostatic rescaling when the self-organization of convection is not important.

  2. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  3. Real-time image sequence segmentation using curve evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Weisong

    2001-04-01

    In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.

  4. Removal of GaAs growth substrates from II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.

    2014-04-01

    We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.

  5. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  6. OCT imaging with temporal dispersion induced intense and short coherence laser source

    NASA Astrophysics Data System (ADS)

    Manna, Suman K.; le Gall, Stephen; Li, Guoqiang

    2016-10-01

    Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.

  7. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  8. Deep X-ray lithography for the fabrication of microstructures at ELSA

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Mohr, J.

    2001-07-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  9. Transonic analysis of canted winglets

    NASA Technical Reports Server (NTRS)

    Rosen, B. S.

    1984-01-01

    A computational method developed to provide a transonic analysis for upper/lower surface wing-tip mounted winglets is described. Winglets with arbitrary planform, cant and toe angle, and airfoil section can be modeled. The embedded grid approach provides high flow field resolution and the required geometric flexibility. In particular, coupled Cartesian/cylindrical grid systems are used to model the complex geometry presented by canted upper/lower surface winglets. A new rotated difference scheme is introduced in order to maintain the stability of the small-disturbance formulation in the presence of large spanwise velocities. Wing and winglet viscous effects are modeled using a two-dimensional 'strip' boundary layer analysis. Correlations with wind tunnel and flight test data for three transport configurations are included.

  10. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  11. Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Volz, Daniel; Baumann, Thomas

    2016-09-01

    Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.

  12. Formation Control for the Maxim Mission.

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.

  13. A characteristics-based method for solving the transport equation and its application to the process of mantle differentiation and continental root growth

    NASA Astrophysics Data System (ADS)

    de Smet, Jeroen H.; van den Berg, Arie P.; Vlaar, Nico J.; Yuen, David A.

    2000-03-01

    Purely advective transport of composition is of major importance in the Geosciences, and efficient and accurate solution methods are needed. A characteristics-based method is used to solve the transport equation. We employ a new hybrid interpolation scheme, which allows for the tuning of stability and accuracy through a threshold parameter ɛth. Stability is established by bilinear interpolations, and bicubic splines are used to maintain accuracy. With this scheme, numerical instabilities can be suppressed by allowing numerical diffusion to work in time and locally in space. The scheme can be applied efficiently for preliminary modelling purposes. This can be followed by detailed high-resolution experiments. First, the principal effects of this hybrid interpolation method are illustrated and some tests are presented for numerical solutions of the transport equation. Second, we illustrate that this approach works successfully for a previously developed continental evolution model for the convecting upper mantle. In this model the transport equation contains a source term, which describes the melt production in pressure-released partial melting. In this model, a characteristic phenomenon of small-scale melting diapirs is observed (De Smet et al.1998; De Smet et al. 1999). High-resolution experiments with grid cells down to 700m horizontally and 515m vertically result in highly detailed observations of the diapiric melting phenomenon.

  14. Wavelet data compression for archiving high-resolution icosahedral model data

    NASA Astrophysics Data System (ADS)

    Wang, N.; Bao, J.; Lee, J.

    2011-12-01

    With the increase of the resolution of global circulation models, it becomes ever more important to develop highly effective solutions to archive the huge datasets produced by those models. While lossless data compression guarantees the accuracy of the restored data, it can only achieve limited reduction of data size. Wavelet transform based data compression offers significant potentials in data size reduction, and it has been shown very effective in transmitting data for remote visualizations. However, for data archive purposes, a detailed study has to be conducted to evaluate its impact to the datasets that will be used in further numerical computations. In this study, we carried out two sets of experiments for both summer and winter seasons. An icosahedral grid weather model and a highly efficient wavelet data compression software were used for this study. Initial conditions were compressed and input to the model to run to 10 days. The forecast results were then compared to those forecast results from the model run with the original uncompressed initial conditions. Several visual comparisons, as well as the statistics of numerical comparisons are presented. These results indicate that with specified minimum accuracy losses, wavelet data compression achieves significant data size reduction, and at the same time, it maintains minimum numerical impacts to the datasets. In addition, some issues are discussed to increase the archive efficiency while retaining a complete set of meta data for each archived file.

