Eigeliene, Natalija; Erkkola, Risto; Härkönen, Pirkko
2016-01-01
Explant tissue culture provides a model for studying the direct effects of steroid hormones, their analogs, and novel hormonally active compounds on normal freshly isolated human breast tissues (HBTs). For this purpose, pre- and postmenopausal HBTs can be maintained in this culture system. The results demonstrate that the morphological integrity of HBT explants can be maintained in tissue culture up to 2 weeks and expression of differentiation markers, steroid hormone receptors, proliferation and apoptosis ratios can be evaluated as a response to hormonal stimulation. This chapter describes an ex vivo culture model that we have applied to study the effects of various hormonally active substances, including 17β-estradiol and selective estrogen receptor modulators (SERMs), on normal human breast tissues.
Structure, function, and long-term maintenance of the isolated turtle colon
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeFevre, M.E.; Reisman, L.
1978-01-01
We describe the 5-day maintenance of sacs of turtle colonic mucosa in enriched bathing solutions. The mean maximum transepithelial potential difference (PD) developed by the sacs in Ringer solution enriched with tissue-culture medium and gassed with 95% air-5% CO/sub 2/ was 126 mV at 24 hours. Lower values were observed in other solutions. The PD of 24-hour sacs was partially or totally inhibited by ouabain, replacement of Na by choline in mucosal bathing fluids, or removal of Ca from serosal bathing fluids. The sacs transported Na in excess of H/sub 2/O forming a dilute mucosal solution. The responses of fourmore » different sac preparations (normally oriented or everted, and stripped normally oriented or everted) to long incubation were compared. Stripped normally oriented tissue developed the highest PD and maintained the lowest water content. The morphology of fresh and long-incubated tissue was examined. This investigation demonstrates that the turtle colon can be maintained in vitro for long periods, and it provides information on the morphology and physiology of this tissue.« less
Reactive Oxygen Species in Normal and Tumor Stem Cells
Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.
2014-01-01
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178
Ling, C. R.; Foster, M. A.; Mallard, J. R.
1979-01-01
In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431
Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C
2014-01-01
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.
Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.
2014-01-01
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296
Nucleoprotein Changes in Plant Tumor Growth
Rasch, Ellen; Swift, Hewson; Klein, Richard M.
1959-01-01
Tumor cell transformation and growth were studied in a plant neoplasm, crown gall of bean, induced by Agrobacterium rubi. Ribose nucleic acid (RNA), deoxyribose nucleic acid (DNA), histone, and total protein were estimated by microphotometry of nuclei, nucleoli, and cytoplasm in stained tissue sections. Transformation of normal cells to tumor cells was accompanied by marked increases in ribonucleoprotein content of affected tissues, reaching a maximum 2 to 3 days after inoculation with virulent bacteria. Increased DNA levels were in part associated with increased mitotic frequency, but also with progressive accumulation of nuclei in the higher DNA classes, formed by repeated DNA doubling without intervening reduction by mitosis. Some normal nuclei of the higher DNA classes (with 2, 4, or 8 times the DNA content of diploid nuclei) were reduced to diploid levels by successive cell divisions without intervening DNA synthesis. The normal relation between DNA synthesis and mitosis was thus disrupted in tumor tissue. Nevertheless, clearly defined DNA classes, as found in homologous normal tissues, were maintained in the tumor at all times. PMID:13673042
Samuels, Mary; DiStefano, Joseph J.
2008-01-01
Background We upgraded our recent feedback control system (FBCS) simulation model of human thyroid hormone (TH) regulation to include explicit representation of hypothalamic and pituitary dynamics, and updated TH distribution and elimination (D&E) parameters. This new model greatly expands the range of clinical and basic science scenarios explorable by computer simulation. Methods We quantified the model from pharmacokinetic (PK) and physiological human data and validated it comparatively against several independent clinical data sets. We then explored three contemporary clinical issues with the new model: combined triiodothyronine (T3)/thyroxine (T4) versus T4-only treatment, parenteral levothyroxine (L-T4) administration, and central hypothyroidism. Results Combined T3/T4 therapy—In thyroidectomized patients, the L-T4–only replacement doses needed to normalize plasma T3 or average tissue T3 were 145 μg L-T4/day or 165 μgL-T4/day, respectively. The combined T4 + T3 dosing needed to normalize both plasma and tissue T3 levels was 105 μg L-T4 + 9 μgT3 per day. For all three regimens, simulated mean steady-state plasma thyroid-stimulating hormone (TSH), T3, and T4 was within normal ranges (TSH: 0.5–5 mU/L; T4: 5–12 μg/dL; T3: 0.8–1.9 ng/mL). Parenteral T4 administration—800 μg weekly or 400 μg twice weekly normalized average tissue T3 levels both for subcutaneous (SC) and intramuscular (IM) routes of administration. TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM). Central hypothyroidism—We simulated steady-state plasma T3,T4, and TSH concentrations in response to varying degrees of central hypothyroidism, reducing TSH secretion from 50% down to 0.1% of normal. Surprisingly, TSH, T3, and T4 plasma concentrations remained within normal ranges for TSH secretion as low as 25% of normal. Conclusions Combined T3/T4 treatment—Simulated standard L-T4–only therapy was sufficient to renormalize average tissue T3 levels and maintain normal TSH, T3, and T4 plasma levels, supporting adequacy of standard L-T4–only treatment. Parenteral T4 administration—TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM), supporting these therapeutic alternatives for patients with compromised L-T4 gut absorption. Central hypothyroidism—These results highlight how highly nonlinear feedback in the hypothalamic-pituitary-thyroid axis acts to maintain normal hormone levels, even with severely reduced TSH secretion. PMID:18844475
Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi
2017-07-01
The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.
Dame, Michael K; Jiang, Yan; Appelman, Henry D; Copley, Kelly D; McClintock, Shannon D; Aslam, Muhammad Nadeem; Attili, Durga; Elmunzer, B Joseph; Brenner, Dean E; Varani, James; Turgeon, D Kim
2014-02-01
In order to advance a culture model of human colonic neoplasia, we developed methods for the isolation and in vitro maintenance of intact colonic crypts from normal human colon tissue and adenomas. Crypts were maintained in three-dimensional Matrigel culture with a simple, serum-free, low Ca(2+) (0.15 mM) medium. Intact colonic crypts from normal human mucosa were viably maintained for 3-5 days with preservation of the in situ crypt-like architecture, presenting a distinct base and apex. Abnormal structures from adenoma tissue could be maintained through multiple passages (up to months), with expanding buds/tubules. Immunohistochemical markers for intestinal stem cells (Lgr5), growth (Ki67), differentiation (E-cadherin, cytokeratin 20 (CK20) and mucin 2 (MUC2)) and epithelial turnover (Bax, cleaved Caspase-3), paralleled the changes in function. The epithelial cells in normal crypts followed the physiological sequence of progression from proliferation to differentiation to dissolution in a spatially and temporally appropriate manner. Lgr5 expression was seen in a few basal cells of freshly isolated crypts, but was not detected after 1-3 days in culture. After 24 h in culture, crypts from normal colonic tissue continued to show strong Ki67 and MUC2 expression at the crypt base, with a gradual decrease over time such that by days 3-4 Ki67 was not expressed. The differentiation marker CK20 increased over the same period, eventually becoming intense throughout the whole crypt. In adenoma-derived structures, expression of markers for all stages of progression persisted for the entire time in culture. Lgr5 showed expression in a few select cells after months in culture. Ki67 and MUC2 were largely associated with the proliferative budding regions while CK20 was localized to the parent structure. This ex vivo culture model of normal and adenomatous crypts provides a readily accessible tool to help understand the growth and differentiation process in human colonic epithelium.
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Expression of BMI-1 and Mel-18 in breast tissue - a diagnostic marker in patients with breast cancer
2010-01-01
Background Polycomb Group (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer. Expression of Mel-18 and Bmi-1 has been studied in tumor tissue, but not in adjacent non-cancerous breast epithelium. Our study compares the expression of the two genes in normal breast epithelium of cancer patients and relates it to the level of expression in the corresponding tumors as well as in breast epithelium of healthy women. Methods A total of 79 tumors, of which 71 malignant tumors of the breast, 6 fibroadenomas, and 2 DCIS were studied and compared to the reduction mammoplastic specimens of 11 healthy women. In addition there was available adjacent cancer free tissue for 23 of the malignant tumors. The tissue samples were stored in RNAlater, RNA was isolated to create expression microarray profile. These two genes were then studied more closely first on mRNA transcription level by microarrays (Agilent 44 K) and quantitative RT-PCR (TaqMan) and then on protein expression level using immunohistochemistry. Results Bmi-1 mRNA is significantly up-regulated in adjacent normal breast tissue in breast cancer patients compared to normal breast tissue from noncancerous patients. Conversely, mRNA transcription level of Mel-18 is lower in normal breast from patients operated for breast cancer compared to breast tissue from mammoplasty. When protein expression of these two genes was evaluated, we observed that most of the epithelial cells were positive for Bmi-1 in both groups of tissue samples, although the expression intensity was stronger in normal tissue from cancer patients compared to mammoplasty tissue samples. Protein expression of Mel-18 showed inversely stronger intensity in tissue samples from mammoplasty compared to normal breast tissue from patients operated for breast cancer. Conclusion Bmi-1 mRNA level is consistently increased and Mel-18 mRNA level is consistently decreased in adjacent normal breast tissue of cancer patients as compared to normal breast tissue in women having had reduction mammoplasties. Bmi-1/Mel-18 ratio can be potentially used as a tool for stratifying women at risk of developing malignancy. PMID:21162745
Regeneration of urologic tissues and organs.
Atala, Anthony
2005-01-01
Patients suffering from a variety of urologic diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly owing to the ageing population. Scientists in the field of regenerative medicine and tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured urologic tissues. This chapter reviews recent advances that have occurred in the regeneration of urologic organs and describes how these applications may offer novel therapies for patients with urologic disease.
TORC1 is required to balance cell proliferation and cell death in planarians
Tu, Kimberly C.; Pearson, Bret J.; Alvarado, Alejandro Sánchez
2012-01-01
Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. PMID:22445864
Nagel, Thomas; Kelly, Daniel J
2013-04-01
The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.
Neto, Marta; Aguilar-Hidalgo, Daniel; Casares, Fernando
2016-10-01
During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Fang, Jennifer S.; Angelov, Stoyan N.; Simon, Alexander M.
2013-01-01
Recently, we reported that recovery of tissue perfusion in the ischemic hindlimb was reduced, inflammatory response increased, and survival of distal limb tissue compromised in connexin 40 (Cx40)-deficient (Cx40−/−) mice. Here we evaluate whether genotype-specific differences in tissue perfusion, native vascular density, arteriogenesis, blood pressure, and chronic ANG II type 1 receptor (AT1R) activation contribute to poor recovery of ischemic hindlimb tissue in Cx40−/− mice. Hindlimb ischemia was induced in wild-type (WT), Cx40−/−, and losartan-treated Cx40−/− mice by using surgical procedures that either maintained (mild surgery) or compromised (severe surgery) perfusion of major collateral vessels supplying the distal limb. Pre- and postsurgical hindlimb perfusion was evaluated, and tissue survival, microvascular density, and macrophage infiltration were documented during recovery. Hindlimb perfusion was compromised in presurgical Cx40−/− versus WT mice despite comparable native microvascular density. Hindlimb perfusion 24 h postsurgery in Cx40−/− and WT mice was comparable after mild surgery (collateral vessels maintained), but compromised arteriogenesis in Cx40−/− animals nevertheless limited subsequent recovery of tissue perfusion and compromised tissue survival. Prolonged pre- and postsurgical treatment of Cx40−/− mice with losartan (an AT1R antagonist) normalized blood pressure but did not improve tissue perfusion or survival, despite reduced macrophage infiltration. Thus it appears Cx40 is necessary for normal tissue perfusion and for recovery of perfusion, arteriogenesis, and tissue survival in the ischemic hindlimb. Our data suggest that Cx40−/− mice are at significantly greater risk for poor recovery from ischemic insult due to compromised regulation of tissue perfusion, vascular remodeling, and prolonged inflammatory response. PMID:23292716
Tiwari, Vinod; Kamran, Mohammad Zahid; Ranjan, Atul; Nimesh, Hemlata; Singh, Manish; Tandon, Vibha
2017-07-01
Normal tissue protection and recovery of radiation-induced damage are of paramount importance for development of radioprotector. Radioprotector which selectively protects normal tissues over cancerous tissues improves the therapeutic window of radiation therapy. In the present study, small bisbenzimidazole molecule, DMA (5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxy-phenyl)-5'-benzimidazolyl]-benzimidazole) was evaluated for in vivo radioprotective effects to selectively protect normal tissue over tumor with underlying molecular mechanism. Administration of single DMA dose prior to radiation has enhanced survival of Balb/c mice against sublethal and supralethal total body irradiation. DMA ameliorated radiation-induced damage of normal tissues such as hematopoietic (HP) and gastrointestinal tract (GI) system. Oxidative stress marker Malondialdehyde level was decreased by DMA whereas it maintained endogenous antioxidant status by increasing the level of reduced glutathione, glutathione reductase, glutathione-s-transferase, superoxide dismutase and total thiol content in hepatic tissue of irradiated mice. Mechanistic studies revealed that DMA treatment prior to radiation leads to Akt1/NFκB signaling which reduced radiation-induced genomic instability in normal cells. However, these pathways were not activated in tumor tissues when subjected to DMA treatment in similar conditions. Abrogation of Akt1 and NFκB genes resulted in no radioprotection by DMA and enhanced apoptosis against radiation. Plasma half-life of DMA was 3.5h and 2.65h at oral and intravenous dose respectively and 90% clearance was observed in 16h. In conclusion, these data suggests that DMA has potential to be developed as a safe radioprotective agent for radiation countermeasures and an adjuvant in cancer therapy. Copyright © 2017. Published by Elsevier Inc.
The influence of the microenvironment on the malignant phenotype
NASA Technical Reports Server (NTRS)
Park, C. C.; Bissell, M. J.; Barcellos-Hoff, M. H.
2000-01-01
Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.
Proton Radiotherapy for Solid Tumors of Childhood
Cotter, Shane E.; McBride, Sean M.; Yock, Torunn I.
2012-01-01
The increasing efficacy of pediatric cancer therapy over the past four decades has produced many long-term survivors that now struggle with serious treatment related morbidities affecting their quality of life. Radiation therapy is responsible for a significant proportion of these late effects, but a relatively new and emerging modality, proton radiotherapy hold great promise to drastically reduce these treatment related late effects in long term survivors by sparing dose to normal tissues. Dosimetric studies of proton radiotherapy compared with best available photon based treatment show significant dose sparing to developing normal tissues. Furthermore, clinical data are now emerging that begin to quantify the benefit in decreased late treatment effects while maintaining excellent cancer control rates. PMID:22417062
Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama
2015-03-01
Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.
Basic Proteins of Plant Nuclei during Normal and Pathological Cell Growth
Rasch, Ellen; Woodard, John W.
1959-01-01
Histone proteins were studied by microphotometry of plant tissue sections stained with fast green at pH 8.1. For comparative purposes the Feulgen reaction was used for deoxyribose nuclei acid (DNA); the Sakaguchi reaction for arginine; and the Millon reaction for estimates of total protein. Analysis of Tradescantia tissues indicated that amounts of nuclear histone fell into approximate multiples of the gametic (egg or sperm) quantity except in dividing tissues, where amounts intermediate between multiples were found. In differentiated tissues of lily, corn, onion, and broad bean, histones occurred in constant amounts per nucleus, characteristic of the species, as was found also for DNA. Unlike the condition in several animal species, the basic proteins of sperm nuclei in these higher plants were of the histone type; no evidence of protamine was found. In a plant neoplasm, crown gall of broad bean, behavior of the basic nuclear proteins closely paralleled that of DNA. Thus, alterations of DNA levels in tumor tissues were accompanied by quantitatively similar changes in histone levels to maintain the same Feulgen/fast green ratios found in homologous normal tissues. PMID:14436319
From the Cover: Adipose tissue mass can be regulated through the vasculature
NASA Astrophysics Data System (ADS)
Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.
2002-08-01
Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.
Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor
NASA Technical Reports Server (NTRS)
Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.
1999-01-01
PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.
MAGP1, the extracellular matrix, and metabolism
Craft, Clarissa S
2014-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases. PMID:26167404
MAGP1, the extracellular matrix, and metabolism.
Craft, Clarissa S
2015-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.
Impact of taurine depletion on glucose control and insulin secretion in mice.
Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W
2015-09-01
Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Ke, Jia; Zhao, Zhiju; Hong, Su-Hyung; Bai, Shoumin; He, Zhen; Malik, Fayaz; Xu, Jiahui; Zhou, Lei; Chen, Weilong; Martin-Trevino, Rachel; Wu, Xiaojian; Lan, Ping; Yi, Yongju; Ginestier, Christophe; Ibarra, Ingrid; Shang, Li; McDermott, Sean; Luther, Tahra; Clouthier, Shawn G; Wicha, Max S; Liu, Suling
2015-02-28
Increasing evidence suggests that lineage specific subpopulations and stem-like cells exist in normal and malignant breast tissues. Epigenetic mechanisms maintaining this hierarchical homeostasis remain to be investigated. In this study, we found the level of microRNA221 (miR-221) was higher in stem-like and myoepithelial cells than in luminal cells isolated from normal and malignant breast tissue. In normal breast cells, over-expression of miR-221 generated more myoepithelial cells whereas knock-down of miR-221 increased luminal cells. Over-expression of miR-221 stimulated stem-like cells in luminal type of cancer and the miR-221 level was correlated with clinical outcome in breast cancer patients. Epithelial-mesenchymal transition (EMT) was induced by overexpression of miR-221 in normal and breast cancer cells. The EMT related gene ATXN1 was found to be a miR-221 target gene regulating breast cell hierarchy. In conclusion, we propose that miR-221 contributes to lineage homeostasis of normal and malignant breast epithelium.
Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T
2017-03-15
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Interleukin 1 increases thymidine labeling index of normal tissues of mic but not the tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaghloul, M.S.; Dorie, M.J.; Kallman, R.F.
1994-07-01
This study was conducted to investigate the action of human recombinant interleukin 1 as a radioprotector for different mouse normal cells other than bone marrow cells. Semi-continuous injections of tritiated thymidine were administered every 6 h, over 24 h to determine thymidine labeling index. Mice were injected with recombinant human interleukin 1 24 h prior to tritiated thymidine and were compared to control animals that did not receive interleukin 1. Mice were killed 1 h after the last thymidine injection. The 24 h thymidine labeling index for normal tissues and RIF-1 tumor was determined. Labeling indices were also determined 1-14more » days after a series of fractionated irradiations with or without pretreatment with a single dose of interleukin 1 administered 24 h prior to the first radiation. The thymidine labeling index of normal tissues was higher following the injection of recombinant human interleukin 1 24 h before radiolabeling. This was found in all normal tissues tested. The thymidine labeling index of RIF-1 fibrosarcoma was not affected by interleukin 1 injection. A single interleukin 1 injection 24 h before the first radiation fraction also increased the thymidine labeling indices of normal tissues after localized fractionated irradiation. The thymidine labeling index of RIF-1 tumor was not increased by interleukin 1 administration except after relatively high radiation doses (20 Gy in five fractions). The ability of interleukin 1 to enhance the thymidine labeling index declined after the first day following the completion of fractionated irradiation. Recombinant human interleukin 1 increased the 24 h thymidine labeling index in normal tissues in mice, but not in RIF-1 tumor. Fractionated irradiation could maintain the effect of a single dose of interleukin 1, administered 24 h prior to the first fraction, up to 24 h after the end of radiation. 25 refs., 3 figs., 1 tab.« less
Therapeutic cloning and tissue engineering.
Koh, Chester J; Atala, Anthony
2004-01-01
A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.
Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin
2014-01-01
Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
Normal morphogenesis of epithelial tissues and progression of epithelial tumors
Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.
2011-01-01
Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857
Massie, Isobel; Dale, Sarah B; Daniels, Julie T
2015-06-01
Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.
Dale, Sarah B.; Daniels, Julie T.
2015-01-01
Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE− RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP. PMID:25380529
Playford, R J; Hanby, A M; Gschmeissner, S; Peiffer, L P; Wright, N A; McGarrity, T
1996-01-01
BACKGROUND: While it is clear that luminal epidermal growth factor (EGF) stimulates repair of the damaged bowel, its significance in maintaining normal gut growth remains uncertain. If EGF is important in maintaining normal gut growth, the EGF receptor (EGF-R) should be present on the apical (luminal) surface in addition to the basolateral surface. AIMS/SUBJECTS/METHODS: This study examined the distribution of the EGF-R in the epithelium throughout the human gastro-intestinal tract using immunohistochemistry, electron microscopy, and western blotting of brush border preparations. RESULTS: Immunostaining of the oesophagus showed circumferential EGF-R positivity in the cells of the basal portions of the stratified squamous epithelium but surface cells were EGF-R negative. In the normal stomach, small intestine, and colon, immunostaining localised the receptor to the basolateral surface with the apical membranes being consistently negative. EGF-R positivity within the small intestine appeared to be almost entirely restricted to the proliferative (crypt) region. Western blotting demonstrated a 170 kDa protein in whole tissue homogenates but not in the brush border vesicle preparations. CONCLUSIONS: As the EGF-R is located only on the basolateral surfaces in the normal adult gastrointestinal tract, the major role of luminal EGF is probably to stimulate repair rather than to maintain normal gut growth. Images Figure 1 Figure 2 Figure 3 PMID:8977341
Control of thermal therapies with moving power deposition field.
Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B
2006-03-07
A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.
Articular cartilage. Part I. The normal joint.
Muehleman, C; Arsenis, C H
1995-05-01
Articular hyaline cartilage is of interest to both the clinician and the basic scientist because of its unique physical and chemical properties which are a consequence of its biochemical composition. Although it is a tissue which is hypocellular, avascular, and also lacks nerves and lymphatics, it is active in synthesis and degradation. Articular cartilage responds to the forces to which it is subjected and, in this way, maintains its integrity as long as those forces do not exceed the tissue's capacity for repair or permanently change the biologic response of the cells.
Physiological and pathological relevance of cell competition in fly to mammals.
Kon, Shunsuke
2018-01-01
In multicellular organisms, incidentally emerging suboptimal cells are removed to maintain homeostasis of tissues. The unfavorable cells are excluded by a process termed cell competition whereby the resident normal cells actively eliminate the unfit cells of the identical lineage. Although the phenomenon of cell competition was originally discovered in Drosophila, a number of recent studies have provided implications of cell competition in tissue regeneration, development and oncogenesis in mammals. Here the roles of cell competition in fly to mammals are discussed. © 2017 Japanese Society of Developmental Biologists.
Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal
2009-04-01
Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.
Tissue engineering applications of therapeutic cloning.
Atala, Anthony; Koh, Chester J
2004-01-01
Few treatment options are available for patients suffering from diseased and injured organs because of a severe shortage of donor organs available for transplantation. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for replacement therapy. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.
Roberts, Edward W.; Deonarine, Andrew; Jones, James O.; Denton, Alice E.; Feig, Christine; Lyons, Scott K.; Espeli, Marion; Kraman, Matthew; McKenna, Brendan; Wells, Richard J.B.; Zhao, Qi; Caballero, Otavia L.; Larder, Rachel; Coll, Anthony P.; O’Rahilly, Stephen; Brindle, Kevin M.; Teichmann, Sarah A.; Tuveson, David A.
2013-01-01
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. PMID:23712428
Stem cells and corneal epithelial maintenance – insights from the mouse and other animal models
Mort, Richard L.; Douvaras, Panagiotis; Morley, Steven D.; Dorà, Natalie; Hill, Robert E.; Collinson, J. Martin; West, John D.
2012-01-01
Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is coordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium. PMID:22918816
Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model
Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.
2016-01-01
Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10.1302/2046-3758.56.2000585. PMID:27340141
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; McCarthy, M.; Albrecht, T.; Cohrs, R.
2009-01-01
The old adage we are our own worst enemies may perhaps be the most profound statement ever made when applied to man s desire for extraterrestrial exploration and habitation of Space. Consider the immune system protects the integrity of the entire human physiology and is comprised of two basic elements the adaptive or circulating and the innate immune system. Failure of the components of the adaptive system leads to venerability of the innate system from opportunistic microbes; viral, bacteria, and fungal, which surround us, are transported on our skin, and commonly inhabit the human physiology as normal and imunosuppressed parasites. The fine balance which is maintained for the preponderance of our normal lives, save immune disorders and disease, is deregulated in microgravity. Thus analogue systems to study these potential Risks are essential for our progress in conquering Space exploration and habitation. In this study we employed two known physiological target tissues in which the reactivation of hCMV and VZV occurs, human neural and lung systems created for the study and interaction of these herpes viruses independently and simultaneously on the innate immune system. Normal human neural and lung tissue analogues called tissue like assemblies (TLAs) were infected with low MOIs of approximately 2 x 10(exp -5) pfu hCMV or VZV and established active but prolonged low grade infections which spanned .7-1.5 months in length. These infections were characterized by the ability to continuously produce each of the viruses without expiration of the host cultures. Verification and quantification of viral replication was confirmed via RT_PCR, IHC, and confocal spectral analyses of the respective essential viral genomes. All host TLAs maintained the ability to actively proliferate throughout the entire duration of the experiments as is analogous to normal in vivo physiological conditions. These data represent a significant advance in the ability to study the triggering mechanisms which surround Herpes vial reactivation and proliferation. Additionally, prolonged replication of these viruses will allow the tracking of viral genomic shift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Jackie; Suttie, Clare; Bromley, Regina
We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
Effects of stripped oil shale retort water on fishes, birds, and mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, R.R.
1983-01-01
Golden hamsters (Mesocricetus auratus Water), coturnix quail (Coturnix coturnix Teminck and Schlegal), fathead minnows (Pimphales promelas Rafinesque), and rainbow trout (Salmo gairdneri Richardson) were subjected to various exposures of stripped oil shale retort water (SRW). Chronic low-level exposures of all experimental animals to SRW revealed no adverse histological effects attributable to SRW. Also, production and development of second generation fathead minnows and coturnix quail exposed to SRW was normal. Subacute exposure of rainbow trout to SRW produced ultrastructural changes detected by transmission, scanning, and freeze fracture electron microscopy) in the gill, liver, and kidney tissues. The gills showed a swellingmore » of secondary lamellae, disorganization of normal tissue architecture, and sloughing of respiratory cells. The liver contained lamellar bodies not seen in the controls. Relatively large, electron dense, membrane-bounded deposits were present in proximal tubule cells of the kidney. Sodium arsenite (a significant component of SRW) was shown to cause swelling of granular endosplasmic reticulum in quail liver tissue with an acute exposure. This effect could be related to the fact that arsenic inhibits ATP production, which would decrease the ability of the sodium pumps to maintain a normal osmotic balance.« less
Therapeutic cloning applications for organ transplantation.
Koh, Chester J; Atala, Anthony
2004-04-01
A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. Copyright 2004 Elsevier B.V.
Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy.
González, Wilfredo; Peucelle, Cécile; Prezado, Yolanda
2017-05-01
Charged particles have several advantages over x-ray radiations, both in terms of physics and radiobiology. The combination of these advantages with those of minibeam radiation therapy (MBRT) could help enhancing the therapeutic index for some cancers with poor prognosis. Among the different ions explored for therapy, carbon ions are considered to provide the optimum physical and biological characteristics. Oxygen could be advantageous due to a reduced oxygen enhancement ratio along with a still moderate biological entrance dose. The aforementioned reasons justified an in-depth evaluation of the dosimetric features of carbon and oxygen minibeam radiation therapy to establish the interest of further explorations of this avenue. The GATE/Geant4 6.2 Monte Carlo simulation platform was employed to simulate arrays of rectangular carbon and oxygen minibeams (600 μm × 2 cm) at a water phantom entrance. They were assumed to be generated by means of a magnetic focusing. The irradiations were performed with a 2-cm-long spread-out Bragg peak (SOBP) centered at 7-cm-depth. Several center-to-center (c-t-c) distances were considered. Peak and valley doses, as well as peak-to-valley dose ratio (PVDR) and the relative contribution of nuclear fragments and electromagnetic processes were assessed. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. Carbon and oxygen MBRT lead to very similar dose distributions. No significant advantage of oxygen over carbon ions was observed from physical point of view. Favorable dosimetric features were observed for both ions. Thanks to the reduced lateral scattering, the standard shape of the depth dose curves (in the peaks) is maintained even for submillimetric beam sizes. When a narrow c-t-c is considered (910-980 μm), a (quasi) homogenization of the dose can be obtained at the target, while a spatial fractionation of the dose is maintained in the proximal normal tissues with low PVDR. In contrast when a larger c-t-c is used (3500 μm) extremely high PVDR (≥ 50) are obtained in normal tissues, corresponding to very low valley doses. This suggests that carbon and oxygen MBRT might lead to a significant reduction of normal tissue complication probability. The main participant to the valley doses are secondary nuclear products at all depths. Among them the highest yield in normal tissues corresponds to the lightest fragments, neutrons and protons. Heavier fragments are dominant in the valleys only at the target position, which might favor tumor control. The computed dose distributions suggest that a spatial fractionation of the dose combined to the use of submillimetric field sizes might allow profiting from the high efficiency of carbon and oxygen ions for the treatment of radioresistant tumors, while preserving normal tissues. Only biological experiments could confirm the shifting of the normal tissue complication probability curves. The authors' results support the further exploration of this avenue. © 2017 American Association of Physicists in Medicine.
Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid
2013-01-01
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. PMID:19609626
Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro
Le Saux, Olivier; Bunda, Severa; VanWart, Christopher M.; Douet, Vanessa; Got, Laurence; Martin, Ludovic; Hinek, Aleksander
2017-01-01
Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations. PMID:16543900
Zhang, H.; Guo, H.; Lu, L.; Zahorchak, A. F.; Wiseman, R. W.; Raimondi, G.; Cooper, D. K. C.; Ezzelarab, M. B.; Thomson, A. W.
2016-01-01
Ex vivo-expanded cynomolgus monkey CD4+CD25+CD127− regulatory T cells (Treg) maintained Foxp3 demethylation status at the Treg-Specific Demethylation Region (TSDR), and potently suppressed T cell proliferation through 3 rounds of expansion. When CFSE- or VPD450-labeled autologous (auto) and non-autologous (non-auto) expanded Treg were infused into monkeys, the number of labeled auto-Treg in peripheral blood declined rapidly during the first week, but persisted at low levels in both normal and anti-thymocyte globulin plus rapamycin-treated (immunosuppressed; IS) animals for at least 3 weeks. By contrast, MHC-mismatched non-auto-Treg could not be detected in normal monkey blood or in blood of two out of the three IS monkeys by day 6 post-infusion. They were also more difficult to detect than auto-Treg in peripheral lymphoid tissue. Both auto- and non-auto-Treg maintained Ki67 expression early after infusion. Sequential monitoring revealed that adoptively-transferred auto-Treg maintained similarly high levels of Foxp3 and CD25 and low CD127 compared with endogenous Treg, although Foxp3 staining diminished over time in these non-transplanted recipients. Thus, infused ex vivo-expanded auto-Treg persist longer than MHC-mismatched non-auto-Treg in blood of non-human primates and can be detected in secondary lymphoid tissue. Host lymphodepletion and rapamycin administration did not consistently prolong the persistence of non-auto-Treg in these sites. PMID:25783759
Estrogen Receptor Mutants/Variants in Human Breast Cancer.
