Science.gov

Sample records for major autosomal qtl

  1. Fine mapping of a calving QTL on Bos taurus autosome 18 in Holstein cattle.

    PubMed

    Mao, X; Kadri, N K; Thomasen, J R; De Koning, D J; Sahana, G; Guldbrandtsen, B

    2016-06-01

    Decreased calving performance not only directly impacts the economic efficiency of dairy cattle farming but also influences public concern for animal welfare. Previous studies have revealed a QTL on Bos taurus autosome (BTA) 18 that has a large effect on calving traits in Holstein cattle. In this study, fine mapping of this QTL was performed using imputed high-density SNP chip (HD) genotypes followed by imputed next-generation sequencing (NGS) variants. BTA18 was scanned for seven direct calving traits in 6113 bulls with imputed HD genotypes. SNP rs136283363 (BTA18: 57 548 213) was consistently the most significantly associated SNP across all seven traits [e.g. p-value = 2.04 × 10(-59) for birth index (BI)]. To finely map the QTL region and to explore pleiotropic effects, we studied NGS variants within the targeted region (BTA18: 57 321 450-57 625 355) for associations with direct calving traits and with three conformation traits. Significant variants were prioritized, and their biological relevance to the traits was interpreted. Considering their functional relationships with direct calving traits, SIGLEC12, CD33 and CEACAM18 were proposed as candidate genes. In addition, pleiotropic effects of this QTL region on direct calving traits and conformation traits were observed. However, the extent of linkage disequilibrium combined with the lack of complete annotation and potential errors in the Bos taurus genome assembly hampered our efforts to pinpoint the causal mutation.

  2. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea

    PubMed Central

    Das, Shouvik; Upadhyaya, Hari D.; Bajaj, Deepak; Kujur, Alice; Badoni, Saurabh; Laxmi; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the

  3. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea

    PubMed Central

    Das, Shouvik; Singh, Mohar; Srivastava, Rishi; Bajaj, Deepak; Saxena, Maneesha S.; Rana, Jai C.; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8–10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (CaqaPN4.1: 867.8 kb and CaqaPN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (CaqbPN4.1: 637.5 kb and CaqbPN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting

  4. A Major Effect QTL on Chromosome 18 for Noise Injury to the Mouse Cochlear Lateral Wall

    PubMed Central

    Ohlemiller, Kevin K.; Rosen, Allyson D.; Gagnon, Patricia M.

    2009-01-01

    We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M. 2007. Genetic dependence of cochlear cells and structures injured by noise. Hearing Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8 weeks later. Analysis of B6×CBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBA×B6) × B6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for Noise-induced reduction in EP QTL), and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic ‘reserve’ of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability. PMID:19913606

  5. A consensus linkage map of oil palm and a major QTL for stem height.

    PubMed

    Lee, May; Xia, Jun Hong; Zou, Zhongwei; Ye, Jian; Rahmadsyah; Alfiko, Yuzer; Jin, Jingjing; Lieando, Jessica Virginia; Purnamasari, Maria Indah; Lim, Chin Huat; Suwanto, Antonius; Wong, Limsoon; Chua, Nam-Hai; Yue, Gen Hua

    2015-02-04

    Oil palm (Elaeis guinensis Jacquin) is the most important source of vegetable oil and fat. Several linkage maps had been constructed using dominant and co-dominant markers to facilitate mapping of QTL. However, dominant markers are not easily transferable among different laboratories. We constructed a consensus linkage map for oil palm using co-dominant markers (i.e. microsatellite and SNPs) and two F1 breeding populations generated by crossing Dura and Pisifera individuals. Four hundreds and forty-four microsatellites and 36 SNPs were mapped onto 16 linkage groups. The map length was 1565.6 cM, with an average marker space of 3.72 cM. A genome-wide scan of QTL identified a major QTL for stem height on the linkage group 5, which explained 51% of the phenotypic variation. Genes in the QTL were predicted using the palm genome sequence and bioinformatic tools. The linkage map supplies a base for mapping QTL for accelerating the genetic improvement, and will be also useful in the improvement of the assembly of the genome sequences. Markers linked to the QTL may be used in selecting dwarf trees. Genes within the QTL will be characterized to understand the mechanisms underlying dwarfing.

  6. A consensus linkage map of oil palm and a major QTL for stem height

    PubMed Central

    Lee, May; Xia, Jun Hong; Zou, Zhongwei; Ye, Jian; Rahmadsyah; Alfiko, Yuzer; Jin, Jingjing; Lieando, Jessica Virginia; Purnamasari, Maria Indah; Lim, Chin Huat; Suwanto, Antonius; Wong, Limsoon; Chua, Nam-Hai; Yue, Gen Hua

    2015-01-01

    Oil palm (Elaeis guinensis Jacquin) is the most important source of vegetable oil and fat. Several linkage maps had been constructed using dominant and co-dominant markers to facilitate mapping of QTL. However, dominant markers are not easily transferable among different laboratories. We constructed a consensus linkage map for oil palm using co-dominant markers (i.e. microsatellite and SNPs) and two F1 breeding populations generated by crossing Dura and Pisifera individuals. Four hundreds and forty-four microsatellites and 36 SNPs were mapped onto 16 linkage groups. The map length was 1565.6 cM, with an average marker space of 3.72 cM. A genome-wide scan of QTL identified a major QTL for stem height on the linkage group 5, which explained 51% of the phenotypic variation. Genes in the QTL were predicted using the palm genome sequence and bioinformatic tools. The linkage map supplies a base for mapping QTL for accelerating the genetic improvement, and will be also useful in the improvement of the assembly of the genome sequences. Markers linked to the QTL may be used in selecting dwarf trees. Genes within the QTL will be characterized to understand the mechanisms underlying dwarfing. PMID:25648560

  7. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-04-16

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.

  8. Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-01-01

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks. PMID:24531726

  9. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    PubMed Central

    2011-01-01

    Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis) accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL) affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts. PMID:21269476

  10. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize

    PubMed Central

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize. PMID:27176215

  11. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    PubMed

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  12. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  13. Resistance to a rhabdovirus (VHSV) in rainbow trout: identification of a major QTL related to innate mechanisms.

    PubMed

    Verrier, Eloi R; Dorson, Michel; Mauger, Stéphane; Torhy, Corinne; Ciobotaru, Céline; Hervet, Caroline; Dechamp, Nicolas; Genet, Carine; Boudinot, Pierre; Quillet, Edwige

    2013-01-01

    Health control is a major issue in animal breeding and a better knowledge of the genetic bases of resistance to diseases is needed in farm animals including fish. The detection of quantitative trait loci (QTL) will help uncovering the genetic architecture of important traits and understanding the mechanisms involved in resistance to pathogens. We report here the detection of QTL for resistance to Viral Haemorrhagic Septicaemia Virus (VHSV), a major threat for European aquaculture industry. Two induced mitogynogenetic doubled haploid F2 rainbow trout (Oncorhynchus mykiss) families were used. These families combined the genome of susceptible and resistant F0 breeders and contained only fully homozygous individuals. For phenotyping, fish survival after an immersion challenge with the virus was recorded, as well as in vitro virus replication on fin explants. A bidirectional selective genotyping strategy identified seven QTL associated to survival. One of those QTL was significant at the genome-wide level and largely explained both survival and viral replication in fin explants in the different families of the design (up to 65% and 49% of phenotypic variance explained respectively). These results evidence the key role of innate defence in resistance to the virus and pave the way for the identification of the gene(s) responsible for resistance. The identification of a major QTL also opens appealing perspectives for selective breeding of fish with improved resistance.

  14. A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia

    PubMed Central

    Liu, Feng; Sun, Fei; Xia, Jun Hong; Li, Jian; Fu, Gui Hong; Lin, Grace; Tu, Rong Jian; Wan, Zi Yi; Quek, Delia; Yue, Gen Hua

    2014-01-01

    Growth is an important trait in animal breeding. However, the genetic effects underpinning fish growth variability are still poorly understood. QTL mapping and analysis of candidate genes are effective methods to address this issue. We conducted a genome-wide QTL analysis for growth in tilapia. A total of 10, 7 and 8 significant QTLs were identified for body weight, total length and standard length at 140 dph, respectively. The majority of these QTLs were sex-specific. One major QTL for growth traits was identified in the sex-determining locus in LG1, explaining 71.7%, 67.2% and 64.9% of the phenotypic variation (PV) of body weight, total length and standard length, respectively. In addition, a candidate gene GHR2 in a QTL was significantly associated with body weight, explaining 13.1% of PV. Real-time qPCR revealed that different genotypes at the GHR2 locus influenced the IGF-1 expression level. The markers located in the major QTL for growth traits could be used in marker-assisted selection of tilapia. The associations between GHR2 variants and growth traits suggest that the GHR2 gene should be an important gene that explains the difference in growth among tilapia species. PMID:25435025

  15. Resistance to a Rhabdovirus (VHSV) in Rainbow Trout: Identification of a Major QTL Related to Innate Mechanisms

    PubMed Central

    Verrier, Eloi R.; Dorson, Michel; Mauger, Stéphane; Torhy, Corinne; Ciobotaru, Céline; Hervet, Caroline; Dechamp, Nicolas; Genet, Carine; Boudinot, Pierre; Quillet, Edwige

    2013-01-01

    Health control is a major issue in animal breeding and a better knowledge of the genetic bases of resistance to diseases is needed in farm animals including fish. The detection of quantitative trait loci (QTL) will help uncovering the genetic architecture of important traits and understanding the mechanisms involved in resistance to pathogens. We report here the detection of QTL for resistance to Viral Haemorrhagic Septicaemia Virus (VHSV), a major threat for European aquaculture industry. Two induced mitogynogenetic doubled haploid F2 rainbow trout (Oncorhynchus mykiss) families were used. These families combined the genome of susceptible and resistant F0 breeders and contained only fully homozygous individuals. For phenotyping, fish survival after an immersion challenge with the virus was recorded, as well as in vitro virus replication on fin explants. A bidirectional selective genotyping strategy identified seven QTL associated to survival. One of those QTL was significant at the genome-wide level and largely explained both survival and viral replication in fin explants in the different families of the design (up to 65% and 49% of phenotypic variance explained respectively). These results evidence the key role of innate defence in resistance to the virus and pave the way for the identification of the gene(s) responsible for resistance. The identification of a major QTL also opens appealing perspectives for selective breeding of fish with improved resistance. PMID:23390526

  16. Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat.

    PubMed

    Hao, Yuanfeng; Chen, Zhenbang; Wang, Yingying; Bland, Dan; Buck, James; Brown-Guedira, Gina; Johnson, Jerry

    2011-12-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of soft red winter wheat in the eastern region of the USA. Pioneer 26R61 has provided effective resistance to stripe rust for 10 years. To elucidate the genetic basis of the resistance, a mapping population of 178 recombinant inbred lines (RILs) was developed using single-seed descent from a cross between Pioneer 26R61 and the susceptible cultivar AGS 2000. A genetic map with 895 markers covering all 21 chromosomes was used for QTL analysis. One major QTL was detected, explaining up to 56.0% of the mean phenotypic variation, flanked by markers Xbarc124 and Xgwm359, and assigned to the distal 22% of the short arm of wheat chromosome 2A. Evidence showed that it was different from Yr17 derived from Ae. ventricosa, the only formally named Yr gene in 2AS, and the QTL was temporarily designated as YrR61. In addition, a minor QTL, QYr.uga-6AS, probably conditioned high-temperature adult plant resistance. The QTL explained 6-7% of the trait variation. Preliminary test of the flanking markers for YrR61, in two cultivars and two promising breeding lines with Pioneer 26R61 in their pedigree, indicated that YrR61 was present in these cultivars and lines, and these markers could therefore be used in marker-assisted selection.

  17. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance.

    PubMed

    Yao, Nasser; Lee, Cheng-Ruei; Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.

  18. Cleft lip with or without cleft palate in Shanghai, China: Evidence for an autosomal major locus

    SciTech Connect

    Marazita, M.L. ); Hu, Dan-Ning; Liu, You-E. ); Spence, A. ); Melnick, M. )

    1992-09-01

    Orientals are at higher risk for cleft lip with our without cleft palate (CL[+-] P) than Caucasians or blacks. The authors collected demographic and family data to study factors contributing to the etiology of CL[+-]P in Shanghai. The birth incidence of nonsyndromic CL[+-]P (SHanghai 1980-87) was 1.11/1,000, with a male/female ratio of 1.42. Almost 2,000 nonsyndromic CL[+-]P probands were ascertained from individuals operated on during the years 1956-83 at surgical hospitals in Shanghai. Detailed family histories and medical examinations were obtained for the probands and all available family members. Genetic analysis of the probands' families were performed under the mixed model with major locus (ML) and multifactorial (MFT) components. The hypothesis of no familial transmission and of MFT alone could be rejected. Of the ML models, the autosomal recessive was significantly most likely and was assumed for testing three complex hypothesis: (1) ML and sporadics; (2) ML and MFT; (3) ML, MFT, and sporadics. None of the complex models were more likely than the ML alone model. In conclusion, the best-fitting, most parsimonious model for CL[+-]P in Shanghai was that of an autosomal recessive major locus. 37 refs., 1 tab.

  19. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

    PubMed Central

    Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  20. Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.).

    PubMed

    Zhang, Shaohong; He, Xiuying; Zhao, Junliang; Cheng, Yongsheng; Xie, Zhimei; Chen, Yuehan; Yang, Tifeng; Dong, Jingfang; Wang, Xiaofei; Liu, Qing; Liu, Wei; Mao, Xingxue; Fu, Hua; Chen, Zhaoming; Liao, Yaoping; Liu, Bin

    2017-09-26

    Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Although it has been demonstrated that HI is significantly related to yield and is considered as one of the most important traits in high-yielding rice breeding, HI-based high-yielding rice breeding is difficult due to its polygenic nature and insufficient knowledge on the genetic basis of HI. Therefore, searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice. Yuexiangzhan, a popular indica cultivar with good reputation of high HI was crossed with Shengbasimiao, an indica cultivar with lower HI to develop a recombinant inbred line population, and QTL mapping for HI and its component traits was conducted. In total, five QTLs for HI, three QTLs for GY, and six QTLs for BM were detected in two-year experiments. Among the three GY QTLs, one co-located with the HI QTL on chromosome 8, while the other two co-located with the two tightly-linked BM QTLs on chromosome 3. The co-located QTLs in each of the chromosomal regions produced additive effects in the same direction. Particularly, the HI QTL on chromosome 8, qHI-8, could be detected across two years and explained 42.8% and 44.5% of the phenotypic variation, respectively. The existence of qHI-8 was confirmed by the evaluation of the near isogenic lines derived from a residual heterozygous line, and this QTL was delimitated to a 1070 kb interval by substitution mapping. In the present study, the detected GY QTLs overlapped with both HI QTL and BM QTL, suggesting a positive relationship between GY and HI or BM, respectively. With an understanding of the genetic basis for grain yield, harvest index and biomass, it is possible to achieve higher yield through enhancing HI and BM by pyramiding the favorable alleles for the two traits via marker-assisted selection (MAS). As qHI-8 has a large phenotypic effect on HI and expresses stably in different

  1. A major QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Yang, Qin; Yin, Guangming; Guo, Yanling; Zhang, Dongfeng; Chen, Shaojiang; Xu, Mingliang

    2010-08-01

    Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC(1)F(1) backcross mapping population derived from a cross between '1145' (donor parent, completely resistant) and 'Y331' (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F(2), BC(2)F(1), and BC(3)F(1) populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to 'Y331' to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in '1145' donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC(4)F(1) to BC(6)F(1) generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC(3)F(1) to BC(6)F(1) generations. Once introgressed into the 'Y331' genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32-43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.

  2. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum).

    PubMed

    John Goodstal, F; Kohler, Glenn R; Randall, Leslie B; Bloom, Arnold J; St Clair, Dina A

    2005-09-01

    Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm 9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm 9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm 9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm 9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.

  3. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes 'Evereste' and Malus floribunda clone 821.

    PubMed

    Durel, C-E; Denancé, C; Brisset, M-N

    2009-02-01

    Fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus xdomestica) worldwide. No major, qualitative gene for resistance to this disease has been identified so far in apple. A quantitative trait locus (QTL) analysis was performed in two F1 progenies derived from two controled crosses: one between the susceptible rootstock cultivar 'MM106' and the resistant ornamental cultivar 'Evereste' and the other one between the moderately susceptible cultivar 'Golden Delicious' and the wild apple Malus floribunda clone 821, with unknown level of fire blight resistance. Both progenies were inoculated in the greenhouse with the same reference strain of E. amylovora. The length of stem necrosis was scored 7 and 14 days after inoculation. A strong QTL effect was identified in both 'Evereste' and M. floribunda 821 at a similar position on the distal region of linkage group 12 of the apple genome. From 50% to 70% of the phenotypic variation was explained by the QTL in 'Evereste' progeny according to the scored trait. More than 40% of the phenotypic variation was explained by the M. floribunda QTL in the second progeny. It was shown that 'Evereste' and M. floribunda 821 carried distinct QTL alleles at that genomic position. A small additional QTL was identified in 'Evereste' on linkage group 15, which explained about 6% of the phenotypic variation. Although it was not possible to confirm whether or not 'Evereste' and M. floribunda QTL belonged to the same locus or two distinct closely related loci, these QTL can be valuable targets in marker-assisted selection to obtain fire blight resistant apple cultivars and form a starting point for discovering the function of the genes controlling apple fire blight resistance.

  4. QTL and association analysis for skin and fibre pigmentation in sheep provides evidence of a major causative mutation and epistatic effects.