  15. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    NASA Astrophysics Data System (ADS)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  16. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE PAGES

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...

    2017-10-24

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  17. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  18. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2-ligands: Design, Synthesis, and Protein-ligand X-Ray Studies

    PubMed Central

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-01-01

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutzer, B.; Simsek, S.; Zimmermann, C.

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing themore » formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.« less

  20. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  1. Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2017-11-01

    Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.

  2. Ultrahigh-speed non-invasive widefield angiography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  3. GRDC. A Collaborative Framework for Radiological Background and Contextual Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian J. Quiter; Ramakrishnan, Lavanya; Mark S. Bandstra

    The Radiation Mobile Analysis Platform (RadMAP) is unique in its capability to collect both high quality radiological data from both gamma-ray detectors and fast neutron detectors and a broad array of contextual data that includes positioning and stance data, high-resolution 3D radiological data from weather sensors, LiDAR, and visual and hyperspectral cameras. The datasets obtained from RadMAP are both voluminous and complex and require analyses from highly diverse communities within both the national laboratory and academic communities. Maintaining a high level of transparency will enable analysis products to further enrich the RadMAP dataset. It is in this spirit of openmore » and collaborative data that the RadMAP team proposed to collect, calibrate, and make available online data from the RadMAP system. The Berkeley Data Cloud (BDC) is a cloud-based data management framework that enables web-based data browsing visualization, and connects curated datasets to custom workflows such that analysis products can be managed and disseminated while maintaining user access rights. BDC enables cloud-based analyses of large datasets in a manner that simulates real-time data collection, such that BDC can be used to test algorithm performance on real and source-injected datasets. Using the BDC framework, a subset of the RadMAP datasets have been disseminated via the Gamma Ray Data Cloud (GRDC) that is hosted through the National Energy Research Science Computing (NERSC) Center, enabling data access to over 40 users at 10 institutions.« less

  4. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  5. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    PubMed Central

    Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred

    2013-01-01

    Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280

  6. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  7. Retrieval of total suspended particulate matter in highly turbid Hangzhou Bay waters based on geostationary ocean color imager

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Jiahang; He, Xianqiang; Chen, Tieqiao; Zhu, Feng; Wang, Yihao; Hao, Zengzhou; Chen, Peng

    2017-10-01

    Hangzhou Bay waters are often characterized by extremely high total suspended particulate matter (TSM) concentration due to terrestrial inputs, bottom sediment resuspension and human activities. The spatial-temporal variability of TSM directly contributes to the transport of carbon, nutrients, pollutants, and other materials. Therefore, it is essential to maintain and monitor sedimentary environment in coastal waters. Traditional field sampling methods limit observation capability for insufficient spatial-temporal resolution. Thus, it is difficult to synoptically monitor high diurnal dynamics of TSM. However, the in-orbit operation of the world's first geostationary satellite ocean color sensor, GOCI, thoroughly changes this situation with hourly observations of covered area. Taking advantage of GOCI high spatial-temporal resolution, we generated TSM maps from GOCI Level-1B data after atmospheric correction based on six TSM empirical algorithms. Validation of GOCI-retrieved normalized water-leaving radiances and TSM concentration was presented in comparison with matched-up in-situ measurements. The mean absolute percentage differences of those six TSM regional algorithms were 24.52%, 163.93%, 195.50%, 70.50%, 121.02%, 82.72%, respectively. In addition, the discrepancy reasons were presented, taking more factors such as diversified satellite data, various study area, and different research season into consideration. It is effective and indispensable to monitor and catch the diurnal dynamics of TSM in Hangzhou Bay coastal waters, with hourly GOCI observations data and appropriate inversion algorithm.

  8. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    NASA Astrophysics Data System (ADS)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  9. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  10. The cost of empathy: Parent-adolescent conflict predicts emotion dysregulation for highly empathic youth.