1996-12-01
average 1 hour per response, including the time for reviewing instructions, searching existing data sources,gathering and maintaining the data needed...Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188...we identified, for the first time , the expression of exon deleted progesterone receptor (PR) mRNAs in both normal and neoplastic human breast tissues
Taste Changes in Vitamin A Deficiency
Bernard, Rudy A.; Halpern, Bruce P.
1968-01-01
Taste preferences were studied in two groups of rats depleted of vitamin A by dietary restriction. One group received sufficient vitamin A acid supplement to maintain normal growth. The other group was repleted with vitamin A alcohol after the classical deficiency symptoms had appeared; this group gradually lost normal preferences for NaCl and aversion to quinine solutions during depletion. Vitamin A alcohol repletion tended to restore taste preferences to normal. In contrast, the group receiving vitamin A acid showed normal taste preferences throughout the depletion period. When the vitamin A acid supplement was removed taste preferences became abnormal and returned to normal when vitamin A acid was restored. Peripheral gustatory neural activity of depleted rats without any form of vitamin A was less than normal both at rest and when the tongue was stimulated with NaCl solutions. Histological examination showed keratin infiltrating the pores of the taste buds. Accessory glandular tissues were atrophied and debris filled the trenches of the papillae. It is concluded that vitamin A acid can provide the vitamin A required for normal taste, as contrasted with its inability to maintain visual function. It is suggested that the effect of vitamin A is exerted at the receptor level, as a result of its role in the biosynthesis of mucopolysaccharides, which have been recently identified in the pore area of taste buds, as well as being present in the various secretions of the oral cavity. PMID:4299794
Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy
Hipp, Jason; Atala, Anthony
2004-01-01
Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15588286
Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy.
Hipp, Jason; Atala, Anthony
2004-12-08
: BACKGROUND: Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.
Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.
Kawasaki, Noritaka; Asada, Rie; Saito, Atsushi; Kanemoto, Soshi; Imaizumi, Kazunori
2012-01-01
Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.
Cartilage proteoglycans inhibit fibronectin-mediated adhesion
NASA Astrophysics Data System (ADS)
Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.
1981-09-01
Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.
Wilkinson, M; Giles, A; Armour, J A; Cardinal, R
1996-01-01
To investigate the effects of heart failure induced by chronic rapid ventricular pacing (six weeks) on canine atrial and ventricular muscarinic receptors. Dogs (n = 4) were fitted with a bipolar pacing electrode connected to a Medtronic pacemaker set at 240 stimuli/min. Pacing was maintained for six weeks. Tissue samples obtained from the left atrium and ventral wall of the left ventricle were frozen at -70 degrees C. Control tissue was obtained from normal dogs (n = 6) following anesthesia and thoracotomy. M2-muscarinic receptors were characterized and quantified in tissue micropunches using the hydrophilic ligand [3H] N-methyl-scopolamine (NMS). Cardiac tissue bound [3H] NMS with the specificity of an M2 subtype. Tachycardia-induced heart failure did not affect atrial muscarinic receptors but signify left ventricular myocytes (control 160.0 +/- 10.0 fmol/mg protein versus heart failure 245.0 +/- 25.0 fmol/mg protein; P < 0.01). Canine ventricular muscarinic receptors display a specificity for the M2 subtype. In contrast to previous work, tachycardia-induced heart failure was accompanied by an increase (+ 53%) in ventricular, but not atrial, M2 receptors compared with normal dogs.
The desmoplakin–intermediate filament linkage regulates cell mechanics
Broussard, Joshua A.; Yang, Ruiguo; Huang, Changjin; Nathamgari, S. Shiva P.; Beese, Allison M.; Godsel, Lisa M.; Hegazy, Marihan H.; Lee, Sherry; Zhou, Fan; Sniadecki, Nathan J.; Green, Kathleen J.; Espinosa, Horacio D.
2017-01-01
The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems. PMID:28495795
The Production of lnterleukin-1 Receptor Antagonist by Human Bronchogenic Carcinoma
Smith, Daniel R.; Kunkel, Steven L.; Standiford, Theodore J.; Chensue, Stephen W.; Rolfe, Mark W.; Orringer, Mark B.; Whyte, Richard I.; Burdick, Marie D.; Danforth, Jean M.; Gilbert, Andrew R.; Strieter, Robert M.
1993-01-01
Bronchogenic carcinoma displays an aggressive clinical course that may reflect a capacity to evade host defenses. We postulated that tumors may elaborate interleukin-1 receptor antagonist protein (IRAP) to escape host interleukin-1-dependent responses. Homogenates of human bronchogenic lung tumors demonstrated significant increases of IRAP compared with normal lung tissue controls (n = 48). There was no significant difference in interleukin-1 β levels between tumor and normal lung tissue. Immunohistochemical staining localized IRAP to tumor cells. Semiquantitative pathological analysis demonstrated a modest inflammatory cell infiltrate with qualitative differences between tumors of different histology. Western blot analysis of tumor homogenates demonstrated several molecular weight forms of IRAP. Finally, antigenic IRAP was detected in supernatants of the human bronchogenic carcinoma cell line (A549) maintained in vitro. These findings illustrate the capacity of bronchogenic tumors to produce and secrete IRAP that may be important in tumor evasion of host defenses. ImagesFigure 3Figure 4 PMID:8362978
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
Hansen, R K; Bissell, M J
2010-01-01
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527
Sajjadi, Amir Y.; Isakoff, Steven J.; Deng, Bin; Singh, Bhawana; Wanyo, Christy M.; Fang, Qianqian; Specht, Michelle C.; Schapira, Lidia; Moy, Beverly; Bardia, Aditya; Boas, David A.; Carp, Stefan A.
2017-01-01
We characterize novel breast cancer imaging biomarkers for monitoring neoadjuvant chemotherapy (NACT) and predicting outcome. Specifically, we recruited 30 patients for a pilot study in which NACT patients were imaged using dynamic tomographic optical breast imaging (DTOBI) to quantify the hemodynamic changes due to partial mammographic compression. DTOBI scans were obtained pre-treatment (referred to as day 0), as well as 7 and 30 days into therapy on female patients undergoing NACT. We present data for the 13 patients who participated in both day 0 and 7 measurements and had evaluable data, of which 7 also returned for day 30 measurements. We acquired optical images over 2 minutes following 4-8 lbs (18-36 N) of compression. The timecourses of tissue-volume averaged total hemoglobin (HbT), as well as hemoglobin oxygen saturation (SO2) in the tumor vs. surrounding tissues were compared. Outcome prediction metrics based on the differential behavior in tumor vs. normal areas for responders (>50% reduction in maximum diameter) vs. non-responders were analyzed for statistical significance. At baseline, all patients exhibit an initial decrease followed by delayed recovery in HbT, and SO2 in the tumor area, in contrast to almost immediate recovery in surrounding tissue. At day 7 and 30, this contrast is maintained in non-responders; however, in responders, the contrast in hemodynamic time-courses between tumor and normal tissue starts decreasing at day 7 and substantially disappears at day 30. At day 30 into NACT, responding tumors demonstrate “normalization” of compression induced hemodynamics vs. surrounding normal tissue whereas non-responding tumors did not. This data suggests that DTOBI imaging biomarkers, which are governed by the interplay between tissue biomechanics and oxygen metabolism, may be suitable for guiding NACT by offering early predictions of treatment outcome. PMID:28270967
Technological advances in radiotherapy for cervical cancer.
Walsh, Lorraine; Morgia, Marita; Fyles, Anthony; Milosevic, Michael
2011-09-01
To discuss the important technological advances that have taken place in the planning and delivery of both external beam radiotherapy and brachytherapy for patients with locally advanced cervical cancer, and the implications for improved clinical outcomes. Technological advances in external beam radiation treatment and brachytherapy for patients with cervical cancer allow more precise targeting of tumour and relative sparing of surrounding normal organs and tissues. Early evidence is emerging to indicate that these advances will translate into improvements in tumour control and reduced side effects. However, there are patient, tumour and treatment-related factors that can detract from these benefits. Foremost among these is complex, unpredictable and sometimes dramatic internal tumour and normal organ motion during treatment. The focus of current research and clinical development is on tracking internal anatomic change in individual patients and adapting treatment plans as required to assure that optimal tumour coverage and normal tissue sparing is maintained at all times. The success of this approach will depend on clear definitions of target volumes, high resolution daily soft tissue imaging, and new software tools for rapid contouring, treatment planning and quality assurance. Radiation treatment of locally advanced cervical cancer is evolving rapidly, driven by advances in technology, towards more individualized patient care that has the potential to substantially improve clinical outcomes.
Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression
Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.
2010-01-01
Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059
NASA Astrophysics Data System (ADS)
Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas
2013-02-01
Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.
Hovhannisyan, V.; Guo, H. W.; Hovhannisyan, A.; Ghukasyan, V.; Buryakina, T.; Chen, Y. F.; Dong, C. Y.
2014-01-01
Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin–mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders. PMID:24877000
Hovhannisyan, V; Guo, H W; Hovhannisyan, A; Ghukasyan, V; Buryakina, T; Chen, Y F; Dong, C Y
2014-05-01
Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.
Developmental adaptations to gravity in animals
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1991-01-01
Terrestrial animals have adapted to a constant gravitational stress over millions of years. Tissues of the cardiovascular system and lumbar spine in tall species of animals such as the giraffe are particularly well adapted to high and variable vectors of gravitational force. Swelling of the leg tissues in the giraffe is prevented by a variety of physiological mechanisms including (1) a natural 'antigravity suit', (2) impermeable capillaries, (3) arterial-wall hypertrophy, (4) variable blood pressures during normal activity, and (5) a large-capacity lymphatic system. These adaptations, as well as a natural hypertension, maintain blood perfusion to the giraffe's brain. The intervertebral disk is another tissue that is uniquely adapted to gravitational stress. Tall and large terrestrial animals have higher swelling pressures than their smaller or aquatic counterparts. Finally, the meniscus of the rabbit knee provides information on the effects of aging and load-bearing on cartilaginous tissues. Such tissues within the joints of animals are important for load-bearing on Earth; these connective tissues may degenerate during long-duration space flight.
Castro, Simone Vieira; de Carvalho, Adeline Andrade; da Silva, Cleidson Manoel Gomes; Faustino, Luciana Rocha; Campello, Cláudio Cabral; Lucci, Carolina Madeira; Báo, Sônia Nair; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2011-11-01
Goat ovarian cortex fragments were subjected to slow freezing in the presence of various solutions containing intracellular cryoprotectants, including 1.0 M ethylene glycol (EG), propanediol (PROH), or dimethyl sulfoxide (DMSO), with or without sucrose and/or fetal calf serum (FCS). Histological examination revealed that only the DMSO-containing solutions were able to maintain a follicular ultrastructure similar to the morphology observed in the fresh control. Therefore, fragments previously cryopreserved in DMSO solutions (with and without sucrose and/or FCS) were cultured in vitro for 48 h and then subjected to viability, histological, and ultrastructural analysis. No significant differences were observed among the percentages of morphologically normal follicles in cryopreserved ovarian tissue before in vitro culture (DMSO: 62.5%; DMSO + sucrose: 68.3%; DMSO + FCS: 60.0%; DMSO + sucrose + FCS: 60.0%) and after culture (DMSO: 60.8%; DMSO + sucrose: 64.2%; DMSO + FCS: 70.8%; DMSO + sucrose + FCS: 55.0%). Following in vitro culture, the viability analysis showed that only the freezing solution containing DMSO and FCS (75.6%) maintained a percentage of viable follicles similar to that observed after culture without cryopreservation (89.3%). As determined by ultrastructural analysis, morphologically normal preantral follicles were detected in the fresh control and in fragments cultured before and after cryopreservation with DMSO and FCS. Thus, a freezing solution containing DMSO and FCS, under the experimental conditions tested here, guaranteed the maintenance of viability and follicular ultrastructure after short-term in vitro culture.
Tissue engineering of reproductive tissues and organs.
Atala, Anthony
2012-07-01
Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia.
Juneja, Subhash C; Vonica, Alin; Zeiss, Caroline; Lezon-Geyda, Kimberly; Yatsula, Bogdan; Sell, David R; Monnier, Vincent M; Lin, Sharon; Ardito, Thomas; Eyre, David; Reynolds, David; Yao, Zhenqiang; Awad, Hani A; Yu, Hongbo; Wilson, Michael; Honnons, Sylvie; Boyce, Brendan F; Xing, Lianping; Zhang, Yi; Perkins, Archibald S
2014-03-01
Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues. Copyright © 2013 Elsevier Inc. All rights reserved.
Larger core size has superior technical and analytical accuracy in bladder tissue microarray.
Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries
2017-03-01
The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.
Cifola, Ingrid; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A
2011-06-13
Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures. © 2011 Cifola et al; licensee BioMed Central Ltd.
Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, R K; Bissell, M J
The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less
NASA Astrophysics Data System (ADS)
Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.
2011-05-01
We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.
Tissue engineering and regenerative medicine: concepts for clinical application.
Atala, Anthony
2004-01-01
Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly given the aging population. Scientists in the field of regenerative medicine and tissue engineering apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. This paper reviews recent advances that have occurred in regenerative medicine and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.
Engineering tissues, organs and cells.
Atala, Anthony
2007-01-01
Patients suffering from diseased and injured organs may be treated with transplanted organs; however, there is a severe shortage of donor organs that is worsening yearly, given the ageing population. In the field of regenerative medicine and tissue engineering, scientists apply the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy, including the use of amniotic and placental fetal stem cells. This review covers recent advances that have occurred in regenerative medicine and describes applications of these technologies using chemical compounds that may offer novel therapies for patients with end-stage organ failure. 2007 John Wiley & Sons, Ltd
Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.
2007-01-01
A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.
Cellular Mechanisms of Somatic Stem Cell Aging
Jung, Yunjoon
2014-01-01
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814
Barber, Alison G.; Castillo-Martin, Mireia; Bonal, Dennis M.; Rybicki, Benjamin A.; Christiano, Angela M.; Cordon-Cardo, Carlos
2014-01-01
Purpose The expression of desmogleins (DSGs), which are known to be crucial for establishing and maintaining the cell-cell adhesion required for tissue integrity, has been well characterized in the epidermis and hair follicle; however, their expression in other epithelial tissues such as prostate is poorly understood. Although downregulation of classical cadherins, such as E-cadherin, has been described in prostate cancer tissue samples, the expression of desmogleins has only been previously reported in prostate cancer cell lines. In this study we characterized desmoglein expression in normal prostate tissues, and further investigated whether Desmoglein 2 (DSG2) expression specifically can serve as a potential clinical prognostic factor for patients diagnosed with primary prostate cancer. Experimental Design We utilized immunofluorescence to examine DSG2 expression in normal prostate (n = 50) and in a clinically well-characterized cohort of prostate cancer patients (n = 414). Correlation of DSG2 expression with clinico-pathological characteristics and biochemical recurrence was analyzed to assess its clinical significance. Results These studies revealed that DSG2 and DSG4 were specifically expressed in prostatic luminal cells, whereas basal cells lack their expression. In contrast, DSG1 and DSG3 were not expressed in normal prostate epithelium. Further analyses of DSG2 expression in prostate cancer revealed that reduced levels of this biomarker were a significant independent marker of poor clinical outcome. Conclusion Here we report for the first time that a low DSG2 expression phenotype is a useful prognostic biomarker of tumor aggressiveness and may serve as an aid in identifying patients with clinically significant prostate cancer. PMID:24896103
Gilding, H. P.
1929-01-01
The vascular readjustments in compensation for a greatly reduced blood bulk affect the service rendered by the blood to the gastrointestinal tract and liver far less than they do that to the skin and muscles. Into these latter tissues india ink is carried almost not at all, whereas it circulates in quantity through the capillaries of the bowel and liver. Evidently vaso-constriction is much less effective in these viscera. Nowhere in them does one find a patchy ischemia like that so wide-spread in the peripheral tissues. Blood service is maintained to the same extent everywhere throughout the liver even when one of its two sources (hepatic artery or portal vein) is obstructed, and the intrahepatic blood pressure brought very low. A pronounced patchy ischemia of the stomach and large bowel can be induced by intravenous injection into normal animals of sufficient epinephrin to cause the systemic blood pressure to mount to an abnormally high level. Pituitrin used in the same way has a greater effect; blood service to the organs mentioned may be completely abolished by means of it. In both instances, though, service to the small gut and liver is still excellently and evenly maintained. PMID:19869615
Optical Histology: High-Resolution Visualization of Tissue Microvasculature
NASA Astrophysics Data System (ADS)
Moy, Austin Jing-Ming
Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.
Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage.
Meserve, Joy H; Duronio, Robert J
2015-08-15
Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage. © 2015. Published by The Company of Biologists Ltd.
Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway
NASA Astrophysics Data System (ADS)
Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas
2003-11-01
Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.
Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi
2015-03-01
Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. Copyright © 2014 Elsevier Inc. All rights reserved.
Creep behaviour and creep mechanisms of normal and healing ligaments
NASA Astrophysics Data System (ADS)
Thornton, Gail Marilyn
Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.
Silva, A W B; Ribeiro, R P; Menezes, V G; Barberino, R S; Passos, J R S; Dau, A M P; Costa, J J N; Melo, L R F; Bezerra, F T G; Donato, M A M; Peixoto, C A; Matos, M H T; Gonçalves, P B D; van den Hurk, R; Silva, J R V
2017-07-01
This study was conducted to detect the protein expression of TNF-α system members (TNF-α/TNFR1/TNFR2) in bovine ovarian follicles and to evaluate the effects of TNF-α or dexamethasone on the survival and growth of primordial follicles in vitro, as well as on gene expression in cultured ovarian tissue. It was hypothesized that TNF-α induces follicular atresia in ovarian tissues cultured in vitro, and that dexamethasone suppresses the production of endogenous TNF-α, which can improve follicle viability in vitro. Ovarian fragments were cultured for 6days in α-MEM + supplemented with TNF-α (0, 1, 10, 100 or 200ng/ml) or dexamethasone (0, 1, 10, 100 or 200ng/ml). After culture, the expression of mRNAs for BCL-2, BAX, P53, TNF-α, and CASP3 and CASP6 were evaluated. Immunohistochemical results showed that the TNF-α system members, were detected in bovine preantral and antral follicles. After 6days, the TNF-α (10ng/ml) treatment reduced the percentage of normal preantral follicles and increased the number of TUNEL-positive cells in cultured tissue. Dexamethasone (10ng/ml) during 6days of culture did maintain the percentage of normal follicles and the ultrastructure of follicles, while the presence of TNF-α or dexamethasone did not influence primordial follicle activation. However, TNF-α or dexamethasone had no effect on the levels of mRNA for P53, BCL-2, BAX and CASP6, in cultured tissues, but the presence of dexamethasone reduced the levels of CASP3 compared to ovarian slices cultured in control medium (α-MEM + ). In conclusion, proteins of the TNF-α system are expressed at different bovine follicle stages. The addition of TNF-α in culture reduces follicle survival and increases the number of apoptotic cells in ovarian tissue, while the presence of dexamethasone maintains follicle ultrastructure in cultured tissue. Copyright © 2017. Published by Elsevier B.V.
Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?
Devesa, Jesús; Almengló, Cristina; Devesa, Pablo
2016-01-01
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998
Tissue engineering, stem cells and cloning: current concepts and changing trends.
Atala, Anthony
2005-07-01
Organ damage or loss can occur from congenital disorders, cancer, trauma, infection, inflammation, iatrogenic injuries or other conditions and often necessitates reconstruction or replacement. Replacement may take the form of organ transplant. At present, there is a severe shortage of donor organs that is worsening with the aging of the population. Tissue engineering follows the principles of cell transplantation, materials science and engineering towards the development of biological substitutes that can restore and maintain normal tissue function. Therapeutic cloning involves the introduction of a nucleus from a donor cell into an enucleated oocyte to generate embryonic stem cell lines whose genetic material is identical to that of its source. These autologous stem cells have the potential to become almost any type of cell in the adult body, and thus would be useful in tissue and organ replacement applications. This paper reviews recent advances in stem cell research and regenerative medicine, and describes the clinical applications of these technologies as novel therapies for tissue or organ loss.
Stem cells are dispensable for lung homeostasis but restore airways after injury.
Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R
2009-06-09
Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.
Good news–bad news: the Yin and Yang of immune privilege in the eye
Forrester, John V.; Xu, Heping
2012-01-01
The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood–ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host. PMID:23230433
Goodwin, Thomas J.; McCarthy, Maureen; Osterrieder, Nikolaus; Cohrs, Randall J.; Kaufer, Benedikt B.
2013-01-01
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells. PMID:23935496
3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2013-01-01
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.
Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning
2016-09-30
Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.
Glutathione-related enzymes and the eye.
Ganea, Elena; Harding, John J
2006-01-01
Glutathione and the related enzymes belong to the defence system protecting the eye against chemical and oxidative stress. This review focuses on GSH and two key enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase in lens, cornea, and retina. Lens contains a high concentration of reduced glutathione, which maintains the thiol groups in the reduced form. These contribute to lens complete transparency as well as to the transparent and refractive properties of the mammalian cornea, which are essential for proper image formation on the retina. In cornea, gluthatione also plays an important role in maintaining normal hydration level, and in protecting cellular membrane integrity. In retina, glutathione is distributed in the different types of retinal cells. Intracellular enzyme, glutathione reductase, involved in reducing the oxidized glutathione has been found at highest activity in human and primate lenses, as compared to other species. Besides the enzymes directly involved in maintaining the normal redox status of the cell, glucose-6-phosphate dehydrogenase which catalyzes the first reaction of the pentose phosphate pathway, plays a key role in protection of the eye against reactive oxygen species. Cornea has a high activity of the pentose phosphate pathway and glucose-6-phosphate dehydrogenase activity. Glycation, the non-enzymic reaction between a free amino group in proteins and a reducing sugar, slowly inactivates gluthathione-related and other enzymes. In addition, glutathione can be also glycated. The presence of glutathione, and of the related enzymes has been also reported in other parts of the eye, such as ciliary body and trabecular meshwork, suggesting that the same enzyme systems are present in all tissues of the eye to generate NADPH and to maintain gluthatione in the reduced form. Changes of glutathione and related enzymes activity in lens, cornea, retina and other eye tissues, occur with ageing, cataract, diabetes, irradiation and administration of some drugs.
Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system
Imanaka-Yoshida, Kyoko; Aoki, Hiroki
2014-01-01
Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494
Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer.
Wezel, Felix; Pearson, Joanna; Kirkwood, Lisa A; Southgate, Jennifer
2013-10-01
The transcription factor octamer-binding protein 4 (Oct4; encoded by POU5F1) has a key role in maintaining embryonic stem cell pluripotency during early embryonic development and it is required for generation of induced pluripotent stem cells. Controversy exists concerning Oct4 expression in somatic tissues, with reports that Oct4 is expressed in normal and in neoplastic urothelium carrying implications for a bladder cancer stem cell phenotype. Here, we show that the pluripotency-associated Oct4A transcript was absent from cultures of highly regenerative normal human urothelial cells and from low-grade to high-grade urothelial carcinoma cell lines, whereas alternatively spliced variants and transcribed pseudogenes were expressed in abundance. Immunolabeling and immunoblotting studies confirmed the absence of Oct4A in normal and neoplastic urothelial cells and tissues, but indicated the presence of alternative isoforms or potentially translated pseudogenes. The stable forced expression of Oct4A in normal human urothelial cells in vitro profoundly inhibited growth and affected morphology, but protein expression was rapidly down-regulated. Our findings demonstrate that pluripotency-associated isoform Oct4A is not expressed by normal or malignant human urothelium and therefore is unlikely to play a role in a cancer stem cell phenotype. However, our findings also indicate that urothelium expresses a variety of other Oct4 splice-variant isoforms and transcribed pseudogenes that warrant further study. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
de la Fuente, Luis; Helms, Jill A.
2005-01-01
In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis. PMID:15841172
de Medina, Philippe; Paillasse, Michael R; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D; Silvente-Poirot, Sandrine; Poirot, Marc
2013-01-01
We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.
HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.
Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina
2005-05-01
New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.
Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio
2006-06-01
To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.
Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.
Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman
2017-07-01
Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2 = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.
Verrijk, R; Smolders, I J; Bosnie, N; Begg, A C
1992-12-01
The tissue distribution and normal tissue toxicity of cisplatin (cDDP) administered as poly-lactide-co-glycolide (PLAGA) microspheres, developed for loco-regional administration of cDDP to the liver, were studied in Wag/Rij rats. Venoportal administration of this formulation resulted in a reduction in total systemic and renal toxicity, which correlated with a decrease in normal tissue exposure to cDDP while maintaining high liver platinum levels. Liver-to-kidney platinum level ratios were 28 times higher after 4 h and 19 times higher after 24 h with PLAGA-cDDP microspheres than with free cDDP. Liver-to-blood platinum ratios at these times were 38 times and 36 times higher using PLAGA-cDDP. In a CC531 colon carcinoma liver micrometastases model, cytotoxicity of microsphere-released cDDP was confirmed in vivo by equal inhibition of tumor growth by PLAGA-cDDP and free cDDP over a period of 26 days. Free cDDP, however, caused significantly more histological renal damage and total body weight loss. The results were supported by the finding of higher plasma creatinine and urea concentrations 26 days after administration of free cDDP. Kidney platinum levels were 7 times lower when PLAGA-cDDP was used. These findings indicate a sparing effect on normal tissues when cDDP is targeted to the liver by formulation in PLAGA. PLAGA-cDDP microspheres may, therefore, be a useful and effective addition to current techniques of loco-regional chemotherapy for disseminated hepatic tumors.
Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis
HajMohammadi, Sassan; Enjyoji, Keiichi; Princivalle, Marc; Christi, Patricia; Lech, Miroslav; Beeler, David; Rayburn, Helen; Schwartz, John J.; Barzegar, Samad; de Agostini, Ariane I.; Post, Mark J.; Rosenberg, Robert D.; Shworak, Nicholas W.
2003-01-01
Endothelial cell production of anticoagulant heparan sulfate (HSact) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HSact dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HSact was evaluated by generating Hs3st1–/– knockout mice. Hs3st1–/– animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HSact but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HSact predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1–/– and Hs3st1+/+ mice yielded indistinguishable occlusion times and comparable levels of thrombin•antithrombin complexes. Thus, Hs3st1–/– mice did not show an obvious procoagulant phenotype. Instead, Hs3st1–/– mice exhibited genetic background–specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HSact. Surprisingly, this bulk of HSact is not essential for normal hemostasis in mice. Instead, 3-OST-1–deficient mice exhibited unanticipated phenotypes suggesting that HSact or additional 3-OST-1–derived structures may serve alternate biologic roles. PMID:12671048
A mechanical design principle for tissue structure and function in the airway tree.
LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.
A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree
LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742
Adiponectin is required for maintaining normal body temperature in a cold environment.
Wei, Qiong; Lee, Jong Han; Wang, Hongying; Bongmba, Odelia Y N; Wu, Chia-Shan; Pradhan, Geetali; Sun, Zilin; Chew, Lindsey; Bajaj, Mandeep; Chan, Lawrence; Chapkin, Robert S; Chen, Miao-Hsueh; Sun, Yuxiang
2017-10-23
Thermogenic impairment promotes obesity and insulin resistance. Adiponectin is an important regulator of energy homeostasis. While many beneficial metabolic effects of adiponectin resemble that of activated thermogenesis, the role of adiponectin in thermogenesis is not clear. In this study, we investigated the role of adiponectin in thermogenesis using adiponectin-null mice (Adipoq -/- ). Body composition was measured using EchoMRI. Metabolic parameters were determined by indirect calorimetry. Insulin sensitivity was evaluated by glucose- and insulin- tolerance tests. Core body temperature was measured by a TH-8 temperature monitoring system. Gene expression was assessed by real-time PCR and protein levels were analyzed by Western blotting and immunohistochemistry. The mitochondrial density of brown adipose tissue was quantified by calculating the ratio of mtDNA:total nuclear DNA. Under normal housing temperature of 24 °C and ad libitum feeding condition, the body weight, body composition, and metabolic profile of Adipoq -/- mice were unchanged. Under fasting condition, Adipoq -/- mice exhibited reduced energy expenditure. Conversely, under cold exposure, Adipoq -/- mice exhibited reduced body temperature, and the expression of thermogenic regulatory genes was significantly reduced in brown adipose tissue (BAT) and subcutaneous white adipose tissue (WAT). Moreover, we observed that mitochondrial content was reduced in BAT and subcutaneous WAT, and the expression of mitochondrial fusion genes was decreased in BAT of Adipoq -/- mice, suggesting that adiponectin ablation diminishes mitochondrial biogenesis and altered mitochondrial dynamics. Our study further revealed that adiponectin deletion suppresses adrenergic activation, and down-regulates β3-adrenergic receptor, insulin signaling, and the AMPK-SIRT1 pathway in BAT. Our findings demonstrate that adiponectin is an essential regulator of thermogenesis, and adiponectin is required for maintaining body temperature under cold exposure.
NASA Astrophysics Data System (ADS)
Spicer, Patrick
Craniofacial defects resulting from trauma and resection present many challenges to reconstruction due to the complex structure, combinations of tissues, and environment, with exposure to the oral, skin and nasal mucosal pathogens. Tissue engineering seeks to regenerate the tissues lost in these defects; however, the composite nature and proximity to colonizing bacteria remain difficult to overcome. Additionally, many tissue engineering approaches have further hurdles to overcome in the regulatory process to clinical translation. As such these studies investigated a two stage strategy employing an antibiotic-releasing porous polymethylmethacrylate space maintainer fabricated with materials currently part of products approved or cleared by the United States Food and Drug Administration, expediting the translation to the clinic. This porous space maintainer holds the bone defect open allowing soft tissue to heal around the defect. The space maintainer can then be removed and one regenerated in the defect. These studies investigated the individual components of this strategy. The porous space maintainer showed similar soft tissue healing and response to non-porous space maintainers in a rabbit composite tissue defect. The antibiotic-releasing space maintainers showed release of antibiotics from 1-5 weeks, which could be controlled by loading and fabrication parameters. In vivo, space maintainers releasing a high dose of antibiotics for an extended period of time increased soft tissue healing over burst release space maintainers in an infected composite tissue defect model in a rabbit mandible. Finally, stabilization of bone defects and regeneration could be improved through scaffold structures and delivery of a bone forming growth factor. These studies illustrate the possibility of the two stage strategy for repair of composite tissue defects of the craniofacial complex.
Progesterone Action in Endometrial Cancer, Endometriosis, Uterine Fibroids, and Breast Cancer
Kim, J. Julie; Kurita, Takeshi
2013-01-01
Progesterone receptor (PR) mediates the actions of the ovarian steroid progesterone, which together with estradiol regulates gonadotropin secretion, prepares the endometrium for implantation, maintains pregnancy, and differentiates breast tissue. Separation of estrogen and progesterone actions in hormone-responsive tissues remains a challenge. Pathologies of the uterus and breast, including endometrial cancer, endometriosis, uterine fibroids, and breast cancer, are highly associated with estrogen, considered to be the mitogenic factor. Emerging evidence supports distinct roles of progesterone and its influence on the pathogenesis of these diseases. Progesterone antagonizes estrogen-driven growth in the endometrium, and insufficient progesterone action strikingly increases the risk of endometrial cancer. In endometriosis, eutopic and ectopic tissues do not respond sufficiently to progesterone and are considered to be progesterone-resistant, which contributes to proliferation and survival. In uterine fibroids, progesterone promotes growth by increasing proliferation, cellular hypertrophy, and deposition of extracellular matrix. In normal mammary tissue and breast cancer, progesterone is pro-proliferative and carcinogenic. A key difference between these tissues that could explain the diverse effects of progesterone is the paracrine interactions of PR-expressing stroma and epithelium. Normal endometrium is a mucosa containing large quantities of distinct stromal cells with abundant PR, which influences epithelial cell proliferation and differentiation and protects against carcinogenic transformation. In contrast, the primary target cells of progesterone in the breast and fibroids are the mammary epithelial cells and the leiomyoma cells, which lack specifically organized stromal components with significant PR expression. This review provides a unifying perspective for the diverse effects of progesterone across human tissues and diseases. PMID:23303565
Epithelial stem cells and intestinal cancer.