    PubMed

    Raadsma, H W; Jonas, E; Fleet, M R; Fullard, K; Gongora, J; Cavanagh, C R; Tammen, I; Thomson, P C

    2013-08-01

    The pursuits of white features and white fleeces free of pigmented fibre have been important selection objectives for many sheep breeds. The cause and inheritance of non-white colour patterns in sheep has been studied since the early 19th century. Discovery of genetic causes, especially those which predispose pigmentation in white sheep, may lead to more accurate selection tools for improved apparel wool. This article describes an extended QTL study for 13 skin and fibre pigmentation traits in sheep. A total of 19 highly significant, 10 significant and seven suggestive QTL were identified in a QTL mapping experiment using an Awassi × Merino × Merino backcross sheep population. All QTL on chromosome 2 exceeded a LOD score of greater than 4 (range 4.4-30.1), giving very strong support for a major gene for pigmentation on this chromosome. Evidence of epistatic interactions was found for QTL for four traits on chromosomes 2 and 19. The ovine TYRP1 gene on OAR 2 was sequenced as a strong positional candidate gene. A highly significant association (P < 0.01) of grandparental haplotypes across nine segregating SNP/microsatellite markers including one non-synonymous SNP with pigmentation traits could be shown. Up to 47% of the observed variation in pigmentation was accounted for by models using TYRP1 haplotypes and 83% for models with interactions between two QTL probabilities, offering scope for marker-assisted selection for these traits.

  5. Molecular mapping and validation of a major QTL conferring resistance to a defoliating isolate of verticillium wilt in cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xingju; Yuan, Yanchao; Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1-27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW.

  6. Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW. PMID:24781706

  7. Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.).

    PubMed

    Miyatake, Koji; Saito, Takeo; Negoro, Satomi; Yamaguchi, Hirotaka; Nunome, Tsukasa; Ohyama, Akio; Fukuoka, Hiroyuki

    2012-05-01

    Parthenocarpy, the ability to set fruits without pollination, is a useful trait for setting fruit under unfavorable conditions. To identify the loci controlling parthenocarpy in eggplant (Solanum melongena L.), we constructed linkage maps by using co-dominant simple sequence repeat and single nucleotide polymorphism markers in F(2) populations derived from intraspecific crosses between two non-parthenocarpic lines (LS1934 and Nakate-Shinkuro) and a parthenocarpic line (AE-P03). Total map distances were 1,414.6 cM (ALF2: LS1934 x AE-P03) and 1,153.8 cM (NAF2: Nakate-Shinkuro x AE-P03), respectively. Quantitative trait locus (QTL) analyses revealed two QTLs on chromosomes 3 and 8, which we denoted as Controlling parthenocarpy3.1 (Cop3.1) and Cop8.1, respectively. The percentage of phenotypic variance explained (PVE) of Cop3.1 was 6.3% in ALF2 (LOD = 4.2) and 10.6% in NAF2 (LOD = 3.0). The PVE of Cop8.1 was 45.7% in ALF2 (LOD = 23.8) and 29.7% in NAF2 (LOD = 7.9). Using a population of backcross inbred lines, we confirmed the effect of Cop8.1, but there was no evidence to support the contribution of Cop3.1. We need to verify the effect of Cop3.1 under various temperature conditions. In addition, we clarified the effectiveness of selective SSR markers, emf21H22 and emh11J10, mapped on each side of Cop8.1 in other F(2) populations derived from various parental combinations. This is the first report concerning QTL analysis of parthenocarpy in eggplant using molecular markers. It will be useful in marker-assisted selection and in revealing the genomic mechanism underlying parthenocarpy in eggplant.

  8. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1.

    PubMed

    Guedira, Mohammed; Xiong, Mai; Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David; Brown-Guedira, Gina

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments.

  9. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1

    PubMed Central

    Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments. PMID:27163605

  10. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11.

    PubMed

    Sáez, Cristina; Esteras, Cristina; Martínez, Cecilia; Ferriol, María; Dhillon, Narinder P S; López, Carmelo; Picó, Belén

    2017-07-14

    Identification of three genomic regions and underlying candidate genes controlling the high level of resistance to ToLCNDV derived from a wild melon. SNP markers appropriated for MAS management of resistance. Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus that severely affects melon crop (Cucumis melo) in the main production areas of Spain since 2012. In this work, we evaluated the degree of resistance of four accessions (two belonging to the subsp. agrestis var. momordica and two to the wild agrestis group) and their corresponding hybrids with a susceptible commercial melon belonging to the subsp. melo (Piel de Sapo, PS). The analysis using quantitative PCR (qPCR) allowed us to select one wild agrestis genotype (WM-7) with a high level of resistance and use it to construct segregating populations (F 2 and backcrosses). These populations were phenotyped for symptom severity and virus content using qPCR, and genotyped with different sets of SNP markers. Phenotyping and genotyping results in the F 2 and BC1s populations derived from the WM-7 × PS cross were used for QTL analysis. Three genomic regions controlling resistance to ToLCNDV were found, one major locus in chromosome 11 and two additional regions in chromosomes 12 and 2. The highest level of resistance (no or mild symptoms and very low viral titer) was obtained with the homozygous WM-7WM-7 genotype at the major QTL in chromosome 11, even with PSPS genotypes at the other two loci. The resistance derived from WM-7 is useful to develop new melon cultivars and the linked SNPs selected in this paper will be highly useful in marker-assisted breeding for ToLCNDV resistance in melon.

  11. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  12. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.).

    PubMed

    Xue, Shulin; Li, Guoqiang; Jia, Haiyan; Xu, Feng; Lin, Feng; Tang, Mingzhi; Wang, Yao; An, Xia; Xu, Haibin; Zhang, Lixia; Kong, Zhongxin; Ma, Zhengqiang

    2010-06-01

    Qfhi.nau-4B is a major quantitative trait locus (QTL) against Fusarium graminearum infection identified in the Fusarium head blight-resistant germplasm Wangshuibai. To fine map this QTL, a recombinant inbred line (RIL) population of 530 lines derived from Nanda2419 x Wangshuibai and the BC(3)F(2) population derived from the cross of a Qfhi.nau-4B near isogenic line (NIL) with susceptible cultivar Mianyang 99-323 as the recurrent parent were screened for recombinants occurred between microsatellite markers Xbarc20 and Xwmc349 that flank Qfhi.nau-4B. A total of 95 recombinants were obtained, including 45 RIL recombinants obtained through reverse-selection of Qfhi.nau-5A and 50 NIL recombinants from the BC(3)F(2) population. Genotyping these recombinant lines with 22 markers mapping to the Xbarc20 and Xwmc349 interval revealed fourteen genotypes of the RIL recombinants as well as of the NIL recombinants. Two-year field evaluation of their resistance to Fusarium infection showed that these lines could be clearly classified into two groups according to percentage of infected spikes. The more resistant class had over 60% less infection than the susceptible class and were common to have Wangshuibai chromatin in the 1.7-cM interval flanked by Xhbg226 and Xgwm149. None of the susceptible recombinants had this Wangshuibai chromatin. Qfhi.nau-4B was thus confined between Xhbg226 and Xgwm149 and named Fhb4. The interval harboring Fhb4 was mapped to 4BL5-0.86-1.00 bin using Chinese Spring deletion lines, a region with about 5.7 times higher recombination rate than the genome average. This study established the basis for map-based cloning of Fhb4.

  13. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies.

    PubMed

    Calenge, F; Drouet, D; Denancé, C; Van de Weg, W E; Brisset, M-N; Paulin, J-P; Durel, C-E

    2005-06-01

    Although fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus x domestica) worldwide, no major, qualitative gene for resistance to this disease has been identified to date in apple. We conducted a quantitative trait locus (QTL) analysis in two F(1) progenies derived from crosses between the cultivars Fiesta and either Discovery or Prima. Both progenies were inoculated in the greenhouse with the same strain of E. amylovora, and the length of necrosis was scored 7 days and 14 days after inoculation. Additive QTLs were identified using the MAPQTL: software, and digenic epistatic interactions, which are an indication of putative epistatic QTLs, were detected by two-way analyses of variance. A major QTL explaining 34.3--46.6% of the phenotypic variation was identified on linkage group (LG) 7 of Fiesta in both progenies at the same genetic position. Four minor QTLs were also identified on LGs 3, 12 and 13. In addition, several significant digenic interactions were identified in both progenies. These results confirm the complex polygenic nature of resistance to fire blight in the progenies studied and also reveal the existence of a major QTL on LG7 that is stable in two distinct genetic backgrounds. This QTL could be a valuable target in marker-assisted selection to obtain new, fire blight-resistant apple cultivars and forms a starting point for discovering the function of the genes underlying such QTLs involved in fire blight control.

  14. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.).

    PubMed

    Huynh, Bao-Lam; Matthews, William C; Ehlers, Jeffrey D; Lucas, Mitchell R; Santos, Jansen R P; Ndeve, Arsenio; Close, Timothy J; Roberts, Philip A

    2016-01-01

    Genome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance.

  15. Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL.

    PubMed

    Soufflet-Freslon, V; Gianfranceschi, L; Patocchi, A; Durel, C-E

    2008-08-01

    Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus xdomestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar 'Dülmener Rosenapfel', known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar 'Gala' and 'Dülmener Rosenapfel' was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping.

  16. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.

    PubMed

    Alpert, K B; Grandillo, S; Tanksley, S D

    1995-11-01

    We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.

  17. Genetic Dissection of a Major Anthocyanin QTL Contributing to Pollinator-Mediated Reproductive Isolation Between Sister Species of Mimulus

    PubMed Central

    Yuan, Yao-Wu; Sagawa, Janelle M.; Young, Riane C.; Christensen, Brian J.; Bradshaw, Harvey D.

    2013-01-01

    Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis represent a classic example of pollinator-mediated prezygotic isolation between two sister species in sympatry. Flower color differences resulting from both carotenoid and anthocyanin pigments contribute to pollinator discrimination between the two species in nature. Through fine-scale genetic mapping, site-directed mutagenesis, and transgenic experiments, we demonstrate that a single-repeat R3 MYB repressor, ROSE INTENSITY1 (ROI1), is the causal gene underlying a major quantitative trait locus (QTL) with the largest effect on anthocyanin concentration and that cis-regulatory change rather than coding DNA mutations cause the allelic difference between M. lewisii and M. cardinalis. Together with the genomic resources and stable transgenic tools developed here, these results suggest that Mimulus is an excellent platform for studying the genetics of pollinator-mediated reproductive isolation and the molecular basis of morphological evolution at the most fundamental level—gene by gene, mutation by mutation. PMID:23335333

  18. Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of Mimulus.

    PubMed

    Yuan, Yao-Wu; Sagawa, Janelle M; Young, Riane C; Christensen, Brian J; Bradshaw, Harvey D

    2013-05-01

    Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis represent a classic example of pollinator-mediated prezygotic isolation between two sister species in sympatry. Flower color differences resulting from both carotenoid and anthocyanin pigments contribute to pollinator discrimination between the two species in nature. Through fine-scale genetic mapping, site-directed mutagenesis, and transgenic experiments, we demonstrate that a single-repeat R3 MYB repressor, ROSE INTENSITY1 (ROI1), is the causal gene underlying a major quantitative trait locus (QTL) with the largest effect on anthocyanin concentration and that cis-regulatory change rather than coding DNA mutations cause the allelic difference between M. lewisii and M. cardinalis. Together with the genomic resources and stable transgenic tools developed here, these results suggest that Mimulus is an excellent platform for studying the genetics of pollinator-mediated reproductive isolation and the molecular basis of morphological evolution at the most fundamental level-gene by gene, mutation by mutation.

  19. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.).

    PubMed

    Graham, Allie M; Munday, Michael D; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Rueppell, Olav

    2011-04-13

    The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The

  20. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.)

    PubMed Central

    2011-01-01

    Background The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Results Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Conclusions Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as

  1. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach.

    PubMed

    Wang, Yankun; Chen, Wenjing; Chu, Pu; Wan, Shubei; Yang, Mao; Wang, Mingming; Guan, Rongzhan

    2016-08-18

    Key genes related to plant type traits have played very important roles in the "green revolution" by increasing lodging resistance and elevating the harvest indices of crop cultivars. Although there have been numerous achievements in the development of dwarfism and plant type in Brassica napus breeding, exploring new materials conferring oilseed rape with efficient plant types that provide higher yields is still of significance in breeding, as well as in elucidating the mechanisms underlying plant development. Here, we report a new dwarf architecture with down-curved leaf mutant (Bndwf/dcl1) isolated from an ethyl methanesulphonate (EMS)-mutagenized B. napus line, together with its inheritance and gene mapping, and pleiotropic effects of the mapped locus on plant-type traits. We constructed a high-density single-nucleotide polymorphism (SNP) map using a backcross population derived from the Bndwf/dcl1 mutant and the canola cultivar 'zhongshuang11' ('ZS11') and mapped the dwarf architecture with the down-curved leaf dominant locus, BnDWF/DCL1, in a 6.58-cM interval between SNP marker bins M46180 and M49962 on the linkage group (LG) C05 of B. napus. Further mapping with other materials derived from Bndwf/dcl1 narrowed the interval harbouring BnDWF/DCL1 to 175 kb in length and this interval contained 16 annotated genes. Quantitative trait locus (QTL) mappings with the backcross population for plant type traits, including plant height, branching height, main raceme length and average branching interval, indicated that the mapped QTLs for plant type traits were located at the same position as the BnDWF/DCL1 locus. This study suggests that the BnDWF/DCL1 locus is a major pleiotropic locus/QTL in B. napus, which may reduce plant height, alter plant type traits and change leaf shape, and thus may lead to compact plant architecture. Accordingly, this locus may have substantial breeding potential for increasing planting density.

  2. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL.

    PubMed

    Cavanagh, Colin R; Jonas, Elisabeth; Hobbs, Matthew; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

    2010-09-16

    An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.

  3. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Zhang, Didi; Hua, Yingpeng; Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14-46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.

  4. A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus. PMID:25375356

  5. Mutation Analysis Identifies GUCY2D as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration

    PubMed Central

    Kitiratschky, Veronique B. D.; Wilke, Robert; Renner, Agnes B.; Kellner, Ulrich; Vadalà, Maria; Birch, David G.; Wissinger, Bernd; Zrenner, Eberhart; Kohl, Susanne

    2017-01-01

    Purpose Heterozygous mutations in the GUCY2D gene, which encodes the membrane-bound retinal guanylyl cyclase-1 protein (RetGC-1), have been shown to cause autosomal dominant inherited cone degeneration and cone–rod degeneration (adCD, adCRD). The present study was a comprehensive screening of the GUCY2D gene in 27 adCD and adCRD unrelated families of these rare disorders. Methods Mutation analysis was performed by direct sequencing as well as PCR and subsequent restriction length polymorphism analysis (PCR/RFLP). Haplotype analysis was performed in selected patients by using microsatellite markers. Results GUCY2D gene mutations were identified in 11 (40%) of 27 patients, and all mutations clustered to codon 838, including two known and one novel missense mutation: p.R838C, p.R838H, and p.R838G. Haplotype analysis showed that among the studied patients only two of the six analyzed p.R838C mutation carriers shared a common haplotype and that none of the p.R838H mutation carriers did. Conclusions GUCY2D is a major gene responsible for progressive autosomal dominant cone degeneration. All identified mutations localize to codon 838. Haplotype analysis indicates that in most cases these mutations arise independently. Thus, codon 838 is likely to be a mutation hotspot in the GUCY2D gene. PMID:18487367

  6. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat

    PubMed Central

    Atkinson, Jonathan A.; Wingen, Luzie U.; Griffiths, Marcus; Pound, Michael P.; Gaju, Oorbessy; Foulkes, M. John; Le Gouis, Jacques; Griffiths, Simon; Bennett, Malcolm J.; King, Julie; Wells, Darren M.

    2015-01-01

    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D. PMID:25740921

  7. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat.

    PubMed

    Atkinson, Jonathan A; Wingen, Luzie U; Griffiths, Marcus; Pound, Michael P; Gaju, Oorbessy; Foulkes, M John; Le Gouis, Jacques; Griffiths, Simon; Bennett, Malcolm J; King, Julie; Wells, Darren M

    2015-04-01

    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats.

    PubMed

    Grabowski, Katja; Koplin, Gerold; Aliu, Bujar; Schulte, Leonard; Schulz, Angela; Kreutz, Reinhold

    2013-09-16

    An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.

  9. The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L.

    PubMed

    Lejeune-Hénaut, I; Hanocq, E; Béthencourt, L; Fontaine, V; Delbreil, B; Morin, J; Petit, A; Devaux, R; Boilleau, M; Stempniak, J J; Thomas, M; Lainé, A L; Foucher, F; Baranger, A; Burstin, J; Rameau, C; Giauffret, C

    2008-05-01

    An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection.

  10. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

    PubMed

    Tuyen, D D; Lal, S K; Xu, D H

    2010-07-01

    Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F(6) recombinant inbred line mapping population (n = 112) and an F(2) population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO(3) for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F(6) and the F(2) populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.

  11. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum x S. sparsipilum located on chromosome I.

    PubMed

    Sørensen, Kirsten Kørup; Kirk, Hanne Grethe; Olsson, Kerstin; Labouriau, Rodrigo; Christiansen, Jørgen

    2008-06-01

    New potato (Solanum tuberosum) varieties are required to contain low levels of the toxic glycoalkaloids and a potential approach to obtain this is through marker-assisted selection (MAS). Before applying MAS it is necessary to map quantitative trait loci (QTLs) for glycoalkaloid content in potato tubers and identify markers that link tightly to this trait. In this study, tubers of a dihaploid BC(1) population, originating from a cross between 90-HAF-01 (S. tuberosum(1)) and 90-HAG-15 (S. tuberosum(2) x S. sparsipilum), were evaluated for content of alpha-solanine and alpha-chaconine (total glycoalkaloid, TGA) after field trials. In addition, tubers were assayed for TGA content after exposure to light. A detailed analysis of segregation patterns indicated that a major QTL is responsible for the TGA content in tubers of this potato population. One highly significant QTL was mapped to chromosome I of the HAG and the HAF parent. Quantitative trait loci for glycoalkaloid production in foliage of different Solanum species have previously been mapped to this chromosome. In the present research, QTLs for alpha-solanine and alpha-chaconine content were mapped to the same location as for TGA content. Similar results were observed for tubers exposed to light. The simple sequence repeat marker STM5136 was closely linked to the identified QTL.