    PubMed

    Van Lissa, Caspar J; Hawk, Skyler T; Koot, Hans M; Branje, Susan; Meeus, Wim H J

    2017-09-01

    Empathy plays a key role in maintaining close relationships and promoting prosocial conflict resolution. However, research has not addressed the potential emotional cost of adolescents' high empathy, particularly when relationships are characterized by more frequent conflict. The present 6-year longitudinal study (N = 467) investigated whether conflict with parents predicted emotion dysregulation more strongly for high-empathy adolescents than for lower-empathy adolescents. Emotion dysregulation was operationalized at both the experiential level, using mood diary data collected for 3 weeks each year, and at the dispositional level, using annual self-report measures. In line with predictions, we found that more frequent adolescent-parent conflict predicted greater day-to-day mood variability and dispositional difficulties in emotion regulation for high-empathy adolescents, but not for average- and low-empathy adolescents. Mood variability and difficulties in emotion regulation, in turn, also predicted increased conflict with parents. These links were not moderated by empathy. Moreover, our research allowed for a novel investigation of the interplay between experiential and dispositional emotion dysregulation. Day-to-day mood variability predicted increasing dispositional difficulties in emotion regulation over time, which suggests that experiential dysregulation becomes consolidated into dispositional difficulties in emotion regulation. Moderated mediation analyses revealed that, for high-empathy adolescents, conflict was a driver of this dysregulation consolidation process. Finally, emotion dysregulation played a role in overtime conflict maintenance for high-empathy adolescents. This suggests that, through emotion dysregulation, high empathy may paradoxically also contribute to maintaining negative adolescent-parent interactions. Our research indicates that high empathy comes at a cost when adolescent-parent relationships are characterized by greater negativity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

  12. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    PubMed Central

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  13. Undersampling strategies for compressed sensing accelerated MR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Vidya Shankar, Rohini; Hu, Houchun Harry; Bikkamane Jayadev, Nutandev; Chang, John C.; Kodibagkar, Vikram D.

    2017-03-01

    Compressed sensing (CS) can accelerate magnetic resonance spectroscopic imaging (MRSI), facilitating its widespread clinical integration. The objective of this study was to assess the effect of different undersampling strategy on CS-MRSI reconstruction quality. Phantom data were acquired on a Philips 3 T Ingenia scanner. Four types of undersampling masks, corresponding to each strategy, namely, low resolution, variable density, iterative design, and a priori were simulated in Matlab and retrospectively applied to the test 1X MRSI data to generate undersampled datasets corresponding to the 2X - 5X, and 7X accelerations for each type of mask. Reconstruction parameters were kept the same in each case(all masks and accelerations) to ensure that any resulting differences can be attributed to the type of mask being employed. The reconstructed datasets from each mask were statistically compared with the reference 1X, and assessed using metrics like the root mean square error and metabolite ratios. Simulation results indicate that both the a priori and variable density undersampling masks maintain high fidelity with the 1X up to five-fold acceleration. The low resolution mask based reconstructions showed statistically significant differences from the 1X with the reconstruction failing at 3X, while the iterative design reconstructions maintained fidelity with the 1X till 4X acceleration. In summary, a pilot study was conducted to identify an optimal sampling mask in CS-MRSI. Simulation results demonstrate that the a priori and variable density masks can provide statistically similar results to the fully sampled reference. Future work would involve implementing these two masks prospectively on a clinical scanner.

  14. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset

    PubMed Central

    Rodriguez-Calvo, Teresa; Zapardiel-Gonzalo, Jose; Amirian, Natalie; Castillo, Ericka; Lajevardi, Yasaman; Krogvold, Lars; Dahl-Jørgensen, Knut

    2017-01-01

    Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy. PMID:28137793

  15. Sailing on the "Boundless and Bottomless Sea": A View from the OIA Bridge

    ERIC Educational Resources Information Center

    Behrens, Rob

    2015-01-01

    The prevention and resolution of student complaints are critical factors in maintaining and improving the student experience. Rob Behrens looks at the wider context, drawing on lessons from beyond higher education, to examine the opportunities and possible pitfalls.