Tan, Shawna; Barker, Nick
2015-06-01
The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fibronectin is an acute phase reactant in mice.
Dyck, R F; Rogers, S L
1985-01-01
Tissue injury and inflammation are potent stimuli for the immediate increased synthesis of several plasma proteins collectively known as acute phase phase reactants. This dramatic phenomenon is thought to play an important role in inflammation and tissue repair. Plasma fibronectin is a normal plasma glycoprotein and a major non-specific opsonin apparently involved in maintaining the integrity of the mononuclear phagocytic system. Because of its ability to mediate clearance of intravascular particulate matter, increased production following tissue injury could be of benefit to the organism. We now report that plasma fibronectin is a significant acute phase reactant in mice with levels increasing from a baseline mean value of 257 ug/ml to 595 ug/ml by 24 hours (p less than 0.01) after a subcutaneous injection of silver nitrate. Similar findings were observed when subcutaneous casein was used as the acute phase stimulus. This data provides further circumstantial evidence that plasma fibronectin is involved in host defence and tissue repair.
Atala, Anthony
2009-10-01
Applications of regenerative medicine technology may offer novel therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new avenues for this type of therapy. For example, therapeutic cloning and cellular reprogramming may one day provide a potentially limitless source of cells for tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors have already entered the clinical setting successfully, indicating the promise regenerative medicine holds for the future.
The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair
Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.
2013-01-01
➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204
Jung, Gu Hee; Park, Chang-Min; Kim, Jae-Do
2013-12-01
For comminuted shaft fracture of clavicle, the operative goal, aside from sound bone healing without complications of direct reduction, is maintenance of the original length in order to maintain the normal biomechanics of adjacent joint. Our bridge plating technique utilizing distraction through a lumbar spreader was expected to be effective for restoring clavicular length with soft tissue preservation. However, there are two disadvantages. First, there is more exposure to radiation compared to conventional plating; and second, it is difficult to control the rotational alignment. Despite these disadvantages, our technique has important benefits, in particular, the ability to preserve clavicular length without soft tissue injury around the fracture site.
Usefulness of Maintaining a Normal Electrocardiogram Over Time for Predicting Cardiovascular Health.
Soliman, Elsayed Z; Zhang, Zhu-Ming; Chen, Lin Y; Tereshchenko, Larisa G; Arking, Dan; Alonso, Alvaro
2017-01-15
We hypothesized that maintaining a normal electrocardiogram (ECG) status over time is associated with low cardiovascular (CV) disease in a dose-response fashion and subsequently could be used to monitor programs aimed at promoting CV health. This analysis included 4,856 CV disease-free participants from the Atherosclerosis Risk in Communities study who had a normal ECG at baseline (1987 to 1989) and complete electrocardiographic data in subsequent 3 visits (1990 to 1992, 1993 to 1995, and 1996 to 1998). Participants were classified based on maintaining their normal ECG status during these 4 visits into "maintained," "not maintained," or "inconsistent" normal ECG status as defined by the Minnesota ECG classification. CV disease events (coronary heart disease, heart failure, and stroke) were adjudicated from Atherosclerosis Risk in Communities visit-4 through 2010. Over a median follow-up of 13.2 years, 885 CV disease events occurred. The incidence rate of CV disease events was lowest among study participants who maintained a normal ECG status, followed by those with an inconsistent pattern, and then those who did not maintain their normal ECG status (trend p value <0.001). Similarly, the greater the number of visits with a normal ECG status, the lower was the incidence rate of CV disease events (trend p value <0.001). Maintaining (vs not maintaining) a normal ECG status was associated with a lower risk of CV disease, which was lower than that observed in those with inconsistent normal ECG pattern (trend p value <0.01). In conclusion, maintaining a normal ECG status over time is associated with low risk of CV disease in a dose-response fashion, suggesting its potential use as a monitoring tool for programs promoting CV health. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance
West, John D; Dorà, Natalie J; Collinson, J Martin
2015-01-01
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis. PMID:25815115
Insulin action in hyperthyroidism: a focus on muscle and adipose tissue.
Mitrou, Panayota; Raptis, Sotirios A; Dimitriadis, George
2010-10-01
Hyperthyroidism leads to an enhanced demand for glucose, which is primarily provided by increased rates of hepatic glucose production due to increased gluconeogenesis (in the fasting state) and increased Cori cycle activity (in the late postprandial and fasting state). Adipose tissue lipolysis is increased in the fasting state, resulting in increased production of glycerol and nonesterified fatty acids. Under these conditions, increased glycerol generated by lipolysis and increased amino acids generated by proteolysis are used as substrates for gluconeogenesis. Increased nonesterified fatty acid levels are necessary to stimulate gluconeogenesis and provide substrate for oxidation in other tissues (such as muscle). In the postprandial period, insulin-stimulated glucose uptake by the skeletal muscle has been found to be normal or increased, mainly due to increased blood flow. Under hyperthyroid conditions, insulin-stimulated rates of glycogen synthesis in skeletal muscle are decreased, whereas there is a preferential increase in the rates of lactate formation vs. glucose oxidation leading to increased Cori cycle activity. In hyperthyroidism, the Cori cycle could be considered as a large substrate cycle; by maintaining a high flux through it, a dynamic buffer of glucose and lactate is provided, which can be used by other tissues as required. Moreover, lipolysis is rapidly suppressed to normal after the meal to facilitate the disposal of glucose by the insulin-resistant muscle. This ensures the preferential use of glucose when available and helps to preserve fat stores.
New Insights into Thyroid Hormone Action
Mendoza, Arturo; Hollenberg, Anthony N.
2017-01-01
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093
Deiodinase activities in thyroids and tissues of iodine-deficient female rats.
Lavado-Autric, Rosalia; Calvo, Rosa Maria; de Mena, Raquel Martinez; de Escobar, Gabriella Morreale; Obregon, Maria-Jesus
2013-01-01
Severe iodine deficiency is characterized by goiter, preferential synthesis, and secretion of T(3) in thyroids, hypothyroxinemia in plasma and tissues, normal or low plasma T(3), and slightly increased plasma TSH. We studied changes in deiodinase activities and mRNA in several tissues of rats maintained on low-iodine diets (LIDs) or LIDs supplemented with iodine (LID+I). T(4) and T(3) concentrations decreased in plasma, tissues, and thyroids of LID rats, and T(4) decreased more than T(3) (50%). The highest type 1 iodothyronine deiodinase (D1) activities were found in the thyroid, kidney, and the liver; pituitary, lung, and ovary had lower D1 activities; but the lowest levels were found in the heart and skeletal muscle. D1 activity decreased in all tissues of LID rats (10-40% of LID+I rats), except for ovary and thyroids, which D1 activity increased 2.5-fold. Maximal type 2 iodothyronine deiodinase (D2) activities were found in thyroid, brown adipose tissue, and pituitary, increasing 6.5-fold in thyroids of LID rats and about 20-fold in the whole gland. D2 always increased in response to LID, and maximal increases were found in the cerebral cortex (19-fold), thyroid, brown adipose tissue, and pituitary (6-fold). Lower D2 activities were found in the ovary, heart, and adrenal gland, which increased in LID. Type 3 iodothyronine deiodinase activity was undetectable. Thyroidal Dio1 and Dio2 mRNA increased in the LID rats, and Dio1 decreased in the lung, with no changes in mRNA expression in other tissues. Our data indicate that LID induces changes in deiodinase activities, especially in the thyroid, to counteract the low T(4) synthesis and secretion, contributing to maintain the local T(3) concentrations in the tissues with D2 activity.
Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang
2016-05-10
Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp; Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp; Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp
Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expressionmore » was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.« less
Does elevated pCO2 affect reef octocorals?
Gabay, Yasmin; Benayahu, Yehuda; Fine, Maoz
2013-03-01
Increasing anthropogenic pCO2 alters seawater chemistry, with potentially severe consequences for coral reef growth and health. Octocorals are the second most important faunistic component in many reefs, often occupying 50% or more of the available substrate. Three species of octocorals from two families were studied in Eilat (Gulf of Aqaba), comprising the zooxanthellate Ovabunda macrospiculata and Heteroxenia fuscescens (family Xeniidae), and Sarcophyton sp. (family Alcyoniidae). They were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 5 months. Their biolological features, including protein concentration, polyp weight, density of zooxanthellae, and their chlorophyll concentration per cell, as well as polyp pulsation rate, were examined under conditions more acidic than normal, in order to test the hypothesis that rising pCO2 would affect octocorals. The results indicate no statistically significant difference between the octocorals exposed to reduced pH values compared to the control. It is therefore suggested that the octocorals' tissue may act as a protective barrier against adverse pH conditions, thus maintaining them unharmed at high levels of pCO2.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.
2011-01-01
We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.
Constant replenishment from circulating monocytes maintains the macrophage pool in adult intestine
Scott, Charlotte L.; Perdiguero, Elisa Gomez; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C.; Artis, David; Mowat, Allan McI.
2014-01-01
The paradigm that resident macrophages in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate mapping models and monocytopenic mice, together with bone marrow chimeric and parabiotic models, we show that embryonic precursors seeded the intestinal mucosa and demonstrated extensive in situ proliferation in the neonatal period. However these cells did not persist in adult intestine. Instead, they were replaced around the time of weaning by the CCR2-dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool. PMID:25151491
Applications of Biomaterials in Corneal Endothelial Tissue Engineering.
Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng
2016-11-01
When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.
Rooney, P; Eagle, M J; Kearney, J N
2015-12-01
Human tissue is shipped to surgeons in the UK in either a freeze-dried or frozen state. To ensure quality and safety of the tissue, frozen tissue must be shipped in insulated containers such that tissue is maintained at an appropriate temperature. UK Blood Transfusion Service regulations state "Transportation systems must be validated to show maintenance of the required storage temperature" and also state that frozen, non-cryopreserved tissue "must be transported… at -20 °C or lower" (Guidelines for the Blood Transfusion Services in the United Kingdom, 8th Edn. 2013). To maintain an expiry date for frozen tissue longer than 6 months, the tissue must be maintained at a temperature of -40 °C or below. The objective of this study was to evaluate and validate the capability of a commercially available insulated polystyrene carton (XPL10), packed with dry ice, to maintain tissue temperature below -40 °C. Tissue temperature of a single frozen femoral head or a single frozen Achilles tendon, was recorded over a 4-day period at 37 °C, inside a XPL10 carton with dry ice as refrigerant. The data demonstrate that at 37 °C, the XPL10 carton with 9.5 kg of dry ice maintained femoral head and tendon tissue temperature below -55 °C for at least 48 h; tissue temperature did not rise above -40 °C until at least 70 h. Data also indicated that at a storage temperature lower than 37 °C, tissue temperature was maintained for longer periods.
Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae
2014-02-01
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin
2017-01-01
Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657
Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight
Corbet, Cyril
2018-01-01
Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism. PMID:29403375
Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells
Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.
2011-01-01
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877
Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanson, L.; Brownfield, D.; Garbe, J. C.
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal humanmore » mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.« less
2016-12-01
gastrocnemius muscles. 4. Place an interlocking intramedullary nail using a custom spacer to maintain 5-cm defect length. 5. Place a pre-molded 5 cm long x...2 cm diameter PMMA spacer around the nail in the defect. 6. Irrigate the wound with normal (0.9 %) saline and close the wound. The Treatment...PMMA spacer using a “bomb bay door opening”. 4. Remove the spacer without damaging the membrane or nail . 5. Collect appropriate IM samples as
Progress of pharmacogenomic research related to minerals and trace elements.
Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei
2015-10-01
Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.
NASA Astrophysics Data System (ADS)
Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi
2008-10-01
In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.
Significance of biological resource collection and tumor tissue bank creation.
Yu, Ying-Yan; Zhu, Zheng-Gang
2010-01-15
Progress in the molecular oncology of gastrointestinal carcinomas depends on high quality cancer tissues for research. Recent acceleration on new technological platforms as well as the "omics" revolution increases the demands on tissues and peripheral blood for research at the DNA, mRNA and protein levels. Tissue bank creation emerges as a priority. Tumor tissue banks are facilities that are organized to collect, store and distribute samples of tumor and normal tissue for further use in basic and translational cancer research. The samples are generally obtained immediately after excision, prior to fixation, to ensure optimal preservation of proteins and nucleic acids. It is possible for surgeons or pathologists to collect fresh tissue prospectively during their routine dissection procedures. Most tissue banks are "project-driven" tumor banks, which are specialized collections of tumor samples on which their research is based. Systematic collection of all available tumor tissue is much rarer. High quality tissue banks need the collaboration of clinicians and basic scientists, but also the informed consent of patients and ethical approval. Through the standard operation procedure, snap frozen fresh tissue collection, storage and quality control for cryopreserved tissues are the pivotal factors on tissue bank construction and maintaining. The purpose of the tissue bank creation is enhancing the quality and speed on both the basic and translational research on gastrointestinal cancer. The quality assurance and quality control are handled based on reviewing HE staining slides or touch imprint cytology by pathologists.
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.
2014-01-01
We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.
Chondroitin sulfate effects on neural stem cell differentiation.
Canning, David R; Brelsford, Natalie R; Lovett, Neil W
2016-01-01
We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.
Skeletal and cardiac muscle pericytes: Functions and therapeutic potential
Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.
2017-01-01
Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928
Tao, Shi-Cong; Gao, You-Shui; Zhu, Hong-Yi; Yin, Jun-Hui; Chen, Yi-Xuan; Zhang, Yue-Lei; Guo, Shang-Chun; Zhang, Chang-Qing
2016-06-03
The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina J.; Radisky, Derek
2001-10-01
The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumor growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets. Under normal conditions, ORGANS are made up of TISSUES that exchange information with other cell types via cell-cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM). The ECM, which is produced by collaboration between STROMAL fibroblasts and EPITHELIALmore » cells, provides structural scaffolding for cells, as well as contextual information. The endothelial vasculature provides nutrients and oxygen, and cells of the immune system combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized sheets. These tissues communicate through a complex network of interactions: physically, through direct contact or through the intervening ECM, and biochemically, through both soluble and insoluble signalling molecules. In combination, these interactions provide the information that is necessary to maintain cellular differentiation and to create complex tissue structures. Occasionally, the intercellular signals that define the normal context become disrupted. Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation - for example, after activation of mesenchymal fibroblasts due to wounding.Normally, these conditions are temporary and reversible, but when inflammation is sustained, an escalating feedback loop ensues.Under persistent inflammatory conditions, continual upregulation of enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the ECM, and invading immune cells can overproduce factors that promote abnormal proliferation. As this process progresses, the normal organization of the organ is replaced by a functional disorder. If there are pre-existing epithelial cells within this changing context that possess tumorigenic potential, they can start to proliferate. Alternatively, the abnormal interactions might lead to genomic instability within the epithelial cells and the acquisition of tumorigenic potential. The proliferating cancer cells can then interact with their microenvironment and enhance the abnormal interactions. At this point, the tumor has become its own organ, with a distinct context that now defines all its cellular responses. Here, we will examine how the mechanisms that contribute to the normal context also act to suppress developing tumors, how disruption of this context initiates and supports the process of tumorigenicity, and how some cells with a tumorigenic genotype can become phenotypically normal if the context is appropriately manipulated.« less
Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.
2013-01-01
Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847
Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y
2014-04-16
The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.
Hagedorn, Martin; Siegfried, Géraldine; Hooks, Katarzyna B; Khatib, Abdel-Majid
2016-11-01
Tissue regeneration requires expression of a large, unknown number of genes to initiate and maintain cellular processes such as proliferation, extracellular matrix synthesis, differentiation and migration. A unique model to simulate this process in a controlled manner is the re-growth of the caudal fin of zebrafish after amputation. Within this tissue stem cells differentiate into fibroblasts, epithelial and endothelial cells as well as melanocytes. Many genes implicated in the regeneration process are deregulated in cancer. We therefore undertook a systematic gene expression study to identify genes upregulated during the re-growth of caudal fin tissue. By applying a high stringency cut-off value of 4-fold change, we identified 54 annotated genes significantly overexpressed in regenerating blastema. Further bioinformatics data mining studies showed that 22 out of the 54 regeneration genes where overexpressed in melanoma compared to normal skin or other cancers. Whereas the role of TNC (tenascin C) and FN1 (fibronectin 1) in melanoma development is well documented, implication of MARCKS, RCN3, BAMBI, PEA3/ETV4 and the FK506 family members FKBP7, FKBP10 and FKBP11 in melanoma progression is unclear. Corresponding proteins were detected in melanoma tissue but not in normal skin. High expression of FKBP7, DPYSL5 and MDK was significantly associated with poor survival. We discuss a potential role of these novel melanoma genes, which have promising potential as new therapeutic targets or diagnostic markers.
Effects of Local Compression on Peroneal Nerve Function in Humans
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Botte, Michael J.; Swenson, Michael R.; Gelberman, Richard H.; Rhoades, Charles E.; Akeson, Wayne H.
1993-01-01
A new apparatus was developed to compress the anterior compartment selectively and reproducibly in humans. Thirty-five normal volunteers were studied to determine short-term thresholds of local tissue pressure that produce significant neuromuscular dysfunction. Local tissue fluid pressure adjacent to the deep peroneal nerve was elevated by the compression apparatus and continuously monitored for 2-3 h by the slit catheter technique. Elevation of tissue fluid pressure to within 35-40 mm Hg of diastolic blood pressure (approx. 40 mm Hg of in situ pressure in our subjects) elicited a consistent progression of neuromuscular deterioration including, in order, (a) gradual loss of sensation, as assessed by Semmes-Weinstein monofilaments, (b) subjective complaints, (c) reduced nerve conduction velocity, (d) decreased action potential amplitude of the extensor digitorum brevis muscle, and (e) motor weakness of muscles within the anterior compartment. Generally, higher intracompartment at pressures caused more rapid deterioration of neuromuscular function. In two subjects, when in situ compression levels were 0 and 30 mm Hg, normal neuromuscular function was maintained for 3 h. Threshold pressures for significant dysfunction were not always the same for each functional parameter studied, and the magnitudes of each functional deficit did not always correlate with compression level. This variable tolerance to elevated pressure emphasizes the need to monitor clinical signs and symptoms carefully in the diagnosis of compartment syndromes. The nature of the present studies was short term; longer term compression of myoneural tissues may result in dysfunction at lower pressure thresholds.
Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs
Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2014-01-01
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489
Preliminary study of coconut water for graft tissues preservation in transplantation.
César, Jorge Miguel Schettino; Petroianu, Andy; Vasconcelos, Leonardo de Souza; Cardoso, Valbert Nascimento; Mota, Luciene das Graças; Barbosa, Alfredo José Afonso; Soares, Cristina Duarte Vianna; de Oliveira, Amanda Lima
2015-01-01
to verify the effectiveness of coconut water in preserving tissues for transplant. Fifty male Wistar rats were randomly distributed in five groups, according to the following preservation solutions for tissue grafts: Group 1: Lactated Ringer; Group 2: Belzer solution; Group 3: mature coconut water; Group 4: green coconut water; Group 5: modified coconut water. In Group 5, the green coconut water has been modified like the Belzer solution. From each animal we harvested the spleen, ovaries and skin of the back segment. These tissues were preserved for six hours in one of the solutions. Then, the grafts were reimplanted. The recovery of the function of the implanted tissues was assessed 90 days after surgery, by splenic scintigraphy and blood exam. The implanted tissues were collected for histopathological examination. The serum levels did not differ among groups, except for the animals in Group 5, which showed higher levels of IgG than Group 1, and differences in relation to FSH between groups 1 and 2 (p <0.001), 4 and 2 (p = 0.03) and 5 and 2 (p = 0.01). The splenic scintigraphy was not different between groups. The ovarian tissue was better preserved in mature coconut water (p <0.007). the coconut water-based solutions preserves spleen, ovary, and rat skin for six hours, maintaining their normal function.
2017-10-01
expression is elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and DCIS... compared to IDC. (2) BCAR3 is significantly upregulated in triple negative breast cancer and normal tissue; (3) BCAR3 expression shows a modest...expression was seen to be elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and
Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study
Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.
2014-01-01
Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253
NASA Astrophysics Data System (ADS)
Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham
2011-08-01
Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.
English, A; Jones, E A; Corscadden, D; Henshaw, K; Chapman, T; Emery, P; McGonagle, D
2007-11-01
The utility of autologous chondrocytes for cartilage repair strategies in older subjects with osteoarthritis (OA) may be limited by both age-related and disease-associated decline in chondrogenesis. The aim of this work was to assess OA Hoffa's fat pad as an alternative source of autologous chondroprogenitor cells and to compare it with OA chondrocytes derived from different areas of cartilage. Cartilage and fat pad tissue digests were obtained from 26 subjects with knee OA and compared with normal bone marrow (BM) mesenchymal stem cells (MSCs) with respect to their in vitro colony-forming potential, growth kinetics, multipotentiality and clonogenicity. Flow cytometry was used to investigate their MSC marker phenotype. Expanded cultures derived from eroded areas of cartilage were slightly more chondrogenic than those derived from macroscopically normal cartilage or chondro-osteophytes; however, all cartilage-derived cultures failed to maintain their chondrogenic potency following extended expansion. In contrast, OA fat pads contained highly clonogenic and multipotential cells with stable chondrogenic potency in vitro, even after 16 population doublings. Standard colony-forming assays failed to reflect the observed functional differences between the studied tissues whereas flow cytometry revealed higher levels of a putative MSC marker low-affinity growth factor receptor (LNGFR) on culture expanded fat pad-derived, but not cartilage-derived, MSCs. In contrast to OA cartilage from three different sites, OA Hoffa's fat pad contains clonogenic cells that meet the criteria for MSCs and produce multipotential cultures that maintain their chondrogenesis long term. These findings have broad implications for future strategies aimed at cartilage repair in OA.
Guided bone regeneration: A novel approach in the treatment of pediatric dentoalveolar trauma
Murthy, Prashanth Sadashiva; Shivamallu, Avinash Bettahalli; Deshmukh, Seema; Nandlal, Bhojraj; Thotappa, Srilatha K.
2015-01-01
Traumatic injuries in the primary dentition pose major challenges for management. This emergency treatment requires proper planning so as to achieve favorable results. Trauma causing severe dentoalveolar injuries, especially in children, needs an interdisciplinary approach so as to retain normal functional anatomy for that age. This article describes a clinical innovative technique, which utilizes a resorbable membrane in management of pediatric dentoalveolar trauma. The membrane was shaped to cover the multiple alveolar bone fracture, thereby favoring the healing of the bone defects. The use of this resorbable membrane maintained a secluded space for the bone growth and prevented overgrowth of the soft tissue in the region of the defect. This resulted in uneventful healing leading to well-maintained functional bone contour, which further favored the esthetic rehabilitation as well as protected the underlying permanent tooth buds. PMID:26005471
Godlewski, Grzegorz; Jourdan, Tony; Szanda, Gergő; Tam, Joseph; Resat Cinar; Harvey-White, Judith; Liu, Jie; Mukhopadhyay, Bani; Pacher, Pál; Ming Mo, Fong; Osei-Hyiaman, Douglas; George Kunos
2015-01-01
We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3. Mice lacking GPR3 and maintained on normal chow had similar body weights during their first 5 months of life, but gained considerably more weight thereafter and displayed reduced total energy expenditure and lower core body temperature. By the age of 5 months GPR3 KO mice already had lower thermogenic gene expression and uncoupling protein 1 protein level and showed impaired glucose uptake into interscapular brown adipose tissue (iBAT) relative to WT littermates. These molecular deviations in iBAT of GPR3 KO mice preceded measurable differences in body weight and core body temperature at ambient conditions, but were coupled to a failure to maintain thermal homeostasis during acute cold challenge. At the same time, the same cold challenge caused a 17-fold increase in Gpr3 expression in iBAT of WT mice. Thus, GPR3 appears to have a key role in the thermogenic response of iBAT and may represent a new therapeutic target in age-related obesity. PMID:26455425
Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring
Hershberger, P.K.; Gregg, J.L.; Grady, C.A.; Taylor, L.; Winton, J.R.
2010-01-01
Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogenfree seawater at temperatures ranging from 6.8 to 11.6??C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts. ?? 2010 Inter-Research.
Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring
Hershberger, Paul K.; Gregg, Jacob L.; Winton, James R.; Grady, Cortney A.; Taylor, L.
2010-01-01
Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogen-free seawater at temperatures ranging from 6.8 to 11.6°C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts.
Energy metabolism of intervertebral disc under mechanical loading.
Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles
2013-11-01
Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.
Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity
McQuaid, Siobhán E.; Hodson, Leanne; Neville, Matthew J.; Dennis, A. Louise; Cheeseman, Jane; Humphreys, Sandy M.; Ruge, Toralph; Gilbert, Marjorie; Fielding, Barbara A.; Frayn, Keith N.; Karpe, Fredrik
2011-01-01
OBJECTIVE Lipotoxicity and ectopic fat deposition reduce insulin signaling. It is not clear whether excess fat deposition in nonadipose tissue arises from excessive fatty acid delivery from adipose tissue or from impaired adipose tissue storage of ingested fat. RESEARCH DESIGN AND METHODS To investigate this we used a whole-body integrative physiological approach with multiple and simultaneous stable-isotope fatty acid tracers to assess delivery and transport of endogenous and exogenous fatty acid in adipose tissue over a diurnal cycle in lean (n = 9) and abdominally obese men (n = 10). RESULTS Abdominally obese men had substantially (2.5-fold) greater adipose tissue mass than lean control subjects, but the rates of delivery of nonesterified fatty acids (NEFA) were downregulated, resulting in normal systemic NEFA concentrations over a 24-h period. However, adipose tissue fat storage after meals was substantially depressed in the obese men. This was especially so for chylomicron-derived fatty acids, representing the direct storage pathway for dietary fat. Adipose tissue from the obese men showed a transcriptional signature consistent with this impaired fat storage function. CONCLUSIONS Enlargement of adipose tissue mass leads to an appropriate downregulation of systemic NEFA delivery with maintained plasma NEFA concentrations. However the implicit reduction in adipose tissue fatty acid uptake goes beyond this and shows a maladaptive response with a severely impaired pathway for direct dietary fat storage. This adipose tissue response to obesity may provide the pathophysiological basis for ectopic fat deposition and lipotoxicity. PMID:20943748
Murphy, Sean Vincent; Atala, Anthony
2013-03-01
Often the only treatment available for patients suffering from diseased and injured organs is whole organ transplant. However, there is a severe shortage of donor organs for transplantation. The goal of organ engineering is to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Recent progress in stem cell biology, biomaterials, and processes such as organ decellularization and electrospinning has resulted in the generation of bioengineered blood vessels, heart valves, livers, kidneys, bladders, and airways. Future advances that may have a significant impact for the field include safe methods to reprogram a patient's own cells to directly differentiate into functional replacement cell types. The subsequent combination of these cells with natural, synthetic and/or decellularized organ materials to generate functional tissue substitutes is a real possibility. This essay reviews the current progress, developments, and challenges facing researchers in their goal to create replacement tissues and organs for patients. Copyright © 2013 WILEY Periodicals, Inc.
MACF1, versatility in tissue-specific function and in human disease.
Hu, Lifang; Xiao, Yunyun; Xiong, Zhipeng; Zhao, Fan; Yin, Chong; Zhang, Yan; Su, Peihong; Li, Dijie; Chen, Zhihao; Ma, Xiaoli; Zhang, Ge; Qian, Airong
2017-09-01
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies. Copyright © 2017. Published by Elsevier Ltd.
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
Chishima, Takafumi; Iwakiri, Junichi
2018-01-01
It has been recently suggested that transposable elements (TEs) are re-used as functional elements of long non-coding RNAs (lncRNAs). This is supported by some examples such as the human endogenous retrovirus subfamily H (HERVH) elements contained within lncRNAs and expressed specifically in human embryonic stem cells (hESCs), as required to maintain hESC identity. There are at least two unanswered questions about all lncRNAs. How many TEs are re-used within lncRNAs? Are there any other TEs that affect tissue specificity of lncRNA expression? To answer these questions, we comprehensively identify TEs that are significantly related to tissue-specific expression levels of lncRNAs. We downloaded lncRNA expression data corresponding to normal human tissue from the Expression Atlas and transformed the data into tissue specificity estimates. Then, Fisher’s exact tests were performed to verify whether the presence or absence of TE-derived sequences influences the tissue specificity of lncRNA expression. Many TE–tissue pairs associated with tissue-specific expression of lncRNAs were detected, indicating that multiple TE families can be re-used as functional domains or regulatory sequences of lncRNAs. In particular, we found that the antisense promoter region of L1PA2, a LINE-1 subfamily, appears to act as a promoter for lncRNAs with placenta-specific expression. PMID:29315213
NASA Astrophysics Data System (ADS)
Xiong, Honglian; Guo, Zhouyi; Zeng, Changchun; Wang, Like; He, Yonghong; Liu, Songhao
2009-03-01
Noninvasive tumor imaging could lead to the early detection and timely treatment of cancer. Optical coherence tomography (OCT) has been reported as an ideal diagnostic tool for distinguishing tumor tissues from normal tissues based on structural imaging. In this study, the capability of OCT for functional imaging of normal and tumor tissues based on time- and depth-resolved quantification of the permeability of biomolecules through these tissues is investigated. The orthotopic graft model of gastric cancer in nude mice is used, normal and tumor tissues from the gastric wall are imaged, and a diffusion of 20% aqueous solution of glucose in normal stomach tissues and gastric tumor tissues is monitored and quantified as a function of time and tissue depth by an OCT system. Our results show that the permeability coefficient is (0.94+/-0.04)×10-5 cm/s in stomach tissues and (5.32+/-0.17)×10-5 cm/s in tumor tissues, respectively, and that tumor tissues have a higher permeability coefficient compared to normal tissues in optical coherence tomographic images. From the results, it is found that the accurate and sensitive assessment of the permeability coefficients of normal and tumor tissues offers an effective OCT image method for detection of tumor tissues and clinical diagnosis.
Nijhout, H Frederik; Laub, Emily; Grunert, Laura W
2018-03-19
The wing imaginal disks of Lepidoptera can be grown in tissue culture, but require both insulin and ecdysone to grow normally. Here, we investigate the contributions the two hormones make to growth. Ecdysone is required to maintain mitoses, whereas in the presence of insulin alone mitoses stop. Both ecdysone and insulin stimulate protein synthesis, but only ecdysone stimulates DNA synthesis. Insulin stimulates primarily cytoplasmic growth and an increase in cell size, whereas ecdysone, by virtue of its stimulation of DNA synthesis and mitosis, stimulates growth by an increase in cell number. Although both hormones stimulate protein synthesis, they do so in different spatial patterns. Both hormones stimulate protein synthesis in the inter-vein regions, but ecdysone stimulates synthesis more strongly in the veins and in the margin of the wing disk. We propose that the balance of insulin and ecdysone signaling must be regulated to maintain normal growth, and when growth appears to be due primarily to an increase in cell number, or an increase in cell size, this may indicate growth occurred under conditions that favored a stronger role for ecdysone, or insulin, respectively. © 2018. Published by The Company of Biologists Ltd.