  12. QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage.

    PubMed

    Emebiri, L C; Tan, M-K; El-Bouhssini, M; Wildman, O; Jighly, A; Tadesse, W; Ogbonnaya, F C

    2017-02-01

    This research provides the first report of a major locus controlling wheat resistance to Sunn pest. It developed and validated SNP markers that will be useful for marker-assisted selection. Sunn pest (Eurygaster integriceps Puton) is the most destructive insect pest of bread wheat and durum wheat in West and Central Asia and East Europe. Breeding for resistance at the vegetative stage of growth is vital in reducing the damage caused by overwintered adult populations that feed on shoot and leaves of seedlings, and in reducing the next generation of pest populations (nymphs and adults), which can cause damage to grain quality by feeding on spikes. In the present study, two doubled haploid (DH) populations involving resistant landraces from Afghanistan were genotyped with the 90k SNP iSelect assay and candidate gene-based KASP markers. The DH lines and parents were phenotyped for resistance to Sunn pest feeding, using artificial infestation cages at Terbol station, in Lebanon, over three years. Quantitative trait locus (QTL) analysis identified a single major locus on chromosome 4BS in the two populations, with the resistance allele derived from the landrace accessions, IG139431 and IG139883. The QTL explained a maximum of 42 % of the phenotypic variation in the Cham6 × IG139431 and 56 % in the Cham6 × IG139883 populations. SNP markers closest to the QTL showed high similarity to rice genes that putatively encode proteins for defense response to herbivory and wounding. The markers were validated in a large, unrelated population of parental wheat genotypes. All wheat lines carrying the 'C-G' haplotype at the identified SNPs were resistant, suggesting that selection based on a haplotype of favourable alleles would be effective in predicting resistance status of unknown genotypes.

  13. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds.

    PubMed

    Liu, Liezhao; Stein, Anna; Wittkop, Benjamin; Sarvari, Pouya; Li, Jiana; Yan, Xingying; Dreyer, Felix; Frauen, Martin; Friedt, Wolfgang; Snowdon, Rod J

    2012-05-01

    Seed coat phenolic compounds represent important antinutritive fibre components that cause a considerable reduction in value of seed meals from oilseed rape (Brassica napus). The nutritionally most important fibre compound is acid detergent lignin (ADL), to which a significant contribution is made by phenylpropanoid-derived lignin precursors. In this study, we used bulked-segregant analysis in a population of recombinant inbred lines (RILs) from a cross of the Chinese oilseed rape lines GH06 (yellow seed, low ADL) and P174 (black seed, high ADL) to identify markers with tight linkage to a major quantitative trait locus (QTL) for seed ADL content. Fine mapping of the QTL was performed in a backcross population comprising 872 BC(1)F(2) plants from a cross of an F(7) RIL from the above-mentioned population, which was heterozygous for this major QTL and P174. A 3:1 phenotypic segregation for seed ADL content indicated that a single, dominant, major locus causes a substantial reduction in ADL. This locus was successively narrowed to 0.75 cM using in silico markers derived from a homologous Brassica rapa sequence contig spanning the QTL. Subsequently, we located a B. rapa orthologue of the key lignin biosynthesis gene CINNAMOYL CO-A REDUCTASE 1 (CCR1) only 600 kbp (0.75 cM) upstream of the nearest linked marker. Sequencing of PCR amplicons, covering the full-length coding sequences of Bna.CCR1 homologues, revealed a locus in P174 whose sequence corresponds to the Brassica oleracea wild-type allele from chromosome C8. In GH06, however, this allele is replaced by a homologue derived from chromosome A9 that contains a loss-of-function frameshift mutation in exon 1. Genetic and physical map data infer that this loss-of-function allele has replaced a functional Bna.CCR1 locus on chromosome C8 in GH06 by homoeologous non-reciprocal translocation.

  14. Autosomal dominant

    MedlinePlus

    ... whether the trait is dominant or recessive. A single abnormal gene on one of the first 22 nonsex ( autosomal ) chromosomes from either parent can cause an autosomal disorder. Dominant inheritance means ...

  15. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.)

    PubMed Central

    Terasawa, Yohei; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Hatta, Koichi; Nishio, Zenta

    2016-01-01

    A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety ‘Yumechikara’ with a high protein content used for bread making, and the soft red winter wheat ‘Kitahonami’ with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC. PMID:27795672

  16. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.).

    PubMed

    Terasawa, Yohei; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Hatta, Koichi; Nishio, Zenta

    2016-09-01

    A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety 'Yumechikara' with a high protein content used for bread making, and the soft red winter wheat 'Kitahonami' with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC.

  17. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle

    PubMed Central

    2012-01-01

    Background Significant quantitative trait loci (QTL) for carcass weight were previously mapped on several chromosomes in Japanese Black half-sib families. Two QTL, CW-1 and CW-2, were narrowed down to 1.1-Mb and 591-kb regions, respectively. Recent advances in genomic tools allowed us to perform a genome-wide association study (GWAS) in cattle to detect associations in a general population and estimate their effect size. Here, we performed a GWAS for carcass weight using 1156 Japanese Black steers. Results Bonferroni-corrected genome-wide significant associations were detected in three chromosomal regions on bovine chromosomes (BTA) 6, 8, and 14. The associated single nucleotide polymorphisms (SNP) on BTA 6 were in linkage disequilibrium with the SNP encoding NCAPG Ile442Met, which was previously identified as a candidate quantitative trait nucleotide for CW-2. In contrast, the most highly associated SNP on BTA 14 was located 2.3-Mb centromeric from the previously identified CW-1 region. Linkage disequilibrium mapping led to a revision of the CW-1 region within a 0.9-Mb interval around the associated SNP, and targeted resequencing followed by association analysis highlighted the quantitative trait nucleotides for bovine stature in the PLAG1-CHCHD7 intergenic region. The association on BTA 8 was accounted for by two SNP on the BovineSNP50 BeadChip and corresponded to CW-3, which was simultaneously detected by linkage analyses using half-sib families. The allele substitution effects of CW-1, CW-2, and CW-3 were 28.4, 35.3, and 35.0 kg per allele, respectively. Conclusion The GWAS revealed the genetic architecture underlying carcass weight variation in Japanese Black cattle in which three major QTL accounted for approximately one-third of the genetic variance. PMID:22607022

  18. Genetic Architecture of Resistance to Alternaria brassicae in Arabidopsis thaliana: QTL Mapping Reveals Two Major Resistance-Conferring Loci

    PubMed Central

    Rajarammohan, Sivasubramanian; Kumar, Amarendra; Gupta, Vibha; Pental, Deepak; Pradhan, Akshay K.; Kaur, Jagreet

    2017-01-01

    Alternaria brassicae, a necrotrophic fungal pathogen, causes Alternaria blight, one of the most important diseases of oleiferous Brassica crops. The current study utilized Arabidopsis as a model to decipher the genetic architecture of defense against A. brassicae. Significant phenotypic variation that was largely genetically determined was observed among Arabidopsis accessions in response to pathogen challenge. Three biparental mapping populations were developed from three resistant accessions viz. CIBC-5, Ei-2, and Cvi-0 and two susceptible accessions – Gre-0 and Zdr-1 (commonly crossed to CIBC-5 and Ei-2). A total of six quantitative trait locus (QTLs) governing resistance to A. brassicae were identified, five of which were population-specific while one QTL was common between all the three mapping populations. Interestingly, the common QTL had varying phenotypic contributions in different populations, which can be attributed to the genetic background of the parental accessions. The presence of both common and population-specific QTLs indicate that resistance to A. brassicae is quantitative, and that different genes may mediate resistance to the pathogen in different accessions. Two of the QTLs had moderate-to-large effects, one of which explained nearly 50% of the variation. The large effect QTLs may therefore contain genes that could play a significant role in conferring resistance even in heterologous hosts. PMID:28286515

  19. Evaluation of the genetic parameters for 10 common and five new ESS core autosomal STR loci in seven major geographic regions and the largest metropolitan province of Turkey.

    PubMed

    Canturk, Kemal Murat; Gurkan, Cemal; Sevay, Huseyin; Emre, Ramazan

    2017-03-01

    Situated at the crossroads of Asia, Middle East and Europe, Turkey has an ethnically diverse population of over 78 milllion people. To investigate the population genetics and potential differences in the autosomal short tandem repeat (STR) polymorphisms across all the major geographic regions and largest metropolitan province of Turkey within the context of the Near Eastern/European genetic landscape. Samples from a total of 5299 unrelated individuals were analysed at 10 common [D2S1338, D3S1358, D8S1179, D16S539, D18S51, D19S433, D21S11, FGA, TH01, vWA] and five new European Standard Set (ESS) core autosomal STR loci [D1S1656, D2S441, D10S1248, D12S391, D22S1045]. Allele frequencies, statistical parameters of forensic interest and population differentiation tests were calculated for nine population datasets corresponding to the seven major geographic regions, the largest metropolitan province, and a combined dataset for the entire country. Cumulative results confirmed the presence of significant differences among these nine autosomal datasets themselves and with those from the nearby populations, therefore justifying the differential use of these separate datasets on a case-by-case basis in forensic investigations. This collection of autosomal STR population datasets comprises the largest and most comprehensive of its kind from Turkey so far.

  20. A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes.

    PubMed

    Coates, Brad S; Sumerford, Douglas V; Lopez, Miriam D; Wang, Haichuan; Fraser, Lisa M; Kroemer, Jeremy A; Spencer, Terrence; Kim, Kyung S; Abel, Craig A; Hellmich, Richard L; Siegfried, Blair D

    2011-08-01

    The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), is an introduced crop pest in North America that causes major damage to corn and reduces yield of food, feed, and biofuel materials. The Cry1F toxin from Bacillus thuringiensis (Bt) expressed in transgenic hybrid corn is highly toxic to O. nubilalis larvae and effective in minimizing feeding damage. A laboratory colony of O. nubilalis was selected for high levels of Cry1F resistance (>12,000-fold compared to susceptible larvae) and is capable of survival on transgenic hybrid corn. Genetic linkage maps with segregating AFLP markers show that the Cry1F resistance trait is controlled by a single quantitative trait locus (QTL) on linkage group 12. The map position of single nucleotide polymorphism (SNP) markers indicated that midgut Bt toxin-receptor genes, alkaline phosphatase, aminopeptidase N, and cadherin, are not linked with the Cry1F QTL. Evidence suggests that genes within this genome interval may give rise to a novel Bt toxin resistance trait for Lepidoptera that appears independent of known receptor-based mechanisms of resistance.

  1. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length

    PubMed Central

    Zhang, Anpeng; Liu, Chaolei; Chen, Guang; Hong, Kai; Gao, Yang; Tian, Peng; Peng, Youlin; Zhang, Bin; Ruan, Banpu; Jiang, Hongzhen; Guo, Longbiao; Qian, Qian; Gao, Zhenyu

    2017-01-01

    Seedling vigor is an important agricultural trait as direct-seeded rice technology becomes widely applied. In order to investigate the genetic mechanisms underlying seedling vigor in rice, seeds of 132 recombinant inbred lines (RILs) derived from 93-11 and PA64s, harvested from Lingshui and Hangzhou were cultivated in the nutrient solution, and four indices for seedling vigor were measured including seedling shoot length (SSL), seedling root length (SRL), seedling wet weight (SWW) and seedling dry weight (SDW). Significant correlations were observed among the indices, and also between 1000-seed weight (TSW) and SWW or SDW. Combined with a high-resolution genetic map generated from sequencing of the RILs, 65 quantitative trait loci (QTLs) were detected on all chromosomes with interval of 1.93 Mb on average. Among 57 QTLs for seedling vigor, 28 were detected from seeds harvested in both sites and 33 were first identified. With BC3F2 derived from 93-11 and a CSSL harboring segments from PA64s in 93-11 background, a major QTL for SSL, qSSL1b was fine mapped within 80.5 kb between two InDel markers. Our study provides a platform for further cloning of the QTL and dissecting the molecular basis for seedling vigor at early seedling stage in rice. PMID:28744184

  2. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length.

    PubMed

    Zhang, Anpeng; Liu, Chaolei; Chen, Guang; Hong, Kai; Gao, Yang; Tian, Peng; Peng, Youlin; Zhang, Bin; Ruan, Banpu; Jiang, Hongzhen; Guo, Longbiao; Qian, Qian; Gao, Zhenyu

    2017-06-01

    Seedling vigor is an important agricultural trait as direct-seeded rice technology becomes widely applied. In order to investigate the genetic mechanisms underlying seedling vigor in rice, seeds of 132 recombinant inbred lines (RILs) derived from 93-11 and PA64s, harvested from Lingshui and Hangzhou were cultivated in the nutrient solution, and four indices for seedling vigor were measured including seedling shoot length (SSL), seedling root length (SRL), seedling wet weight (SWW) and seedling dry weight (SDW). Significant correlations were observed among the indices, and also between 1000-seed weight (TSW) and SWW or SDW. Combined with a high-resolution genetic map generated from sequencing of the RILs, 65 quantitative trait loci (QTLs) were detected on all chromosomes with interval of 1.93 Mb on average. Among 57 QTLs for seedling vigor, 28 were detected from seeds harvested in both sites and 33 were first identified. With BC3F2 derived from 93-11 and a CSSL harboring segments from PA64s in 93-11 background, a major QTL for SSL, qSSL1b was fine mapped within 80.5 kb between two InDel markers. Our study provides a platform for further cloning of the QTL and dissecting the molecular basis for seedling vigor at early seedling stage in rice.

  3. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1.

    PubMed

    Chen, Mingliang; Luo, Ju; Shao, Gaoneng; Wei, Xiangjin; Tang, Shaoqing; Sheng, Zhonghua; Song, Jian; Hu, Peisong

    2012-05-01

    Leaf width is an important agricultural trait in rice. QTL mapping in a recombinant inbred line population derived from the cross between the javanica cultivar D50 (narrow-leaved) and the indica cultivar HB277 (wide-leaved) identified five QTLs controlling flag leaf width. Fine mapping of the major QTL qFLW4 narrowed its location to a 74.8 kb interval between the SSR loci RM17483 and RM17486, a region which also contains the gene NAL1 (Narrow leaf 1). There was no difference in the level of NAL1 expression between cvs. D50 and HB277, but an analysis of the NAL1 transcripts showed that while most (if not all) of those produced in cv. D50 were full-length, two-thirds of those in HB277 were non-functional due to either loss or gain of sequence. The inference was that NAL1 is probably synonymous with qFLW4, and that the functional difference between the two alleles was due to alternative splicing. The analysis of expression of other known genes involved in the determination of leaf width provided no evidence of their having any clear functional association with qFLW4/NAL1.

  4. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds

    PubMed Central

    2011-01-01

    Background Drought is one of the most important abiotic stresses causing drastic reductions in yield in rainfed rice environments. The suitability of grain yield (GY) under drought as a selection criterion has been reported in the past few years. Most of the quantitative trait loci (QTLs) for GY under drought in rice reported so far has been in the background of low-yielding susceptible varieties. Such QTLs have not shown a similar effect in multiple high- yielding drought-susceptible varieties, thus limiting their use in marker-assisted selection. Genetic control of GY under reproductive-stage drought stress (RS) in elite genetic backgrounds was studied in three F3:4 mapping populations derived from crosses of N22, a drought-tolerant aus cultivar, with Swarna, IR64, and MTU1010, three high-yielding popular mega-varieties, with the aim to identify QTLs for GY under RS that show a consistent effect in multiple elite genetic backgrounds. Three populations were phenotyped under RS in the dry seasons (DS) of 2009 and 2010 at IRRI. For genotyping, whole-genome scans for N22/MTU1010 and bulked segregant analysis for N22/Swarna and N22/IR64 were employed using SSR markers. Results A major QTL for GY under RS, qDTY1.1, was identified on rice chromosome 1 flanked by RM11943 and RM431 in all three populations. In combined analysis over two years, qDTY1.1 showed an additive effect of 29.3%, 24.3%, and 16.1% of mean yield in N22/Swarna, N22/IR64, and N22/MTU1010, respectively, under RS. qDTY1.1 also showed a positive effect on GY in non-stress (NS) situations in N22/Swarna, N22/IR64 over both years, and N22/MTU1010 in DS2009. Conclusions This is the first reported QTL in rice with a major and consistent effect in multiple elite genetic backgrounds under both RS and NS situations. Consistency of the QTL effect across different genetic backgrounds makes it a suitable candidate for use in marker-assisted breeding. PMID:22008150

  5. Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays

    PubMed Central

    Wu, Jianhui; Wang, Qilin; Liu, Shengjie; Huang, Shuo; Mu, Jingmei; Zeng, Qingdong; Huang, Lili; Han, Dejun; Kang, Zhensheng

    2017-01-01

    Stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat (Triticum aestivum L.). Widespread deployment of resistant cultivars is the best means of achieving durable disease control. The red grain, spring wheat cultivar Napo 63 produced by CIMMYT in the 1960s shows a high level of adult-plant resistance to stripe rust in the field. To elucidate the genetic basis of resistance in this cultivar we evaluated 224 F2:3 lines and 175 F2:6 recombinant inbred lines (RILs) derived from a cross between Napo 63 and the Pst-susceptible line Avocet S. The maximum disease severity (MDS) data of F2:3 lines and the relative area under the disease progress curve (rAUDPC) data of RILs were collected during the 2014–2015 and 2015–2016 wheat growing seasons, respectively. Combined bulked segregant analysis and 90K single nucleotide polymorphism (SNP) arrays placed 275 of 511 polymorphic SNPs on chromosome 2B. Sixty four KASP markers selected from the 275 SNPs and 76 SSR markers on 2B were used to identify a chromosome region associated with rust response. A major effect QTL, named Qyrnap.nwafu-2BS, was identified by inclusive composite interval mapping and was preliminarily mapped to a 5.46 cM interval flanked by KASP markers 90K-AN34 and 90K-AN36 in chromosome 2BS. Fourteen KASP markers more closely linked to the locus were developed following a 660K SNP array analysis. The QTL region was finally narrowed to a 0.9 cM interval flanked by KASP markers 660K-AN21 and 660K-AN57 in bin region 2BS-1-0.53. The resistance of Napo 63 was stable across all environments, and as a QTL, explained an average 66.1% of the phenotypic variance in MDS of F2:3 lines and 55.7% of the phenotypic variance in rAUDPC of F5:6 RILs. The short genetic interval and flanking KASP markers developed in the study will facilitate marker-assisted selection, gene pyramiding, and eventual positional cloning of Qyrnap.nwafu-2BS. PMID:28491075

  6. QTL analysis for some quantitative traits in bread wheat*

    PubMed Central

    Pushpendra, Kumar Gupta; Harindra, Singh Balyan; Pawan, Laxminarayan Kulwal; Neeraj, Kumar; Ajay, Kumar; Reyazul, Rouf Mir; Amita, Mohan; Jitendra, Kumar

    2007-01-01

    Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection. PMID:17973342

  7. Development of molecular markers linked to the 'Fiesta' linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection.