  16. High Spatial and Temporal Resolution Dynamic Contrast-Enhanced Magnetic Resonance Angiography (CE-MRA) using Compressed Sensing with Magnitude Image Subtraction

    PubMed Central

    Rapacchi, Stanislas; Han, Fei; Natsuaki, Yutaka; Kroeker, Randall; Plotnik, Adam; Lehman, Evan; Sayre, James; Laub, Gerhard; Finn, J Paul; Hu, Peng

    2014-01-01

    Purpose We propose a compressed-sensing (CS) technique based on magnitude image subtraction for high spatial and temporal resolution dynamic contrast-enhanced MR angiography (CE-MRA). Methods Our technique integrates the magnitude difference image into the CS reconstruction to promote subtraction sparsity. Fully sampled Cartesian 3D CE-MRA datasets from 6 volunteers were retrospectively under-sampled and three reconstruction strategies were evaluated: k-space subtraction CS, independent CS, and magnitude subtraction CS. The techniques were compared in image quality (vessel delineation, image artifacts, and noise) and image reconstruction error. Our CS technique was further tested on 7 volunteers using a prospectively under-sampled CE-MRA sequence. Results Compared with k-space subtraction and independent CS, our magnitude subtraction CS provides significantly better vessel delineation and less noise at 4X acceleration, and significantly less reconstruction error at 4X and 8X (p<0.05 for all). On a 1–4 point image quality scale in vessel delineation, our technique scored 3.8±0.4 at 4X, 2.8±0.4 at 8X and 2.3±0.6 at 12X acceleration. Using our CS sequence at 12X acceleration, we were able to acquire dynamic CE-MRA with higher spatial and temporal resolution than current clinical TWIST protocol while maintaining comparable image quality (2.8±0.5 vs. 3.0±0.4, p=NS). Conclusion Our technique is promising for dynamic CE-MRA. PMID:23801456

  17. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood.

    PubMed

    Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M

    2015-11-01

    Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.

  18. Non-destructive testing of layer-to-layer fusion of a 3D print using ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Israelsen, Niels M.; Maria, Michael; Feuchter, Thomas; Podoleanu, Adrian; Bang, Ole

    2017-06-01

    Within the last decade, 3D printing has moved from a costly approach of building mechanical items to the present state-of-the-art phase where access to 3D printers is now common, both in industry and in private places. The plastic printers are the most common type of 3D printers providing prints that are light, robust and of lower cost. The robustness of the structure printed is only maintained if each layer printed is properly fused to its previously printed layers. In situations where the printed component has to accomplish a key mechanical role there is a need to characterize its mechanical strength. This may only be revealed by in-depth testing in order to discover unwanted air-gaps in the structure. Optical coherence tomography (OCT) is an in-depth imaging method, that is sensitive to variations in the refractive index and therefore can resolve with high resolution translucid samples. We report on volume imaging of a 3D printed block made with 100% PLA fill. By employing ultrahigh resolution OCT (UHR-OCT) we show that some parts of the PLA volume reveal highly scattering interfaces which likely correspond to transitions from one layer to another. In doing so, we document that UHR-OCT can act as a powerful tool that can be used in detecting fractures between layers stemming from insufficient fusion between printed structure layers. UHR-OCT can therefore serve as an useful assessment method of quality of 3D prints.