Colonization and effector functions of innate lymphoid cells in mucosal tissues
Kim, Myunghoo; Kim, Chang H.
2016-01-01
Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. PMID:27365193
Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1
Nilsen, Karl N.; Hodges, Clinton F.
1983-01-01
A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806
A transparent bending-insensitive pressure sensor
NASA Astrophysics Data System (ADS)
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Principles and Planning in Nasal and Facial Reconstruction: Making a Normal Face.
Menick, Frederick J
2016-06-01
After reading this article, the participant should be able to: 1. Understand the rationale and value of principles of facial reconstruction in the complex patient. 2. Understand the importance of diagnosis and planning. 3. Appreciate the value of surgical staging. 4. Modify tissues to the requirements of the defect. 5. Know how to treat ischemic cover and lining complications. 6. Learn methods of late revision. It is easy to be overwhelmed by a complex defect. What to do? How? When? In what order? Success is determined by careful planning, guided by principles. The aesthetic and anatomical deficiencies must be identified. Then, what is absent, both visually and anatomically, and what is missing must be determined. What are the priorities? What is the best timing for each stage? What are the available options and what will be the likely result? Should I choose another option? How can the surgeon maintain vascularity, transfer tissue, and improve tissue quality and contour? What are potential backup salvage maneuvers? Sound surgical principles based on the contributions of Gillies and Millard provide strategic instructions that help the surgeon "make sense" of a complex problem. They provide coordinated rules that clarify the diagnosis, planning, timing, and stages of repair. These should be combined with a regional unit approach to facial repair that provides tactical rules to establish the skin quality, border outline, and three-dimensional shape of the normal face.
Chokechanachaisakul, Uraiwan; Kaneko, Tomoatsu; Yamanaka, Yusuke; Okiji, Takashi; Suda, Hideaki
2012-10-01
In conventional whole-tooth culture systems, limitation exists regarding maintenance of the vitality of the dental pulp, because this tissue is encased in rigid dentin walls that hinder nutrition supply. We here report a whole tooth-in-jaw-bone culture system of rat mandibular first molars, where transcardiac perfusion with culture medium was carried out before placement of the jaw bone into culture medium, aiming to facilitate longer time preservation of the dental pulp tissue. Following 7 days of culture, the pulp tissues were analyzed by histology and immunohistochemistry to ED2 (antiresident macrophage). ED2-positive macrophages were also analyzed for their Class II MHC, interleukin-6 (IL-6), and p53 mRNA expression levels by means of immune-laser capture microdissection (immune-LCM). Dentin sialophosphoprotein (DSPP) mRNA expression in odontobalstic layer was also examined by LCM. Teeth cultured following saline-perfusion and nonperfusion served as cultured controls. Normal teeth also served as noncultured controls. Histological examination demonstrated that the structure of the pulp tissue was well preserved in the medium-perfused explants in contrast to the cultured control groups. The Class II MHC, IL-6, and p53 mRNA expression levels of ED2-positive cells and DSPP expression levels of odontoblastic layer tissues in the pulp of medium-perfused explants were not significantly different from those in the noncultured normal teeth. In conclusion, the structural integrity and mRNA expression in the pulp were maintained at the in vivo level in the ex vivo whole tooth-in-jaw-bone culture system. The system may lay the foundation for studies aiming at defining further histological and molecular mechanism of the pulp. Copyright © 2012 Wiley Periodicals, Inc.
Biochemistry of epidermal stem cells.
Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace
2013-02-01
The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Biochemistry of epidermal stem cells☆
Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace
2014-01-01
Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019
Wang, Cong; Chen, Zhongqin; Pan, Yuxiang; Gao, Xudong; Chen, Haixia
2017-10-01
Polysaccharides are important bioactive ingredients from Inonotus obliquus. This study aimed to synthesize and characterize a novel I. obliquus polysaccharides-chromium (III) complex (UIOPC) and investigate the anti-diabetic effects in streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) mice and sub-acute toxicity in normal mice. The molecular weight of UIOPC was about 11.5 × 10 4 Da with the chromium content was 13.01% and the chromium was linked with polysaccharides through coordination bond. After treatment of UIOPC for four weeks, the body weight, fasting blood glucose (FBG) levels, plasma insulin levels of the diabetic mice were significantly reduced when compared with those of the diabetic mice (p < 0.05). The results on serum profiles and antioxidant enzymes activities revealed that UIOPC had a positive effect on hypoglycemic and antioxidant ability. Histopathology results showed that UIOPC could effectively alleviate the STZ-lesioned tissues in diabetic mice. Furthermore, high dose administration of UIOPC had no obviously influence on serum profiles levels and antioxidant ability of the normal mice and the organ tissues maintained organized and integrity in the sub-acute toxicity study. These results suggested that UIOPC might be a good candidate for the functional food or pharmaceuticals in the treatment of T2DM. Copyright © 2017 Elsevier Ltd. All rights reserved.
In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.
Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi
2013-10-04
Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.
Use of donor bladder tissues for in vitro research.
Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer
2014-01-01
To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.
The Effect of Aging on the Cutaneous Microvasculature
Bentov, Itay; Reed, May J
2015-01-01
Aging is associated with a progressive loss of function in all organs. Under normal conditions the physiologic compensation for age-related deficits is sufficient, but during times of stress the limitations of this reserve become evident. Explanations for this reduction in reserve include the changes in the microcirculation that occur during the normal aging process. The microcirculation is defined as the blood flow through arterioles, capillaries and venules, which are the smallest vessels in the vasculature and are embedded within organs and tissues. Optimal strategies to maintain the microvasculature following surgery and other stressors must use multifactorial approaches. Using skin as the model organ, we will review the anatomical and functional changes in the microcirculation with aging, and some of the available clinical strategies to potentially mitigate the effect of these changes on important clinical outcomes. PMID:25917013
Homeostasis of Hyaluronic Acid in Normal and Scarred Vocal Folds
Tateya, Ichiro; Tateya, Tomoko; Watanuki, Makoto; Bless, Diane M.
2015-01-01
Summary Objectives/Hypothesis Vocal fold scarring is one of the most challenging laryngeal disorders to treat. Hyaluronic acid (HA) is the main component of lamina propria, and it plays an important role in proper vocal fold vibration and is also thought to be important in fetal wound healing without scarring. Although several animal models of vocal fold scarring have been reported, little is known about the way in which HA is maintained in vocal folds. The purpose of this study was to clarify the homeostasis of HA by examining the expression of hyaluronan synthase (Has) and hyaluronidase (Hyal), which produce and digest HA, respectively. Study Design Experimental prospective animal study. Methods Vocal fold stripping was performed on 38 Sprague-Dawley rats. Vocal fold tissue was collected at five time points (3 days–2 months). Expression of HA was examined by immunohistochemistry, and messenger RNA (mRNA) expression of Has and Hyal was examined by real-time polymerase chain reaction and in-situ hybridization. Results In scarred vocal folds, expression of Has1 and Has2 increased at day 3 together with expression of HA and returned to normal at 2 weeks. At 2 months, Has3 and Hyal3 mRNA showed higher expressions than normal. Conclusions Expression patterns of Has and Hyal genes differed between normal, acute-scarred, and chronic-scarred vocal folds, indicating the distinct roles of each enzyme in maintaining HA. Continuous upregulation of Has genes in the acute phase may be necessary to achieve scarless healing of vocal folds. PMID:25499520
Liu, Jun-Feng; Ke, Chang-Shu; Chen, Xi; Xu, Yu; Zhang, Hua-Qiu; Chen, Juan; Gan, Chao; Li, Chao-Xi; Lei, Ting
2013-05-01
To determine appropriate protocols for the identification and management of intra operative suspicious tissues during transsphenoidal surgery. Clinical data and pathological reports of 20 patients with intra-operative suspicious tissues during transsphenoidal surgeries were analyzed retrospectively. The methods for discriminating between adenoma and normal pituitary tissues were reviewed. The postoperative pathological reports revealed that adenoma and normal pituitary tissues coexisted in 9 samples, while 5 samples were identified as normal pituitary tissues, 2 as adenoma tissues, and 4 as other tissues. Adenomas were distinguished from normal pituitary tissues on the basis of intra-operative appearance, texture, blood supply and possible existence of boundary. If decisions are difficult to made during surgeries from the appearance of the suspicious tissues, pathological examinations are advised as a guidance for the next steps.
NASA Astrophysics Data System (ADS)
Wu, Binlin; Gayen, S. K.; Xu, M.
2014-03-01
Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.
Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals
Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.
2014-01-01
Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365
Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.
Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo
2006-09-01
This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.
Pham, Toan; Nisbet, Linley; Taberner, Andrew; Loiselle, Denis; Han, June-Chiew
2018-04-01
Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca 2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance. Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their peak external work output was lower due to reduced extent and velocity of shortening. Despite lower peak work output, suprabasal enthalpy was unaffected, thereby rendering suprabasal efficiency lower. Crossbridge efficiency, however, was unaffected. In contrast, LV trabeculae from PAH rats maintained normal mechano-energetic performance. Pulmonary arterial hypertension reduces the suprabasal energy efficiency of hypertrophied right ventricular tissues as a consequence of the increased energy cost of Ca 2+ cycling. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Isolated tumor endothelial cells maintain specific character during long-term culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Kohei; Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586; Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586
Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, wemore » have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.« less
Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis.
McKleroy, William; Lee, Ting-Hein; Atabai, Kamran
2013-06-01
Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production.
Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis
McKleroy, William; Lee, Ting-Hein
2013-01-01
Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)
NASA Astrophysics Data System (ADS)
Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai
2014-03-01
Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.
Colonization and effector functions of innate lymphoid cells in mucosal tissues.
Kim, Myunghoo; Kim, Chang H
2016-10-01
Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Rigby, Carolyn C.; Franks, L. M.
1970-01-01
Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601
A unified theory of bone healing and nonunion: BHN theory.
Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G
2016-07-01
This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.
Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation
Nakahara, Hiroyuki; Hasegawa, Akihiko; Otabe, Koji; Ayabe, Fumiaki; Matsukawa, Tetsuya; Onizuka, Naoko; Ito, Yoshiaki; Ozaki, Toshifumi; Lotz, Martin K.; Asahara, Hiroshi
2013-01-01
Objective To investigate the expression and function of Mohawk (MKX) in human adult anterior cruciate ligament (ACL) tissues and ligament cells from normal and osteoarthritis-affected knees. Methods Knee joints were obtained at autopsy within 24-48 hours postmortem from 13 normal donors (age 36.9±11.0 years), 16 OA donors (age 79.7±11.4 years) and 8 old donors without OA (age 76.9±12.9 years). All cartilage surfaces were graded macroscopically. MKX expression was analyzed by immunohistochemistry and quantitative PCR. ACL-derived cells were used to study regulation of MKX expression by IL-1β. MKX was knocked down by siRNA to analyze function of MKX in extracellular matrix (ECM) production and differentiation in ACL-derived cells. Results The expression of MKX was significantly decreased in ACL-derived cells from OA knees compared with normal knees. Consistent with this finding, immunohistochemistry showed that MKX positive cells were significantly reduced in ACL tissues from OA donors in particular in cells located in disorientated fibers. In ACL-derived cells, IL-1β strongly suppressed MKX gene expression and reduced ligament ECM genes, COL1A1 and TNXB. On the other hand, SOX9, chondrocyte master transcription factor, was up regulated by IL-1β treatment. Importantly, knock down of MKX expression by siRNA upregulated SOX9 expression in ACL-derived cells, whereas the expression of COL1A1 and TNXB were decreased. Conclusion Reduced expression of MKX is a feature of degenerated ACL in OA-affected joints and this may be in part mediated by IL-1β. MKX appears necessary to maintain the tissue specific cellular differentiation status and ECM production in adult human tendons and ligaments. PMID:23686683
Elastic light single-scattering spectroscopy for detection of dysplastic tissues
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda
2013-11-01
Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.
Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer
Danforth, David N.
2016-01-01
Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women. PMID:27559297
Aguiar, F L N; Lunardi, F O; Lima, L F; Rocha, R M P; Bruno, J B; Magalhães-Padilha, D M; Cibin, F W S; Nunes-Pinheiro, D C S; Gastal, M O; Rodrigues, A P R; Apgar, G A; Gastal, E L; Figueiredo, J R
2016-04-01
This study investigated the effect of adding different concentrations of bovine recombinant follicle-stimulating hormone on the IVC of equine preantral follicles enclosed in ovarian tissue fragments. Randomized ovarian fragments were fixed immediately (fresh noncultured control) or cultured for 1 or 7 days in α-MEM(+) supplemented with 0, 10, 50, and 100 ng/mL FSH and subsequently analyzed by classical histology. Culture media collected on Day 1 or Day 7 and were analyzed for steroids (estradiol and progesterone) and reactive oxygen species (ROS). After Day 1 and Day 7 of culture, 50-ng/mL FSH treatment had a greater (P < 0.05) percentage of morphologically normal follicles when compared to the other groups, except the 10-ng/mL FSH treatment at Day 1 of culture. The percentage of developing follicles (transition, primary, and secondary), and follicular and oocyte diameters were higher (P < 0.05) in the 50-ng/mL FSH treatment compared to the other groups after Day 7 of culture. Furthermore, estradiol secretion and ROS production were maintained (P > 0.05) throughout the culture in the 50-ng/mL FSH treatment. In conclusion, the addition of 50 ng/mL of FSH promoted activation of primordial follicles to developing follicles, improved survival of preantral follicles, and maintained estradiol and ROS production of equine ovarian tissue after 7 days of culture. Copyright © 2016 Elsevier Inc. All rights reserved.
CMV allograft pancreatitis: diagnosis, treatment, and histological features.
Klassen, D K; Drachenberg, C B; Papadimitriou, J C; Cangro, C B; Fink, J C; Bartlett, S T; Weir, M R
2000-05-15
Cytomegalovirus (CMV) infection is a common problem in solid organ transplant recipients. CMV infection of pancreas allografts is not, however, well described. We report the clinical presentation, histologic findings, treatment, and outcome in four patients with CMV allograft pancreatitis. These patients presented 18 weeks to 44 months after transplantation with elevated serum amylase and lipase and were suspected to have acute rejection. Percutaneous pancreas allograft biopsy specimens showed evidence of tissue invasive CMV infection. One patient had simultaneous CMV infection and acute rejection. Prolonged treatment with ganciclovir resulted in clinical and histologic resolution of the CMV disease. Rejection was successfully treated. Primary CMV infection in seronegative recipients seemed to be a risk factor. Three patients maintain normal allograft function; one patient lost function due to chronic rejection. The histology of tissue-invasive CMV pancreas allograft infection and its differentiation from acute rejection is described. Prompt diagnosis and prolonged therapy with antiviral agents can result in maintenance of allograft function.
Brain tumor modeling: glioma growth and interaction with chemotherapy
NASA Astrophysics Data System (ADS)
Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood
2011-10-01
In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.
[Unexpected cutaneous purpura in an infant].
Luo, Yang-Yang; Wei, Zhu; Zeng, Ying-Hong; Zhou, Bin; Tang, Jian-Ping
2016-11-01
A two-month-old boy visited the hospital due to unexpected cutaneous purpura and thrombocytopenia for 2 days. The physical examination revealed a purple mass on the back. The soft tissue color Doppler ultrasound showed rich blood signals in the tissue, and the results of bone marrow puncture indicated an increased number of megakaryocytes. After the treatment with hormone and gamma globulin, the platelet count rapidly increased and maintained at a normal level. Meanwhile, the boy was given oral administration of propranolol. He was followed up for 4 months and the volume of the mass on the back was reduced significantly. He had a definite diagnosis of hemangioma and immune thrombocytopenia. As for the patients with hemangioma complicated by thrombocytopenia, knowledge of Kasabach-Merritt syndrome should be enhanced and there should be a clarification of the association between thrombocytopenia and hemangioma. There should also be an alertness for thrombocytopenia of other causes.
Basics of PD-1 in self-tolerance, infection, and cancer immunity.
Chikuma, Shunsuke
2016-06-01
Successful cancer treatment requires understanding host immune response against tumor cells. PD-1 belongs to the CD28 superfamily of receptors that work as "checkpoints" of immune activation. PD-1 maintains immune self-tolerance to prevent autoimmunity and controls T-cell reaction during infection to prevent excessive tissue damage. Tumor cells that arise from normal tissue acquire mutations that can be targeted by lymphocytes. Accumulating lines of evidence suggest that tumor cells evade host immune attack by expressing physiological PD-1 ligands and stimulating PD-1 on the lymphocytes. Based on this idea, researchers have successfully demonstrated that systemic administration of monoclonal antibodies that inhibit the binding of PD-1 to the ligands reactivated T cells and augmented the anti-cancer immune response. In this review, I summarize the basics of T-cell biology and its regulation by PD-1 and discuss the current understanding and questions about this multifaceted molecule.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Friedlander, M A; Wu, Y C; Schulak, J A; Monnier, V M; Hricik, D E
1995-03-01
Plasma and tissue concentrations of pentose-derived glycation end-products ("pentosidine") are elevated in diabetic patients with normal renal function and in both diabetic and nondiabetic patients with end-stage renal disease. To determine the influence of dialysis modality and other clinical variables on the accumulation of pentosidine, we used high-performance liquid chromatography to measure this advanced glycation end-product in plasma, skin, and peritoneal samples obtained from 65 hemodialysis and 45 peritoneal dialysis patients. Plasma pentosidine levels were significantly lower in peritoneal dialysis patients. Concentrations of pentosidine in skin were similar in the two groups. In contrast, peritoneal concentrations of pentosidine were significantly higher in the patients maintained on peritoneal dialysis. Our results demonstrate that dialysis modality influences the plasma and tissue distribution of pentosidine. Compared with hemodialysis, peritoneal dialysis is associated with lower levels of this glycation end-product in plasma, but with higher levels in the peritoneum. The mechanisms accounting for lower circulating levels of pentosidine in peritoneal dialysis patients remain to be determined. Higher levels in peritoneal tissues may reflect chronic exposure to the high concentrations of glucose in peritoneal dialysate.
Hyaluronic acid hydrogels for vocal fold wound healing
Gaston, Joel; Thibeault, Susan L.
2013-01-01
The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models. PMID:23507923
Hyaluronic acid hydrogels for vocal fold wound healing.
Gaston, Joel; Thibeault, Susan L
2013-01-01
The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models.
Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S
2014-10-01
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.
Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.
2014-01-01
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.
1996-01-01
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.
1996-12-03
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.
New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.
Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W
1989-02-01
A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).
Mohammadzadeh, G S; Nasseri Moghadam, S; Rasaee, M J; Zaree, A B; Mahmoodzadeh, H; Allameh, A
2003-06-01
To develop an indirect enzyme-linked immunosorbent assay (ELISA) for measuring class-pi glutathione S-transferase (GST) in plasma, and tissue biopsies obtained from upper gastrointestinal cancer (UGI Ca) patients. GST activity and GST-pi concentration were detected in normal human squamous esophageal epithelium, normal gastric cardia and their corresponding malignant tumor biopsies. Plasma GST was significantly higher (p < 0.05) in UGI Ca patients as compared to those obtained from normal individuals. Plasma GST-pi concentration in normal subjects was 6.6 +/- 1.9 ng/mg protein, whereas it was higher in UGI Ca patients (esophageal, 10.0 +/- 1.8; gastric, 10.7 +/- 1.7 ng/mL, p
Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.
Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H
2003-04-01
Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.
NASA Astrophysics Data System (ADS)
Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.
2007-10-01
The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.
Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J
2016-03-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. ©AlphaMed Press.
Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío
2015-01-01
In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress. PMID:25951172
Osorio-Paz, Ixchel; Uribe-Carvajal, Salvador; Salceda, Rocío
2015-01-01
In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.
O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M
2007-08-07
Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.
Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model
NASA Technical Reports Server (NTRS)
Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.
1993-01-01
During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.
Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.
Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M
2013-01-01
Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.
Genome-wide network analysis of Wnt signaling in three pediatric cancers
NASA Astrophysics Data System (ADS)
Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.
2013-10-01
Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.
Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.
2013-01-01
Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445
Extracellular matrix structure.
Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K
2016-02-01
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Telomeres and telomere dynamics: relevance to cancers of the gastrointestinal tract
Basu, Nivedita; Skinner, Halcyon G.; Litzelman, Kristin; Vanderboom, Russell; Baichoo, Esha; Boardman, Lisa A.
2013-01-01
Summary Aberrations in telomere length and telomere maintenance contribute to cancer development. In this article, we review basic principles of telomere length in normal and tumor tissue and the presence of the two main telomere maintenance pathways as they pertain to GI tract cancer. Peripheral blood telomeres are shorter in patients with many types of GI tract cancers. Telomere length in tumor DNA also appears to shorten early in cancer development. Tumor telomere shortening is often accompanied by telomerase activation to protect genetically damaged DNA from normal cell senescence or apoptosis, allowing immortalized but damaged DNA to persist. Alternative lengthening of telomeres (ALT) is another mechanism used by cancer to maintain telomere length in cancer cells. Telomerase and ALT activators and inhibitors may become important chemopreventive or chemotherapeutic agents as our understanding of telomere biology, specific telomere related phenotypes, and its relationship to carcinogenesis increases. PMID:24161135
NASA Astrophysics Data System (ADS)
Pu, Yang
Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.
Tissue engineering: current strategies and future directions.
Olson, Jennifer L; Atala, Anthony; Yoo, James J
2011-04-01
Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.
Tang, Hua; Xu, Zhifei; Qin, Xiong; Wu, Bin; Wu, Lihui; Zhao, XueWei; Li, Yulin
2009-07-01
Extensive chest wall defect reconstruction remains a challenging problem for surgeons. In the past several years, little progress has been made in this area. In this study, a biodegradable polydioxanone (PDO) mesh and demineralized bone matrix (DBM) seeded with osteogenically induced bone marrow stromal cells (BMSCs) were used to reconstruct a 6 cm x 5.5 cm chest wall defect. Four experimental groups were evaluated (n=6 per group): polydioxanone (PDO) mesh/DBMs/BMSCs group, polydioxanone (PDO) mesh/DBMs group, polydioxanone (PDO) mesh group, and a blank group (no materials) in a canine model. All the animals survived except those in the blank group. In all groups receiving biomaterial implants, the polydioxanone (PDO) mesh completely degraded at 24 weeks and was replaced by fibrous tissue with thickness close to that of the normal intercostal tissue (P>0.05). In the polydioxanone (PDO) mesh/DBMs/BMSCs group, new bone formation and bone-union were observed by radiographic and histological examination. More importantly, the reconstructed rib could maintain its original radian and achieve satisfactory biomechanics close to normal ribs in terms of bending stress (P>0.05). However, in the other two groups, fibrous tissue was observed in the defect and junctions, and the reconstructed ribs were easily distorted under an outer force. Based on these results, a surgical approach utilizing biodegradable polydioxanone (PDO) mesh in combination with DBMs and BMSCs could repair the chest wall defect not only in function but also in structure.
Lung epithelial stem cells and their niches: Fgf10 takes center stage.
Volckaert, Thomas; De Langhe, Stijn
2014-01-01
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Spontaneous Age-Related Neurite Branching in C. elegans
Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia
2011-01-01
The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377
Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory
2010-06-01
The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory
2011-01-01
OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi
2008-10-20
In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissuesmore » in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.« less
Wang, Shu; Su, Rui; Nie, Shufang; Sun, Ming; Zhang, Jia; Wu, Dayong; Moustaid-Moussa, Naima
2013-01-01
Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side-effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body, and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue)through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues, and improving their cellular uptake, resulting in decreased toxicity, In this review we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for EGCG, quercetin, resveratrol and curcuminadministration to enhance their aqueous solubility, stability, bioavailability, target specificity, and bioactivities. PMID:24406273
Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab
DOE R&D Accomplishments Database
Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.
2000-06-01
The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.
Chu, Van Trung; Beller, Alexander; Rausch, Sebastian; Strandmark, Julia; Zänker, Michael; Arbach, Olga; Kruglov, Andrey; Berek, Claudia
2014-04-17
Although in normal lamina propria (LP) large numbers of eosinophils are present, little is known about their role in mucosal immunity at steady state. Here we show that eosinophils are needed to maintain immune homeostasis in gut-associated tissues. By using eosinophil-deficient ΔdblGATA-1 and PHIL mice or an eosinophil-specific depletion model, we found a reduction in immunoglobulin A(+) (IgA(+)) plasma cell numbers and in secreted IgA. Eosinophil-deficient mice also showed defects in the intestinal mucous shield and alterations in microbiota composition in the gut lumen. In addition, TGF-β-dependent events including class switching to IgA in Peyer's patches (PP), the formation of CD103(+) T cells including Foxp3(+) regulatory (Treg), and also CD103(+) dendritic cells were disturbed. In vitro cultures showed that eosinophils produce factors that promote T-independent IgA class switching. Our findings show that eosinophils are important players for immune homeostasis in gut-associated tissues and add to data suggesting that eosinophils can promote tissue integrity. Copyright © 2014 Elsevier Inc. All rights reserved.
Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K
2018-04-14
Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M
2009-05-01
We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.
Normocalcemia without hyperparathyroidism in vitamin D-deficient rats.
Kollenkirchen, U; Fox, J; Walters, M R
1991-03-01
Despite numerous attempts, no reliable dietary regimen exists to achieve vitamin D deficiency (-D) in rats without attendant changes in plasma parathyroid hormone (PTH), Ca, or phosphate. This represents an important obstacle to proper investigations of the physiologic role(s) of vitamin D metabolites in the function of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] target tissues. This paper describes the successful development of such a diet, which uses a combination of high Ca content, properly controlled Ca/P ratio, and lactose. Normal weanling rats were fed diets containing A, 0.8% Ca, 0.5% P, +D3, or -D diets containing B, 0.8% Ca and 0.5% P; C, 2.0% Ca and 1.25% P; or D, 2.0% Ca, 1.25% P, and 20% lactose. After 6 diet weeks group D rats remained normocalcemic and normophosphatemic, but diet groups B and C became hypocalcemic (6.9 +/- 0.8 and 7.2 +/- 0.4 mg/dl, respectively). Thus high dietary Ca and P was incapable of maintaining normal plasma Ca levels in the absence of dietary lactose. The normocalcemia in group D was not maintained by elevated PTH secretion because N-terminal PTH levels were also normal (14 +/- 3 versus 20 +/- 5 pg/ml). In contrast, PTH levels were markedly elevated in hypocalcemic groups B and C (47 +/- 7 and 48 +/- 10 pg/ml, respectively). Plasma 25-OHD3 and 1,25-(OH)2D3 levels were reduced to less than 120 and less than 12 pg/ml, respectively, in all -D groups. Thus the high-Ca diet and the use of normal weanlings did not impede the development of vitamin D deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)
Kanai, Takahiro; Ito, Takane; Odaka, Jun; Saito, Takashi; Aoyagi, Jun; Betsui, Hiroyuki; Yamagata, Takanori
2016-03-01
Fabry disease is an X-linked glycosphingolipidosis caused by deficient synthesis of the enzyme α-galactosidase A, which results in accumulations of globotriaosylceramide (GL-3) in systemic tissues. Nephropathy is a dominant feature of Fabry disease. It still remains unclear how the nephropathy progresses. Recombinant agalsidase replacement therapy is currently the only approved, specific therapy for Fabry disease. The optimal dose of replacement enzyme also still remains unclear. The worldwide shortage of agalsidase-β in 2009 forced dose reduction of administration. It showed that the proteinuria emerged like surges, followed by temporary plasma GL-3 elevations in the early stages of classic Fabry disease. Additionally, it also showed that 1 mg/kg of agalsidase-β every other week could clear the GL-3 accumulations from podocytes and was required to maintain negative proteinuria and normal plasma GL-3 levels. This observation of a young patient with classic Fabry disease about 5 years reveals that the long-term, low-dose agalsidase-β caused proteinuria surges, but not persistent proteinuria, followed by temporary plasma GL-3 elevations, and agalsidase-β at 1 mg/kg every other week could clear accumulated GL-3 from podocytes and was required to maintain normal urinalysis and plasma GL-3 levels.
Microarray expression profiling in adhesion and normal peritoneal tissues.
Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P
2012-05-01
To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Salehi, Hassan S.; Kosa, Ali; Mahdian, Mina; Moslehpour, Saeid; Alnajjar, Hisham; Tadinada, Aditya
2017-02-01
In this paper, five types of tissues, human enamel, human cortical bone, human trabecular bone, muscular tissue, and fatty tissue were imaged ex vivo using optical coherence tomography (OCT). The specimens were prepared in blocks of 5 x 5 x 3 mm (width x length x height). The OCT imaging system was a swept source OCT system operating at wavelengths ranging between 1250 nm and 1360 nm with an average power of 18 mW and a scan rate of 50 to 100 kHz. The imaging probe was placed on top of a 2 x 2 cm stabilizing device to maintain a standard distance from the samples. Ten image samples from each type of tissue were obtained. To acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. Based on the observed texture differences between OCT images of soft and hard tissues, spatial and spectral features were quantitatively extracted from the OCT images. The Radon transform from angles of 0 deg to 90 deg was computed, averaged over all the angles, normalized to peak at unity, and then fitted with Gaussian function. The mean absolute values of the spatial frequency components of the OCT image were considered as a feature, where 2-D fast Fourier transform (FFT) was done to OCT images. These OCT features can reliably differentiate between a range of hard and soft tissues, and could be extremely valuable in assisting dentists for in vivo evaluation of oral tissues and early detection of pathologic changes in tissues.
Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G
2016-01-01
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359
Sell, Stewart
2008-01-01
Identification of the cells in the liver that produce alpha-fetoprotein during development, in response to liver injury and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas. When the cellular changes in these processes were compared to that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue-determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as normal tissues: stem cells, transit-amplifying cells and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, antiangiogenesis and differentiation therapy) are directed against the cancer transit-amplifying cells. When these therapies are discontinued, the cancer reforms from the cancer stem cells. Therapy directed toward interruption of the cell signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of regrowth of the cancer. Copyright 2008 S. Karger AG, Basel.
Sell, Stewart
2008-01-01
Identification of the cells in the liver that produce alpha-fetoprotein (AFP) during development, in response to liver injury, and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas (HCC). When the cellular changes in these processes were compared that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as do normal tissues: stem cells, transit-amplifying cells, and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, anti-angiogenesis and differentiation therapy) are directed against the cancer transit amplifying cells. When these therapies are discontinued, the cancer re-forms from the cancer stem cells. Therapy directed toward interruption of the cell-signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of re-growth of the cancer. PMID:18612221
Ozbun, Michelle A; Patterson, Nicole A
2014-08-01
Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley & Sons, Inc.
Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies
NASA Astrophysics Data System (ADS)
Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali
2011-12-01
Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.
2010-01-01
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822
NASA Astrophysics Data System (ADS)
Goryachuk, A. A.; Khodzitsky, M. K.; Borovkova, M. A.; Khamid, A. K.; Dutkinskii, P. S.; Shishlo, D. A.
2016-08-01
Samples of fresh excised tissues obtained from patients who had undergone gastric cancer have been investigated. Samples were consisted of cancer zone, normal zone and zone mixed of normal and cancer tissues. Their optical properties and spectral features were investigated by terahertz time-domain spectroscopy (TDS) in reflection mode. It was found that waveforms of reflected signals from normal and cancer tissues were well distinguished so it can be concluded that it is easy to discriminate gastric cancer tissue from normal by using THz TDS.
NASA Astrophysics Data System (ADS)
Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.
2017-03-01
Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.
Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies
NASA Astrophysics Data System (ADS)
Bazyar, Soha; Inscoe, Christina R.; O'Brian, E. Timothy; Zhou, Otto; Lee, Yueh Z.
2017-12-01
Minibeam radiation therapy (MBRT) delivers an ultrahigh dose of x-ray (⩾100 Gy) in 200-1000 µm beams (peaks), separated by wider non-irradiated regions (valleys) usually as a single temporal fraction. Preclinical studies performed at synchrotron facilities revealed that MBRT is able to ablate tumors while maintaining normal tissue integrity. The main purpose of the present study was to develop an efficient and accessible method to perform MBRT using a conventional x-ray irradiator. We then tested this new method both in vitro and in vivo. Using commercially available lead ribbon and polyethylene sheets, we constructed a collimator that converted the cone beam of an industrial irradiator to 44 identical beams (collimator size ≈ 4 × 10 cm). The dosimetry characteristics of the generated beams were evaluated using two different radiochromic films (beam FWHM = 246 ± 32 µm center-to-center = 926 ± 23 µm peak-to-valley dose ratio = 24.35 ± 2.10 collimator relative output factor = 0.84 ± 0.04). Clonogenic assays demonstrated the ability of our method to induce radiobiological cell death in two radioresistant murine tumor cell lines (TRP = glioblastoma B16-F10 = melanoma). A radiobiological equivalent dose (RBE) was calculated by evaluating the acute skin response to graded doses of MBRT and conventional radiotherapy (CRT). Normal mouse skin demonstrated resistance to doses up to 150 Gy on peak. MBRT significantly extended the survival of mice with flank melanoma tumors compared to CRT when RBE were applied (overall p < 0.001). Loss of spatial resolution deep in the tissue has been a major concern. The beams generated using our collimator maintained their resolution in vivo (mouse brain tissue) and up to 10 cm deep in the radiochromic film. In conclusion, the initial dosimetric, in vitro and in vivo evaluations confirmed the utility of this affordable and easy-to-replicate minibeam collimator for future preclinical studies.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.
2011-03-01
The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.
Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.
Klinke, David J
2016-01-01
In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.
Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling
Klinke, David J
2016-01-01
In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis. PMID:27308541
PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE
Kahn, Steven E.; Cooper, Mark E.; Del Prato, Stefano
2014-01-01
Normal regulation of glucose metabolism is determined by a feedback loop involving the islet β-cell and insulin-sensitive tissues in which tissue sensitivity to insulin determines the magnitude of the β-cell response. When insulin resistance is present, the β-cell maintains normal glucose tolerance by increasing insulin output. It is only when the β-cell is incapable of releasing sufficient insulin in the presence of insulin resistance that glucose levels rise. While β-cell dysfunction has a clear genetic component, environmental changes play a vital role. Modern approaches have also informed regarding the importance of hexoses, amino acids and fatty acids in determining insulin resistance and β-cell dysfunction as well as the potential role of alterations in the microbiome. A number of new treatment approaches have been developed, but more effective therapies that slow the progressive loss of β-cell function are needed. Recent clinical trials have provided important information regarding approaches to prevent and treat type 2 diabetes as well as some of the adverse effects of these interventions. However, additional long-term studies of medications and bariatric surgery are required in order to identify novel approaches to prevention and treatment, thereby reducing the deleterious impact of type 2 diabetes. PMID:24315620
Wang, Huiya; Feng, Jun; Wang, Hongyu
2017-07-20
Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.
Epigenetic silencing of CYP24 in the tumor microenvironment
Johnson, Candace S.; Chung, Ivy; Trump, Donald L.
2010-01-01
Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059
The Influence of Interleukin-4 on Ligament Healing
Chamberlain, Connie S; Leiferman, Ellen M; Frisch, Kayt E; Wang, Sijian; Yang, Xipei; Brickson, Stacey L; Vanderby, Ray
2011-01-01
Despite a complex cascade of cellular events to reconstruct the damaged extracellular matrix, ligament healing results in a mechanically inferior scarred ligament. During normal healing, granulation tissue expands into any residual normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To control creeping substitution and possibly enhance the repair process, the anti-inflammatory cytokine, interleukin-4 (IL-4) was administered to rats prior to and after rupture of their medial collateral ligaments. In vitro experiments demonstrated a time-dependent effect on fibroblast proliferation after interleukin-4 treatment. In vivo treatments with interleukin-4 (100 ng/ml i.v.) for 5 days resulted in decreased wound size and type III collagen and increased type I procollagen, indicating a more regenerative early healing in response to the interleukin-4 treatment. However, continued treatment of interleukin-4 to day 11 antagonized this early benefit and slowed healing. Together, these results suggest that interleukin-4 influences the macrophages and T-lymphocytes but also stimulates fibroblasts associated with the proliferative phase of healing in a dose-, cell-, and time-dependent manner. Although treatment significantly influenced healing in the first week after injury, interleukin-4 alone was unable to maintain this early regenerative response. PMID:21518087
2014-01-01
Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766
The expression of bcl-2 and bcl-6 protein in normal and malignant transitional epithelium.
Lin, Zhenhua; Kim, Hankyeom; Park, Hongseok; Kim, Youngsik; Cheon, Jun; Kim, Insun
2003-08-01
The bcl-2 proto-oncogene plays a key role in cell longevity by preventing apoptosis. Bcl-2 is important in developing and maintaining the normal function of lymphoid and epithelial tissues. The bcl-6 protein is a 96 kDa nuclear protein selectively expressed in mature B cells within normal germinal centers as well as in their transformed counterparts in diffuse large B cell lymphoma. Recently, the bcl-6 protein has also been reported to be expressed in normal skin and epidermal neoplasms. In this study, 47 cases of transitional cell carcinomas (TCCs) were immunohistochemically studied for bcl-2 and bcl-6 protein expression. The results showed that bcl-2 was expressed only on basal layer cells, whereas bcl-6 expression was restricted to the superficial layers in the normal transitional epithelium. Von Brunn's nests showed strong immunostaining to bcl-2, but were negative to bcl-6. Among 47 TCCs, 15 (32.6%) and 29 (61.7%) cases were positive for bcl-2 and bcl-6, respectively. Compared with the normal transitional epithelium, the expression of bcl-2 was significantly decreased, whereas bcl-6 expression was significantly increased in TCCs. Additionally, the strong expression of bcl-6 had a positive correlation with the histopathologic grade of TCC. In conclusion, bcl-2 and bcl-6 proteins may play a role in the pathogenesis of TCCs, and bcl-6 expression reflects histopathologic grade.
Chew, G L; Huo, C W; Huang, D; Blick, T; Hill, P; Cawson, J; Frazer, H; Southey, M C; Hopper, J L; Britt, K; Henderson, M A; Haviv, I; Thompson, E W
2014-11-01
Mammographic density (MD) is a strong risk factor for breast cancer. It is altered by exogenous endocrine treatments, including hormone replacement therapy and Tamoxifen. Such agents also modify breast cancer (BC) risk. However, the biomolecular basis of how systemic endocrine therapy modifies MD and MD-associated BC risk is poorly understood. This study aims to determine whether our xenograft biochamber model can be used to study the effectiveness of therapies aimed at modulating MD, by examine the effects of Tamoxifen and oestrogen on histologic and radiographic changes in high and low MD tissues maintained within the biochamber model. High and low MD human tissues were precisely sampled under radiographic guidance from prophylactic mastectomy fresh specimens of high-risk women, then inserted into separate vascularized murine biochambers. The murine hosts were concurrently implanted with Tamoxifen, oestrogen or placebo pellets, and the high and low MD biochamber tissues maintained in the murine host environment for 3 months, before the high and low MD biochamber tissues were harvested for histologic and radiographic analyses. The radiographic density of high MD tissue maintained in murine biochambers was decreased in Tamoxifen-treated mice compared to oestrogen-treated mice (p = 0.02). Tamoxifen treatment of high MD tissue in SCID mice led to a decrease in stromal (p = 0.009), and an increase in adipose (p = 0.023) percent areas, compared to placebo-treated mice. No histologic or radiographic differences were observed in low MD biochamber tissue with any treatment. High MD biochamber tissues maintained in mice implanted with Tamoxifen, oestrogen or placebo pellets had dynamic and measurable histologic compositional and radiographic changes. This further validates the dynamic nature of the MD xenograft model, and suggests the biochamber model may be useful for assessing the underlying molecular pathways of Tamoxifen-reduced MD, and in testing of other pharmacologic interventions in a preclinical model of high MD.
Automated classification of tissue by type using real-time spectroscopy
NASA Astrophysics Data System (ADS)
Benaron, David A.; Cheong, Wai-Fung; Duckworth, Joshua L.; Noles, Kenneth; Nezhat, Camran; Seidman, Daniel; Hintz, Susan R.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W., Jr.; Liu, Frank W.; Stevenson, David K.; Kermit, Eben L.
1997-12-01
Each tissue type has a unique spectral signature (e.g. liver looks distinct from bowel due to differences in both absorbance and in the way the tissue scatters light). While differentiation between normal tissues and tumors is not trivial, automated discrimination among normal tissue types (e.g. nerve, artery, vein, muscle) is feasible and clinically important, as many medical errors in medicine involve the misidentification of normal tissues. In this study, we have found that spectroscopic differentiation of tissues can be successfully applied to tissue samples (kidney and uterus) and model systems (fruit). Such optical techniques may usher in use of optical tissue diagnosis, leading to automated and portable diagnostic devices which can identify tissues, and guide use of medical instruments, such as during ablation or biopsy.
Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.
Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A
2009-05-01
Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.
Diagnosis of breast cancer by tissue analysis
Bhattacharyya, Debnath; Bandyopadhyay, Samir Kumar
2013-01-01
In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent. PMID:23372340
Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C
2007-05-21
The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.
Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V
2013-10-15
A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.
Vitamin A Status is Associated With T-Cell Responses In Bangladeshi Men
USDA-ARS?s Scientific Manuscript database
Recommendations for vitamin A intake are based on maintaining liver stores of equal to or greater than 0.070 umol/g, which is sufficient to maintain normal vision. We propose that higher levels may be required to maintain normal immune function. To test this hypothesis, we conducted an 8 wk resident...
Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro
2017-01-01
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.
PIXE analysis of tumors and localization behavior of a lanthanide in nude mice
NASA Astrophysics Data System (ADS)
Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu
1984-04-01
We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.
[Novel artificial lamina for prevention of epidural adhesions after posterior cervical laminectomy].
Lü, Chaoliang; Song, Yueming; Liu, Hao; Liu, Limin; Gong, Quan; Li, Tao; Zeng, Jiancheng; Kong, Qingquan; Pei, Fuxing; Tu, Chongqi; Duan, Hong
2013-07-01
To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Fifteen 2-year-old male goats [weighing, (30 +/- 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell's degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell's degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= -2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P < 0.05), but no significant difference was found between experimental group and normal group (P > 0.05). MRI showed cerebrospinal fluid signal was unobstructed and no soft tissue projected into the spinal canal in the experimental group; scar tissue projected into the spinal canal and the dura were compressed by scar tissue in the control group. HE staining and Masson trichrome staining showed that artificial lamina had no obvious degradation with high integrity, some new bone formed at interface between the artificial material and bone in the experimental group; fibrous tissue grew into defect in the control group. The MAACP/n-HA artificial lamina could maintaine good biomechanical properties for a long time in vivo and could effectively prevent the epidural scar from growing in the lamina defect area.
Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L
2017-05-01
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.
Resonance Raman of BCC and normal skin
NASA Astrophysics Data System (ADS)
Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.
2017-02-01
The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.
Low Testosterone Alters the Activity of Mouse Prostate Stem Cells.
Zhou, Ye; Copeland, Ben; Otto-Duessel, Maya; He, Miaoling; Markel, Susan; Synold, Tim W; Jones, Jeremy O
2017-04-01
Low serum testosterone (low T) has been repeatedly linked to worse outcomes in men with newly diagnosed prostate cancer (PC). How low T contributes to these outcomes is unknown. Here we demonstrate that exposure to low T causes significant changes in the mouse prostate and prostate stem cells. Mice were castrated and implanted with capsules to achieve castrate, normal, or sub-physiological levels of T. After 6 weeks of treatment, LC-MS/MS was used to quantify the levels of T and dihydrotestosterone (DHT) in serum and prostate tissue. FACS was used to quantify the percentages of purported prostate stem and transit amplifying (TA) cells in mouse prostates. Prostate tissues were also stained for the presence of CD68+ cells and RNA was extracted from prostate tissue or specific cell populations to measure changes in transcript levels with low T treatment. Despite having significantly different levels of T and DHT in the serum, T and DHT concentrations in prostate tissue from different T treatment groups were similar. Low T treatment resulted in significant alterations in the expression of androgen biosynthesis genes, which may be related to maintaining prostate androgen levels. Furthermore, the expression of androgen-regulated genes in the prostate was similar among all T treatment groups, demonstrating that the mouse prostate can maintain functional levels of androgens despite low serum T levels. Low T increased the frequency of prostate stem and TA cells in adult prostate tissue and caused major transcriptional changes in those cells. Gene ontology analysis suggested that low T caused inflammatory responses and immunofluorescent staining indicated that low T treatment led to the increased presence of CD68+ macrophages in prostate tissue. Low T alters the AR signaling axis which likely leads to maintenance of functional levels of prostate androgens. Low T also induces quantitative and qualitative changes in prostate stem cells which appear to lead to inflammatory macrophage infiltration. These changes are proposed to lead to an aggressive phenotype once cancers develop and may contribute to the poor outcomes in men with low T. Prostate 77:530-541, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Wang, He; Zhang, Yong
2015-10-01
To compare stretched-exponential and monoexponential model diffusion-weighted imaging (DWI) in prostate cancer and normal tissues. Twenty-seven patients with prostate cancer underwent DWI exam using b-values of 0, 500, 1000, and 2000 s/mm(2) . The distributed diffusion coefficients (DDC) and α values of prostate cancer and normal tissues were obtained with stretched-exponential model and apparent diffusion coefficient (ADC) values using monoexponential model. The ADC, DDC (both in 10(-3) mm(2)/s), and α values (range, 0-1) were compared among different prostate tissues. The ADC and DDC were also compared and correlated in each tissue, and the standardized differences between DDC and ADC were compared among different tissues. Data were obtained for 31 cancers, 36 normal peripheral zone (PZ) and 26 normal central gland (CG) tissues. The ADC (0.71 ± 0.12), DDC (0.60 ± 0.18), and α value (0.64 ± 0.05) of tumor were all significantly lower than those of the normal PZ (1.41 ± 0.22, 1.47 ± 0.20, and 0.85 ± 0.09) and CG (1.25 ± 0.14, 1.32 ± 0.13, and 0.82 ± 0.06) (all P < 0.05). ADC was significantly higher than DDC in cancer, but lower than DDC in the PZ and CG (all P < 0.05). The ADC and DDC were strongly correlated (R(2) = 0.99, 0.98, 0.99, respectively, all P < 0.05) in all the tissue, and standardized difference between ADC and DDC of cancer was slight but significantly higher than that in normal tissue. The stretched-exponential model DWI provides more parameters for distinguishing prostate cancer and normal tissue and reveals slight differences between DDC and ADC values. © 2015 Wiley Periodicals, Inc.
The Resistance of Certain Tissues to Invasion
Eisenstein, Reuben; Sorgente, Nino; Soble, Lawrence W.; Miller, Alexander; Kuettner, Klaus E.
1973-01-01
If puppy tissues are explanted onto the chick chorioallantoic membrane, those tissues which normally have a blood supply are rapidly invaded by vascularized mesenchyme of host origin. Hyaline cartilage, a tissue virtually devoid of blood vessels, is impenetrable by proliferating mesenchyme of the host, while calcified cartilage, which normally is vascularized, is penetrable. The stroma of the cornea, another normally avascular tissue, is readily penetrable, but Descemet's membrane forms a barrier to invasion by host tissues. The experimental system used permits the design of experiments in which the study of factors responsible for the resistance of tissues such as cartilage to invasion can be undertaken. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4129060
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
NASA Astrophysics Data System (ADS)
Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür
2015-03-01
In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.
NASA Astrophysics Data System (ADS)
Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.
2015-03-01
The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.
Christensen, A. Kent
1971-01-01
A simple method has been developed that allows frozen thin sections of fresh-frozen tissue to be cut on a virtually unmodified ultramicrotome kept at room temperature. A bowl-shaped Dewar flask with a knifeholder in its depths replaces the stage of the microtome; a bar extends down into the bowl from the microtome's cutting arm and bears the frozen tissue near its lower end. When the microtome is operated, the tissue passes a glass or diamond knife in the depths of the bowl as in normal cutting. The cutting temperature is maintained by flushing the bowl with cold nitrogen gas, and can be set anywhere from about -160°C up to about -30°C. The microtome is set for a cutting thickness of 540–1000 A. Sections are picked up from the dry knife edge, and are placed on membrane-coated grids, flattened with the polished end of a copper rod, and either dried in nitrogen gas or freeze-dried. Throughout the entire process the tissue is kept cold and does not come in contact with any solvent. The morphology seen in frozen thin sections of rat pancreas and liver generally resembles that in conventional preparations, although freezing damage and low contrast limit the detail that can be discerned. Among unusual findings is a frequent abundance of mitochondrial granules in material prepared by this method. PMID:4942776
Reconstitution of full-thickness skin by microcolumn grafting.
Tam, Joshua; Wang, Ying; Vuong, Linh N; Fisher, Jeremy M; Farinelli, William A; Anderson, R Rox
2017-10-01
In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D
2015-03-01
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1
NASA Technical Reports Server (NTRS)
Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.
1998-01-01
The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.
Association of tooth brushing behavior with oral hygiene index among students using fixed appliance
NASA Astrophysics Data System (ADS)
Ria, N.; Eyanoer, P.
2018-03-01
Uses of fixed appliance have become popular recently. The purpose of its use is to correct malposition of teeth in order to normalize the masticatory function and to eliminate the accumulation of food remain between the teeth. These will prevent the formation of caries and any periodontal tissue disease. Fixed appliance patients must routinely maintain their oral hygiene. This study was an analytical survey with cross-sectional design to know the relationship between behavior in tooth brushing of students using thefixed appliance and oral hygiene in Poltekkes Kemenkes Medan. The average of Oral Hygiene Index – Simplified (OHI-S) value of students using fixed appliance (2.68) was still above national target which is ≤2, and there was a relationship between behavior in tooth brushing of students using the fixed appliance and oral hygiene (p<0.02). In conclusion, to get good oral hygiene and to prevent caries formation and periodontal disease patients using fixed appliances should maintain their dental health.
Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita
2014-02-25
Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.
Cultured normal mammalian tissue and process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)
1993-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Beneficial Effects of X-Irradiation on Recovery of lesioned Mammalian Central Nervous Tissue
NASA Astrophysics Data System (ADS)
Kalderon, Nurit; Alfieri, Alan A.; Fuks, Zvi
1990-12-01
We examined the potential of x-irradiation, at clinical dose levels, to manipulate the cellular constituents and thereby change the consequences of transection injury to adult mammalian central nervous tissue (rat olfactory bulb). Irradiation resulted in reduction or elimination of reactive astrocytes at the site of incision provided that it was delivered within a defined time window postinjury. Under conditions optimal for the elimination of gliosis (15-18 days postinjury), irradiation of severed olfactory bulbs averted some of the degenerative consequences of lesion. We observed that irradiation was accompanied by prevention of tissue degeneration around the site of lesion, structural healing with maintenance of the typical cell lamination, and rescue of some axotomized mitral cells (principal bulb neurons). Thus radiation resulted in partial preservation of normal tissue morphology. It is postulated that intrusive cell populations are generated in response to injury and reactive astrocytes are one such group. Our results suggest that selective elimination of these cells by irradiation enabled some of the regenerative processes that are necessary for full recovery to maintain their courses. The cellular targets of these cells, their modes of intervention in recovery, and the potential role of irradiation as a therapeutic modality for injured central nervous system are discussed.
Reconstitution of full‐thickness skin by microcolumn grafting
Wang, Ying; Vuong, Linh N.; Fisher, Jeremy M.; Farinelli, William A.; Anderson, R. Rox
2016-01-01
Abstract In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long‐standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm‐scale, full‐thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. PMID:27296503
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
Raman spectroscopy of oral tissues: correlation of spectral and biochemical markers
NASA Astrophysics Data System (ADS)
Singh, S. P.; Krishna, C. Murali
2014-03-01
Introduction Optical spectroscopic methods are being explored as novel tools for early and non-invasive cancer diagnosis. Both ex vivo and in vivo Raman spectroscopic studies carried out in oral cancer over the past decade have demonstrated that spectra of normal tissues are rich in lipids while tumor spectra show predominance of proteins. An accurate understanding of spectral features with respect to the biochemical composition is a pre-requisite before transferring these technologies for routine clinical usage. Therefore, in the present study, we have carried out Raman and biochemical studies on same tissues to correlate spectral markers and biochemical composition of normal and tumor oral tissues. Materials and Methods Spectra of 20 pairs of normal and tumor oral tissues were acquired using fiber-optic probe coupled HE-785 Raman spectrometer. Intensity associated with lipid (1440 cm-1) and protein (1450 and 1660 cm-1) bands were computed using curve-deconvolution method. Same tissues were then subjected to biochemical estimations of major biomolecules i.e., protein, lipid and phospholipids. Results and Discussion The intensity of the lipid band was found to be higher in normal tissues with respect to tumors, and the protein band was higher in tumors compared to normal tissues. Biochemical estimation yielded similar results i.e. high protein to lipid or phospholipid ratio in tumors with-respect to normal tissues. These differences were found to be statistically significant. Conclusion Findings of curve-deconvolution and biochemical estimation correlate very well and corroborate the spectral profile noted in earlier studies.
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.
2011-01-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342
Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L
2011-05-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.
Breaking ignorance: the case of the brain.
Wekerle, H
2006-01-01
Immunological self-tolerance is maintained through diverse mechanisms, including deletion of autoreactive immune cells following confrontation with autoantigen in the thymus or in the periphery and active suppression by regulatory cells. A third way to prevent autoimmunity is by hiding self tissues behind a tissue barrier impermeable for circulating immune cells. The latter mechanism has been held responsible for self-tolerance within the nervous tissue. Indeed, the nervous tissues enjoy a conditionally privileged immune status: they are normally unreachable for self-reactive T and B cells, they lack lymphatic drainage, and they are deficient in local antigen-presenting cells. Yet the immune system is by no means fully ignorant of the nervous structures. An ever-growing number of brain specific autoantigens is expressed within the thymus, which ensures an early confrontation with the unfolding T cell repertoire, and there is evidence that B cells also contact CNS-like structures outside of the brain. Then pathological processes such as neurodegeneration commonly lift the brain's immune privilege, shifting the local milieus from immune-hostile to immune-friendly. Finally, brain-reactive T cells, which abound in the healthy immune repertoire, but remain innocuous throughout life, can be activated and gain access to their target tissues. On their way, they take an ordered migration through peripheral lymphoid tissues and blood circulation, and undergo a profound reprogramming of their gene expression profile, which renders them fit to enter the nervous system and to interact with local cellule elements.
Li, Zhou; Deng, Guanhua; Li, Zhe; Xin, Sherman Xuegang; Duan, Song; Lan, Maoying; Zhang, Sa; Gao, Yixin; He, Jun; Zhang, Songtao; Tang, Hongming; Wang, Weiwei; Han, Shuai; Yang, Qing X; Zhuang, Ling; Hu, Jiani; Liu, Feng
2016-11-01
Knowledge of dielectric properties of malignant human tissues is necessary for the recently developed magnetic resonance (MR) technique called MR electrical property tomography. This technique may be used in early tumor detection based on the obvious differentiation of the dielectric properties between normal and malignant tissues. However, the dielectric properties of malignant human tissues in the scale of the Larmor frequencies are not completely available in the literature. In this study, the authors focused only on the dielectric properties of colorectal tumor tissue. The dielectric properties of 504 colorectal malignant samples excised from 85 patients in the scale of the Larmor frequencies were measured using the precision open-ended coaxial probe method. The obtained complex-permittivity data were fitted to the single-pole Cole-Cole model. The median permittivity and conductivity for the malignant tissue sample were 79.3 and 0.881 S/m at 128 MHz, which were 14.6% and 17.0% higher, respectively, than those of normal tissue samples. Significant differences between normal and malignant tissues were found for the dielectric properties (p < 0.05). Experimental results indicated that the dielectric properties were significantly different between normal and malignant tissues for colorectal tissue. This large-scale clinical measurement provides more subtle base data to validate the technique of MR electrical property tomography.
Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred
2008-10-01
Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and breast cancer tissue. Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed Western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Applying the four IDE-directed antibodies, we demonstrated IDE expression at the protein level, by means of immunoblotting and immunocytochemistry, in each of the tumor cell lines analyzed. Insulin-degrading enzyme protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in each of the cell lines and tissues assessed. In conclusion, we performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells thus extending our knowledge on the cellular and tissue distribution of IDE, an enzyme which to date has mainly been studied in connection with Alzheimer's disease and diabetes but not in cancer.
Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy
Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.
2011-01-01
Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596
Evaluation of immunoreactivity of normal tissues from dogs, using monoclonal antibody B72.3.
Clemo, F A; DeNicola, D B; Zimmermann, J L
1994-08-01
Monoclonal antibody (MAB) B72.3, which recognizes human tumor-associated glycoprotein-72, has immunoreactivity for malignant epithelial neoplasms in human beings and dogs. To further characterize the range of immunoreactivity of MAB B72.3 in canine tissues, MAB B72.3 and 2 other tumor-associated glycoprotein-72 antibodies (MAB CC49 and CC83) were tested against a wide spectrum of normal tissues from dogs. Immunoreactivity was detected, using an avidin-biotin-complex immunoperoxidase method. Monoclonal antibody B72.3 did not stain most types of normal canine tissues, but various types of epithelial cells within the gastrointestinal and respiratory tract mucosae, salivary gland, esophagus, epididymis, uterus, thymus, hair follicle, and apocrine glands of the anal sac had variable staining with MAB B72.3. A similar range of immunoreactivity in comparable types of normal tissues was seen for MAB CC49 and CC83; however, MAB CC49, but not MAB B72.3 and CC83, stained the endothelium of capillaries and small vessels in most normal tissues. Staining of frozen and paraffin-embedded tissues was similar. In conclusion, we found that MAB B72.3, CC49, and CC83 had selected immunoreactivity for specific types of normal canine epithelial cells, especially those involved with mucin production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Qingliang; Guo Zhouyi; Wei Huajiang
2011-10-31
Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less
Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.
Xiong, Hui; Zhang, Jiangnan
2017-12-01
The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.
Human brain cancer studied by resonance Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.
2012-11-01
The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.
Komolova, G S; Troitskaia, E N; Egorov, I A; Tigranian, R A
1982-01-01
Changes in nucleic acid metabolism of the spleen and liver of rats flown for 18.5 days on Cosmos-112 were investigated. Postflight changes in the liver RNA synthesis after an additional stress effect (immobilization) in the flown rats were expressed to a lesser degree than in the controls. The DNA synthesis remained essentially at the preflight level. The tissue content of nucleic acids suggests that postflight the dystrophic changes induced by the additional stress effect increased. It is very likely that an exposure to space flight effects contributes to the depletion of compensatory mechanisms maintaining the normal level of metabolic processes.
Yu, Qingxiong; Sheng, Lingling; Yang, Mei; Zhu, Ming; Huang, Xiaolu; Li, Qingfeng
2014-01-01
The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.
A chamber for the perfusion of in vitro tissue with multiple solutions
Covington, James A.; Wall, Mark J.
2013-01-01
There are currently no practical systems that allow extended regions (>5 mm2) of a tissue slice in vitro to be exposed, in isolation, to changes in ionic conditions or to pharmacological manipulation. Previous work has only achieved this at the expense of access to the tissue for recording electrodes. Here, we present a chamber that allows a tissue slice to be maintained in multiple solutions, at physiological temperatures, and preserves the ability to record from the slice. We demonstrate the effectiveness of the tissue bath with respect to minimizing the mixing of the solutions, maintaining the viability of the tissue, and preserving the ability to record from the slice simultaneously. PMID:23576703
Skin cancer margin analysis within minutes with full-field OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dalimier, Eugénie; Ogrich, Lauren; Morales, Diego; Cusack, Carrie Ann; Abdelmalek, Mark; Boccara, Claude; Durkin, John
2017-02-01
Non-melanoma skin cancer (NMSC) is the most common cancer. Treatment consists of surgical removal of the skin cancer. Traditional excision involves the removal of the visible skin cancer with a significant margin of normal skin. On cosmetically sensitive areas, Mohs micrographic tissue is the standard of care. Mohs uses intraoperative microscopic margin assessment which minimizes the surgical defect and can help reduce the recurrence rate by a factor of 3. The current Mohs technique relies on frozen section tissue slide preparation which significantly lengthens operative time and requires on-site trained histotechnicians. Full-Field Optical Coherence Tomography (FFOCT) is a novel optical imaging technique which provides a quick and efficient method to visualize cancerous areas in minutes, without any preparation or destruction of the tissue. This study aimed to evaluate the potential of FFOCT for the analysis of skin cancer margins during Mohs surgery. Over 150 images of Mohs specimens were acquired intraoperatively with FFOCT before frozen section analysis. The imaging procedure took less than 5 minutes for each specimen. No artifacts on histological preparation were found arising from FFOCT manipulation; however frozen section artifact was readily seen on FFOCT. An atlas was established with FFOCT images and corresponding histological slides to reveal FFOCT reading criteria of normal and cancerous structures. Blind analysis showed high concordance between FFOCT and histology. FFOCT can potentially reduce recurrence rates while maintaining short surgery times, optimize clinical workflow, and decrease healthcare costs. For the patient, this translates into smaller infection risk, decreased stress, and better comfort.
Kropski, Jonathan A.; Richmond, Bradley W.; Gaskill, Christa F.; Foronjy, Robert F.
2017-01-01
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis. PMID:29040010
On the possibility of spectroscopic cancer diagnostics
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.
1993-07-01
The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, Alexandra, E-mail: alexandra-moignier@uiowa.edu; Gelover, Edgar; Wang, Dongxu
Purpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). Methods and Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board–approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparingmore » to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. Conclusion: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.« less
Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane
2016-01-01
Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.
Hammond, Edward; Khurana, Ashwani; Shridhar, Viji; Dredge, Keith
2014-01-01
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer. PMID:25105093
Strobel, Oliver; Dadabaeva, Nigora; Felix, Klaus; Hackert, Thilo; Giese, Nathalia A; Jesenofsky, Ralf; Werner, Jens
2016-02-01
Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V.; Kim, Jiyeon; James, Daylon; Rafii, Shahin
2010-01-01
The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines. PMID:18256534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita
2010-03-12
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less
Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh
2013-01-01
The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595
Hospital For Special Surgery/Immune System REgulation In Musculoskeletal Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Meffre; Lionel Ivashkiv
2007-08-20
Inflammation on musculoskeletal disorders such as rheumatoid arthritis (RA) is the result of dysregulation of the immune system. When the immune system, which maintains the integrity of the organism in an environment rich in infectious microbes, becomes misdirected toward components of one’s own tissue, autoimmune disease can result with autoantibodies contributing to the inflammation and tissue damage. RA is a chronic autoimmune disease marked by severe inflammation that causes pain, swelling, stiffness and loss of function in the joints, which is estimated to affect 1 percent of the US adult population. Furthermore, autoimmune diseases, which affect women at a highermore » rate, are the fourth largest cause of disability among women in the US and among the top ten causes of death. The long range goal of this study is to elucidate the mechanisms that regulate the generation of autoantibodies by B cells in normal individuals and in patients with autoimmune diseases and provide insights into potential therapeutic interventions.« less
Recent bed rest results and countermeasure development at NASA
NASA Technical Reports Server (NTRS)
Hargens, A. R.