    PubMed

    Khan, Muhammad A; Durel, Charles-Eric; Duffy, Brion; Drouet, Damien; Kellerhals, Markus; Gessler, Cesare; Patocchi, Andrea

    2007-06-01

    A fire blight resistance QTL explaining 34.3%-46.6% of the phenotypic variation was recently identified on linkage group 7 of apple cultivar 'Fiesta' (F7). However, markers flanking this QTL were AFLP and RAPD markers unsuitable for marker-assisted selection (MAS). Two RAPD markers bracketing the QTL have been transformed into SCAR (sequence-characterized amplified region) markers, and an SSR marker specific for the region was developed. Pedigree analysis of 'Fiesta' with these markers enabled tracking of the F7 QTL allele back to 'Cox's Orange Pippin'. Stability of the effect of this QTL allele in different backgrounds was analyzed by inoculating progeny plants of a cross between 'Milwa', a susceptible cultivar, and '1217', a moderately resistant cultivar, and a set of cultivars that carry or lack the allele conferring increased fire blight resistance. Progenies and cultivars that carried both markers were significantly more resistant than those that did not carry both markers, indicating high stability of the F7 QTL allele in different backgrounds. This stability and the availability of reproducible markers bracketing the QTL make this locus promising for use in MAS.

  8. A Major QTL, Which Is Co-located with cly1, and Two Minor QTLs Are Associated with Glume Opening Angle in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhang, XinZhong; Guo, BaoJian; Lan, GuoFang; Li, HongTao; Lin, Shen; Ma, Jun; Lv, Chao; Xu, RuGen

    2016-01-01

    Cleistogamous and chasmogamous are two opposing phenomena for flowering in barley. Cleistogamy limits the rate of outcrossing, and increases the cost of producing hybrid barley seeds. Selecting chasmogamous lines with a large glume opening angle (GOA) is essential for the utilization of barley heterosis. In the current study, 247 DH lines derived from a cross between Yangnongpi7 and Yang0187 were used to identify and validate quantitative trait loci (QTLs) associated with the GOA in different environments using SSR markers. Three QTLs associated with barley GOA were mapped on chromosomes 2H and 7H. The major QTL QGOA-2H-2 was mapped on chromosome 2H with the flanking markers of KDH and GBM1498, explaining 63.92% of the phenotypic variation. The marker KDH was developed from the gene Cly1, which was the candidate gene for QGOA-2H-2. This new marker can be used to identify barley chasmogamous lines with a large GOA. The two minor QTLs were validated at all three locations across two seasons after removing DH lines carrying the candidate gene Cly1 of QGOA-2H-2. PMID:27822223

  9. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.).

    PubMed

    Zhou, Qiang; Dong, Yongbin; Shi, Qingling; Zhang, Long; Chen, Huanqing; Hu, Chunhui; Li, Yuling

    2017-04-12

    Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05-1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.

  10. Identification of a Differentially Expressed TIR-NBS-LRR Gene in a Major QTL Associated to Leaf Rust Resistance in Salix

    PubMed Central

    Martin, Tom; Rönnberg-Wästljung, Ann-Christin; Stenlid, Jan

    2016-01-01

    An earlier identified major quantitative trait locus for resistance towards the willow leaf rust fungus Melampsora larici-epitea in a Salix viminalis x (S. viminalis × S. schwerinii) population was used to identify potential resistance genes to the rust pathogen. Screening a genomic bacterial artificial chromosome library with markers from the peak position of the QTL region revealed one gene with TIR-NBS-LRR (Toll Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat) domain structure indicative of a resistance gene. The resistance gene analog was denoted RGA1 and further analysis revealed a number of non-synonymous single nucleotide polymorphisms in the LRR domain between the resistant and susceptible Salix genotypes. Gene expression levels under controlled conditions showed a significantly lower constitutive expression of RGA1 in the susceptible genotype. In addition, the susceptible genotype showed a significantly reduced expression level of the RGA1 gene at 24 hours post inoculation with M. larici-epitea. This indicates that the pathogen may actively suppress RGA1 gene expression allowing a compatible plant-pathogen interaction and causing infection. PMID:28002449

  11. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed Central

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-01-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  12. A Screen for F1 Hybrid Male Rescue Reveals No Major-Effect Hybrid Lethality Loci in the Drosophila melanogaster Autosomal Genome

    PubMed Central

    Cuykendall, Tawny N.; Satyaki, P.; Ji, Shuqing; Clay, Derek M.; Edelman, Nathaniel B.; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A.; Parekh, Neil; Park, Suna; Barbash, Daniel A.

    2014-01-01

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. PMID:25352540

  13. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    PubMed

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  14. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    USDA-ARS?s Scientific Manuscript database

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  15. Autosomal recessive

    MedlinePlus

    ... and the other gene comes from the father. Recessive inheritance means both genes in a pair must be abnormal to cause ... born to parents who carry the same autosomal recessive change ... abnormal gene from both parents and developing the disease. You ...

  16. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  17. Major QTL for Carrot Color are Associated with Carotenoid Biosynthetic Genes and Interact Epistatically in a Domesticated x Wild Carrot Cross

    USDA-ARS?s Scientific Manuscript database

    Wild carrot roots are white and do not accumulate pigments while the cultivated carrot is one of the richest sources of carotenoid pigments – mainly provitamin A alpha and beta carotenes. In this study we performed QTL analyses for pigment content on a carotenoid biosynthesis function map based on t...

  18. Ensemble Learning of QTL Models Improves Prediction of Complex Traits

    PubMed Central

    Bian, Yang; Holland, James B.

    2015-01-01

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between markers introduces near collinearity among marker genotypes, complicating the detection of QTL and estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps, maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling, incorporates information from many more markers-trait associations than traditional QTL mapping. The objective of TAGGING was to improve prediction power compared with QTL mapping while also providing more specific insights into genetic architecture than genome-wide prediction models. TAGGING was compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.) nested association mapping population. TAGGING-assisted QTL mapping substantially improved prediction ability for both biparental and multifamily populations by reducing both the variance and bias in prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and infinitesimal models improved prediction abilities over the component models, indicating some complementarity between model assumptions and suggesting that some trait genetic architectures involve a mixture of a few major QTL and polygenic effects. PMID:26276383

  19. A novel mutation in the major intrinsic protein (MIP) associated with autosomal dominant congenital cataracts in a Chinese family

    PubMed Central

    Wang, Wei; Jiang, Jin; Zhu, Yanan; Li, Jinyu; Jin, Chongfei; Shentu, Xingchao

    2010-01-01

    Purpose To detect the underlying genetic defect in a Chinese family affected with bilateral congenital cataracts. Methods A detailed family history and clinical data were recorded. Mutation screening was performed in the nuclear cataract-related gene by bidirectional sequencing of the amplified products. The mutation was verified by denaturing high-performance liquid chromatography (DHPLC). Results Two cataract phenotypes were observed within this family: one eye exhibited Y-suture and nuclear pulverulent opacification of the lens, while the others exhibited complete opacification in the fetal nuclear region. Sequencing of the candidate genes detected a heterozygous c.319G>A change in the coding region of the major intrinsic protein (MIP), resulting in the substitution of a highly conserved Valine by Isoleucine (p.V107I).The mutation was confirmed by DHPLC. Conclusions This study has identified a novel MIP mutation, p.V107I in a Chinese family with congenital cataracts. To the best of our knowledge, this is the first reported case of cataracts caused by a mutation in the second extracellular loop domain of MIP. PMID:20361015

  20. A novel mutation in the major intrinsic protein (MIP) associated with autosomal dominant congenital cataracts in a Chinese family.

    PubMed

    Wang, Wei; Jiang, Jin; Zhu, Yanan; Li, Jinyu; Jin, Chongfei; Shentu, Xingchao; Yao, Ke

    2010-03-25

    To detect the underlying genetic defect in a Chinese family affected with bilateral congenital cataracts. A detailed family history and clinical data were recorded. Mutation screening was performed in the nuclear cataract-related gene by bidirectional sequencing of the amplified products. The mutation was verified by denaturing high-performance liquid chromatography (DHPLC). Two cataract phenotypes were observed within this family: one eye exhibited Y-suture and nuclear pulverulent opacification of the lens, while the others exhibited complete opacification in the fetal nuclear region. Sequencing of the candidate genes detected a heterozygous c.319G>A change in the coding region of the major intrinsic protein (MIP), resulting in the substitution of a highly conserved Valine by Isoleucine (p.V107I).The mutation was confirmed by DHPLC. This study has identified a novel MIP mutation, p.V107I in a Chinese family with congenital cataracts. To the best of our knowledge, this is the first reported case of cataracts caused by a mutation in the second extracellular loop domain of MIP.

  1. Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses

    PubMed Central

    2012-01-01

    Background Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations. The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location. Results A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power

  2. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    PubMed Central

    Zhang, Yu; Cui, Min; Zhang, Jimin; Zhang, Lei; Li, Chenliu; Kan, Xin; Sun, Qian; Deng, Dexiang; Yin, Zhitong

    2016-01-01

    Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus) is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs) associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS) and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs), and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM) on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs) in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD) and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS) of A. flavus resistance and a characterisation of the causal gene. PMID:27598199

  3. Endothelin 1 gene is not a major modifier of chronic kidney disease advancement among the autosomal dominant polycystic kidney disease patients.

    PubMed

    Annapareddy, Shiva Nagendra Reddy; Elumalai, Ramprasad; Lakkakula, Bhaskar V K S; Ramanathan, Gnanasambandan; Periyasamy, Soundararajan

    2016-01-01

    Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous cysts in the kidney and manifest with various renal and extra-renal complications leading to ESRD. Endothelin may contribute to various renal and extra-renal manifestations pointing to genetic and environmental modifying factors that alter the risk of developing chronic kidney disease (CKD) in ADPKD. In the present study we investigated six genes coding for endothelin 1 ( EDN1 ) tagging-single nucleotide polymorphisms (tag-SNPs) to unravel the EDN1 gene modifier effect for renal disease progression in ADPKD. Materials and Methods: The tag-SNPs were genotyped using FRET-based KASPar method in 108 ADPKD patients and 119 healthy subjects. Cochran-Armitage trend test was used to determine the association between ADPKD and EDN1 tag-SNPs. Multivariate logistic regression analysis was performed to assess the effect of tag-SNPs on CKD progression. The relationship between different CKD stages and hypertension and their interaction Mantel-Haenszel stratified analysis was performed. Results: All loci are polymorphic and followed Hardy-Weinberg equilibrium. Distribution of EDN1 genotypes and haplotypes in control and ADPKD is not statistically significant. Five SNPs covering 3.4 kb forming single LD block, but the LD was not strong between SNPs. The EDN1 genotypes are not contributing to the CKD advancement among the ADPKD patients. Conclusion: These results suggest that the EDN1 gene is not a major modifier of CKD advancement among ADPKD patients.

  4. Detection of QTL controlling feed efficiency and excretion in chickens fed a wheat-based diet.

    PubMed

    Mignon-Grasteau, Sandrine; Rideau, Nicole; Gabriel, Irène; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2015-09-25

    Improving feed efficiency is a major goal in poultry production in order to reduce production costs, increase the possibility of using alternative feedstuffs and decrease the volume of manure. However, in spite of their economic and environmental impact, very few quantitative trait loci (QTL) have been reported on these traits. Thus, we undertook the detection of QTL on 820 meat-type chickens from a F2 cross between D- and D+ lines that were divergently selected on low or high digestive efficiency at 3 weeks of age. Birds were measured for growth between 0 and 23 days, feed intake and feed conversion ratio between 9 and 23 days, breast and abdominal fat yields at 23 days, and the anatomy of their digestive tract (density, relative weight and length of the duodenum, jejunum, ileum, and ratio of proventriculus to gizzard weight) was examined. To evaluate excretion traits, fresh and dry weight, water content, pH, nitrogen to phosphorus ratio from 0 to 23 days, and pH of gizzard and jejunum contents at 23 days were measured. A set of 3379 single nucleotide polymorphisms distributed on 28 Gallus gallus (GGA) autosomes, the Z chromosome and one unassigned linkage group was used for QTL detection. Using the QTLMap software developed for linkage analyses by interval mapping, we detected 16 QTL for feed intake, 13 for feed efficiency, 49 for anatomy-related traits, seven for growth, six for body composition and ten for excretion. Nine of these QTL were genome-wide significant (four for feed intake on GGA1, one for feed efficiency on GGA2, and four for anatomy on GGA1, 2, 3 and 4). GGA16, 19, and 26 carried many QTL for different types of traits that co-localize at the same position. This study identified several QTL regions that are involved in the control of digestive efficiency in chicken. Further studies are needed to identify the genes that underlie these effects, and to validate these in other commercial populations and for different breeding environments.

  5. Fine mapping of a quantitative trait locus for bovine milk fat composition on Bos taurus autosome 19.

    PubMed

    Bouwman, Aniek C; Visker, Marleen H P W; van Arendonk, Johana M; Bovenhuis, Henk

    2014-02-01

    A major quantitative trait locus (QTL) for milk fat content and fatty acids in both milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in several cattle breeds. The objective of this study was to refine the location of the QTL on BTA19 for bovine milk fat composition using a denser set of markers. Opportunities for fine mapping were provided by imputation from 50,000 genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel with up to 777,000 SNP. The QTL region was narrowed down to a linkage disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 to 51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene CCDC57 is minimally characterized and has not been associated with bovine milk fat previously, but is expressed in the mammary gland. The gene FASN has been associated with bovine milk fat and fat in adipose tissue before. This gene is a likely candidate for the QTL on BTA19 because of its involvement in de novo fat synthesis. Future studies using sequence data of both CCDC57 and FASN, and eventually functional studies, will have to be pursued to assign the causal variant(s). Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments.

    PubMed

    Bennett, Dion; Reynolds, Matthew; Mullan, Daniel; Izanloo, Ali; Kuchel, Haydn; Langridge, Peter; Schnurbusch, Thorsten

    2012-11-01

    A large proportion of the worlds' wheat growing regions suffers water and/or heat stress at some stage during the crop growth cycle. With few exceptions, there has been no utilisation of managed environments to screen mapping populations under repeatable abiotic stress conditions, such as the facilities developed by the International Wheat and Maize Improvement Centre (CIMMYT). Through careful management of irrigation and sowing date over three consecutive seasons, repeatable heat, drought and high yield potential conditions were imposed on the RAC875/Kukri doubled haploid population to identify genetic loci for grain yield, yield components and key morpho-physiological traits under these conditions. Two of the detected quantitative trait loci (QTL) were located on chromosome 3B and had a large effect on canopy temperature and grain yield, accounting for up to 22 % of the variance for these traits. The locus on chromosome arm 3BL was detected under all three treatments but had its largest effect under the heat stress conditions, with the RAC875 allele increasing grain yield by 131 kg ha(-1) (or phenotypically, 7 % of treatment average). Only two of the eight yield QTL detected in the current study (including linkage groups 3A, 3D, 4D 5B and 7A) were previously detected in the RAC875/Kukri doubled haploid population; and there were also different yield components driving grain yield. A number of discussion points are raised to understand differences between the Mexican and southern Australian production environments and explain the lack of correlation between the datasets. The two key QTL detected on chromosome 3B in the present study are candidates for further genetic dissection and development of molecular markers.

  7. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.

    PubMed

    Djébali, Naceur; Jauneau, Alain; Ameline-Torregrosa, Carine; Chardon, Fabien; Jaulneau, Valérie; Mathé, Catherine; Bottin, Arnaud; Cazaux, Marc; Pilet-Nayel, Marie-Laure; Baranger, Alain; Aouani, Mohamed Elarbi; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard; Huguet, Thierry; Jacquet, Christophe

    2009-09-01

    A pathosystem between Aphanomyces euteiches, the causal agent of pea root rot disease, and the model legume Medicago truncatula was developed to gain insights into mechanisms involved in resistance to this oomycete. The F83005.5 French accession and the A17-Jemalong reference line, susceptible and partially resistant, respectively, to A. euteiches, were selected for further cytological and genetic analyses. Microscopy analyses of thin root sections revealed that a major difference between the two inoculated lines occurred in the root stele, which remained pathogen free in A17. Striking features were observed in A17 roots only, including i) frequent pericycle cell divisions, ii) lignin deposition around the pericycle, and iii) accumulation of soluble phenolic compounds. Genetic analysis of resistance was performed on an F7 population of 139 recombinant inbred lines and identified a major quantitative trait locus (QTL) near the top of chromosome 3. A second study, with near-isogenic line responses to A. euteiches confirmed the role of this QTL in expression of resistance. Fine-mapping allowed the identification of a 135-kb sequenced genomic DNA region rich in proteasome-related genes. Most of these genes were shown to be induced only in inoculated A17. Novel mechanisms possibly involved in the observed partial resistance are proposed.