  19. A Nonlinearity Minimization-Oriented Resource-Saving Time-to-Digital Converter Implemented in a 28 nm Xilinx FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Liu, Chong

    2015-10-01

    Because large nonlinearity errors exist in the current tapped-delay line (TDL) style field programmable gate array (FPGA)-based time-to-digital converters (TDC), bin-by-bin calibration techniques have to be resorted for gaining a high measurement resolution. If the TDL in selected FPGAs is significantly affected by changes in ambient temperature, the bin-by-bin calibration table has to be updated as frequently as possible. The on-line calibration and calibration table updating increase the TDC design complexity and limit the system performance to some extent. This paper proposes a method to minimize the nonlinearity errors of TDC bins, so that the bin-by-bin calibration may not be needed while maintaining a reasonably high time resolution. The method is a two pass approach: By a bin realignment, the large number of wasted zero-width bins in the original TDL is reused and the granularity of the bins is improved; by a bin decimation, the bin size and its uniformity is traded-off, and the time interpolation by the delay line turns more precise so that the bin-by-bin calibration is not necessary. Using Xilinx 28 nm FPGAs, in which the TDL property is not very sensitive to ambient temperature, the proposed TDC achieves approximately 15 ps root-mean-square (RMS) time resolution by dual-channel measurements of time-intervals over the range of operating temperature. Because of removing the calibration and less logic resources required for the data post-processing, the method has bigger multi-channel capability.

  20. High-speed and high-resolution UPLC separation at zero degrees Celsius

    PubMed Central

    Wales, Thomas E.; Fadgen, Keith E.; Gerhardt, Geoff C.; Engen, John R.

    2008-01-01

    The conformational properties of proteins can be probed with hydrogen/deuterium exchange mass spectrometry (HXMS). In order to maintain the deuterium label during LC/MS analyses, chromatographic separation must be done rapidly (usually in under 8–10 minutes) and at zero degrees Celsius. Traditional RP-HPLC with ~3 micron particles has shown generally poor chromatographic performance under these conditions and thereby has been prohibitive for HXMS analyses of larger proteins and many protein complexes. Ultra performance liquid chromatography (UPLC) employs particles smaller than 2 microns in diameter to achieve superior resolution, speed, and sensitivity as compared to HPLC. UPLC has previously been shown to be compatible with the fast separation and low temperature requirements of HXMS. Here we present construction and validation of a custom UPLC system for HXMS. The system is based on the Waters nanoACQUITY platform and contains a Peltier-cooled module that houses the injection and switching valves, online pepsin digestion column, and C-18 analytical separation column. Single proteins in excess of 95 kDa and a four-protein mixture in excess of 250 kDa have been used to validate the performance of this new system. Near baseline resolution was achieved in 6 minute separations at 0 °C and displayed a median chromatographic peak width of ~2.7 sec at half height. Deuterium recovery was similar to that obtained using a conventional HPLC and icebath. This new system represents a significant advancement in HXMS technology that is expected to make the technique more accessible and mainstream in the near future. PMID:18672890

  1. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  2. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  3. A compact high-resolution X-ray ion mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinecke, T.; Kirk, A. T.; Heptner, A.

    For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source ismore » that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.« less

  4. Sensor for Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  5. Resonant Slit-type Probe with Rounded Matching Structure for Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Ju; Kim, Jung-Il; Kim, Sanghoon; Lee, Jeong-Hun; Jeon, Tae-In

    2018-05-01

    We propose a resonant slit-type probe with a rounded matching structure in the inner corner of the probe slit, for high-resolution terahertz (THz) imaging. The proposed probe can achieve high coupling efficiency and maintain a stable resonant frequency in spite of the increase in slit thickness. The THz signal measured by the proposed probe was 1.7 times more sensitive than that by a right angle structure probe when a 50 μm diameter metal ball was located 100 um away from the slits. The resonant frequency and return loss |S11| measurements of the prototype resonant probe using a vector network analyzer (VNA) were in good agreement with a simulation results. We achieved a spatial resolution of 100 μm with a slit height of 140 μm. Also, to determine the potential of the proposed probe in the THz applications, we measured THz images according to the thickness of covering flour and the distance between the probe and the flour for the foreign objects in the flour. The proposed probe detected a metal wire with a diameter of 70 μm beneath 1.5 mm of flour at a distance between flour and probe of 1 mm. Consequently, we confirmed that the proposed probe could potentially be applied as a new THz probe.