1994-01-01
Bedrest studies of normal subjects provide opportunities to understand physiologic responses to supine posture and inactivity. Furthermore, head-down tilt has been a valuable procedure to investigate adaptation to microgravity and development of countermeasures to maintain the health and well-being of humans during space-flight. Recent bedrest experiments at NASA have ranged in duration from a few hours to 17 weeks. Acute studies of 6 degrees head-down tilt indicate that elevation of capillary blood pressure from 28 to 34 mm Hg and increased capillary perfusion in tissues of the head cause facial and intracranial edema. Intracranial pressure increases from 2 to 17 mm Hg going from upright posture to 6 degrees head-down tilt. Microvessels of the head have a low capacity to constrict and diminish local perfusion. Elevation of blood and tissue fluid pressures/flow in the head may also explain the higher headward bone density associated with long-term head-down tilt. These mechanistic studies of head-down tilt, along with a better understanding of the relative stresses involved with upright posture and lower body negative pressure, have facilitated development of suitable physiologic countermeasures to maintain astronaut health during microgravity. Presently no exercise hardware is available to provide a blood pressure gradient from head to feet in space. However, recent studies in our laboratory suggest that treadmill exercise using a graded lower-body compression suit and 100 mmHg lower body negative pressure provides equivalent or greater physiologic stress than similar upright exercise on Earth. Therefore, exercise within a lower body negative pressure chamber may provide a cost-effective and simple countermeasure to maintain the cardiovascular and neuro-musculoskeletal systems of astronauts during long-duration flight.
A Compendium of Canine Normal Tissue Gene Expression
Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand
2011-01-01
Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323
Comparative study of Hsp27, GSK3β, Wnt1 and PRDX3 in Hirschsprung's disease.
Gao, Hong; Liu, Xiaomei; Chen, Dong; Lv, Liangying; Wu, Mei; Mi, Jie; Wang, Weilin
2014-06-01
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system characterized by aganglionosis in distal gut. In this study, we used two-dimensional gel electrophoresis (2-DE) technology coupled with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis to identify differentially expressed proteins in the aganglionic (stenotic) and ganglionic (normal) colon segment tissues from patients with HSCR. We identified 15 proteins with different expression levels between the stenotic and the normal colon segment tissues from patients with HSCR. Nine proteins were upregulated and six proteins downregulated in the stenotic colon segment tissues compared to the normal colon segment tissues. Based on the biological functions, we selected the Hsp27 upregulated proteins and the PRDX3 downregulated proteins to confirm their expression in 20 patients. The protein and mRNA expressions of Hsp27 were statistically higher in the stenotic colon segment tissues than in the normal colon segment tissues, whereas the protein and mRNA expressions of PRDX3 were statistically lower in the stenotic colon segment tissues than in the normal colon segment tissues. These findings of changes in mRNA and protein in tissues from patients with HSCR provide information which may be helpful in understanding the pathomechanism that is implicated in the disease. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
Differential distribution of blood and lymphatic vessels in the murine cornea.
Ecoiffier, Tatiana; Yuen, Don; Chen, Lu
2010-05-01
Because of its unique characteristics, the cornea has been widely used for blood and lymphatic vessel research. However, whether limbal or corneal vessels are evenly distributed under normal or inflamed conditions has never been studied. The purpose of this study was to investigate this question and to examine whether and how the distribution patterns change during corneal inflammatory lymphangiogenesis (LG) and hemangiogenesis (HG). Corneal inflammatory LG and HG were induced in two most commonly used mouse strains, BALB/c and C57BL/6 (6-8 weeks of age), by a standardized two-suture placement model. Oriented flat-mount corneas together with the limbal tissues were used for immunofluorescence microscope studies. Blood and lymphatic vessels under normal and inflamed conditions were analyzed and quantified to compare their distributions. The data demonstrate, for the first time, greater distribution of both blood and lymphatic vessels in the nasal side in normal murine limbal areas. This nasal-dominant pattern was maintained during corneal inflammatory LG, whereas it was lost for HG. Blood and lymphatic vessels are not evenly distributed in normal limbal areas. Furthermore, corneal LG and HG respond differently to inflammatory stimuli. These new findings will shed some light on corneal physiology and pathogenesis and on the development of experimental models and therapeutic strategies for corneal diseases.
Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells
Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose
2016-01-01
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer—namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)—in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating “cancer-ness,” thus potentially promoting specific hallmarks of metastasis. PMID:27881474
Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells.
Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose
2017-03-01
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
2015-06-15
Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less
Leonel, Ellen C R; Vilela, Janice M V; Paiva, Raísa E G; Jivago, José L P R; Amaral, Rodrigo S; Lucci, Carolina M
2018-01-01
Ovarian tissue transplantation could be a valuable technique for the preservation of endangered animals. The domestic cat affords an adequate experimental model for studies aimed at wild felids due to its phylogenetic similarity. Thus, this pilot study evaluated the efficacy of cat ovarian tissue autotransplantation to a peripheral site. Three adult queens were submitted to ovariohysterectomy. The ovaries were fragmented into eight pieces; two were fixed as a control and six were transplanted to subcutaneous tissue of the dorsal neck. Grafts were monitored weekly by ultrasound and fecal samples collected daily in order to monitor estradiol levels. Grafts were recovered on Days: 7, 14, 28, 49 and 63 post-transplantation for histological analyses. One graft was maintained in one animal for 8 months. A total of 2466 ovarian follicles were analyzed: 1406 primordial and 1060 growing follicles. All animals presented antral follicles in one or more of the grafts. The percentage of morphologically normal primordial follicles was always higher than 80%, except for Day 7 transplants. Although the proportion of growing follicles increased after transplantation, there was a general decrease in the percentage of morphologically normal growing follicles from Day 7 onwards. All animals demonstrated at least three estradiol peaks during the 63-day period, and one animal exhibited estrous behaviour on three occasions. Hormonal peaks directly correlated with the visualization of antral follicles (by ultrasound and/or histology) and the observation of estrous behaviour. Long-term results on one female showed the concentration of 37.8 pg/mL of serum estradiol on Day 233 post-grafting and the female exhibited estrous behaviour on several occasions. This graft showed one antral follicle, one luteinized follicle and two preantral follicles. In conclusion, cat ovary autotransplantation to the subcutaneous tissue restored ovarian function, with hormone production and antral follicle development, over both short and long term periods. This could be a valuable technique in the evaluation of ovarian cryopreservation methods in felids. Once the technique is shown successful, it may be applied in allografts or xenografts between different feline species. Copyright © 2017 Elsevier Inc. All rights reserved.
Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif
2013-01-01
Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937
NASA Astrophysics Data System (ADS)
Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin
2013-06-01
The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.
Enigmatic insight into collagen
Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant
2016-01-01
Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823
Selenium and the control of thyroid hormone metabolism.
Köhrle, Josef
2005-08-01
Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.
Oros Klein, Kathleen; Grinek, Stepan; Bernatsky, Sasha; Bouchard, Luigi; Ciampi, Antonio; Colmegna, Ines; Fortin, Jean-Philippe; Gao, Long; Hivert, Marie-France; Hudson, Marie; Kobor, Michael S; Labbe, Aurelie; MacIsaac, Julia L; Meaney, Michael J; Morin, Alexander M; O'Donnell, Kieran J; Pastinen, Tomi; Van Ijzendoorn, Marinus H; Voisin, Gregory; Greenwood, Celia M T
2016-02-15
DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. © The Author 2015. Published by Oxford University Press.
Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed
2015-04-01
We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.
Concentration of cadmium, nickel and aluminium in female breast cancer.
Romanowicz-Makowska, Hanna; Forma, Ewa; Bryś, Magdalena; Krajewska, Wanda M; Smolarz, Beata
2011-12-01
The aim of this study was to investigate the cadmium (Cd), nickel (Ni) and aluminium (Al) concentrations in female breast cancer and normal tissue. The concentration of metals in 16 non-cancerous breast tissues and 67 breast cancer samples was measured by flame atomic absorption spectrometry. In the case of normal breast tissue the concentrations were 0.61 ± 0.24 μg Cd/g dry tissue, 1.84 ± 0.67 μg Ni/g dry tissue, and 3.63 ± 1.00 μg Al/g dry tissue, whereas in breast cancer concentrations of metals were 0.76 ± 0.38 μg/g dry tissue, 2.26 ± 0.79 μg/g dry tissue, and 4.40 ± 1.82 μg/g dry tissue, respectively. The concentration of Cd and Al in normal breast tissue was significantly lower than in breast cancer. In the case of Ni concentration, we did not observe statistically significant differences between normal and cancerous tissue. There were no significant differences in concentration of studied metals, in breast cancer, in the context of age, menopausal status, and cancer histological grading. The data obtained show higher concentration of cadmium and aluminium and support a possible relationship between those metals and breast cancer.
NASA Astrophysics Data System (ADS)
Huang, H.; Shi, H.; Feng, S.; Lin, J.; Chen, W.; Huang, Z.; Li, Y.; Yu, Y.; Lin, D.; Xu, Q.; Chen, R.
2013-04-01
This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Zhifang; Li, Hui
2012-12-01
In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue
Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred
2013-01-01
Background Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and in breast cancer tissue (Radulescu et al., Int J Oncol 30:73; 2007). Materials and Methods Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Results Applying the four IDE-directed antibodies, we demonstrate IDE expression at the protein level, both by means of immunoblotting and immunocytochemistry, in all of the tumor cell lines analyzed. Besides, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in all of the cell lines and tissues assessed. Conclusions We performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells and thus extend knowledge about cellular and tissue distribution of IDE, an enzyme which so far has mainly been studied in connection with Alzheimer’s disease and diabetes but not in cancer. PMID:18813847
Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.
1996-01-01
The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339
Discrimination of serum Raman spectroscopy between normal and colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi
2011-07-01
Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.
The transcriptional programme of the androgen receptor (AR) in prostate cancer.
Lamb, Alastair D; Massie, Charlie E; Neal, David E
2014-03-01
The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.
Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A
2018-02-01
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Isidro, Raymond A; Cruz, Myrella L; Isidro, Angel A; Baez, Axel; Arroyo, Axel; González-Marqués, William A; González-Keelan, Carmen; Torres, Esther A; Appleyard, Caroline B
2015-01-01
AIM: To determine the expression of neurokinin-1 receptor (NK-1R), phosphorylated epidermal growth factor receptor (pEGFR), cyclooxygenase-2 (Cox-2), and vitamin D receptor (VDR) in normal, inflammatory bowel disease (IBD), and colorectal neoplasia tissues from Puerto Ricans. METHODS: Tissues from patients with IBD, colitis-associated colorectal cancer (CAC), sporadic dysplasia, and sporadic colorectal cancer (CRC), as well as normal controls, were identified at several centers in Puerto Rico. Archival formalin-fixed, paraffin-embedded tissues were de-identified and processed by immunohistochemistry for NK-1R, pEGFR, Cox-2, and VDR. Pictures of representative areas of each tissues diagnosis were taken and scored by three observers using a 4-point scale that assessed intensity of staining. Tissues with CAC were further analyzed by photographing representative areas of IBD and the different grades of dysplasia, in addition to the areas of cancer, within each tissue. Differences in the average age between the five patient groups were assessed with one-way analysis of variance and Tukey-Kramer multiple comparisons test. The mean scores for normal tissues and tissues with IBD, dysplasia, CRC, and CAC were calculated and statistically compared using one-way analysis of variance and Dunnett’s multiple comparisons test. Correlations between protein expression patterns were analyzed with the Pearson’s product-moment correlation coefficient. Data are presented as mean ± SE. RESULTS: On average, patients with IBD were younger (34.60 ± 5.81) than normal (63.20 ± 6.13, P < 0.01), sporadic dysplasia (68.80 ± 4.42, P < 0.01), sporadic cancer (74.80 ± 4.91, P < 0.001), and CAC (57.50 ± 5.11, P < 0.05) patients. NK-1R in cancer tissue (sporadic CRC, 1.73 ± 0.34; CAC, 1.57 ± 0.53) and sporadic dysplasia (2.00 ± 0.45) were higher than in normal tissues (0.73 ± 0.19). pEGFR was significantly increased in sporadic CRC (1.53 ± 0.43) and CAC (2.25 ± 0.47) when compared to normal tissue (0.07 ± 0.25, P < 0.05, P < 0.001, respectively). Cox-2 was significantly increased in sporadic colorectal cancer (2.20 ± 0.23 vs 0.80 ± 0.37 for normal tissues, P < 0.05). In comparison to normal (2.80 ± 0.13) and CAC (2.50 ± 0.33) tissues, VDR was significantly decreased in sporadic dysplasia (0.00 ± 0.00, P < 0.001 vs normal, P < 0.001 vs CAC) and sporadic CRC (0.47 ± 0.23, P < 0.001 vs normal, P < 0.001 vs CAC). VDR levels negatively correlated with NK-1R (r = -0.48) and pEGFR (r = -0.56) in normal, IBD, sporadic dysplasia and sporadic CRC tissue, but not in CAC. CONCLUSION: Immunohistochemical NK-1R and pEGFR positivity with VDR negativity can be used to identify areas of sporadic colorectal neoplasia. VDR immunoreactivity can distinguish CAC from sporadic cancer. PMID:25684939
NASA Astrophysics Data System (ADS)
Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan
2013-06-01
The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.
Brouse, Chad; Ortiz, Daniel; Su, Yan; Oronsky, Bryan; Scicinski, Jan; Cabrales, Pedro
2015-01-01
Transfusion of blood remains the gold standard for fluid resuscitation from hemorrhagic shock. Hemoglobin (Hb) within the red blood cell transports oxygen and modulates nitric oxide (NO) through NO scavenging and nitrite reductase. This study was designed to examine the effects of incorporating a novel NO modulator, RRx-001, on systemic and microvascular hemodynamic response after blood transfusion for resuscitation from hemorrhagic shock in a hamster window chamber model. In addition, to RRx-001 the role of low dose of nitrite (1 × 10(-9) moles per animal) supplementation after resuscitation was studied. Severe hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume (BV) and the hypovolemic state was maintained for 1 h. The animals received volume resuscitation by an infusion of 25% of BV using fresh blood alone or with added nitrite, or fresh blood treated with RRx-001 (140 mg/kg) or RRx-001 (140 mg/kg) with added nitrite. Systemic and microvascular hemodynamics were followed at baseline and at different time points during the entire study. Tissue apoptosis and necrosis were measured 8 h after resuscitation to correlate hemodynamic changes with tissue viability. Compared to resuscitation with blood alone, blood treated with RRx-001 decreased vascular resistance, increased blood flow and functional capillary density immediately after resuscitation and preserved tissue viability. Furthermore, in RRx-001 treated animals, both mean arterial pressure (MAP) and met Hb were maintained within normal levels after resuscitation (MAP >90 mmHg and metHb <2%). The addition of nitrite to RRx-001 did not significantly improve the effects of RRx-001, as it increased methemoglobinemia and lower MAP. RRx-001 alone enhanced perfusion and reduced tissue damage as compared to blood; it may serve as an adjunct therapy to the current gold standard treatment for resuscitation from hemorrhagic shock.
Kim, Jin You; Suh, Hie Bum; Kang, Hyun Jung; Shin, Jong Ki; Choo, Ki Seok; Nam, Kyung Jin; Lee, Seok Won; Jung, Young Lae; Bae, Young Tae
2016-05-01
The purpose of this study was to investigate prospectively whether the apparent diffusion coefficients (ADCs) of both breast cancer and normal fibroglandular tissue vary with the menstrual cycle and menopausal status. Institutional review board approval was obtained, and informed consent was obtained from each participant. Fifty-seven women (29 premenopausal, 28 postmenopausal) with newly diagnosed breast cancer underwent diffusion-weighted imaging twice (interval 12-20 days) before surgery. Two radiologists independently measured ADC of breast cancer and normal contralateral breast tissue, and we quantified the differences according to the phases of menstrual cycle and menopausal status. With normal fibroglandular tissue, ADC was significantly lower in postmenopausal than in premenopausal women (P = 0.035). In premenopausal women, ADC did not differ significantly between proliferative and secretory phases in either breast cancer or normal fibroglandular tissue (P = 0.969 and P = 0.519, respectively). In postmenopausal women, no significant differences were found between ADCs measured at different time intervals in either breast cancer or normal fibroglandular tissue (P = 0.948 and P = 0.961, respectively). The within-subject variability of the ADC measurements was quantified using the coefficient of variation (CV) and was small: the mean CVs of tumor ADC were 2.90 % (premenopausal) and 3.43 % (postmenopausal), and those of fibroglandular tissue ADC were 4.37 % (premenopausal) and 2.55 % (postmenopausal). Both intra- and interobserver agreements were excellent for ADC measurements, with intraclass correlation coefficients in the range of 0.834-0.974. In conclusion, the measured ADCs of breast cancer and normal fibroglandular tissue were not affected significantly by menstrual cycle, and the measurements were highly reproducible both within and between observers.
Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron
2014-04-01
The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu
2013-04-01
To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less
Benyamini, Yael; Gozlan, Miri; Weissman, Ariel
2017-12-01
Infertility could be highly stressful, particularly in a pronatalist culture. We aimed to develop the concept and a measure of normalization (maintaining normal life routines and feeling "normal") as a strategy that could enable women with infertility maintain their quality of life (QoL) while coping with this condition. We tested its associations with women's well-being, distress and QoL in Israel, where being childless is socially unacceptable and highly stigmatized. One-hundred and eighty Israeli women undergoing infertility treatment at a fertility community clinic filled in questionnaires assessing normalization-related coping strategies, QoL, and psychological adjustment (distress, wellbeing). Eight months later, 55 women conceived; 55 women who had not conceived completed a second questionnaire. At baseline, normalization was related to higher QoL and better adjustment. Structural equation modeling showed that QoL was impaired mainly among women who felt different than others, compared, and blamed themselves. Over time, normalization was overall unrelated to conception or to changes in adjustment yet was protective against decrease in well-being among women who already had a child. Infertility is highly stressful in a pronatalist culture like Israel. It requires treatment yet is not disabling. Patients who manage to maintain normal routines and not feel different than other people their age may experience better QoL and psychological adjustment.
NASA Astrophysics Data System (ADS)
Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju
2017-04-01
Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.
Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C
2015-02-01
Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.
Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E
2009-12-01
Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.
Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.
Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V
2004-12-01
To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.
Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers
NASA Astrophysics Data System (ADS)
Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao
1994-05-01
Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.
Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E
2015-04-01
Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology
NASA Astrophysics Data System (ADS)
Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.
2014-03-01
It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.
Chew, G L; Huang, D; Huo, C W; Blick, T; Hill, P; Cawson, J; Frazer, H; Southey, M D; Hopper, J L; Henderson, M A; Haviv, I; Thompson, E W
2013-07-01
Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk.
Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.
Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo
2017-05-30
Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingsong Lei; Xiaoyuan Deng; Huajiang Wei
2014-12-31
We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less
NASA Astrophysics Data System (ADS)
Devpura, Suneetha; Thakur, Jagdish S.; Poulik, Janet M.; Rabah, Raja; Naik, Vaman M.; Naik, Ratna
2012-02-01
We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of normal adrenal gland. Thin sections from both frozen and deparaffinized tissues, obtained from the same tissue specimen, were studied in conjunction with the pathological examination of the tissues. We found a significant difference in the spectral features of frozen sections of normal adrenal gland, neuroblastoma, and ganglioneuroma when compared to deparaffinized tissues. The quantitative analysis of the Raman data using chemometric methods of principal component analysis and discriminant function analysis obtained from the frozen tissues show a sensitivity and specificity of 100% each. The biochemical identification based on the spectral differences shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared to the neuroblastoma and ganglioneuroma frozen tissues. However, deparaffinized tissues show complete removal of these biochemicals in adrenal tissues. This study demonstrates that Raman spectroscopy combined with chemometric methods can successfully distinguish neuroblastoma and ganglioneuroma at cellular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.
Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less
Akers, Stacey N; Moysich, Kirsten; Zhang, Wa; Collamat Lai, Golda; Miller, Austin; Lele, Shashikant; Odunsi, Kunle; Karpf, Adam R
2014-02-01
We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment. Copyright © 2013 Elsevier Inc. All rights reserved.
Decoronation followed by dental implants placement: fundamentals, applications and explanations
Consolaro, Alberto; Ribeiro, Paulo Domingos; Cardoso, Maurício A.; Miranda, Dario A. Oliveira; Salfatis, Monica
2018-01-01
ABSTRACT Dental arches areas with teeth presenting dentoalveolar ankylosis and replacement root resorption can be considered as presenting normal bone, in full physiological remodeling process; and osseointegrated implants can be successfully placed. Bone remodeling will promote osseointegration, regardless of presenting ankylosis and/or replacement root resorption. After 1 to 10 years, all dental tissues will have been replaced by bone. The site, angulation and ideal positioning in the space to place the implant should be dictated exclusively by the clinical convenience, associated with previous planning. One of the advantages of decoronation followed by dental implants placement in ankylosed teeth with replacement resorption is the maintenance of bone volume in the region, both vertical and horizontal. If possible, the buccal part of the root, even if thin, should be preserved in the preparation of the cavity for the implant, as this will maintain gingival tissues looking fully normal for long periods. In the selection of cases for decoronation, the absence of microbial contamination in the region - represented by chronic periapical lesions, presence of fistula, old unconsolidated root fractures and active advanced periodontal disease - is important. Such situations are contraindications to decoronation. However, the occurrence of dentoalveolar ankylosis and replacement resorption without contamination should neither change the planning for implant installation, nor the criteria for choosing the type and brand of dental implant to be used. Failure to decoronate and use dental implants has never been reported. PMID:29791693
Topoisomerase II Inhibitors and Poisons, and the Influence of Cell Cycle Checkpoints.
D Arcy, Nicholas; Gabrielli, Brian
2017-01-01
Interactions between the decatenation checkpoint and Topoisomerase II (TopoII) are vital for maintaining integrity of the genome. Agents that target this enzyme have been in clinical use in cancer therapy for over 30 years with great success. The types of compounds that have been developed to target TopoII are broadly divided into poisons and catalytic inhibitors. The TopoII poisons are in clinical use as anti-cancer therapies, although in common to most chemotherapeutic agents, they display considerable normal tissue toxicity. Inhibition of the TopoIIb isoform has been implicated in this cytotoxicity. Response to TopoII active agents is determined by several factors, but cell cycle checkpoints play a large role in sensitivity and resistance. The G2/M phase checkpoints are of particular importance in considering the effectiveness of these drugs and are reviewed in this article. Functionality of the ATM dependent decatenation checkpoint may represent a new avenue for selective cancer therapy. Here we review the function of TopoII, the anti-cancer mechanisms and limitations of current catalytic inhibitors and poisons, and their influence on cell cycle checkpoints. We will also assess potential new mechanisms for targeting this enzyme to limit normal tissue toxicity, and how the cell cycle checkpoint triggered by these drugs may provide an alternative and possibly better target for novel therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation
Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.
2012-01-01
Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595
Bruzzoni-Giovanelli, Heriberto; Fernandez, Plinio; Veiga, Lucía; Podgorniak, Marie-Pierre; Powell, Darren J; Candeias, Marco M; Mourah, Samia; Calvo, Fabien; Marín, Mónica
2010-02-09
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-12-01
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Recent tissue engineering advances for the treatment of temporomandibular joint disorders
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-01-01
Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-05-13
Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Human testis and testis cancer specimens from orchidectomies were cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
Space flight and bone formation.
Doty, St B
2004-12-01
Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.
Space flight and bone formation
NASA Technical Reports Server (NTRS)
Doty, St B.
2004-01-01
Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.
Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh
2013-04-01
Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.
The mechanism by which nonlinearity sustains turbulence in plane Couette flow
NASA Astrophysics Data System (ADS)
Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.
2018-04-01
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.
Chen, Zhuoyue; Wei, Jing; Zhu, Jun; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin
2016-05-05
Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Pancreatic tissue assessment using fluorescence and reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann
2007-07-01
The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.
NASA Astrophysics Data System (ADS)
Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin
2016-10-01
Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, H; Zhang, H
Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less
NASA Astrophysics Data System (ADS)
Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.
2008-02-01
The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.
Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R
2007-01-01
Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (<10), while for malignant specimens, the I(345)I(500) ratio is consistently high (>15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.
Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine
2016-01-01
Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin–mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458
Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T
2007-12-01
Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.
Coconut water solutions for the preservation of spleen, ovary, and skin autotransplants in rats.
Schettino César, J M; Petroianu, A; de Souza Vasconcelos, L; Cardoso, V N; das Graças Mota, L; Barbosa, A J A; Vianna Soares, C D; Lima de Oliveira, A
2015-03-01
The purpose of this study was to evaluate the efficacy of coconut water in the preservation of spleen, ovary, and skin autotransplantations in rats. Fifty female Wistar rats were divided randomly into 5 groups on the basis of the following tissue graft preservation solutions: group 1, lactated Ringer's; group 2, Belzer's solution; group 3, mature coconut water; group 4, green coconut water; and group 5, modified green coconut water. In group 5, the green coconut water solution was modified to obtain the same electrolyte composition as Belzer's solution. The spleen, ovaries, and a skin fragment were removed from each animal, stored for 6 hours in one of the solutions, and then re-implanted. The recoveries of tissue functions were assessed 90 days after surgery by means of spleen scintigraphy and blood tests. The implanted tissues were collected for histological analyses. Higher immunoglobulin G levels were observed in the animals of group 5 than in the animals of group 1. Differences in follicle-stimulating hormone levels were observed between groups 1 and 2 (P < .001), between groups 4 and 2 (P = .03), and between groups 5 and 2 (P = .01). The spleen scintigraphy results did not differ among the groups. The ovarian tissue was better preserved in the mature coconut water group (P < .007). Solutions containing coconut water allowed for the preservation of the spleen, ovaries, and skin for 6 hours, and the normal functions of these tissues were maintained in rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Tissue Expander Overfilling: Achieving New Dimensions of Customization in Breast Reconstruction.
Treiser, Matthew D; Lahair, Tracy; Carty, Matthew J
2016-02-01
Overfill of tissue expanders is a commonly used modality to achieve customized dimensions in breast reconstruction. Little formal study of the dynamics of hyperexpansion of these devices has been performed to date, however. Overfill trials were performed using both Natrelle 133 MV and Mentor 8200 tissue expanders of indicated capacities ranging from 250 to 800 mL. Each expander was initially filled to its indicated capacity with normal water and then injected in regular increments to 400% overfill. Measurements of each expander's width, height, and projection were made at indicated capacity and with each successive incremental overfill injection, and these results were then recorded, collated, and analyzed. Over the first 50% overfill, all expanders demonstrated a logarithmic increase in projection (mean increase, 143 ± 9%) while maintaining essentially stable base dimensions. Overfill levels in excess of 50% were accompanied by linear increases in height, width, and projection, during which projection approached, but never equaled, base dimensions. Stress versus strain analyses demonstrated nonlinear biomechanical dynamics during the first 50% overfill, followed by standard elastic dynamics up to 400% overfill. At no point during the study, did expander tensions outstrip elastic properties, thereby explaining the lack of device rupture. Through overfilling, tunable geometries of tissue expanders can be accessed that may provide for increasing customization of reconstructions, particularly at overfill volumes up to 50% over indicated capacity. This study should serve to guide tissue expander selection and fill volumes that surgeons may implement in obtaining ideal reconstructed breast shapes.
Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG
2010-01-01
Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901
Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials
Jenrow, Kenneth A.; Brown, Stephen L.
2014-01-01
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981
Expression and Significance of Cyclophilin J in Primary Gastric Adenocarcinoma.
Gong, Zhaohua; Mu, Yuling; Chen, Jian; Chu, Hongjin; Lian, Peiwen; Wang, Congcong; Wang, Jiahui; Jiang, Lixin
2017-08-01
Biomarkers are essential in early diagnosis and understanding of the molecular mechanism of human cancer. The expression of cyclophilin J, a novel member of the cyclophilin family, was investigated in primary gastric adenocarcinoma. Western blot analysis was carried out on 36 paired tumor and normal tissue samples; immunohistochemical analysis was carried out on 120 gastric carcinoma tissues and normal adjacent tissue. Cyclophilin J protein was overexpressed in 72.2% of gastric carcinoma tissues compared to adjacent normal tissues. Immunohistochemical analysis revealed that cyclophilin J was overexpressed in 49.2% (59/120) and 23.3% (28/120) of gastric carcinoma tissues and adjacent tissues, respectively (p<0.05). Expression of cyclophilin J was associated with the degree of differentiation, but not with lymph node metastasis, gender or depth of tumor infiltration. The overall survival of patients showed no association with the overexpression of cyclophilin J protein. Cyclophilin J expression was up-regulated in gastric carcinoma compared to normal gastric tissues. However, in order to confirm its association with the survival of patients with gastric cancer, more cases need to be studied. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue
Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina
2013-01-01
We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235
Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models
NASA Astrophysics Data System (ADS)
Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.
2002-10-01
This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.
Avşar, Pınar; Karadağ, Ayişe
2018-02-01
A reduction in tissue tolerance promotes the development of pressure ulcers (PUs) and incontinence-associated dermatitis (IAD). To determine the cost-effectiveness and efficacy of evidence-based (EB) nursing interventions on increasing tissue tolerance by maintaining tissue integrity. The study involved 154 patients in two intensive care units (77 patients, control group; 77 patients, intervention group). Data were collected using the following: patient characteristics form, Braden PU risk assessment scale, tissue integrity monitoring form, PU identification form, IAD and severity scale, and a cost table of the interventions. Patients in the intervention group were cared for by nurses trained in the use of the data collection tools and in EB practices to improve tissue tolerance. Routine nursing care was given to the patients in the control group. The researcher observed all patients in terms of tissue integrity and recorded the care-related costs. Deterioration of tissue integrity was observed in 18.2% patients in the intervention group compared to 54.5% in the control group (p < .05). The average cost to increase tissue tolerance prevention in the intervention and control groups was X¯ = $204.34 ± 41.07 and X¯ = $138.90 ± 1.70, respectively. It is recommended that EB policies and procedures are developed to improve tissue tolerance by maintaining tissue integrity. Although the cost of EB preventive initiatives is relatively high compared to those that are not EB, the former provide a significant reduction in the prevalence of tissue integrity deterioration. © 2017 Sigma Theta Tau International.
Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E
1985-08-01
Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
NASA Astrophysics Data System (ADS)
Pu, Yang; Chen, Jun; Wang, Wubao
2014-02-01
The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.
High-resolution, 2- and 3-dimensional imaging of uncut, unembedded tissue biopsy samples.