  8. Recombination suppression in the vicinity of the breakpoints of a balanced 1:11 autosomal translocation associated with schizophrenia and other forms of major mental illness

    SciTech Connect

    He, L.; Blackwood, D.H.R.; Maclean, A.W.

    1994-09-01

    The frequency and extent of pairing failure around human translocations is unknown. We have examined the pattern of recombination around the breakpoints of a balanced autosomal translocation t(1:11)(q43:q21) associated with major mental illness. We have postulated that the association with mental illness in the family has not arisen by chance, but rather that functional disruption of a gene at or near a breakpoint site is responsible. Efforts to isolate the breakpoints for molecular analysis of the region are now at an advanced stage. On the other hand if pairing failure is occurring in the family in the region of the breakpoints, a susceptibility allele for mental illness, acting independently of the translocation, may be located some distance away. DNA was available from seventeen carriers and ten non-translocation carriers, giving a total of thirty-one informative meioses spanning 4 generations. The derivative one and eleven chromosomes were also isolated in somatic cell hybrids and were used to confirm allele phase. We genotyped the pedigree members using nine markers covering 30 cMs on either side of both the chromosome one and eleven breakpoints. No recombinants were found with markers within 3 cMs of either breakpoint. Four markers at an average of 7 cMs respectively on either side of the two breakpoints gave a total of three crossovers from thirty-one meioses versus an expected 9, demonstrating (p<0.05) significant recombination suppression. By contrast, examination of chromosome regions at greater distances from the breakpoints showed recombination rates similar to those expected from CEPH data with no evidence of suppression. We conclude that crossover suppression occurs in this family but is restricted to a region within 7 cMs of the breakpoints.

  9. QTL detection for coccidiosis (Eimeria tenella) resistance in a Fayoumi × Leghorn F2 cross, using a medium-density SNP panel

    PubMed Central

    2014-01-01

    Background Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied. Results Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL. Conclusions The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between

  10. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa ‘Pusa Basmati 1121’

    PubMed Central

    Babu, N. Naresh; Krishnan, S. Gopala; Vinod, K. K.; Krishnamurthy, S. L.; Singh, Vivek K.; Singh, Madan P.; Singh, Renu; Ellur, Ranjith K.; Rai, Vandna; Bollinedi, Haritha; Bhowmick, Prolay K.; Yadav, Ashutosh K.; Nagarajan, Mariappan; Singh, Nagendra K.; Prabhu, Kumble V.; Singh, Ashok K.

    2017-01-01

    Pusa Basmati 1121 (PB1121), an elite Basmati rice cultivar is vulnerable to salinity at seedling stage. A study was undertaken to impart seedling-stage salt tolerance into PB1121 by transferring a quantitative trait locus (QTL), Saltol, using FL478 as donor, through marker assisted backcrossing. Sequence tagged microsatellite site (STMS) marker RM 3412, tightly linked to Saltol was used for foreground selection. Background recovery was estimated using 90 genome-wide STMS markers. Systematic phenotypic selection helped in accelerated recovery of recurrent parent phenome (RPP). A set of 51 BC3F2 lines homozygous for Saltol were advanced to develop four improved near isogenic lines (NILs) of PB1121 with seedling stage salt tolerance. The background genome recovery in the NILs ranged from 93.3 to 99.4%. The improved NILs were either similar or better than the recurrent parent PB1121 for yield, grain and cooking quality and duration. Biochemical analyses revealed significant variation in shoot and root Na+ and K+ concentrations. Correlation between shoot and root Na+ concentration was stronger than that between root and shoot K+ concentration. The effect of QTL integration into the NILs was studied through expression profiling of OsHKT1;5, one of the genes present in the Saltol region. The NILs had significantly higher OsHKT1;5 expression than the recurrent parent PB1121, but lower than FL478 on salt exposure validating the successful introgression of Saltol in the NILs. This was also confirmed under agronomic evaluation, wherein the NILs showed greater salt tolerance at seedling stage. One of the NILs, Pusa1734-8-3-3 (NIL3) showed comparable yield and cooking quality to the recurrent parent PB1121, with high field level seedling stage salinity tolerance and shorter duration. This is the first report of successful introgression of Saltol into a Basmati rice cultivar. PMID:28184228

  11. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize.

    PubMed

    Teng, Feng; Zhai, Lihong; Liu, Ruixiang; Bai, Wei; Wang, Liqiu; Huo, Dongao; Tao, Yongsheng; Zheng, Yonglian; Zhang, Zuxin

    2013-02-01

    Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A(3) removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F(2) populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 β-hydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RT-PCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA(1) accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1-6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding.

  12. QTL mapping of resistance to gray leaf spot in maize.

    PubMed

    Zhang, Yan; Xu, Ling; Fan, Xingming; Tan, Jing; Chen, Wei; Xu, Mingliang

    2012-12-01

    Gray leaf spot (GLS), caused by the causal fungal pathogen Cercospora zeae-maydis, is one of the most serious foliar diseases of maize worldwide. In the current study, a highly resistant inbred line Y32 and a susceptible line Q11 were used to produce segregating populations for both genetic analysis and QTL mapping. The broad-sense heritability (H (2)) for GLS resistance was estimated to be as high as 0.85, indicating that genetic factors played key roles in phenotypic variation. In initial QTL analysis, four QTL, located on chromosomes 1, 2, 5, and 8, were detected to confer GLS resistance. Each QTL could explain 2.53-23.90 % of the total phenotypic variation, predominantly due to additive genetic effects. Two major QTL, qRgls1 and qRgls2 on chromosomes 8 and 5, were consistently detected across different locations and replicates. Compared to the previous results, qRgls2 is located in a 'hotspot' for GLS resistance; while, qRgls1 does not overlap with any other known resistance QTL. Furthermore, the major QTL-qRgls1 was fine-mapped into an interval of 1.4 Mb, flanked by the markers GZ204 and IDP5. The QTL-qRgls1 could enhance the resistance percentages by 19.70-61.28 %, suggesting its usefulness to improve maize resistance to GLS.

  13. Fine mapping and identification of candidate rice genes associated with qSTV11(SG), a major QTL for rice stripe disease resistance.

    PubMed

    Kwon, Tackmin; Lee, Jong-Hee; Park, Soo-Kwon; Hwang, Un-Ha; Cho, Jun-Hyun; Kwak, Do-Yeon; Youn, Yeong-Nam; Yeo, Un-Sang; Song, You-Chun; Nam, Jaesung; Kang, Hang-Won; Nam, Min-Hee; Park, Dong-Soo

    2012-09-01

    Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01 Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 (SG) are discussed.

  14. Two distinct classes of QTL determine rust resistance in sorghum.

    PubMed

    Wang, Xuemin; Mace, Emma; Hunt, Colleen; Cruickshank, Alan; Henzell, Robert; Parkes, Heidi; Jordan, David

    2014-12-31

    Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect

  15. A comprehensive linkage map and QTL map for carcass traits in a cross between Giant Grey and New Zealand White rabbits.

    PubMed

    Sternstein, Ina; Reissmann, Monika; Maj, Dorota; Bieniek, Josef; Brockmann, Gudrun A

    2015-02-11

    Genomic resources for the rabbit are still limited compared to many other livestock species. The genomic sequence as well as linkage maps have gaps that hamper their use in rabbit genome research. Therefore, the aims of this study were the improvement of existing linkage maps and the mapping of quantitative trait loci (QTL) for carcass and meat quality traits. The study was performed in a F2 population of an initial cross between Giant Grey (GG) and New Zealand White (NZW) rabbits. The population consisted of 363 F2 animals derived from 9 F1 bucks and 33 F1 does. 186 microsatellite and three SNP markers were informative for mapping. Out of 189 markers, which could be assigned to linkage groups, 110 markers were genetically mapped for the first time. The average marker distance was 7.8 cM. The map across all autosomes reached a total length of 1419 cM. The maternal linkage map was 1.4 times longer than the paternal. All linkage groups could be anchored to chromosomes. On the basis of the generated genetic map, we identified a highly significant QTL (genome-wide significance p < 0.01) for different carcass weights on chromosome 7 with a peak position at 91 cM (157 Mb), a significant QTL (p < 0.05) for bone mass on chromosome 9 at 61 cM (65 Mb), and another one for drip loss on chromosome 12 at 94 cM (128 Mb). Additional suggestive QTL were found on almost all chromosomes. Several genomic loci affecting the fore, intermediate and hind parts of the carcass were identified. The identified QTL explain between 2.5 to 14.6% of the phenotypic variance in the F2 population. The results present the most comprehensive genetic map and the first genome-wide QTL mapping study for carcass and meat quality traits in rabbits. The identified QTL, in particular the major QTL on chromosome 7, provide starting points for fine mapping and candidate gene search. The data contribute to linking physical and genetic information in the rabbit genome.

  16. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America.

    PubMed

    Gutiérrez, Lucia; Germán, Silvia; Pereyra, Silvia; Hayes, Patrick M; Pérez, Carlos A; Capettini, Flavio; Locatelli, Andres; Berberian, Natalia M; Falconi, Esteban E; Estrada, Rigoberto; Fros, Dario; Gonza, Victor; Altamirano, Hernan; Huerta-Espino, Julio; Neyra, Edgar; Orjeda, Gisella; Sandoval-Islas, Sergio; Singh, Ravi; Turkington, Kelly; Castro, Ariel J

    2015-03-01

    Multi-environment multi-QTL mixed models were used in a GWAS context to identify QTL for disease resistance. The use of mega-environments aided the interpretation of environment-specific and general QTL. Diseases represent a major constraint for barley (Hordeum vulgare L.) production in Latin America. Spot blotch (caused by Cochliobolus sativus), stripe rust (caused by Puccinia striiformis f.sp. hordei) and leaf rust (caused by Puccinia hordei) are three of the most important diseases that affect the crop in the region. Since fungicide application is not an economically or environmentally sound solution, the development of durably resistant varieties is a priority for breeding programs. Therefore, new resistance sources are needed. The objective of this work was to detect genomic regions associated with field level plant resistance to spot blotch, stripe rust, and leaf rust in Latin American germplasm. Disease severities measured in multi-environment trials across the Americas and 1,096 SNPs in a population of 360 genotypes were used to identify genomic regions associated with disease resistance. Optimized experimental design and spatial modeling were used in each trial to estimate genotypic means. Genome-Wide Association Mapping (GWAS) in each environment was used to detect Quantitative Trait Loci (QTL). All significant environment-specific QTL were subsequently included in a multi-environment-multi-QTL (MEMQ) model. Geographical origin and inflorescence type were the main determinants of population structure. Spot blotch severity was low to intermediate while leaf and stripe rust severity was high in all environments. Mega-environments were defined by locations for spot blotch and leaf rust. Significant marker-trait associations for spot blotch (9 QTL), leaf (6 QTL) and stripe rust (7 QTL) and both global and environment-specific QTL were detected that will be useful for future breeding efforts.

  17. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat

    USDA-ARS?s Scientific Manuscript database

    Thousand-kernel weight (TKW) is one of the major components of grain yield in wheat (Triticum aestivum). Identifying major quantitative trait loci (QTLs) for TKW and developing diagnostic markers are prerequisite for success in marker-assisted selection (MAS) to improve wheat yield through breeding....

  18. QTL with dominance effect affecting residual feed intake on BTA6

    USDA-ARS?s Scientific Manuscript database

    Residual feed intake (RFI) is a measure of feed efficiency and therefore an economically relevant trait. A genome-wide scan for quantitative trait loci (QTL) affecting RFI in beef cattle was conducted. Approximately equally spaced microsatellite markers (n = 229) spanned the 29 bovine autosomes. Tw...

  19. Human QTL linkage mapping.

    PubMed

    Almasy, Laura; Blangero, John

    2009-06-01

    Human quantitative trait locus (QTL) linkage mapping, although based on classical statistical genetic methods that have been around for many years, has been employed for genome-wide screening for only the last 10-15 years. In this time, there have been many success stories, ranging from QTLs that have been replicated in independent studies to those for which one or more genes underlying the linkage peak have been identified to a few with specific functional variants that have been confirmed in in vitro laboratory assays. Despite these successes, there is a general perception that linkage approaches do not work for complex traits, possibly because many human QTL linkage studies have been limited in sample size and have not employed the family configurations that maximize the power to detect linkage. We predict that human QTL linkage studies will continue to be productive for the next several years, particularly in combination with RNA expression level traits that are showing evidence of regulatory QTLs of large effect sizes and in combination with high-density genome-wide SNP panels. These SNP panels are being used to identify QTLs previously localized by linkage and linkage results are being used to place informative priors on genome-wide association studies.

  20. Two functionally distinct members of the MATE (multidrug and toxic compound extrusion) family of transporters potentially underlie two major Al tolerance QTL in maize

    USDA-ARS?s Scientific Manuscript database

    Crop yields are significantly reduced by aluminum (Al) toxicity on acidic soils, which comprise up to 50% of the world’s arable land. Al-activated release of ligands (such as organic acids) from the roots is a major plant Al tolerance mechanism. In maize, Al-activated root citrate exudation plays an...

  1. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust.

    PubMed

    Vales, M I; Schön, C C; Capettini, F; Chen, X M; Corey, A E; Mather, D E; Mundt, C C; Richardson, K L; Sandoval-Islas, J S; Utz, H F; Hayes, P M

    2005-11-01

    The limited population sizes used in many quantitative trait locus (QTL) detection experiments can lead to underestimation of QTL number, overestimation of QTL effects, and failure to quantify QTL interactions. We used the barley/barley stripe rust pathosystem to evaluate the effect of population size on the estimation of QTL parameters. We generated a large (n = 409) population of doubled haploid lines derived from the cross of two inbred lines, BCD47 and Baronesse. This population was evaluated for barley stripe rust severity in the Toluca Valley, Mexico, and in Washington State, USA, under field conditions. BCD47 was the principal donor of resistance QTL alleles, but the susceptible parent also contributed some resistance alleles. The major QTL, located on the long arm of chromosome 4H, close to the Mlo gene, accounted for up to 34% of the phenotypic variance. Subpopulations of different sizes were generated using three methods-resampling, selective genotyping, and selective phenotyping-to evaluate the effect of population size on the estimation of QTL parameters. In all cases, the number of QTL detected increased with population size. QTL with large effects were detected even in small populations, but QTL with small effects were detected only by increasing population size. Selective genotyping and/or selective phenotyping approaches could be effective strategies for reducing the costs associated with conducting QTL analysis in large populations. The method of choice will depend on the relative costs of genotyping versus phenotyping.

  2. Single-base substitution in P1B-ATPase gene is associated with a major QTL for seed cadmium concentration in soybean.

    PubMed

    Benitez, Eduardo R; Hajika, Makita; Takahashi, Ryoji

    2012-01-01

    Cadmium (Cd) is a pollutant metal present in soils and toxic to biologic organisms. Previous studies using recombinant inbred lines derived from a cross between soybean (Glycine max [L.] Merr.) cultivars Harosoy and Fukuyutaka revealed a major quantitative trait loci for seed Cd concentration (cd1) in chromosome 9. The genome sequence of Williams 82 suggested that a P(1B)-ATPase gene involved in the transport of metals was located in the vicinity of cd1. cDNA sequencing suggested existence of two types of transcripts: one (GmHMA1a) consisting of 9 exons and 8 introns and the other (GmHMA1b) consisting of 8 exons and 7 introns. The putative polypeptide, GmHMA1a, consisted of 885 amino acids, whereas premature termination of translation of GmHMA1b generated a putative polypeptide with 559 amino acids. GmHMA1a had a 49.8% similarity with AtHMA3, a P(1B)-ATPase of Arabidopsis. GmHMA1a of Fukuyutaka differed from that of Harosoy by a single-base substitution that led to an amino acid substitution from E to G at amino acid position 608. A derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to detect the base substitution, and this dCAPS marker was successfully associated with seed Cd concentration. Transgenic experiments may be necessary to verify that GmHMA1 actually corresponds to cd1.

  3. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus

    PubMed Central

    2011-01-01

    Background In the last few years, efforts have been made to identify large effect QTL for grain yield under drought in rice. However, identification of most precise and consistent QTL across the environments and genetics backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-analysis approach. Results The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821 cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1 were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought. Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar transport-related genes were found in clusters in most of the meta-QTL. Conclusions Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection individually and in

  4. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions.

    PubMed

    Obara, Mitsuhiro; Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-08-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4(+) as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between 'Koshihikari', a japonica variety, and 'Kasalath', an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 microM NH4(+). Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a 'Kasalath' segment of SL-218, which was localized to the long-arm of chromosome 6. The 'Kasalath' allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4(+) concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5-21.1% longer than that of 'Koshihikari' under different NH4(+) concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the 'Nipponbare' genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and 'Koshihikari'.

  5. QTL analysis of fruit cluster abundance in grape (Vitis sp.)

    USDA-ARS?s Scientific Manuscript database

    Sustainably maximizing yield or productivity of fruit over time is a major goal of modern viticulture. One major yield component is the number of fruit or flower clusters present on a single shoot of the current year’s growth. A quantitative trail loci (QTL) study was conducted on both average numbe...