  6. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    NASA Astrophysics Data System (ADS)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  7. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  8. VUV spectroscopy of OH and SO

    NASA Astrophysics Data System (ADS)

    Heays, Alan; de Oliveira, Nelson; Gans, Bérenger; Ito, Kenji; Nahon, Laurent; Douin, Stéphane; Boyé-Péronne, Séverine; Hickson, Kevin; Loison, Jean-Christophe; Lyons, James; Stark, Glenn

    2018-06-01

    Radicals are certainly important in the ISM and atmospheric chemical cycles but laboratory measurement of their photoabsorption and dissociation cross sections is a continuing challenge. In some cases, the detailed rovibrational structure within ultraviolet electronic transitions leads to interesting resonance or isotope effects in interstellar or atmospheric photodissociation but their measurement requires high spectral resolution. The latest generation in broadband high-resolution UV spectrometers at the SOLEIL synchrotron has been put to work studying the photoabsorption of radicals OH and SO. I will present the results of these studies.This unique UV/VUV Fourier-transform spectrometer is illuminated by a 3rd generation synchrotron and a column of radicals is maintained in a radio-frequency discharge [1]. Careful separation of precursor gases and contaminants is needed to distinguish the radical absorption, and a means of determining the absolute radical column density. In the case of OH, we measure the absolute absorption strength of the D-X transition, occasionally observed in the ISM and refine its rate of interstellar photodissociation [2]. For SO, we measure the absorption strengths and variable predissociation linewidths of the B-X transition, and investigate the possibility of isotope-dependent effects.[1] de Oliveira et al. (2016) J. Synchr. Rad. 23:887.[2] Heays et al. (2018) JQSRT 204:12.

  9. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    NASA Astrophysics Data System (ADS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  10. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery

    PubMed Central

    Yang, Xiaomei; Zhou, Chenghu; Li, Zhi

    2017-01-01

    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features. PMID:28914787

  11. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery.

    PubMed

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi

    2017-09-15

    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

  12. Spectra of late type dwarf stars of known abundance for stellar population models

    NASA Technical Reports Server (NTRS)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  13. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less

  14. Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers.

    PubMed

    Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek

    2016-12-21

    Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Vitrectomy and gas-fluid exchange for the treatment of serous macular detachment due to optic disc pit: long-term evaluation].

    PubMed

    Moreira Neto, Carlos Augusto; Moreira Junior, Carlos Augusto

    2013-01-01

    To evaluate 5 patients with serous macular detachment due to optic disc pit that were submitted to pars plana vitrectomy and were followed for at least 7 years. Patients were submitted to pars plana vitrectomy, posterior hyaloid removal, autologous serum injection and gas-fluid exchange, without laser photocoagulation, and were evaluated pre and post-operatively with visual acuity and Amsler grid testing, retinography, and recently, with autofluorescence imaging and high resolution OCT. All 5 eyes improved visual acuity significantly following the surgical procedure maintaining good vision throughout the follow-up period. Mean pre-operative visual acuity was 20/400 and final visual acuity was 20/27 with a mean follow-up time of 13.6 years. No recurrences of serous detachments were observed. OCT examinations demonstrated an attached retina up to the margin of the pit. Serous macular detachments due to optic disc pits were adequately treated with pars plana vitrectomy and gas fluid exchange, without the need for laser photocoagulation, maintaining excellent visual results for a long period of time.

  16. Fast algorithm of low power image reformation for OLED display

    NASA Astrophysics Data System (ADS)

    Lee, Myungwoo; Kim, Taewhan

    2014-04-01

    We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.

  17. Radiometric and spectral validation of Atmospheric Infrared Sounder observations with the aircraft-based Scanning High-Resolution Interferometer Sounder

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; Ciganovich, Nick N.; Dedecker, Ralph G.; Dutcher, Steven; Ellington, Scott D.; Garcia, Raymond K.; Howell, H. Benjamin; Laporte, Daniel D.; Mango, Stephen A.; Pagano, Thomas S.; Taylor, Joe K.; van Delst, Paul; Vinson, Kenneth H.; Werner, Mark W.