Torres, Richard; Vesuna, Sam; Levene, Michael J
2014-03-01
Despite continuing advances in tissue processing automation, traditional embedding, cutting, and staining methods limit our ability for rapid, comprehensive visual examination. These limitations are particularly relevant to biopsies for which immediate therapeutic decisions are most necessary, faster feedback to the patient is desired, and preservation of tissue for ancillary studies is most important. The recent development of improved tissue clearing techniques has made it possible to consider use of multiphoton microscopy (MPM) tools in clinical settings, which could address difficulties of established methods. To demonstrate the potential of MPM of cleared tissue for the evaluation of unembedded and uncut pathology samples. Human prostate, liver, breast, and kidney specimens were fixed and dehydrated by using traditional histologic techniques, with or without incorporation of nucleic acid fluorescent stains into dehydration steps. A benzyl alcohol/benzyl benzoate clearing protocol was substituted for xylene. Multiphoton microscopy was performed on a home-built system. Excellent morphologic detail was achievable with MPM at depths greater than 500 μm. Pseudocoloring produced images analogous to hematoxylin-eosin-stained images. Concurrent second-harmonic generation detection allowed mapping of collagen. Subsequent traditional section staining with hematoxylin-eosin did not reveal any detrimental morphologic effects. Sample immunostains on renal tissue showed preservation of normal reactivity. Complete reconstructions of 1-mm cubic samples elucidated 3-dimensional architectural organization. Multiphoton microscopy on cleared, unembedded, uncut biopsy specimens shows potential as a practical clinical tool with significant advantages over traditional histology while maintaining compatibility with gold standard techniques. Further investigation to address remaining implementation barriers is warranted.
Telomere length in normal and neoplastic canine tissues.
Cadile, Casey D; Kitchell, Barbara E; Newman, Rebecca G; Biller, Barbara J; Hetler, Elizabeth R
2007-12-01
To determine the mean telomere restriction fragment (TRF) length in normal and neoplastic canine tissues. 57 solid-tissue tumor specimens collected from client-owned dogs, 40 samples of normal tissue collected from 12 clinically normal dogs, and blood samples collected from 4 healthy blood donor dogs. Tumor specimens were collected from client-owned dogs during diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital, whereas 40 normal tissue samples were collected from 12 control dogs. Telomere restriction fragment length was determined by use of an assay kit. A histologic diagnosis was provided for each tumor by personnel at the Veterinary Diagnostic Laboratory at the University of Illinois. Mean of the mean TRF length for 44 normal samples was 19.0 kilobases (kb; range, 15.4 to 21.4 kb), and the mean of the mean TRF length for 57 malignant tumors was 19.0 kb (range, 12.9 to 23.5 kb). Although the mean of the mean TRF length for tumors and normal tissues was identical, tumor samples had more variability in TRF length. Telomerase, which represents the main mechanism by which cancer cells achieve immortality, is an attractive therapeutic target. The ability to measure telomere length is crucial to monitoring the efficacy of telomerase inhibition. In contrast to many other mammalian species, the length of canine telomeres and the rate of telomeric DNA loss are similar to those reported in humans, making dogs a compelling choice for use in the study of human anti-telomerase strategies.
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Kamemoto, L. E.; Misra, A. K.; Goodman, M. T.; Luk, H. W.; Killeen, J. L.
2010-04-01
We present results of in vitro micro-Raman spectroscopy of normal and cancerous cervical and ovarian tissues excited with 785 nm near-infrared (NIR) laser. Micro- Raman spectra of squamous cervical cells of both cervix and ovarian tissues show significant differences in the spectra of normal and cancerous cells. In particular, several well-defined Raman peaks in the 775-975 cm-1 region are observed in the spectra of normal cervix squamous cells but are completely missing in the spectra of invasive cervical cancer cells. In the high-frequency 2800-3100 cm-1 region it is shown that the peak area under CH stretching band is much lower than the corresponding area in the spectra of normal cells. In the case of ovarian tissues, the micro-Raman spectra show noticeable spectral differences between normal cells and ovarian serous cancer cells. In particular, we observed the accumulation of β-carotene in ovarian serous cancer cells compared to normal ovarian cells from women with no ovarian cancer. The NIR micro-Raman spectroscopy offers a potential molecular technique for detecting cervical and ovarian cancer from the respective tissues.
HPLC assisted Raman spectroscopic studies on bladder cancer
NASA Astrophysics Data System (ADS)
Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.
2015-04-01
We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.
Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.
Terahertz spectroscopy for the study of paraffin-embedded gastric cancer samples
NASA Astrophysics Data System (ADS)
Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.
2015-01-01
Terahertz (THz) spectroscopy constitute promising technique for biomedical applications as a complementary and powerful tool for diseases screening specially for early cancer diagnostic. The THz radiation is not harmful to biological tissues. As increased blood supply in cancer-affected tissues and consequent local increase in tissue water content makes THz technology a potentially attractive. In the present work, samples of healthy and adenocarcinoma-affected gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS). The work shows the capability of the technique to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, are presented and the conditions for discrimination between normal and affected tissues are discussed.
Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J
2017-05-01
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Zhou, Ruoji; Xu, An; Wang, Donghui; Zhu, Dandan; Mata, Helen; Huo, Zijun; Tu, Jian; Liu, Mo; Mohamed, Alaa M T; Jewell, Brittany E; Gingold, Julian; Xia, Weiya; Rao, Pulivarthi H; Hung, Mien-Chie; Zhao, Ruiying; Lee, Dung-Fang
2018-03-01
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancers. Many hot-spot mutations of TP53 confer novel functions not found in wild-type p53 and contribute to tumor development and progression. We report on the generation of a H1 human embryonic stem cell line carrying a homozygous TP53 R282W mutation using TALEN-mediated genome editing. The generated cell line demonstrates normal karyotype, maintains a pluripotent state, and is capable of generating a teratoma in vivo containing tissues from all three germ layers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
A New Fire Hazard for MR Imaging Systems: Blankets-Case Report.
Bertrand, Anne; Brunel, Sandrine; Habert, Marie-Odile; Soret, Marine; Jaffre, Simone; Capeau, Nicolas; Bourseul, Laetitia; Dufour-Claude, Isabelle; Kas, Aurélie; Dormont, Didier
2018-02-01
In this report, a case of fire in a positron emission tomography (PET)/magnetic resonance (MR) imaging system due to blanket combustion is discussed. Manufacturing companies routinely use copper fibers for blanket fabrication, and these fibers may remain within the blanket hem. By folding a blanket with these copper fibers within an MR imaging system, one can create an electrical current loop with a major risk of local excessive heating, burn injury, and fire. This hazard applies to all MR imaging systems. Hybrid PET/MR imaging systems may be particularly vulnerable to this situation, because blankets are commonly used for fluorodeoxyglucose PET to maintain a normal body temperature and to avoid fluorodeoxyglucose uptake in brown adipose tissue. © RSNA, 2017.
[Surgical intensive care medicine. Current therapy concepts for septic diseases].
Niederbichler, A D; Ipaktchi, K; Jokuszies, A; Hirsch, T; Altintas, M A; Handschin, A E; Busch, K H; Gellert, M; Steinau, H-U; Vogt, P M; Steinsträsser, L
2009-10-01
The clinical appearance of septic disorders is characterized by an enormous dynamic. The sepsis-induced dysbalance of the immune system necessitates immediate and aggressive therapeutic interventions to prevent further damage progression of the disease to septic shock and multiple organ failure. This includes supportive therapy to normalize and maintain organ and tissue perfusion as well as the identification of the infection focus. In cases where an infectious focus is identified, surgical source control frequently is a key element of the treatment strategy besides pharmacologic and supportive measures. The integrative approach of the management of septic patients requires rapid communication between the involved medical disciplines and the nursing personnel. Therefore, this article outlines current therapeutic concepts of septic diseases as well as central nursing aspects.
Central insulin and leptin-mediated autonomic control of glucose homeostasis
Marino, Joseph S.; Xu, Yong; Hill, Jennifer W.
2016-01-01
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. PMID:21489811
Central insulin and leptin-mediated autonomic control of glucose homeostasis.
Marino, Joseph S; Xu, Yong; Hill, Jennifer W
2011-07-01
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Antioxidants and the Integrity of Ocular Tissues
Cabrera, Marcela P.; Chihuailaf, Ricardo H.
2011-01-01
Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies used in research and in some cases in clinical practice. PMID:21789267
Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease
Iyer, Shankar Subramanian; Cheng, Genhong
2012-01-01
Interleukin 10 (IL-10) is a cytokine with potent anti-inflammatory properties that plays a central role in limiting host immune response to pathogens, thereby preventing damage to the host and maintaining normal tissue homeostasis. Dysregulation of IL-10 is associated with enhanced immunopathology in response to infection as well as increased risk for development of many autoimmune diseases. Thus a fundamental understanding of IL-10 gene expression is critical for our comprehension of disease progression and resolution of host inflammatory response. In this review, we discuss modes of regulation of IL-10 gene expression in immune effector cell types, including signal transduction, epigenetics, promoter architecture, and post-transcriptional regulation, and how aberrant regulation contributes to immunopathology and disease progression. PMID:22428854
Sherman, Mark E; Figueroa, Jonine D; Henry, Jill E; Clare, Susan E; Rufenbarger, Connie; Storniolo, Anna Maria
2012-04-01
"Molecular histology" of the breast may be conceptualized as encompassing the normative ranges of histologic structure and marker expression in normal breast tissues in relation to a woman's age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University (Indianapolis, IN) is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin-fixed, paraffin-embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank's website. 2012 AACR
Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori
2016-11-08
Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.
Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C
2014-12-01
The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the treatment of NMSC is demonstrated since CO2 laser treatment does not hinder the ability of Raman spectroscopy to differentiate normal from diseased tissue. This combined approach could be employed clinically to greatly enhance the speed and effectiveness of NMSC treatment in many cases. © 2014 Wiley Periodicals, Inc.
Al-Mosauwi, Hashemeya; Ryan, Elizabeth; McGrane, Alison; Riveros-Beltran, Stefanie; Walpole, Caragh; Dempsey, Eugene; Courtney, Danielle; Fearon, Naomi; Winter, Desmond; Baird, Alan; Stewart, Gavin
2016-12-01
Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states. © 2016 International Federation for Cell Biology.
Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model
NASA Astrophysics Data System (ADS)
Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin
2015-03-01
An appropriate expression for the oxygen supply rate (Γs) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate Γs=g (1-[O]/[]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O]/[]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of Γs to [3O2]/] are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (ϕ). The results show a linear relationship between Γs and [3O2]/], independent of ϕ and photochemical parameters; the obtained g ranges from 0.4 to 1390 μM/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne; Te Marvelde, Luc
Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predictmore » future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.« less
Sheehy, Eamon J; Vinardell, Tatiana; Toner, Mary E; Buckley, Conor T; Kelly, Daniel J
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled 'solid' controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies.
Sheehy, Eamon J.; Vinardell, Tatiana; Toner, Mary E.; Buckley, Conor T.; Kelly, Daniel J.
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled ‘solid’ controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies. PMID:24595316
McMorrow, Aoibheann M; Connaughton, Ruth M; Lithander, Fiona E; Roche, Helen M
2015-02-01
Evidence suggests that at a population level, childhood and adolescent obesity increase the long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level, however, the metabolic consequences of obesity in youth vary immensely. Despite comparable BMI, some adolescents develop impaired glucose tolerance while others maintain normal glucose homeostasis. It has been proposed that the variation in the capacity to store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and dyslipidaemia. The present review examines the differential adipose tissue development and function in children and adolescents who exhibit metabolic dysregulation compared with those who are protected. Additionally, the role of manipulating dietary fat quality to potentially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of the present review highlight the need for further randomised controlled trials to establish the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adolescents. Furthermore, using a personalised nutrition approach to target interventions to those at risk of, or those with established metabolic dysregulation may optimise the efficacy of modifying dietary fat quality.
Addison, Megan; Xu, Qiling; Cayuso, Jordi; Wilkinson, David G
2018-06-04
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng
2018-06-01
To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.
Chang, Guimin; Xu, Shuping; Dhir, Rajiv; Chandran, Uma; O'Keefe, Denise S; Greenberg, Norman M; Gingrich, Jeffrey R
2010-11-15
Cell adhesion molecules (CADM) comprise a newly identified protein family whose functions include cell polarity maintenance and tumor suppression. CADM-1, CADM-3, and CADM-4 have been shown to act as tumor suppressor genes in multiple cancers including prostate cancer. However, CADM-2 expression has not been determined in prostate cancer. The CADM-2 gene was cloned and characterized and its expression in human prostatic cell lines and cancer specimens was analyzed by reverse transcription-PCR and an immunohistochemical tissue array, respectively. The effects of adenovirus-mediated CADM-2 expression on prostate cancer cells were also investigated. CADM-2 promoter methylation was evaluated by bisulfite sequencing and methylation-specific PCR. We report the initial characterization of CADM-2 isoforms: CADM-2a and CADM-2b, each with separate promoters, in human chromosome 3p12.1. Prostate cancer cell lines, LNCaP and DU145, expressed negligible CADM-2a relative to primary prostate tissue and cell lines, RWPE-1 and PPC-1, whereas expression of CADM-2b was maintained. Using immunohistochemistry, tissue array results from clinical specimens showed statistically significant decreased expression in prostate carcinoma compared with normal donor prostate, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and normal tissue adjacent to tumor (P < 0.001). Adenovirus-mediated CADM-2a expression suppressed DU145 cell proliferation in vitro and colony formation in soft agar. The decrease in CADM-2a mRNA in cancer cell lines correlated with promoter region hypermethylation as determined by bisulfite sequencing and methylation-specific PCR. Accordingly, treatment of cells with the demethylating agent 5-aza-2'-deoxycytidine alone or in combination with the histone deacetylase inhibitor trichostatin A resulted in the reactivation of CADM-2a expression. CADM-2a protein expression is significantly reduced in prostate cancer. Its expression is regulated in part by promoter methylation and implicates CADM-2 as a previously unrecognized tumor suppressor gene in a proportion of human prostate cancers. ©2010 AACR.
Dose- and LET-painting with particle therapy.
Bassler, Niels; Jäkel, Oliver; Søndergaard, Christian Skou; Petersen, Jørgen B
2010-10-01
Tumour hypoxia is one of the limiting factors in obtaining tumour control in radiotherapy. The high-LET region of a beam of heavy charged particles such as carbon ions is located in the distal part of the Bragg peak. A modulated or spread out Bragg peak (SOBP) is a weighted function of several Bragg peaks at various energies, which however results in a dilution of the dose-average LET in the target volume. Here, we investigate the possibility to redistribute the LET by dedicated treatment plan optimisation, in order to maximise LET in the target volume. This may be a strategy to potentially overcome hypoxia along with dose escalation or dose painting. The high-LET region can be shaped in very different ways, while maintaining the distribution of the absorbed dose or biological effective dose. Treatment plans involving only carbon ion beams, show very different LET distributions depending on how the fields are arranged. Alternatively, a LET boost can be applied in multi-modal treatment planning, such as combining carbon ions with protons and/or photons. For such mixed radiation modalities, significant "LET boosts" can be achieved at nearly arbitrary positions within the target volume. Following the general understanding of the relationship between hypoxia, LET and the oxygen enhancement ratio (OER), we conclude, that an additional therapeutic advantage can be achieved by confining the high-LET part of the radiation in hypoxic compartments of the tumour, and applying low-LET radiation to the normoxic tissue. We also anticipate that additional advantages may be achieved by deliberate sparing of normal tissue from high LET regions. Consequently, treatment planning based on simultaneous dose and LET optimisation has a potential to achieve higher tumour control and/or reduced normal tissue control probability (NTCP).
Goularte, Jéferson F; Ferreira, Maria B C; Sanvitto, Gilberto L
2012-10-28
Obesity affects a large number of people around the world and appears to be the result of changes in food intake, eating habits and physical activity levels. Changes in dietary patterns and physical exercise are therefore strongly recommended to treat obesity and its complications. The present study tested the hypothesis that obesity and metabolic changes produced by a cafeteria diet can be prevented with dietary changes and/or physical exercise. A total of fifty-six female Wistar rats underwent one of five treatments: chow diet; cafeteria diet; cafeteria diet followed by a chow diet; cafeteria diet plus exercise; cafeteria diet followed by a chow diet plus exercise. The duration of the experiment was 34 weeks. The cafeteria diet resulted in higher energy intake, weight gain, increased visceral adipose tissue and liver weight, and insulin resistance. The cafeteria diet followed by the chow diet resulted in energy intake, body weight, visceral adipose tissue and liver weight and insulin sensitivity equal to that of the controls. Exercise increased total energy intake at week 34, but produced no changes in the animals' body weight or adipose tissue mass. However, insulin sensitivity in animals subjected to exercise and the diet was similar to that of the controls. The present study found that exposure to palatable food caused obesity and insulin resistance and a diet change was sufficient to prevent cafeteria diet-induced obesity and to maintain insulin sensitivity at normal levels. In addition, exercise resulted in normal insulin sensitivity in obese rats. These results may help to develop new approaches for the treatment of obesity and type 2 diabetes mellitus.
DNMT1 maintains progenitor function in self-renewing somatic tissue.
Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A
2010-01-28
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Castro, Simone Vieira; Carvalho, Adeline Andrade; Silva, Cleidson Manoel Gomes; Santos, Francielli Weber; Campello, Cláudio Cabral; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2014-10-01
The aim of this study was to evaluate the efficiency of different media in the in vitro culture of bovine preantral follicles that were used either fresh or following slow freezing treatment. Frozen and fresh noncultured or cultured ovarian fragments were processed for histological, viability, and cell proliferation analyses. For cryopreservation, a solution containing 1.5 M ethylene glycol was frozen in a programmable biological freezer. After thawing, a portion of the samples was destined for frozen controls. The remainder were cultured in vitro for 5 days in three media: α-MEM, McCoy, or M199. Samples from these culture media were collected on days 1 and 5 for quantification of reactive oxygen species (ROS) and for hormonal assays. In fresh-cultured tissues, the percentage of morphologically normal follicles was significantly higher when cultured in M199 compared to that in the other media. In frozen-cultured tissues, McCoy medium was significantly superior to the other media, and was the only treatment that helped in maintaining the viability similar to fresh and frozen controls. Upon quantification of the nucleolus organizer region, we observed greater proliferation of granulosa cells in the frozen-cultured tissues with McCoy medium, and lesser proliferation in fresh-cultured tissues only with α-MEM. In frozen-cultured tissues, ROS levels were highest at day 1 and progressively reduced during culture, independent of the media used. In conclusion, under the conditions used in this study, the M199 and McCoy media are recommended for the culture of follicles derived from fresh and frozen ovarian tissues, respectively.
Karbasi, Ashraf; Borhani, Nasim; Daliri, Karim; Kazemi, Bahram; Manoochehri, Mehdi
2015-06-01
Human papillomaviruses (HPV) have frequently been detected in colorectal cancer tumor samples, and may play a role in the pathogenesis of colorectal cancer. This study was designed to investigate the presence of DNA and RNA for the high-risk HPV genotypes 16 and 18 in samples of colorectal cancer tumors and adjacent normal tissues. We also investigated the expression of proapoptotic genes in HPV-positive colorectal tumors compared to normal tissue samples. Samples of tumoral and adjacent normal tissues were fresh-frozen, and HPV DNA was identified by nested and semiquantitative PCR. Real time PCR was used to quantitatively compare the expression of HPV-18 E6 and nine proapoptotic genes in HPV-positive tumors and samples of adjacent normal tissue. HPV-16 DNA was found in 10.5% of the tumor samples, and HPV-18 DNA was found in 23.6% of the samples. Real time PCR results showed lower expression of the E6 gene in HPV-positive tumors than in adjacent normal tissue. The expression of two proapoptotic genes, FAS and DR5, was significantly lower in tumor samples than in adjacent normal tissues. HPV infection, especially HPV-18, may play a role in colorectal cancer tumorigenesis by downregulating death receptor genes and interfering with the extrinsic pathway of apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Li, Mao; Li, Yan; Wen, Peng Paul
2014-01-01
The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.
THE PROS AND CONS OF APOPTOSIS ASSAYS FOR USE IN THE STUDY OF CELLS, TISSUES AND ORGANS
Abstract
Programmed cell death or apoptosis occurs in many tissues during normal development and in the normal homeostasis of adult tissues. Apoptosis also plays a significant role in abnormal development and disease. Increased interest in apoptosis and cell death in general...
Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging
2005-07-01
position. This indicates the polarization preservation nature of Cybesin. Time Resolved Fluorescence Intensity of Cybesin 60000 Perpendicular 3000 0...absorption than that of normal tissue at water absorption peaks indicating cancer tissue has less water content than that of normal tissue; (5) preliminary...rectum-and-membrane tissues.’ This indicates that our proposed approach of imaging a prostate gland through rectum using spectral polarization imaging
De Silva, Sonali S; Payne, Geoffrey S; Thomas, Valerie; Carter, Paul G; Ind, Thomas E J; deSouza, Nandita M
2009-02-01
The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated concentrations of choline-containing metabolites increased from pre-invasive to invasive cervical cancer. Concurrent metabolite depletion occurs in normal tissue adjacent to cancer tissue. Copyright (c) 2008 John Wiley & Sons, Ltd.
Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar
2018-06-01
Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.
Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E
2017-09-01
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sorokina, Tamara; Shipounova, Irina; Bigildeev, Alexey; Petinati, Nataliya; Drize, Nina; Turkina, Anna; Chelysheva, Ekaterina; Shukhov, Oleg; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valery
2016-09-01
The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I
to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.
In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandi, Narayanan Sathiya, E-mail: sathiyapandi@gmail.com; Suganya, Sivagurunathan; Rajendran, Suriliyandi
Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However,more » the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.« less
Jin, Lifang; Ji, Shaohui; Sun, Aijing
2013-06-01
Efficient culture of primary biliary epithelial cells (BECs) from adult liver is useful for both experimental studies and clinical applications of tissue engineering. However, an effective culture system for long-term proliferation of adult BECs is still unachieved. Laboratory rabbit has been used in a large number of studies; however, there are no reports of BECs from normal adult rabbit. As little as 5 g of normal rabbit liver tissue were minced, digested, and then clonally cultured in medium containing FBS and ITS. Cells were characterized by cell morphology, immunoassaying, and growth rate assay. Different combination of growth factors and substrates, including Y-27632 and Matrigel, were employed to assess their effect on cell proliferation. In the primary culture, the BECs cellular sheets consisting of cuboidal cells, as well as fibroblast-like cells and other hepatic cells, emerged with time of culture. The BECs cellular sheets were then manually split into cells clumps for further characterization. The subcultured cells had typical cell morphology of cholangiocytes, expressed the specific markers of BECs, including GGT, cytokeratin (CK18), and CK19, and possessed the capacity to form duct-like structure in three-dimensional Matrigel. Y-27632 and Matrigel-treated BECs had a steady growth rate as well as colony-formation capacity. The BECs were maintained in Y-27632 and Matrigel culture system for more than 3 mo. This is the first example, to our knowledge, of the successful culture of BECs from normal adult rabbit liver. Furthermore, our results indicate that treatment of BECs with Y-27632 and Matrigel is a simple method for efficient output of BECs.
Differentiation of Normal and Malignant Breast Tissues using Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Mehrotra, Ranjana; Jangir, Deepak Kumar; Gupta, Alka; Kandpal, H. C.
2008-11-01
Infrared spectra of carcinomatous and their normal fore bearing tissues were collected in the 600 cm-1 to 4000 cm-1 region. Fourier Transform Infrared (FTIR) data of infiltrating ductal carcinoma of breast with different grades of malignancy from patients of different age groups were analyzed. Infrared spectra demonstrate significant spectral differences between the tumor sections of normal and the malignant breast tissues. In particular, changes in frequency and intensity in the spectra of protein, nucleic acid and glycogen were observed. This allows to make a qualitative and semi quantitative evaluation of the changes in proliferation activities from normal to diseased tissue. The findings establish a framework for additional studies, which may enable us to establish a relation of the diseased state with its infrared spectra.
Brain tumor imaging of rat fresh tissue using terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji
2016-07-01
Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.
Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population.
Yamaoka, Yuko; Suehiro, Yutaka; Hashimoto, Shinichi; Hoshida, Tomomi; Fujimoto, Michiyo; Watanabe, Michiya; Imanaga, Daiki; Sakai, Kouhei; Matsumoto, Toshihiko; Nishioka, Mitsuaki; Takami, Taro; Suzuki, Nobuaki; Hazama, Shoichi; Nagano, Hiroaki; Sakaida, Isao; Yamasaki, Takahiro
2018-04-01
Accumulating evidence shows an overabundance of Fusobacterium nucleatum in colorectal tumor tissues. However, the correlation between the absolute copy number of F. nucleatum in colorectal cancer tissues and colorectal cancer progression is unclear from previous reports. Therefore, we performed a study to compare the abundance of F. nucleatum in colorectal tissues with clinicopathologic and molecular features of colorectal cancer. We collected 100 colorectal cancer tissues and 72 matched normal-appearing mucosal tissues. Absolute copy numbers of F. nucleatum were measured by droplet digital PCR. The detection rates of F. nucleatum were 63.9% (46/72) in normal-appearing mucosal tissues and 75.0% (75/100) in CRC tissue samples. The median copy number of F. nucleatum was 0.4/ng DNA in the normal-appearing colorectal mucosa in patients with colorectal cancer and 1.9/ng DNA in the colorectal cancer tissues (P = 0.0031). F. nucleatum copy numbers in stage IV colorectal cancer tissues were significantly higher than those in the normal-appearing mucosa in patients with colorectal cancer (P = 0.0016). The abundance of F. nucleatum in colorectal cancer tissues correlated with tumor size and KRAS mutation and was significantly associated with shorter overall survival times; this trend was notable in the patients with stage IV colorectal cancer. Focusing on normal-appearing mucosa in the patients with colorectal cancer, the F. nucleatum copy number was significantly higher in the patients with stage IV rather than stages I-III. These results suggest that determining F. nucleatum levels may help predict clinical outcomes in colorectal cancer patients. Further confirmatory studies using independent datasets are required to confirm our findings.
EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL
Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.
2013-01-01
Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233
Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron
2014-01-01
Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM. PMID:26069692
Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M
2013-04-01
Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui
2013-12-01
The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results were obtained with normalization by both the computer estimated and pathologist estimated epithelium percentage. Our results show that estimation of tissue epithelium percentage using our color-based segmentation method correlates well with pathologists' estimation of tissue epithelium percentages. The epithelium contents estimated by color-based segmentation may be useful in immuno-based analysis or clinical proteomic analysis of tumor proteins. The codes used for epithelium estimation as well as the micrographs with estimated epithelium content are available online.
NASA Astrophysics Data System (ADS)
Tate, Tyler; Baggett, Brenda; Rice, Photini; Watson, Jennifer; Orsinger, Gabe; Nymeyer, Ariel C.; Welge, Weston A.; Keenan, Molly; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth; Chambers, Setsuko; Black, John; Utzinger, Urs; Barton, Jennifer
2015-03-01
With early detection, five year survival rates for ovarian cancer are over 90%, yet no effective early screening method exists. Emerging consensus suggests that perhaps over 50% of the most lethal form of the disease, high grade serous ovarian cancer, originates in the Fallopian tube. Cancer changes molecular concentrations of various endogenous fluorophores. Using specific excitation wavelengths and emissions bands on a Multispectral Fluorescence Imaging (MFI) system, spatial and spectral data over a wide field of view can be collected from endogenous fluorophores. Wavelength specific reflectance images provide additional information to normalize for tissue geometry and blood absorption. Ratiometric combination of the images may create high contrast between neighboring normal and abnormal tissue. Twenty-six women undergoing oophorectomy or debulking surgery consented the use of surgical discard tissue samples for MFI imaging. Forty-nine pieces of ovarian tissue and thirty-two pieces of Fallopian tube tissue were collected and imaged with excitation wavelengths between 280 nm and 550 nm. After imaging, each tissue sample was fixed, sectioned and HE stained for pathological evaluation. Comparison of mean intensity values between normal, benign, and cancerous tissue demonstrate a general trend of increased fluorescence of benign tissue and decreased fluorescence of cancerous tissue when compared to normal tissue. The predictive capabilities of the mean intensity measurements are tested using multinomial logistic regression and quadratic discriminant analysis. Adaption of the system for in vivo Fallopian tube and ovary endoscopic imaging is possible and is briefly described.
Oxygenated hemoglobin diffuse reflectance ratio for in vitro detection of human gastric pre-cancer
NASA Astrophysics Data System (ADS)
Li, L. Q.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Zhong, H. Q.; Li, X. Y.; Zhao, Q. L.; Guo, X.
2010-07-01
Oxygenated hemoglobin diffuse reflectance (DR) ratio (R540/R575) method based on DR spectral signatures is used for early diagnosis of malignant lesions of human gastric epithelial tissues in vitro. The DR spectra for four different kinds of gastric epithelial tissues were measured using a spectrometer with an integrating sphere detector in the spectral range from 400 to 650 nm. The results of measurement showed that the average DR spectral intensity for the epithelial tissues of normal stomach is higher than that for the epithelial tissues of chronic and malignant stomach and that for the epithelial tissues of chronic gastric ulcer is higher than that for the epithelial tissues of malignant stomach. The average DR spectra for four different kinds of gastric epithelial tissues show dips at 542 and 577 nm owing to absorption from oxygenated Hemoglobin (HbO2). The differences in the mean R540/R575 ratios of HbO2 bands are 6.84% between the epithelial tissues of normal stomach and chronic gastric ulcer, 14.7% between the epithelial tissues of normal stomach and poorly differentiated gastric adenocarcinoma and 22.6% between the epithelial tissues of normal stomach and undifferentiated gastric adenocarcinoma. It is evident from results that there were significant differences in the mean R540/R575 ratios of HbO2 bands for four different kinds of gastric epithelial tissues in vitro ( P < 0.01).
Busk, Morten; Munk, Ole L; Jakobsen, Steen; Frøkiær, Jørgen; Overgaard, Jens; Horsman, Michael R
2017-05-01
Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.
Im, Michelle; Dagnino, Lina
2018-01-01
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity. PMID:29568383
Im, Michelle; Dagnino, Lina
2018-03-02
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.
Facultative cardiac responses to regional hypoxia in lizard embryos.
Du, Wei-Guo; Thompson, Michael B; Shine, Richard
2010-08-01
In natural nests, the eggs of squamate reptiles (lizards and snakes) sometimes experience unpredictable shifts in oxygen availability as a function of nest flooding, or the details of egg location within a nest. We experimentally investigated whether embryos can facultatively adjust cardiac function to cope with such challenges by imposing regional hypoxia on developing eggs of the scincid lizard Bassiana duperreyi. To do so, we sealed half of the eggshell surface with tissue adhesive. The embryos rapidly responded by increasing heart rates, which they maintained for long periods. The elevated heart rates enabled the embryos not only to survive, but to maintain "normal" metabolic rates, and to hatch at the usual time with unmodified phenotypic traits (e.g., hatchling size, relative heart mass, locomotor speed, post-hatchling survival and growth rates). Turtles and birds with rigid (highly calcified) eggshells show more dramatic ill-effects from hypoxic incubation, suggesting that the thin (and thus, highly gas-permeable) parchment-shelled eggs of most squamates allow more effective embryonic adjustment of oxygen exchange rates in response to externally-imposed hypoxia. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Signals for glucagon secretion.
Bloom, S R
1977-01-01
The normal physiological role of glucagon is in controlling hepatic glucose output. Glucagon subserves the role of homeostasis by maintaining plasma glucose and of a stress hormone by producing hyperglycaemia. While control of glucagon release by circulating metabolites and also other hormones is clearly important, it seems likely that the nervous system exerts an over-riding influence. The parasympathetic nervous system maintains homeostasis and the sympathetic acts in stress. Glucagon levels are found to be high in cirrhosis and also after acute hepatic failure. It is likely that these changes in glucagon concentration are secondary to metabolic abnormalities. While some glucagon is cleared by the liver, a similar clearance is seen by many other tissues and it is not likely that the elevation of glucagon seen in liver failure is due solely to a gross deficiency of glucagon clearance. No liver abnormality is seen in the glucagonoma syndrome, where glucagon concentration are chronically high, or in patients who have had a total pancreatectomy, where plasma glucagon is undetectably low. It thus seems unlikely that liver mass is importantly controlled by glucagon.