  6. Autosomal dominant vitreoretinochoroidopathy (ADVIRC).

    PubMed Central

    Blair, N P; Goldberg, M F; Fishman, G A; Salzano, T

    1984-01-01

    We report the second family recognised to have autosomal dominant vitreoretinochoroidopathy. The clinical features were (1) autosomal dominant inheritance; (2) peripheral, coarse pigmentary degeneration of the fundus for 360 degrees, with a relatively discrete posterior border in the equatorial region (this finding may be pathognomonic); (3) superficial punctate yellowish-white opacities in the retina; (4) various vascular abnormalities; (5) breakdown of the blood-retinal barrier; (6) retinal neovascularisation; (7) vitreous abnormalities; and (8) choroidal atrophy. Visual reduction was mainly due to macular oedema or vitreous haemorrhage. Images PMID:6689931

  7. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  8. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    PubMed Central

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  9. Identifying QTL and genetic correlations between fur quality traits in mink (Neovison vison).

    PubMed

    Thirstrup, J P; Anistoroaei, R; Guldbrandtsen, B; Christensen, K; Fredholm, M; Nielsen, V H

    2014-02-01

    Mapping of QTL affecting fur quality traits (guard hair length, guard hair thickness, density of wool, surface of the fur and quality) and skin length was performed in a three-generation mink population (F2 design). In the parental generation, Nordic Brown mink were crossed reciprocally with American Black short nap mink. In all, 1082 mink encompassing three generations were used for the analyses. The mink were genotyped for 104 microsatellites covering all 14 autosomes. The QTL analyses were performed by least-square regression implemented in gridqtl software. Genetic and phenotypic correlations and heritabilities were estimated using the average information-restricted maximum-likelihood method. Evidence was found for QTL affecting fur quality traits on nine autosomes. QTL were detected for guard hair thickness on chromosomes 1, 2, 3, 6 and 13; for guard hair length on chromosomes 2, 3 and 6; for wool density on chromosomes 6 and 13; for surface on chromosomes 7, 12 and 13; for quality on chromosomes 6, 7, 11 and 13; and for skin length on chromosomes 7 and 9. Proximity of locations of QTL for guard hair length, guard hair thickness and for wool density and quality suggests that some of the traits are in part under the influence of the same genes. Traits under the influence of QTL at close or identical positions also were traits that were strongly genotypically correlated. Based on the results of correlation analyses, the most important single traits influencing the quality were found to be density of wool, guard hair thickness and appearance of the surface. © 2013 Stichting International Foundation for Animal Genetics.

  10. QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines.

    PubMed

    Arraouadi, Soumaya; Badri, Mounawer; Abdelly, Chedly; Huguet, Thierry; Aouani, Mohamed Elarbi

    2012-02-01

    In this study, QTL mapping of physiological traits in the model Legume (Medicago truncatula) was performed using a set of RILs derived from LR5. Twelve parameters associated with Na+ and K+ content in leaves, stems and roots were measured. Broad-sense heritability of these traits was ranged from 0.15 to 0.83 in control and from 0.14 to 0.61 in salt stress. Variation among RILs was dependent on line, treatment and line by treatment effect. We mapped 6 QTLs in control, 2 in salt stress and 5 for sensitivity index. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. Detected QTL for leaf, stem and root traits did not share the same map locations, suggesting that genes controlling transport of Na+ and K+ may be different. The maximum of QTL was observed on chromosome 1, no QTL was detected on chromosomes 5 and 6.

  11. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome.

    PubMed

    Portis, Ezio; Barchi, Lorenzo; Toppino, Laura; Lanteri, Sergio; Acciarri, Nazzareno; Felicioni, Nazzareno; Fusari, Fabio; Barbierato, Valeria; Cericola, Fabio; Valè, Giampiero; Rotino, Giuseppe Leonardo

    2014-01-01

    In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross '305E40' x '67/3' was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ≥ 10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding.

  12. QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome

    PubMed Central

    Portis, Ezio; Barchi, Lorenzo; Toppino, Laura; Lanteri, Sergio; Acciarri, Nazzareno; Felicioni, Nazzareno; Fusari, Fabio; Barbierato, Valeria; Cericola, Fabio; Valè, Giampiero; Rotino, Giuseppe Leonardo

    2014-01-01

    In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross ‘305E40’ x ‘67/3’ was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ≥10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding. PMID:24586828

  13. [Autosomal recessive cerebellar ataxias].

    PubMed

    Tranchant, Christine; Anheim, Mathieu

    2009-12-01

    Friedreich ataxia is the most frequent recessive cerebral ataxia d should always be researched first. Ataxia with isolated vitamin E deficiency and abetalipoproteinemia have a specific treatment. Associated neurological signs such polyneuroapthy, ophtalmologic or oculomotor signs, pyramidal signs, and cerebellar MRI can lead to the etiological diagnosis. Biological tests should be: vitamin E, cholesterol, alpha-fetoprotein levels, acanthocytes, than phytanic acid, cholestanol, lysosomal enzymes. Numerous autosomal recessive cerebellar ataxia remain without etiology.

  14. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.).

    PubMed

    He, Xiaoming; Li, Yuhong; Pandey, Sudhakar; Yandell, Brain S; Pathak, Mamta; Weng, Yiqun

    2013-08-01

    Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0-74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.

  15. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.

    PubMed

    Oakley, Christopher G; Ågren, Jon; Atchison, Rachel A; Schemske, Douglas W

    2014-09-01

    Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade-offs across environments, but little is known about the traits and genes underlying fitness trade-offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade-offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade-off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade-offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade-off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade-off in nature. © 2014 John Wiley & Sons Ltd.

  16. Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines.

    PubMed

    Lavaud, C; Lesné, A; Piriou, C; Le Roy, G; Boutet, G; Moussart, A; Poncet, C; Delourme, R; Baranger, A; Pilet-Nayel, M-L

    2015-11-01

    Marker-assisted backcrossing was used to generate pea NILs carrying individual or combined resistance alleles at main Aphanomyces resistance QTL. The effects of several QTL were successfully validated depending on genetic backgrounds. Quantitative trait loci (QTL) validation is an important and often overlooked step before subsequent research in QTL cloning or marker-assisted breeding for disease resistance in plants. Validation of QTL controlling partial resistance to Aphanomyces root rot, one of the most damaging diseases of pea worldwide, is of major interest for the future development of resistant varieties. The aim of this study was to validate, in different genetic backgrounds, the effects of various resistance alleles at seven main resistance QTL recently identified. Five backcross-assisted selection programs were developed. In each, resistance alleles at one to three of the seven main Aphanomyces resistance QTL were transferred into three genetic backgrounds, including two agronomically important spring (Eden) and winter (Isard) pea cultivars. The subsequent near-isogenic lines (NILs) were evaluated for resistance to two reference strains of the main A. euteiches pathotypes under controlled conditions. The NILs carrying resistance alleles at the major-effect QTL Ae-Ps4.5 and Ae-Ps7.6, either individually or in combination with resistance alleles at other QTL, showed significantly reduced disease severity compared to NILs without resistance alleles. Resistance alleles at some minor-effect QTL, especially Ae-Ps2.2 and Ae-Ps5.1, were also validated for their individual or combined effects on resistance. QTL × genetic background interactions were observed, mainly for QTL Ae-Ps7.6, the effect of which increased in the winter cultivar Isard. The pea NILs are a novel and valuable resource for further understanding the mechanisms underlying QTL and their integration in breeding programs.

  17. Autosomal recessive cerebellar ataxias

    PubMed Central

    Palau, Francesc; Espinós, Carmen

    2006-01-01

    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia. PMID:17112370

  18. Genome-wide QTL and eQTL analyses using Mendel.

    PubMed

    Zhou, Hua; Zhou, Jin; Hu, Tao; Sobel, Eric M; Lange, Kenneth

    2016-01-01

    Pedigree genome-wide association studies (GWAS) (Option 29) in the current version of the Mendel software is an optimized subroutine for performing large-scale genome-wide quantitative trait locus (QTL) analysis. This analysis (a) works for random sample data, pedigree data, or a mix of both; (b) is highly efficient in both run time and memory requirement; (c) accommodates both univariate and multivariate traits; (d) works for autosomal and x-linked loci; (e) correctly deals with missing data in traits, covariates, and genotypes; (f) allows for covariate adjustment and constraints among parameters; (g) uses either theoretical or single nucleotide polymorphism (SNP)-based empirical kinship matrix for additive polygenic effects; (h) allows extra variance components such as dominant polygenic effects and household effects; (i) detects and reports outlier individuals and pedigrees; and (j) allows for robust estimation via the t-distribution. This paper assesses these capabilities on the genetics analysis workshop 19 (GAW19) sequencing data. We analyzed simulated and real phenotypes for both family and random sample data sets. For instance, when jointly testing the 8 longitudinally measured systolic blood pressure and diastolic blood pressure traits, it takes Mendel 78 min on a standard laptop computer to read, quality check, and analyze a data set with 849 individuals and 8.3 million SNPs. Genome-wide expression QTL analysis of 20,643 expression traits on 641 individuals with 8.3 million SNPs takes 30 h using 20 parallel runs on a cluster. Mendel is freely available at http://www.genetics.ucla.edu/software.

  19. [Autosomal dominant polycystic kidney].

    PubMed

    Jorge Adad, S; Estevão Barbosa, M; Fácio Luíz, J M; Furlan Rodrigues, M C; Iwamoto, S

    1996-01-01

    A 48-year-old male had autosomic dominant polycystic kidneys with dimensions, to the best of our knowledge, never previously reported; the right kidney weighed 15,100 g and measured 53 x 33 x 9cm and the left one 10.200 g and 46 x 21 x 7cm, with cysts measuring up to 14cm in diameter. Nephrectomy was done to control persistent hematuria and to relief disconfort caused by the large kidneys. The renal function is stable four years after transplantation.

  20. Meta-QTL for resistance to white mold in common bean.

    PubMed

    Vasconcellos, Renato C C; Oraguzie, O Blessing; Soler, Alvaro; Arkwazee, Haidar; Myers, James R; Ferreira, Juan J; Song, Qijian; McClean, Phil; Miklas, Phillip N

    2017-01-01

    White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a major disease that limits common bean production and quality worldwide. The host-pathogen interaction is complex, with partial resistance in the host inherited as a quantitative trait with low to moderate heritability. Our objective was to identify meta-QTL conditioning partial resistance to white mold from individual QTL identified across multiple populations and environments. The physical positions for 37 individual QTL were identified across 14 recombinant inbred bi-parental populations (six new, three re-genotyped, and five from the literature). A meta-QTL analysis of the 37 QTL was conducted using the genetic linkage map of Stampede x Red Hawk population as the reference. The 37 QTL condensed into 17 named loci (12 previously named and five new) of which nine were defined as meta-QTL WM1.1, WM2.2, WM3.1, WM5.4, WM6.2, WM7.1, WM7.4, WM7.5, and WM8.3. The nine meta-QTL had confidence intervals ranging from 0.65 to 9.41 Mb. Candidate genes shown to express under S. sclerotiorum infection in other studies, including cell wall receptor kinase, COI1, ethylene responsive transcription factor, peroxidase, and MYB transcription factor, were found within the confidence interval for five of the meta-QTL. The nine meta-QTL are recommended as potential targets for MAS for partial resistance to white mold in common bean.

  1. Fusarium Head Blight Resistance QTL in the Spring Wheat Cross Kenyon/86ISMN 2137

    PubMed Central

    McCartney, Curt A.; Brûlé-Babel, Anita L.; Fedak, George; Martin, Richard A.; McCallum, Brent D.; Gilbert, Jeannie; Hiebert, Colin W.; Pozniak, Curtis J.

    2016-01-01

    Fusarium head blight (FHB), caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated management. The objective of this study was to identify QTL for FHB resistance in a recombinant inbred line (RIL) population of the spring wheat cross Kenyon/86ISMN 2137. Kenyon is a Canadian spring wheat, while 86ISMN 2137 is an unrelated spring wheat. The RIL population was evaluated for FHB resistance in six FHB nurseries. Nine additive effect QTL for FHB resistance were identified, six from Kenyon and three from 86ISMN 2137. Rht8 and Ppd-D1a co-located with two FHB resistance QTL on chromosome arm 2DS. A major QTL for FHB resistance from Kenyon (QFhb.crc-7D) was identified on chromosome 7D. The QTL QFhb.crc-2D.4 from Kenyon mapped to the same region as a FHB resistance QTL from Wuhan-1 on chromosome arm 2DL. This result was unexpected since Kenyon does not share common ancestry with Wuhan-1. Other FHB resistance QTL on chromosomes 4A, 4D, and 5B also mapped to known locations of FHB resistance. Four digenic epistatic interactions were detected for FHB resistance, which involved eight QTL. None of these QTL were significant based upon additive effect QTL analysis. This study provides insight into the genetic basis of native FHB resistance in Canadian spring wheat. PMID:27790188

  2. Meta-QTL for resistance to white mold in common bean

    PubMed Central

    Vasconcellos, Renato C. C.; Oraguzie, O. Blessing; Soler, Alvaro; Arkwazee, Haidar; Myers, James R.; Ferreira, Juan J.; Song, Qijian; McClean, Phil; Miklas, Phillip N.

    2017-01-01

    White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a major disease that limits common bean production and quality worldwide. The host-pathogen interaction is complex, with partial resistance in the host inherited as a quantitative trait with low to moderate heritability. Our objective was to identify meta-QTL conditioning partial resistance to white mold from individual QTL identified across multiple populations and environments. The physical positions for 37 individual QTL were identified across 14 recombinant inbred bi-parental populations (six new, three re-genotyped, and five from the literature). A meta-QTL analysis of the 37 QTL was conducted using the genetic linkage map of Stampede x Red Hawk population as the reference. The 37 QTL condensed into 17 named loci (12 previously named and five new) of which nine were defined as meta-QTL WM1.1, WM2.2, WM3.1, WM5.4, WM6.2, WM7.1, WM7.4, WM7.5, and WM8.3. The nine meta-QTL had confidence intervals ranging from 0.65 to 9.41 Mb. Candidate genes shown to express under S. sclerotiorum infection in other studies, including cell wall receptor kinase, COI1, ethylene responsive transcription factor, peroxidase, and MYB transcription factor, were found within the confidence interval for five of the meta-QTL. The nine meta-QTL are recommended as potential targets for MAS for partial resistance to white mold in common bean. PMID:28199342

  3. Validation of linkage between BCWD resistance and spleen size QTL on Omy19 in rainbow trout: Pleiotropy versus linkage

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is caused by infection with Flavobacterium psychrophilum, and results in significant economic losses in salmonid aquaculture. Previously, we identified a major QTL for BCWD resistance on Omy19 (h2q=0.57-0.67) as well as a QTL for surrogate measures of disease resi...

  4. Barley stripe rust resistance QTL: Development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait loci (QTL) linked with seedling and field resistance to barley stripe rust were mapped in 156 recombinant inbred lines (RILs) derived from a Lenetah by Grannelose Zweizeilige (GZ) cross. A major QTL for seedling resistance on chromosome 4H (LOD = 15.94 at 97.19 cM) was identified,...

  5. Mapping Quantitative Trait Loci (QTL) for Resistance to Late Blight in Tomato.

    PubMed

    Panthee, Dilip R; Piotrowski, Ann; Ibrahem, Ragy

    2017-07-22

    Late blight caused by Phytophthora infestans (Montagne, Bary) is a devastating disease of tomato worldwide. There are three known major genes, Ph-1, Ph-2, and Ph-3, conferring resistance to late blight. In addition to these three genes, it is also believed that there are additional factors or quantitative trait loci (QTL) conferring resistance to late blight. Precise molecular mapping of all those major genes and potential QTL is important in the development of suitable molecular markers and hence, marker-assisted selection (MAS). The objective of the present study was to map the genes and QTL associated with late blight resistance in a tomato population derived from intra-specific crosses. To achieve this objective, a population, derived from the crossings of NC 1CELBR × Fla. 7775, consisting of 250 individuals at F2 and F2-derived families, were evaluated in replicated trials. These were conducted at Mountain Horticultural Crops Reseach & Extension Center (MHCREC) at Mills River, NC, and Mountain Research Staion (MRS) at Waynesville, NC in 2011, 2014, and 2015. There were two major QTL associated with late blight resistance located on chromosomes 9 and 10 with likelihood of odd (LOD) scores of more than 42 and 6, explaining 67% and 14% of the total phenotypic variation, respectively. The major QTLs are probably caused by the Ph-2 and Ph-3 genes. Furthermore, there was a minor QTL on chromosomes 12, which has not been reported before. This minor QTL may be novel and may be worth investigating further. Source of resistance to Ph-2, Ph-3, and this minor QTL traces back to line L3707, or Richter's Wild Tomato. The combination of major genes and minor QTL may provide a durable resistance to late blight in tomato.

  6. Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana.

    PubMed

    Akman, Melis; Kleine, Rogier; van Tienderen, Peter H; Schranz, M Eric

    2017-02-16

    Global climate change is predicted to increase water precipitation fluctuations and lead to localized prolonged floods in agricultural fields and natural plant communities. Thus, understanding the genetic basis of submergence tolerance is crucial in order to improve plant survival under these conditions. In this study, we performed a quantitative trait locus (QTL) analysis in Arabidopsis to identify novel candidate genes for increased submergence tolerance by using Kas-1 and Col (gl1) parental accessions and their derived recombinant inbred lines (RILs). We measured survival after submergence in dark for a 13-day period and used median lethal time, LT50 values for the QTL analysis. A major QTL, the Come Quick, Drowning (CQD1) locus, was detected in 2 independent experiments on the lower arm of chromosome 5 involved in higher submergence tolerance in the parental accession Kas-1. For fine-mapping, we then constructed near isogenic lines (NILs) by backcrossing the CQD1 QTL region. We also analyzed QTL regions related to size, leaf number, flowering, or survival in darkness and none of the QTL related to these traits overlapped with CQD1. The submergence tolerance QTL, CQD1, region detected in this study includes genes that have potential to be novel candidates effecting submergence tolerance such as trehalose-6-phosphate phosphatase and respiratory burst oxidase protein D. Gene expression and functional analysis for these genes under submergence would reveal the significance of these novel candidates and provide new perspectives for understanding genetic basis of submergence tolerance.