    2006-05-01

    The ability to accurately validate high-spectral resolution infrared radiance measurements from space using comparisons with a high-altitude aircraft spectrometer has been successfully demonstrated. The demonstration is based on a 21 November 2002 underflight of the AIRS on the NASA Aqua spacecraft by the Scanning-HIS on the NASA ER-2 high-altitude aircraft. A comparison technique which accounts for the different viewing geometries and spectral characteristics of the two sensors is introduced, and accurate comparisons are made for AIRS channels throughout the infrared spectrum. Resulting brightness temperature differences are found to be 0.2 K or less for most channels. Both the AIRS and the Scanning-HIS calibrations are expected to be very accurate (formal 3-sigma estimates are better than 1 K absolute brightness temperature for a wide range of scene temperatures), because high spectral resolution offers inherent advantages for absolute calibration and because they make use of high-emissivity cavity blackbodies as onboard radiometric references. AIRS also has the added advantage of a cold space view, and the Scanning-HIS calibration has recently benefited from the availability of a zenith view from high-altitude flights. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecraft (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. The validation role for accurately calibrated aircraft spectrometers also includes application to broadband instruments and linking the calibrations of similar instruments on different spacecraft. It is expected that aircraft flights of the Scanning-HIS and its close cousin the NPOESS Airborne Sounder Test Bed (NAST) will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the missions.

  18. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    USGS Publications Warehouse

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs and structure terminations revealed by this study is unprecedented. Collecting magnetic data via UAS represents a new capability in geothermal exploration of remote and dangerous areas that significantly enhances our ability to map the subsurface.

  19. Study of the performance of Micromegas detectors in magnetic field

    NASA Astrophysics Data System (ADS)

    Dimitrios, Sampsonidis

    2018-02-01

    Resistive Micromegas (MICRO MEsh GAseous Structure) detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade, due to their capability to maintain full efficiency and high spatial resolution at high occupancy, for tracking muons in the forward region of the detector. The Inner Muon Station, in the high-rapidity region, the so called New Small Wheel (NSW), will be composed of micromegas detectors that will have to maintain good performance in the presence of magnetic field of up to about 0.3 T. The response of micromegas detectors is affected by the magnetic field, where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed track position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes (10×10 cm2) in magnetic fields up to 1 T, using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the capability of the chambers to provide unbiased tracks in the NSW conditions. Measurements of the Lorentz angle and drift velocity as a function of the magnetic field are presented and both are compared to expectations based on Garfield-Magboltz simulations. Several methods to correct the position bias are applied, based on the chamber configuration or on the knowledge of the local value of the magnetic field. The results of these studies are presented together with an overall discussion of the Micromegas tracking capability in magnetic field.

  20. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to 35.636 kyr b2k 7), respectively. The results show the conductivity measured upstream and downstream of the debubbler. We will calculate the depth resolution of our system and compare it with earlier studies. 1) Bigler at al, "Optimization of High-Resolution Continuous Flow Analysis For Transient Climate Signals in Ice Cores". Environ. Sci. Technol. 2011, 45, 4483-4489 2) Kaufmann et al, "An Improved Continuous Flow Analysis System for High Resolution Field Measurements on Ice Cores". Environmental Environ. Sci. Technol. 2008, 42, 8044-8050 3) Gkinis, V., T. J. Popp, S. J. Johnsen and T, Blunier, 2010: A continuous stream flash evaporator for the calibration of an IR cavity ring down spectrometer for the isotopic analysis of water. Isotopes in Environmental and Health Studies, 46(4), 463-475. 4) McConnell et al, "Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2002, 36, 7-11 5) Rhodes et al, "Continuous methane measurements from a late Holocene Greenland ice core : Atmospheric and in-situ signals" Earth and Planetary Science Letters. 2013, 368, 9-19 6) Breton et al, "Quantifying Signal Dispersion in a Hybrid Ice Core Melting System". Environ. Sci. Technol. 2012, 46, 11922-11928 7) Rasmussen et al, " A first chronology for the NEEM ice core". Climate of the Past. 2013, 9, 2967--3013

Top