Casaroli-Marano, Ricardo P.; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M.; Edel, Michael; Álvarez-Palomo, Ana B.
2015-01-01
The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea’s transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement—cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)—present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD. PMID:26239129
[Effect of Codonopsis Radix maintained with sulfur fumigation on immune function in mice].
Liu, Cheng-song; Wang, Yu-ping; Shi, Yan-bin; Ma, Xing-ming; Li, Hui-li; Zhang, Xiao-yun; Li, Shou-tang
2014-11-01
To investigate the immune function of mice being given the extract of Codonopsis Radix maintained with sulfur fumigation. Mice were divided into five groups. Except the normal control group, the mice were fed with the extract of Codonopsis Radix maintained with sulfur fumigation at the high,medium and low doses, as well as medium dose of Codonopsis Radix maintained with low-temperature vacuum method, respectively. Mice were treated once a day for 10 continuous days. Weight change,organ indexes, blood cell indices, macrophage phagocytic function, and IL-2 and IFN-γ levels were measured. Compared with normal control group, Codonopsis Radix maintained with sulfur fumigation at medium and high doses inhibited body weight increase of mice; white blood cell count of high dose group was significantly increased; significant increase of macrophage phagocytosis were observed for all groups except the normal control group; and spleen index and IFN-γ level of Codonopsis Radix maintained with sulfur fumigation medium dose group were increased significantly. Codonopsis Radix maintained with sulfur fumigation can promote mouse immune function to a certain degree. There was no difference in immune effect between Codonopsis Radix maintained with sulfur fumigation and low-temperature vacuum method during experimental period. However,taking the extract of Codonopsis Radix maintained with sulfur fumigation can exert negative effect on appetite and body weight in mice.
Autofluorescence spectroscopy of oral mucosa
NASA Astrophysics Data System (ADS)
Majumdar, S. K.; Uppal, A.; Gupta, P. K.
1998-06-01
We report the results of an in-vitro study on autofluorescence from pathologically characterized normal and malignant squamous tissues from the oral cavity. The study involved biopsy samples from 47 patients with oral cancer of which 11 patients had cancer of tongue, 17 of buccal mucosa and 19 of alveolus. The results of excitation and emission spectroscopy at several wavelengths (280 nm less than or equal to (lambda) exless than or equal to 460 nm; 340 nm less than or equal to (lambda) em less than or equal to 520 nm) showed that at (lambda) ex equals 337 nm and 400 nm the mean value for the spectrally integrated fluorescence intensity [(Sigma) (lambda ) IF((lambda) )] from the normal tissue sites was about a factor of 2 larger than that from the malignant tissue sites. At other excitation wavelengths the difference in (Sigma) (lambda ) IF((lambda) ) was not statistically significant. Similarly, for (lambda) em equals 390 nm and 460 nm, the intensity of the 340 nm band of the excitation spectra from normal tissues was observed to be a factor of 2 larger than that from malignant tissues. Analysis of these results suggests that NADH concentration is higher in normal oral tissues compared to the malignant. This contrasts with our earlier observation of an reduced NADH concentration in normal sites of breast tissues vis a vis malignant sites. For the 337 nm excited emission spectra a 10-variable MVLR score (using (Sigma) (lambda ) IF((lambda) ) and normalized intensities at nine wavelengths as input parameters) provided a sensitivity and specificity of 95.7% and 93.1% over the sample size investigated.
Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.
2012-01-01
Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697
Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models.
Riwaldt, Stefan; Monici, Monica; Graver Petersen, Asbjørn; Birk Jensen, Uffe; Evert, Katja; Pantalone, Desiré; Utpatel, Kirsten; Evert, Matthias; Wehland, Markus; Krüger, Marcus; Kopp, Sascha; Frandsen, Sofie; Corydon, Thomas; Sahana, Jayashree; Bauer, Johann; Lützenberg, Ronald; Infanger, Manfred; Grimm, Daniela
2017-12-03
To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL , FADD , CASP3 , CASP8 , CASP10 , BAX , BCL2 , CYC1 , APAF1 , LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5 , CASP9 , and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2 , BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed methods defining analytical protocols proved to be applicable for post-flight analyzes of tissue specimens after sample return.
Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities
2016-10-01
Report We will continue to recruit African American patients and bank their prostate tissue . We will continue dissecting tumor samples into tumor...in prostate tumors and adjacent normal tissue derived from both AA and EA individuals. We will determine if DNA methylation patterns in prostate... tissue (both cancerous and normal tissue ) differ between AA and EA individuals. We will also identify methylation features that differ between tumor
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2011-09-01
Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p < 0.001). The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.
It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment
NASA Technical Reports Server (NTRS)
Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
2001-01-01
How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.
Tissue Physiology and Pathology of Aromatase
Stocco, Carlos
2011-01-01
Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547
2010-01-01
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed. PMID:20144232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Hossain, S; Hildebrand, K
Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPTmore » vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.« less
NASA Astrophysics Data System (ADS)
Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming
2008-02-01
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.
Terahertz spectroscopic investigation of human gastric normal and tumor tissues
NASA Astrophysics Data System (ADS)
Hou, Dibo; Li, Xian; Cai, Jinhui; Ma, Yehao; Kang, Xusheng; Huang, Pingjie; Zhang, Guangxin
2014-09-01
Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.
Surviving starvation: essential role of the ghrelin-growth hormone axis.
Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S
2011-01-01
After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.
An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao
2016-09-01
1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.
2016-03-01
In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.
A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery.
Warram, Jason M; de Boer, Esther; Moore, Lindsay S; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L
2015-07-01
Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However, a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n = 11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. © 2015 Wiley Periodicals, Inc.
[The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].
Liu, Yan; Miao, Yuhua; Li, Xiaoming
2015-06-01
To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.
NASA Astrophysics Data System (ADS)
Zhao, Xiaojie; Vinson, Michael A.; Malins, Donald C.; Spiro, Thomas G.
2000-05-01
We report significant differences in UV resonance Raman (UVRR) spectra of DNA samples from normal and cancerous tissues. The four bases of DNA, adenosine, thymine, guanosine and cytidine, can be enhanced in UVRR spectra, and their intensities are very sensitive to base stacking and DNA H-bonding. 14 DNA samples from patients at different stages of ovarian cancer, 5 from normal, 2 from primary, 3 from metastasis primary and 4 from distant metastasis tumor tissues, were characterized by 257, 238, 229, 220 and 210 nm-excited UVRR spectra. Raman spectral difference between normal and tumor DNA could be readily detected.
Bachmayr-Heyda, Anna; Reiner, Agnes T; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W; Zeillinger, Robert; Pils, Dietmar
2015-01-27
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells.
Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar
2015-01-01
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062
Sherman, Mark E.; Figueroa, Jonine D.; Henry, Jill E.; Clare, Susan E.; Rufenbarger, Connie; Storniolo, Anna Maria
2014-01-01
“Molecular histology” of the breast may be conceptualized as encompassing the normative ranges of histological structure and marker expression in normal breast tissues in relation to a woman’s age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin fixed paraffin embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank’s website. PMID:22345117
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.
2016-03-01
Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.
Hoffman, Joel C; Sierszen, Michael E; Cotter, Anne M
2015-11-15
Normalizing δ(13) C values of animal tissue for lipid content is necessary to accurately interpret food-web relationships from stable isotope analysis. To reduce the effort and expense associated with chemical extraction of lipids, various studies have tested arithmetic mass balance to mathematically normalize δ(13) C values for lipid content; however, the approach assumes that lipid content is related to the tissue C:N ratio. We evaluated two commonly used models for estimating tissue lipid content based on C:N ratio (a mass balance model and a stoichiometric model) by comparing model predictions to measure the lipid content of white muscle tissue. We then determined the effect of lipid model choice on δ(13) C values normalized using arithmetic mass balance. To do so, we used a collection of fish from Lake Superior spanning a wide range in lipid content (5% to 73% lipid). We found that the lipid content was positively related to the bulk muscle tissue C:N ratio. The two different lipid models produced similar estimates of lipid content based on tissue C:N, within 6% for tissue C:N values <7. Normalizing δ(13) C values using an arithmetic mass-balance equation based on either model yielded similar results, with a small bias (<1‰) compared with results based on chemical extraction. Among-species consistency in the relationship between fish muscle tissue C:N ratio and lipid content supports the application of arithmetic mass balance to normalize δ(13) C values for lipid content. The uncertainty associated with both lipid extraction quality and choice of model parameters constrains the achievable precision of normalized δ(13) C values to about ±1.0‰. Published in 2015. This article is a U.S. Government work and is in the public domain in the U.S.A.
Microfluidic perfusion culture system for multilayer artery tissue models.
Yamagishi, Yuka; Masuda, Taisuke; Matsusaki, Michiya; Akashi, Mitsuru; Yokoyama, Utako; Arai, Fumihito
2014-11-01
We described an assembly technique and perfusion culture system for constructing artery tissue models. This technique differed from previous studies in that it does not require a solid biodegradable scaffold; therefore, using sheet-like tissues, this technique allowed the facile fabrication of tubular tissues can be used as model. The fabricated artery tissue models had a multilayer structure. The assembly technique and perfusion culture system were applicable to many different sizes of fabricated arteries. The shape of the fabricated artery tissue models was maintained by the perfusion culture system; furthermore, the system reproduced the in vivo environment and allowed mechanical stimulation of the arteries. The multilayer structure of the artery tissue model was observed using fluorescent dyes. The equivalent Young's modulus was measured by applying internal pressure to the multilayer tubular tissues. The aim of this study was to determine whether fabricated artery tissue models maintained their mechanical properties with developing. We demonstrated both the rapid fabrication of multilayer tubular tissues that can be used as model arteries and the measurement of their equivalent Young's modulus in a suitable perfusion culture environment.
Koontz, Laura M; Liu-Chittenden, Yi; Yin, Feng; Zheng, Yonggang; Yu, Jianzhong; Huang, Bo; Chen, Qian; Wu, Shian; Pan, Duojia
2013-05-28
The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine. Copyright © 2013 Elsevier Inc. All rights reserved.
FT-IR Spectroscopic Analysis of Normal and Malignant Human Oral Tissues
NASA Astrophysics Data System (ADS)
Krishnakumar, N.; Madhavan, R. Nirmal; Sumesh, P.; Palaniappan, Pl. Rm.; Venkatachalam, P.; Ramachandran, C. R.
2008-11-01
FT-IR spectroscopy has been used to explore the changes in the vibrational bands of normal and oral squamous cell carcinoma (OSCC) tissues in the region 4000-400 cm-1. Significant changes in the spectral features were observed. The spectral changes were the results of characteristics structural alterations at the molecular level in the malignant tissues. These alterations include structural changes of proteins and possible increase of its content, an increase in the nucleic-to-cytoplasm ratio, an increase in the relative amount of DNA, an increase in the rate of phosphorylation process induced by carcinogenesis, a loss of hydrogen bonding of the C-OH groups in the amino acid residues of proteins, a decrease in the relative amount of lipids compared to normal epithelial oral tissues. The results of the present study demonstrate that the FT-IR technique has the feasibility of discriminating malignant from normal tissues and other pathological states in a short period of time and may detect malignant transformation earlier than the standard histological examination stage.
Brain cancer probed by native fluorescence and stokes shift spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2012-12-01
Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).
System and method for moving a probe to follow movements of tissue
NASA Technical Reports Server (NTRS)
Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)
1981-01-01
An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.
NASA Astrophysics Data System (ADS)
Boppart, Stephen
2006-02-01
Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Forcina, Laura; Miano, Carmen; Musarò, Antonio
2018-06-01
Skeletal muscle is a complex, dynamic tissue characterized by an elevated plasticity. Although the adult muscle is mainly composed of multinucleated fibers with post mitotic nuclei, it retains a remarkable ability to regenerate in response to traumatic events. The regenerative potential of the adult skeletal muscle relies in the activity of satellite cells, mononucleated cells residing within the muscle in intimate association with myofibers. Satellite cells normally remain quiescent in their sublaminar position, sporadically entering the cell cycle to guarantee an efficient cellular turnover, by fusing with pre-existing myofibers, and to maintain the stem cell pool. However, after muscle injury satellite cells undergo an extensive increase of their activity in response to environmental stimuli, thereby participating to the regeneration of a functional muscle tissue. Nevertheless, regeneration is affected in several pathologic conditions and by a wide range of environmental signals that are highly variable, not only through time, but also depending on the physiological or pathological conditions of the musculature. Among these factors, the interleukin-6 (IL-6) plays a critical physiopathologic role on muscle homeostasis and diseases. The basis of muscle regeneration and the impact of IL-6 on the physiopathology of skeletal muscle will be discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
The natural history of thyroid autonomy and hot nodules.
Corvilain, B
2003-02-01
Solitary hyperfunctioning thyroid adenomas are benign monoclonal tumors characterized by their capacity to grow and produce thyroxine (T4) and triiodothyronine (T3) autonomously, i.e. in the absence of thyrotropin (TSH). Mutations of the TSH receptor (TSH-R) have been found in the majority of solitary hyperfunctioning thyroid adenomas. On radioisotope scanning they generally appear as hot nodules because they concentrate radioiodide or 99mTc pertechnate, whereas the normal surrounding and contralateral tissue concentrate little isotopes. A toxic adenoma probably evolves gradually from a small autonomously hyperfunctioning adenoma that initially is only slightly more active than the extranodular tissue. This has been referred to as a "warm" nodule or a "compensated" adenoma. The diagnostic criterion for this designation is the persistence of detectable serum TSH maintaining some radioiodine uptake by the extranodular tissue. This "compensated" adenoma persists as long as the autonomous hormone output is not sufficient to suppress thyrotropin, i.e. to cause hyperthyroidism. The rate of development of thyrotoxicosis in patients with hyperfunctioning adenomas who are euthyroid initially is about 4% per year and depends on the size of the adenoma, iodine intake and age of the patient. No clear relationship can be establish between the nature of the TSH receptor mutations and the phenotype of the tumor.
Prefabricated neck expanded skin flap with the superficial temporal vessels for facial resurfacing.
Lazzeri, Davide; Su, Weijie; Qian, Yunliang; Messmer, Caroline; Agostini, Tommaso; Spinelli, Giuseppe; Marcus, Jeffrey R; Levin, L Scott; Zenn, Micheal R; Zhang, Yi Xin
2013-05-01
The achievement of a normal-appearing face after surgical resurfacing remains an elusive goal. This is due in part to insufficient color matching, restoration of contours, and the persistence of visible scars. Flap prefabrication is a staged procedure that provides an independent axial blood supply to local expanded tissues. We describe a new reconstructive alternative with superior reconstructive surgical options for facial resurfacing that better matches damaged or discarded facial tissues. A superficial temporal fascial flap was harvested as the vascular supply of the prefabricated neck flap and located in a subcutaneous neck pocket over a tissue expander. After a 5-month period for expansion and maturation, the prefabricated skin flap was raised, islanded, and rotated to resurface the facial defect. Four patients with hemifacial postburn contracture and two patients affected by hemifacial vascular malformations aged 17 to 42 years (mean 29 years) were successfully treated with no major complication after a mean period of 15 months. Prefabricated neck-expanded skin flap demonstrated an excellent color and texture match with facial skin that surrounded the repair sites, and optimal aesthetic results were obtained. Importantly, facial expression was completely maintained due to thinness and pliability of the rotated skin. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan
2014-07-01
Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering. © 2013 Wiley Periodicals, Inc.
Desertification of the peritoneum by thin-film evaporation during laparoscopy.
Ott, Douglas E
2003-01-01
To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.
Metzger, Wolfgang; Grenner, Nadine; Motsch, Sandra E; Strehlow, Rothin; Pohlemann, Tim; Oberringer, Martin
2007-11-01
Growth factors are an important tool in tissue engineering. Bone morphogenetic protein-2 and transforming growth factor-beta(1) (TGF-beta(1)) are used to provide bioactivity to surgical implants and tissue substitute materials. Mostly growth factors are used in soluble or adsorbed form. However, simple adsorption of proteins to surfaces is always accompanied by reduced stability and undefined pharmacokinetics. This study aims to prove that TGF-beta(1) can be covalently immobilized to functionalized surfaces, maintaining its ability to induce myofibroblastic differentiation of normal human dermal fibroblasts. In vivo, fibroblasts differentiate to myofibroblasts (MFs) during soft tissue healing by the action of TGF-beta(1). As surfaces for our experiments, we used slides bearing aldehyde, epoxy, or amino groups. For our in vitro cell culture experiments, we used the expression of alpha-smooth muscle actin as a marker for MFs after immunochemical staining. Using the aldehyde and the epoxy slides, we were able to demonstrate the activity of immobilized TGF-beta(1) through a significant increase in MF differentiation rate. A simple immunological test was established to detect TGF-beta(1) on the surfaces. This technology enables the creation of molecular "landscapes" consisting of several factors arranged in a distinct spatial pattern and immobilized on appropriate surfaces.
LIBS analysis of artificial calcified tissues matrices.
Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A
2013-04-15
In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.
Lactational ectopic breast tissue of the vulva: case report and brief historical review.
Pieh-Holder, Kelly L
2013-04-01
Ectopic breast tissue is defined as glands of breast tissue located outside of the normal anatomic breasts. Historically, ectopic breast tissue has been thought to arise from a remnant of the embryonic mammary ridge along the "milk line" or the midaxillary line from the axilla to the groin, including the vulvar region. Extramammary tissue displays the same pathologic and physiologic changes as normal breast tissue and is often discovered in multiparous women as the result of swelling from lactational activity. We present a case report of a gravid patient with lactating vulvar mass and a brief historical perspective of vulvar ectopic breast tissue.
Trace elemental correlation study in malignant and normal breast tissue by PIXE technique
NASA Astrophysics Data System (ADS)
Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka
2006-06-01
Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.
Li, Xia; Wang, Yibaina; Zhang, Zuoming; Yao, Xiaoping; Ge, Jie; Zhao, Yashuang
2013-11-01
CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 ( MLH1 ) and DNA repair gene O 6 -methylguanine-DNA methyltransferase ( MGMT ) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.
Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami
2017-01-01
This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.
Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K
2011-01-01
Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047
NASA Astrophysics Data System (ADS)
Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.
2006-02-01
Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.
Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna
The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.
NASA Astrophysics Data System (ADS)
Bottiroli, Giovanni F.; Croce, Anna C.; Locatelli, Donata; Nano, Rosanna; Giombelli, Ermanno; Messina, Alberto; Benericetti, Eugenio
1998-01-01
Light-induced autofluorescence measurements were made on normal and tumor brain tissues to assess their spectroscopic properties and to verify the potential of this parameter for an intraoperative delineation of tumor resection margins. Spectrofluorometric analysis was performed both at the microscope on tissue sections from surgical resection, and on patients affected by glioblastoma, during surgical operation. Significant differences in autofluorescence emission properties were found between normal and tumor tissues in both ex vivo and in vivo measurements, indicating that the lesion can be distinguished from the informal surrounding tissues by the signal amplitude and the spectral shape. The non-invasiveness of the technique opens interesting prospects for improving the efficacy of neurosurgical operation, by allowing an intraoperative delimitation of tumor resection margins.
DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue
Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.
2010-01-01
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue. PMID:20081831
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases
Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.
2014-01-01
Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070
NASA Astrophysics Data System (ADS)
Haifler, Miki; Pence, Isaac J.; Zisman, Amnon; Uzzo, Robert G.; Greenberg, Richard; Kutikov, Alexander; Smaldone, Marc; Chen, David; Viterbo, Rosalia; Ristau, Benjamin; Mahadevan-Jansen, Anita; Dumont, Alexander; Patil, Chetan A.
2017-02-01
Kidney cancer affects 65,000 new patients every. As computerized tomography became ubiquitous, the number of small, incidentally detected renal masses increased. About 6,000 benign cases are misclassified radiographically as malignant and removed surgically. Raman spectroscopy (RS) has been widely demonstrated for disease discrimination, however intense near-infrared auto-fluorescence of certain tissues (e.g kidney) can present serious challenges to bulk tissue diagnosis. A 1064nm excitation dispersive detection RS system demonstrated the ability to collect spectra with superior quality in tissues with strong auto-fluorescence. Our objective is to develop a 1064 nm dispersive detection RS system capable of differentiating normal and malignant renal tissue. We will report on the design and development of a clinical system for use in nephron sparing surgeries. We will present pilot data that has been collected from normal and malignant ex vivo kidney specimens using a benchtop RS system. A total of 93 measurements were collected from 12 specimens (6 Renal Cell Carcinoma, 6 Normal ). Spectral classification was performed using sparse multinomial logistic regression (SMLR). Correct classification by SMLR was obtained in 78% of the trials with sensitivity and specificity of 82% and 75% respectively. We will present the association of spectral features with biological indicators of healthy and diseased kidney tissue. Our findings indicate that 1064nm RS is a promising technique for differentiation of normal and malignant renal tissue. This indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing RS for optical biopsy and surgical guidance in nephron sparing surgery.
Roberts, Michael D.; Grau, Vicente; Grimm, Jonathan; Reynaud, Juan; Bellezza, Anthony J.; Burgoyne, Claude F.; Downs, J. Crawford
2009-01-01
Purpose To characterize the trabeculated connective tissue microarchitecture of the lamina cribrosa (LC) in terms of total connective tissue volume (CTV), connective tissue volume fraction (CTVF), predominant beam orientation, and material anisotropy in monkeys with early experimental glaucoma (EG). Methods The optic nerve heads from three monkeys with unilateral EG and four bilaterally normal monkeys were three dimensionally reconstructed from tissues perfusion fixed at an intraocular pressure of 10 mm Hg. A three-dimensional segmentation algorithm was used to extract a binary, voxel-based representation of the porous LC connective tissue microstructure that was regionalized into 45 subvolumes, and the following quantities were calculated: total CTV within the LC, mean and regional CTVF, regional predominant beam orientation, and mean and regional material anisotropy. Results Regional variation within the laminar microstructure was considerable within the normal eyes of all monkeys. The laminar connective tissue was generally most dense in the central and superior regions for the paired normal eyes, and laminar beams were radially oriented at the periphery for all eyes considered. CTV increased substantially in EG eyes compared with contralateral normal eyes (82%, 44%, 45% increases; P < 0.05), but average CTVF changed little (−7%, 1%, and −2% in the EG eyes). There were more laminar beams through the thickness of the LC in the EG eyes than in the normal controls (46%, 18%, 17% increases). Conclusions The substantial increase in laminar CTV with little change in CTVF suggests that significant alterations in connective and nonconnective tissue components in the laminar region occur in the early stages of glaucomatous damage. PMID:18806292
Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim
2012-01-01
Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037
Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.
1969-01-01
A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices failed to increase corticosterone production when incubated with cyclic AMP, in contrast to 5-fold increases observed with nontumorous adrenals. PMID:4390412
Bokhari, Amber A; Lee, Laura R; Raboteau, Dewayne; Turbov, Jane; Rodriguez, Isabel V; Pike, John Wesley; Hamilton, Chad A; Maxwell, George Larry; Rodriguez, Gustavo C; Syed, Viqar
2016-11-22
Here, we evaluated the expression of CYP24A1, a protein that inactivates vitamin D in tissues. CYP24A1 expression was increased in advanced-stage endometrial tumors compared to normal tissues. Similarly, endometrial cancer cells expressed higher levels of CYP24A1 than immortalized endometrial epithelial cells. RT-PCR and Western blotting were used to examine CYP24A1 mRNA and protein levels in endometrial cancer cells after 8, 24, 72, and 120 h of exposure to progesterone, progestin derivatives and calcitriol, either alone or in combination. Progestins inhibited calcitriol-induced expression of CYP24A1 and splice variant CYP24SV mRNA and protein in cancer cells. Furthermore, actinomycin D, but not cycloheximide, blocked calcitriol-induced CYP24A1 splicing. siRNA-induced knockdown of CYP24A1 expression sensitized endometrial cancer cells to calcitriol-induced growth inhibition. These data suggest that CYP24A1 overexpression reduces the antitumor effects of calcitriol in cancer cells and that progestins may be beneficial for maintaining calcitriol's anti-endometrial cancer activity.
Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells.
Shinin, Vasily; Gayraud-Morel, Barbara; Tajbakhsh, Shahragim
2009-01-01
Stem cells are present in all tissues and organs, and are crucial for normal regulated growth. How the pool size of stem cells and their progeny is regulated to establish the tissue prenatally, then maintain it throughout life, is a key question in biology and medicine. The ability to precisely locate stem and progenitors requires defining lineage progression from stem to differentiated cells, assessing the mode of cell expansion and self-renewal and identifying markers to assess the different cell states within the lineage. We have shown that during lineage progression from a quiescent adult muscle satellite cell to a differentiated myofibre, both symmetric and asymmetric divisions take place. Furthermore, we provide evidence that a sub-population of label retaining satellite cells co-segregate template DNA strands to one daughter cell. These findings provide a means of identifying presumed stem and progenitor cells within the lineage. In addition, asymmetric segregation of template DNA and the cytoplasmic protein Numb provides a landmark to define cell behaviour as self-renewal and differentiation decisions are being executed.
Sun, Mei; Jiang, Man; Cui, Jihong; Liu, Wei; Yin, Lu; Xu, Chunli; Wei, Qi; Yan, Xingrong; Chen, Fulin
2016-03-01
Tissue-engineered skin (TES) holds great promise for wound healing in the clinic. However, optimized preservation methods remain an obstacle for its wide application. In this experimental work, we developed a novel approach to preserve TES in the desiccated state with trehalose. The uptake of trehalose by fibroblasts under various conditions, including the trehalose concentration, incubation temperature and time, was studied. The cell viability was investigated by the MTT assay and CFSE/PI staining after cryodesiccation and rehydration. TES was then prepared and incubated with trehalose, and the wound healing effect was investigated after desiccated preservation. The results showed that the optimized conditions for trehalose uptake by fibroblasts were incubation in 200 mM trehalose at 37 °C for 8 h. Cryodesiccated cells and TES maintained 37.55% and 28.31% viabilities of controls, respectively. Furthermore, cryodesiccated TES exhibited a similar wound healing effect to normal TES. This novel approach enabled the preservation and transportation of TES at ambient temperature with a prolonged shelf time, which provides great advantages for the application of TES. Copyright © 2015 Elsevier B.V. All rights reserved.
[Microsurgical transplantation of bone tumors of uncertain prognosis in athymic nude mice].
Duprez, A; Féry, A; Sommelet, J
1986-01-01
Eight cases of human bone or soft tissue tumours were transplanted to nude mice. After such transplants to nude mice which are immunologically deficient, the malignant tumors developed like benign tumours, but maintaining malignant cytological characteristics. The transplants of normal human tissues or of benign tumours decreased in size or remained stable. The technique allowed a change of an original diagnosis of osteosarcoma to a final diagnosis of chondrosarcoma. It made it possible to diagnose a benign osteoblastoma, the diagnosis of which was doubtful before the transplant between osteosarcoma and chondroblastoma. It was possible to diagnose the malignancy of a haemangiopericytoma of muscle. Two aggressive tumours--a non-ossifying fibroma and a giant-cell tumour--were rated as benign after transplantation. This technique also allowed a more precise diagnosis of the grade of one chondrosarcoma and one osteosarcoma. Finally, transplantation also made it possible to test the efficacy of chemotherapy. In a patient so treated, the extreme cell proliferation after transplantation to the nude mouse led to a change in the drugs administered.
Pancreatic regulation of glucose homeostasis
Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping
2016-01-01
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835
The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis.
Ishihara, Erika; Nishina, Hiroshi
2018-04-17
The vertebrate body shape is formed by the specific sizes and shapes of its resident tissues and organs, whose alignments are essential for proper functioning. To maintain tissue and organ shape, and thereby function, it is necessary to remove senescent, transformed, and/or damaged cells, which impair function and can lead to tumorigenesis. However, the molecular mechanisms underlying three-dimensional (3D) organ formation and homeostasis are not fully clear. Yes-associated protein (YAP) is a transcriptional co-activator that is involved in organ size control and tumorigenesis. Recently, we reported that YAP is essential for proper 3D body shape through regulation of cell tension by using a unique medaka fish mutant, hirame ( hir ). In Madin–Darby canine kidney (MDCK) epithelial cells, active YAP-transformed cells are eliminated apically when surrounded by normal cells. Furthermore, in a mosaic mouse model, active YAP-expressing damaged hepatocytes undergo apoptosis and are eliminated from the liver. Thus, YAP functions in quantitative and quality control in organogenesis. In this review, we describe the various roles of YAP in vertebrates, including in the initiation of liver cancer.
Moraes-Vieira, Pedro M.; Yore, Mark M.; Dwyer, Peter M.; Syed, Ismail; Aryal, Pratik; Kahn, Barbara B.
2014-01-01
Insulin resistance is a major cause of diabetes and is highly associated with adipose tissue (AT) inflammation in obesity. RBP4, a retinol-transporter, is elevated in insulin resistance and contributes to increased diabetes risk. We aimed to determine the mechanisms for RBP4-induced insulin resistance. Here we show that RBP4 elevation causes AT inflammation by activating innate immunity which elicits an adaptive immune-response. RBP4-overexpressing mice (RBP4-Ox) are insulin-resistant and glucose-intolerant and have increased AT macrophage and CD4 T-cell infiltration. In RBP4-Ox, AT CD206+ macrophages express pro-inflammatory markers and activate CD4 T-cells while maintaining alternatively-activated macrophage markers. These effects result from direct activation of AT antigen-presenting cells (APCs) by RBP4 through a JNK-dependent pathway. Transfer of RBP4-activated APCs into normal mice is sufficient to induce AT inflammation, insulin resistance and glucose intolerance. Thus, RBP4 causes insulin resistance, at least partly, by activating AT APCs which induce CD4 T-cell Th1 polarization and AT inflammation. PMID:24606904
Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T
1976-04-01
Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.
NASA Astrophysics Data System (ADS)
Laughney, Ashley; Krishnaswamy, Venkat; Schwab, Mary; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2009-02-01
The purpose of this study was to extract scatter parameters related to tissue ultra-structures from freshly excised breast tissue and to assess whether evident changes in scatter across diagnostic categories is primarily influenced by variation in the composition of each tissues subtypes or by physical remodeling of the extra-cellular environment. Pathologists easily distinguish between epithelium, stroma and adipose tissues, so this classification was adopted for macroscopic subtype classification. Micro-sampling reflectance spectroscopy was used to characterize single-backscattered photons from fresh, excised tumors and normal reduction specimens with sub-millimeter resolution. Phase contrast microscopy (sub-micron resolution) was used to characterize forward-scattered light through frozen tissue from the DHMC Tissue Bank, representing normal, benign and malignant breast tissue, sectioned at 10 microns. The packing density and orientation of collagen fibers in the extracellular matrix (ECM) associated with invasive, normal and benign epithelium was evaluated using transmission electron microscopy (TEM). Regions of interest (ROIs) in the H&E stained tissues were identified for analysis, as outlined by a pathologist as the gold standard. We conclude that the scatter parameters associated with tumor specimens (Npatients=6, Nspecimens=13) significantly differs from that of normal reductions (Npatients=6, Nspecimens=10). Further, tissue subtypes may be identified by their scatter spectra at sub-micron resolution. Stromal tissue scatters significantly more than the epithelial cells embedded in its ECM and adipose tissue scatters much less. However, the scatter signature of the stroma at the sub-micron level is not particularly differentiating in terms of a diagnosis.
Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.
2012-07-01
We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.