  7. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    PubMed Central

    Shang, Lianguang; Ma, Lingling; Wang, Yumei; Su, Ying; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Cai, Shihu; Liu, Fang; Wang, Kunbo; Hua, Jinping

    2016-01-01

    Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL) mapping at multiple developmental stages using two recombinant inbred lines (RILs) and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton. PMID:27565885

  8. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton.

    PubMed

    Shang, Lianguang; Ma, Lingling; Wang, Yumei; Su, Ying; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Cai, Shihu; Liu, Fang; Wang, Kunbo; Hua, Jinping

    2016-10-13

    Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL) mapping at multiple developmental stages using two recombinant inbred lines (RILs) and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton. Copyright © 2016 Shang et al.

  9. xQTL workbench: a scalable web environment for multi-level QTL analysis.

    PubMed

    Arends, Danny; van der Velde, K Joeri; Prins, Pjotr; Broman, Karl W; Möller, Steffen; Jansen, Ritsert C; Swertz, Morris A

    2012-04-01

    xQTL workbench is a scalable web platform for the mapping of quantitative trait loci (QTLs) at multiple levels: for example gene expression (eQTL), protein abundance (pQTL), metabolite abundance (mQTL) and phenotype (phQTL) data. Popular QTL mapping methods for model organism and human populations are accessible via the web user interface. Large calculations scale easily on to multi-core computers, clusters and Cloud. All data involved can be uploaded and queried online: markers, genotypes, microarrays, NGS, LC-MS, GC-MS, NMR, etc. When new data types come available, xQTL workbench is quickly customized using the Molgenis software generator. xQTL workbench runs on all common platforms, including Linux, Mac OS X and Windows. An online demo system, installation guide, tutorials, software and source code are available under the LGPL3 license from http://www.xqtl.org. m.a.swertz@rug.nl.

  10. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis

    PubMed Central

    Wei, Qing-zhen; Fu, Wen-yuan; Wang, Yun-zhu; Qin, Xiao-dong; Wang, Jing; Li, Ji; Lou, Qun-feng; Chen, Jin-feng

    2016-01-01

    The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes. PMID:27271557

  11. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis.

    PubMed

    Wei, Qing-Zhen; Fu, Wen-Yuan; Wang, Yun-Zhu; Qin, Xiao-Dong; Wang, Jing; Li, Ji; Lou, Qun-Feng; Chen, Jin-Feng

    2016-06-07

    The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes.

  12. Genome Scan for Parent-of-Origin QTL Effects on Bovine Growth and Carcass Traits

    PubMed Central

    Imumorin, Ikhide G.; Kim, Eun-Hee; Lee, Yun-Mi; De Koning, Dirk-Jan; van Arendonk, Johan A.; De Donato, Marcos; Taylor, Jeremy F.; Kim, Jong-Joo

    2011-01-01

    Parent-of-origin effects (POE) such as genomic imprinting influence growth and body composition in livestock, rodents, and humans. Here, we report the results of a genome scan to detect quantitative trait loci (QTL) with POE on growth and carcass traits in Angus × Brahman cattle crossbreds. We identified 24 POE–QTL on 15 Bos taurus autosomes (BTAs) of which six were significant at 5% genome-wide (GW) level and 18 at the 5% chromosome-wide (CW) significance level. Six QTL were paternally expressed while 15 were maternally expressed. Three QTL influencing post-weaning growth map to the proximal end of BTA2 (linkage region of 0–9 cM; genomic region of 5.0–10.8 Mb), for which only one imprinted ortholog is known so far in the human and mouse genomes, and therefore may potentially represent a novel imprinted region. The detected QTL individually explained 1.4 ∼ 5.1% of each trait’s phenotypic variance. Comparative in silico analysis of bovine genomic locations show that 32 out of 1,442 known mammalian imprinted genes from human and mouse homologs map to the identified QTL regions. Although several of the 32 genes have been associated with quantitative traits in cattle, only two (GNAS and PEG3) have experimental proof of being imprinted in cattle. These results lend additional support to recent reports that POE on quantitative traits in mammals may be more common than previously thought, and strengthen the need to identify and experimentally validate cattle orthologs of imprinted genes so as to investigate their effects on quantitative traits. PMID:22303340

  13. Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip

    PubMed Central

    2012-01-01

    Background The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. Results Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. Conclusions The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation. PMID

  14. QTL affecting stress response to crowding in a rainbow trout broodstock population.

    PubMed

    Rexroad, Caird E; Vallejo, Roger L; Liu, Sixin; Palti, Yniv; Weber, Gregory M

    2012-11-07

    Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical pathways. To this end we conducted genome scans of seven rainbow trout families from a single broodstock population to identify quantitative trait loci (QTL) having an effect on stress response to crowding as measured by plasma cortisol concentration. Our goal was to estimate the number of major genes having large effects on this trait in our broodstock population through the identification of QTL. A genome scan including 380 microsatellite markers representing 29 chromosomes resulted in the de novo construction of genetic maps which were in good agreement with the NCCCWA genetic map. Unique sets of QTL were detected for two traits which were defined after observing a low correlation between repeated measurements of plasma cortisol concentration in response to stress. A highly significant QTL was detected in three independent analyses on Omy16, many additional suggestive and significant QTL were also identified. With linkage-based methods of QTL analysis such as half-sib regression interval mapping and a variance component method, we determined that the significant and suggestive QTL explain about 40-43% and 13-27% of the phenotypic trait variation, respectively. The cortisol response to crowding stress is a complex trait controlled in a sub-sample of our broodstock population by multiple QTL on at least 8 chromosomes. These QTL are largely different from others previously identified for a similar trait, documenting that population specific genetic variants independently affect cortisol response in ways that may result in different impacts on growth. Also, mapping QTL for multiple traits associated with stress response detected trait specific QTL which indicate the significance of

  15. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice.

    PubMed

    Liu, Yan; Qi, Xinshuai; Gealy, Dave R; Olsen, Kenneth M; Caicedo, Ana L; Jia, Yulin

    2015-07-01

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. U.S. weedy rice is well adapted to the local conditions in U.S. rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance to blast in weedy rice is limited. Here, we evaluated the disease reactions of 60 U.S. weedy rice accessions with 14 blast races, and investigated the quantitative trait loci (QTL) associated with blast resistance in two major ecotypes of U.S. weedy rice. Our results revealed that U.S. weedy rice exhibited a broad resistance spectrum. Using genotyping by sequencing, we identified 28 resistance QTL in two U.S. weedy rice ecotypes. The resistance QTL with relatively large and small effects suggest that U.S. weedy rice groups have adapted to blast disease using two methods, both major resistance (R) genes and QTL. Three genomic loci shared by some of the resistance QTL indicated that these loci may contribute to no-race-specific resistance in weedy rice. Comparing with known blast disease R genes, we found that the R genes at these resistance QTL are novel, suggesting that U.S. weedy rice is a potential source of novel blast R genes for resistant breeding.

  16. Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis)

    PubMed Central

    Sauvage, Christopher; Vagner, Marie; Derôme, Nicolas; Audet, Céline; Bernatchez, Louis

    2012-01-01

    Growth performance and reduced stress response are traits of major interest in fish production. Growth and stress-related quantitative trait loci (QTL) have been already identified in several salmonid species, but little effort has been devoted to charrs (genus Salvelinus). Moreover, most QTL studies to date focused on one or very few traits, and little investigation has been devoted to QTL identification for gene expression. Here, our objective was to identify QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis), which is one of the most economically important freshwater aquaculture species in Canada. Phenotypes included 12 growth parameters, six blood and plasma variables, three hepatic variables, and one plasma hormone level as well as the relative expression measurements of five genes of interest linked to growth regulation. QTL analysis relied on a linkage map recently built from S. fontinalis consisting of both single-nucleotide polymorphism (SNP, n = 266) and microsatellite (n =81) markers in an F2 interstrain hybrid population (n = 171). We identified 63 growth-related QTL and four stress-related QTL across 18 of the 40 linkage groups of the brook charr linkage map. Percent variance explained, confidence interval, and allelic QTL effects also were investigated to provide insight into the genetic architecture of growth- and stress-related QTL. QTL related to growth performance and stress response that were identified could be classified into two groups: (1) a group composed of the numerous, small-effect QTL associated with some traits related to growth (i.e., weight) that may be under the control of a large number of genes or pleiotropic genes, and (2) a group of less numerous QTL associated with growth (i.e., gene expression) and with stress-related QTL that display a larger effect, suggesting that these QTL are under the control of a limited number of genes of major effect. This study represents a first step

  17. Deciphering mechanisms underlying the genetic variation of general production and liver quality traits in the overfed mule duck by pQTL analyses.

    PubMed

    François, Yoannah; Vignal, Alain; Molette, Caroline; Marty-Gasset, Nathalie; Davail, Stéphane; Liaubet, Laurence; Marie-Etancelin, Christel

    2017-04-19

    The aim of this study was to analyse the mechanisms that underlie phenotypic quantitative trait loci (QTL) in overfed mule ducks by identifying co-localized proteomic QTL (pQTL). The QTL design consisted of three families of common ducks that were progeny-tested by using 294 male mule ducks. This population of common ducks was genotyped using a genetic map that included 334 genetic markers located across 28 APL chromosomes (APL for Anas platyrhynchos). Mule ducks were phenotyped for 49 traits related to growth, metabolism, overfeeding ability and meat and fatty liver quality, and 326 soluble fatty liver proteins were quantified. One hundred and seventy-six pQTL and 80 phenotypic QTL were detected at the 5% chromosome-wide significance threshold. The great majority of the identified pQTL were trans-acting and localized on a chromosome other than that carrying the coding gene. The most significant pQTL (1% genome-wide significance) were found for alpha-enolase on APL18 and fatty acid synthase on APL24. Some proteins were associated with numerous pQTL (for example, 17 and 14 pQTL were detected for alpha-enolase and apolipoprotein A1, respectively) and pQTL hotspots were observed on some chromosomes (APL18, 24, 25 and 29). We detected 66 co-localized phenotypic QTL and pQTL for which the significance of the two-trait QTL (2t-QTL) analysis was higher than that of the strongest QTL using a single-trait approach. Among these, 16 2t-QTL were pleiotropic. For example, on APL15, melting rate and abundance of two alpha-enolase spots appeared to be impacted by a single locus that is involved in the glycolytic process. On APLZ, we identified a pleiotropic QTL that modified both the blood level of glucose at the beginning of the force-feeding period and the concentration of glutamate dehydrogenase, which, in humans, is involved in increased glucose absorption by the liver when the glutamate dehydrogenase 1 gene is mutated. We identified pleiotropic loci that affect metabolic

  18. X chromosome regulation of autosomal gene expression in bovine blastocysts

    PubMed Central

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male to female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient. PMID:24817096

  19. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  20. Exploring regulation in tissues with eQTL networks.

    PubMed

    Fagny, Maud; Paulson, Joseph N; Kuijjer, Marieke L; Sonawane, Abhijeet R; Chen, Cho-Yi; Lopes-Ramos, Camila M; Glass, Kimberly; Quackenbush, John; Platig, John

    2017-09-12

    Characterizing the collective regulatory impact of genetic variants on complex phenotypes is a major challenge in developing a genotype to phenotype map. Using expression quantitative trait locus (eQTL) analyses, we constructed bipartite networks in which edges represent significant associations between genetic variants and gene expression levels and found that the network structure informs regulatory function. We show, in 13 tissues, that these eQTL networks are organized into dense, highly modular communities grouping genes often involved in coherent biological processes. We find communities representing shared processes across tissues, as well as communities associated with tissue-specific processes that coalesce around variants in tissue-specific active chromatin regions. Node centrality is also highly informative, with the global and community hubs differing in regulatory potential and likelihood of being disease associated.

  1. Breeding lines and host QTL interaction with bacterial strains

    USDA-ARS?s Scientific Manuscript database

    Resistance to common bacterial blight (CBB) is controlled by more than 20 QTL (Miklas and Singh, 2007). A QTL on Pv10 linked to SAP6 SCAR markers is derived from common bean. Higher levels of resistance associated with BC420 QTL on Pv06 (Yu et al., 2000) and SU91-CG11 QTL on Pv08 (Pedraza et al., 20...

  2. Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Gao, Guangtu; Liu, Sixin; Hernandez, Alvaro G.; Rexroad, Caird E.

    2015-01-01

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellite markers in a genome scan, we previously detected significant and suggestive QTL affecting phenotypic variation in survival following challenge with Flavobacterium psychrophilum, the causative agent of BCWD in rainbow trout. In this study, we performed selective genotyping of SNPs from restriction-site associated DNA (RAD) sequence data from two pedigreed families (2009070 and 2009196) to validate the major QTL from the previous work and to detect new QTL. The use of RAD SNPs in the genome scans increased the number of mapped markers from ~300 to ~5,000 per family. The significant QTL detected in the microsatellites scan on chromosome Omy8 in family 2009070 was validated explaining up to 58% of the phenotypic variance in that family, and in addition, a second QTL was also detected on Omy8. Two novel QTL on Omy11 and 14 were also detected, and the previously suggestive QTL on Omy1, 7 and 25 were also validated in family 2009070. In family 2009196, the microsatellite significant QTL on Omy6 and 12 were validated and a new QTL on Omy8 was detected, but none of the previously detected suggestive QTL were validated. The two Omy8 QTL from family 2009070 and the Omy12 QTL from family 2009196 were found to be co-localized with handling and confinement stress response QTL that our group has previously identified in a separate pedigreed family. With the currently available data we cannot determine if the co-localized QTL are the result of genes with pleiotropic effects or a mere physical proximity on the same chromosome segment. The genetic markers linked to BCWD resistance QTL were used to query the scaffolds of the rainbow trout reference genome assembly and the QTL-positive scaffold sequences were found to include 100 positional candidate genes. Several of the candidate genes located on or near the two Omy8 QTL detected in family 2009070 suggest potential

  3. QTL Analysis of Intraspecific Differences between Two Silene vulgaris Ecotypes

    PubMed Central

    BRATTELER, MARTIN; BALTISBERGER, MATTHIAS; WIDMER, ALEX

    2006-01-01

    • Background and Aims Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. • Methods Using an F2 mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. • Key Results The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. • Conclusions Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification. PMID:16757498

  4. Salt tolerance in Solanum pennellii: antioxidant response and related QTL

    PubMed Central

    2010-01-01

    Background Excessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions. Results Under control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles. Conclusions Plants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline

  5. Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize

    PubMed Central

    Giraud, Héloïse; Lehermeier, Christina; Bauer, Eva; Falque, Matthieu; Segura, Vincent; Bauland, Cyril; Camisan, Christian; Campo, Laura; Meyer, Nina; Ranc, Nicolas; Schipprack, Wolfgang; Flament, Pascal; Melchinger, Albrecht E.; Menz, Monica; Moreno-González, Jesús; Ouzunova, Milena; Charcosset, Alain; Schön, Chris-Carolin; Moreau, Laurence

    2014-01-01

    Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R2 = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R2 < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production. PMID:25271305

  6. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  7. Identification and QTL mapping of whitefly resistance components in Solanum galapagense.

    PubMed

    Firdaus, Syarifin; van Heusden, Adriaan W; Hidayati, Nurul; Supena, Ence Darmo Jaya; Mumm, Roland; de Vos, Ric C H; Visser, Richard G F; Vosman, Ben

    2013-06-01

    Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.

  8. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.).

    PubMed

    Mammadov, Jafar; Sun, Xiaochun; Gao, Yanxin; Ochsenfeld, Cherie; Bakker, Erica; Ren, Ruihua; Flora, Jonathan; Wang, Xiujuan; Kumpatla, Siva; Meyer, David; Thompson, Steve

    2015-11-10

    Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease. In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked molecular markers for robust marker-assisted selection and trait introgression. Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8, detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage - GWAS hybrid mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b). Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP markers that would be

  9. Time-course expression QTL-atlas of the global transcriptional response of wheat to Fusarium graminearum.

    PubMed

    Samad-Zamini, Mina; Schweiger, Wolfgang; Nussbaumer, Thomas; Mayer, Klaus F X; Buerstmayr, Hermann

    2017-03-23

    Fusarium head blight is a devastating disease of small grain cereals such as bread wheat (Triticum aestivum). The pathogen switches from a biotrophic to a nectrotrophic lifestyle in course of disease development forcing its host to adapt its defence strategies. Using a genetical genomics approach, we illustrate genome-wide reconfigurations of genetic control over transcript abundances between two decisive time points after inoculation with the causative pathogen Fusarium graminearum. Whole transcriptome measurements have been recorded for 163 lines of a wheat doubled haploid population segregating for several resistance genes yielding 15 552 at 30 h and 15 888 eQTL at 50 h after inoculation. The genetic map saturated with transcript abundance-derived markers identified of a novel QTL on chromosome 6A, besides the previously reported QTL Fhb1 and Qfhs.ifa-5A. We find a highly different distribution of eQTL between time points with about 40% of eQTL being unique for the respective assessed time points. But also for more than 20% of genes governed by eQTL at either time point, genetic control changes in time. These changes are reflected in the dynamic compositions of three major regulatory hotspots on chromosomes 2B, 4A and 5A. In particular, control of defence-related biological mechanisms concentrated in the hotspot at 4A shift to hotspot 2B as the disease progresses. Hotspots do not colocalize with phenotypic QTL, and within their intervals no higher than expected number of eQTL was detected. Thus, resistance conferred by either QTL is mediated by few or single genes. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Genetic Dissection of a Genomic Region with Pleiotropic Effects on Domestication Traits in Maize Reveals Multiple Linked QTL

    PubMed Central

    Lemmon, Zachary H.; Doebley, John F.

    2014-01-01

    The domesticated crop maize and its wild progenitor, teosinte, have been used in numerous experiments to investigate the nature of divergent morphologies. This study examines a poorly understood region on the fifth chromosome of maize associated with a number of traits under selection during domestication, using a quantitative trait locus (QTL) mapping population specific to the fifth chromosome. In contrast with other major domestication loci in maize where large-effect, highly pleiotropic, single genes are responsible for phenotypic effects, our study found the region on chromosome five fractionates into multiple-QTL regions, none with singularly large effects. The smallest 1.5-LOD support interval for a QTL contained 54 genes, one of which was a MADS MIKCC transcription factor, a family of proteins implicated in many developmental programs. We also used simulated trait data sets to investigate the power of our mapping population to identify QTL for which there is a single underlying causal gene. This analysis showed that while QTL for traits controlled by single genes can be accurately mapped, our population design can detect no more than ∼4.5 QTL per trait even when there are 100 causal genes. Thus when a trait is controlled by ≥5 genes in the simulated data, the number of detected QTL can represent a simplification of the underlying causative factors. Our results show how a QTL region with effects on several domestication traits may be due to multiple linked QTL of small effect as opposed to a single gene with large and pleiotropic effects. PMID:24950893

  11. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.).

    PubMed

    Campbell, Raymond; Pont, Simon D A; Morris, Jenny A; McKenzie, Gaynor; Sharma, Sanjeev Kumar; Hedley, Pete E; Ramsay, Gavin; Bryan, Glenn J; Taylor, Mark A

    2014-09-01

    Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.

  12. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton.

    PubMed

    Jiang, Feng; Zhao, Jun; Zhou, Lei; Guo, WangZhen; Zhang, TianZhen

    2009-09-01

    Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Junmian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P(1), P(2), F(1), B(1), B(2) and F(2) populations obtained from the cultivar cross. We found that resistance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F(2) segregating population and resistance phenotypic data were obtained using F(2:3) families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and

  13. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  14. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond

    PubMed Central

    Hu, Zhi-Liang; Fritz, Eric Ryan; Reecy, James M.

    2007-01-01

    The Animal Quantitative Trait Loci (QTL) database (AnimalQTLdb) is designed to house all publicly available QTL data on livestock animal species from which researchers can easily locate and compare QTL within species. The database tools are also added to link the QTL data to other types of genomic information, such as radiation hybrid (RH) maps, finger printed contig (FPC) physical maps, linkage maps and comparative maps to the human genome, etc. Currently, this database contains data on 1287 pig, 630 cattle and 657 chicken QTL, which are dynamically linked to respective RH, FPC and human comparative maps. We plan to apply the tool to other animal species, and add more structural genome information for alignment, in an attempt to aid comparative structural genome studies (). PMID:17135205

  15. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought

    PubMed Central

    Swamy B. P., Mallikarjuna; Ahmed, Helal Uddin; Henry, Amelia; Mauleon, Ramil; Dixit, Shalabh; Vikram, Prashant; Tilatto, Ram; Verulkar, Satish B.; Perraju, Puvvada; Mandal, Nimai P.; Variar, Mukund; S., Robin; Chandrababu, Ranganath; Singh, Onkar N.; Dwivedi, Jawaharlal L.; Das, Sankar Prasad; Mishra, Krishna K.; Yadaw, Ram B.; Aditya, Tamal Lata; Karmakar, Biswajit; Satoh, Kouji; Moumeni, Ali; Kikuchi, Shoshi; Leung, Hei; Kumar, Arvind

    2013-01-01

    Background Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. Methodology/Principal Findings Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha−1 over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. Conclusions/Significance Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL

  16. Connecting thermal performance curve variation to the genotype: a multivariate QTL approach.

    PubMed

    Latimer, C A L; Foley, B R; Chenoweth, S F

    2015-01-01

    Thermal performance curves (TPCs) are continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding trade-offs involved in thermal adaptation. Although thermal trade-offs such as those between generalists and specialists or between hot- and cold-adapted phenotypes are known to be genetically variable and evolve during thermal adaptation, little is known of the genetic basis to TPCs - specifically, the loci involved and the directionality of their effects across different temperatures. To address this, we took a multivariate approach, mapping quantitative trait loci (QTL) for locomotor activity TPCs in the fly, Drosophila serrata, using a panel of 76 recombinant inbred lines. The distribution of additive genetic (co)variance in the mapping population was remarkably similar to the distribution of mutational (co)variance for these traits. We detected 11 TPC QTL in females and 4 in males. Multivariate QTL effects were closely aligned with the major axes genetic (co)variation between temperatures; most QTL effects corresponded to variation for either overall increases or decreases in activity with a smaller number indicating possible trade-offs between activity at high and low temperatures. QTL representing changes in curve shape such as the 'generalist-specialist' trade-off, thought key to thermal adaptation, were poorly represented in the data. We discuss these results in the light of genetic constraints on thermal adaptation. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Identification of QTL for dorso-caudal chronic pleuritis in 12 crossbred porcine families.

    PubMed

    Gregersen, V R; Sørensen, K K; Christensen, O F; Busch, M E; Vingborg, R K K; Velander, I H; Lund, M S; Bendixen, C

    2010-10-01

    Pleuropneumonia is a major problem in pig production. At the time of slaughter, chronic pleuritis (CP) developed from pleuropneumonia is a common finding, and breeding for a reduced incidence of CP using marker-assisted selection (MAS) would be advantageous. Before applying MAS, quantitative trait loci (QTL) or markers associated with the prevalence of CP should be identified. In this study, 7470 pigs from crosses between 12 Danish Duroc boars and 604 sows (Danish Landrace × Danish Large White) were evaluated for CP located on the dorso-caudal part of the lungs. Quantitative trait loci were identified within boar families using both a Binomial logistic regression method and a chi-square test of association. Significant QTL for CP were detected on Sus scrofa chromosomes (SSC) 2, 8, 12, 13, 14 and 18 using both methods. One QTL on SSC 8 was also detected across families. For the QTL identified within families, the odds-ratio of having CP was approximately twice as high for the unfavourable allele compared to the favourable one. These QTL and closely linked markers show promise for the development of gene-specific markers associated with a reduced incidence of CP located on the dorso-caudal part of the lungs.

  18. Ras/MAPK Modifier Loci Revealed by eQTL in Caenorhabditis elegans.

    PubMed

    Sterken, Mark G; van Bemmelen van der Plaat, Linda; Riksen, Joost A G; Rodriguez, Miriam; Schmid, Tobias; Hajnal, Alex; Kammenga, Jan E; Snoek, Basten L

    2017-09-07

    The oncogenic Ras/MAPK pathway is evolutionarily conserved across metazoans. Yet, almost all our knowledge on this pathway comes from studies using single genetic backgrounds, whereas mutational effects can be highly background dependent. Therefore, we lack insight in the interplay between genetic backgrounds and the Ras/MAPK-signaling pathway. Here, we used a Caenorhabditis elegans RIL population containing a gain-of-function mutation in the Ras/MAPK-pathway gene let-60 and measured how gene expression regulation is affected by this mutation. We mapped eQTL and found that the majority (∼73%) of the 1516 detected cis-eQTL were not specific for the let-60 mutation, whereas most (∼76%) of the 898 detected trans-eQTL were associated with the let-60 mutation. We detected six eQTL trans-bands specific for the interaction between the genetic background and the mutation, one of which colocalized with the polymorphic Ras/MAPK modifier amx-2 Comparison between transgenic lines expressing allelic variants of amx-2 showed the involvement of amx-2 in 79% of the trans-eQTL for genes mapping to this trans-band. Together, our results have revealed hidden loci affecting Ras/MAPK signaling using sensitized backgrounds in C. elegans These loci harbor putative polymorphic modifier genes that would not have been detected using mutant screens in single genetic backgrounds. Copyright © 2017 Sterken et al.

  19. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines.

    PubMed

    Lavaud, C; Baviere, M; Le Roy, G; Hervé, M R; Moussart, A; Delourme, R; Pilet-Nayel, M-L

    2016-07-27

    Understanding the effects of resistance QTL on pathogen development cycle is an important issue for the creation of QTL combination strategies to durably increase disease resistance in plants. The oomycete pathogen Aphanomyces euteiches, causing root rot disease, is one of the major factors limiting the pea crop in the main producing countries. No commercial resistant varieties are currently available in Europe. Resistance alleles at seven main QTL were recently identified and introgressed into pea agronomic lines, resulting in the creation of Near Isogenic Lines (NILs) at the QTL. This study aimed to determine the effect of main A. euteiches resistance QTL in NILs on different steps of the pathogen life cycle. NILs carrying resistance alleles at main QTL in susceptible genetic backgrounds were evaluated in a destructive test under controlled conditions. The development of root rot disease severity and pathogen DNA levels in the roots was measured during ten days after inoculation. Significant effects of several resistance alleles at the two major QTL Ae-Ps7.6 and Ae-Ps4.5 were observed on symptom appearance and root colonization by A. euteiches. Some resistance alleles at three other minor-effect QTL (Ae-Ps2.2, Ae-Ps3.1 and Ae-Ps5.1) significantly decreased root colonization. The combination of resistance alleles at two or three QTL including the major QTL Ae-Ps7.6 (Ae-Ps5.1/Ae-Ps7.6 or Ae-Ps2.2/Ae-Ps3.1/Ae-Ps7.6) had an increased effect on delaying symptom appearance and/or slowing down root colonization by A. euteiches and on plant resistance levels, compared to the effects of individual or no resistance alleles. This study demonstrated the effects of single or multiple resistance QTL on delaying symptom appearance and/or slowing down colonization by A. euteiches in pea roots, using original plant material and a precise pathogen quantification method. Our findings suggest that single resistance QTL can act on multiple or specific steps of the disease development

  20. New autosomal recessive faciodigitogenital syndrome.

    PubMed Central

    Teebi, A S; Naguib, K K; Al-Awadi, S; Al-Saleh, Q A

    1988-01-01

    Most pedigrees of Aarskog's faciodigitogenital syndrome have suggested X linked inheritance. However, sex influenced autosomal dominant inheritance is also a possibility in some families. We describe an Arab family of normal consanguineous parents with five children (three males and two females) with some features of Aarskog syndrome in addition to some unusual hair changes. The possibility that this family represents a distinct previously unrecognised faciodigitogenital syndrome with short stature and hair abnormalities is suggested and discussed. Images PMID:3398008

  1. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa).

    PubMed

    Liu, X; Wang, Y; Wang, S W

    2012-03-22

    Appearance quality of rice grains is a major problem for rice production in many areas of the world. We conducted a molecular marker-based genetic analysis of percentage of grains with chalkiness (PGWC), which is a determining factor for appearance quality; it strongly affects milling, eating and cooking quality. An F(8) recombinant inbred line population, which consists of 261 lines derived from a cross between Koshihikari (Japonica) and C602 (Japonica), was used for QTL mapping. Three QTLs related to PGWC were detected on chromosomes 5, 8 and 10, together explaining 50.8% of the genetic variation. The 'Koshihikari' alleles qJPGC-5, qJPGC-8 and the 'C602' alleles at qJPGC-10 were associated with reduced PGWC. The QTL contributions to phenotypic variance were 18.2, 9.6 and 25%, respectively. These QTL markers for PGWC could be used for developing improved varieties.

  2. Mapping QTL for Seed Germinability under Low Temperature Using a New High-Density Genetic Map of Rice.

    PubMed

    Jiang, Ningfei; Shi, Shilai; Shi, Huan; Khanzada, Hira; Wassan, Ghulam M; Zhu, Changlan; Peng, Xiaosong; Yu, Qiuying; Chen, Xiaorong; He, Xiaopeng; Fu, Junru; Hu, Lifang; Xu, Jie; Ouyang, Linjuan; Sun, Xiaotang; Zhou, Dahu; He, Haohua; Bian, Jianmin

    2017-01-01

    Mapping major quantitative trait loci (QTL) responsible for rice seed germinability under low temperature (GULT) can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.

  3. Autosomal recessive congenital stenosis of aqueduct of Sylvius.

    PubMed

    Barros-Nuñes, P; Rivas, F

    1993-01-01

    Congenital hydrocephalus is an etiologically heterogeneous central nervous system malformation. Mendelian inheritance of stenosis of the aqueduct of Sylvius (SAS) accounts for almost 2% of all nonsyndromic forms. Among the monogenetic forms the great majority are X-linked. In this report we describe autosomal recessive transmission of SAS hydrocephalus in a high consanguinity family.

  4. Box-Cox transformation for QTL mapping.

    PubMed

    Yang, Runqing; Yi, Nengjun; Xu, Shizhong

    2006-01-01

    The maximum likelihood method of QTL mapping assumes that the phenotypic values of a quantitative trait follow a normal distribution. If the assumption is violated, some forms of transformation should be taken to make the assumption approximately true. The Box-Cox transformation is a general transformation method which can be applied to many different types of data. The flexibility of the Box-Cox transformation is due to a variable, called transformation factor, appearing in the Box-Cox formula. We developed a maximum likelihood method that treats the transformation factor as an unknown parameter, which is estimated from the data simultaneously along with the QTL parameters. The method makes an objective choice of data transformation and thus can be applied to QTL analysis for many different types of data. Simulation studies show that (1) Box-Cox transformation can substantially increase the power of QTL detection; (2) Box-Cox transformation can replace some specialized transformation methods that are commonly used in QTL mapping; and (3) applying the Box-Cox transformation to data already normally distributed does not harm the result.

  5. MARKERS ASSOCIATED WITH A QTL FOR GRAIN YIELD IN WHEAT UNDER DROUGHT

    USDA-ARS?s Scientific Manuscript database

    Drought is a major abiotic stress that adversely affects wheat production in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) controlling grain yield and yield components under reduced moisture. A cross between common wheat cultivars ‘Dharwar Dry’ ...

  6. Single nucleotide polymorphism markers linked to QTL for wheat yield traits

    USDA-ARS?s Scientific Manuscript database

    Continuous improvement in grain yield is one of the major challenges for wheat (Triticum aestivum L.) breeding worldwide. This study characterized quantitative trait loci (QTL) underlying wheat grain yield and its components using a high-density genetic linkage map developed from a recombinant inbre...

  7. Identification of QTL associated with flower and runner production in octoploid strawberry (Fragaria × ananassa)

    USDA-ARS?s Scientific Manuscript database

    Seasonal flowering of strawberry is described as remontant and non-remontant. The genetic basis of this trait is important for breeding. This study was conducted to validate the existence of a major QTL for remontancy and weeks of flowering in F. × ananassa on LG IV, to determine if the level of flo...

  8. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.).

    PubMed

    Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

    2013-01-01

    Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%-69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS).

  9. Genetic Analysis and QTL Mapping of Seed Coat Color in Sesame (Sesamum indicum L.)

    PubMed Central

    Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

    2013-01-01

    Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%–69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS). PMID:23704951

  10. A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

    PubMed Central

    Jin, S.; Lee, J. H.; Seo, D. W.; Cahyadi, M.; Choi, N. R.; Heo, K. N.; Jo, C.; Park, H. B.

    2016-01-01

    Shank skin color of Korean native chicken (KNC) shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [L*], redness [a*], and yellowness [b*]) were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL) analyses. We detected a major QTL that affects b* value (logarithm of odds [LOD] = 47.5, p = 1.60×10−49) on GGA24 (GGA for Gallus gallus). At the same location, we also detected a QTL that influences a* value (LOD = 14.2, p = 6.14×10−16). Additionally, beta-carotene dioxygenase 2 (BCDO2), the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA) and quantitative transmission disequilibrium test (QTDT). Significant associations were detected between BCDO2 g.9367 A>C and a* (PMGA = 1.69×10−28; PQTDT = 2.40×10−25). The strongest associations were between BCDO2 g.9367 A>C and b* (PMGA = 3.56×10−66; PQTDT = 1.68×10−65). However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC. PMID:27383802

  11. Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellites genome scan we have previously detected significant and suggestive QTL with major effects on the phenotypic variation of survival following challenge with Flavobacterium psychrophilum...

  12. Genetic Dissection of a QTL Affecting Bone Geometry

    PubMed Central

    Sabik, Olivia L.; Medrano, Juan F.; Farber, Charles R.

    2017-01-01

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2. In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry. PMID:28082324

  13. Genetic Dissection of a QTL Affecting Bone Geometry.

    PubMed

    Sabik, Olivia L; Medrano, Juan F; Farber, Charles R

    2017-03-10

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2 In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry.

  14. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments.

    PubMed

    Li, Haiyan; Liu, Huancheng; Han, Yingpeng; Wu, Xiaoxia; Teng, Weili; Liu, Guifeng; Li, Wenbin

    2010-05-01

    Vitamin E (VE) in soybean seed has value for foods, medicines, cosmetics, and animal husbandry. Selection for higher VE contents in seeds along with agronomic traits was an important goal for many soybean breeders. In order to map the loci controlling the VE content, F(5)-derived F(6) recombinant inbred lines (RILs) were advanced through single-seed-descent (SSD) to generate a population including 144 RILs. The population was derived from a cross between 'OAC Bayfield', a soybean cultivar with high VE content, and 'Hefeng 25', a soybean cultivar with low VE content. A total of 107 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. Seed VE contents were analyzed by high performance liquid chromatography for multiple years and locations (Harbin in 2007 and 2008, Hulan in 2008 and Suihua in 2008). Four QTL associated with alpha-Toc (on four linkage groups, LGs), eight QTL associated with gamma-Toc (on eight LGs), four QTL associated with delta-Toc (on four LGs) and five QTL associated with total VE (on four LGs) were identified. A major QTL was detected by marker Satt376 on linkage group C2 and associated with alpha-Toc (0.0012 > P > 0.0001, 5.0% < R (2) < 17.0%, 25.1 < alpha-Toc < 30.1 microg g(-1)), total VE (P < 0.0001, 7.0% < R (2) < 10.0%, 118.2 < total VE < 478.3 microg g(-1)). A second QTL detected by marker Satt286 on LG C2 was associated with gamma-Toc (0.0003 > P > 0.0001, 6.0% < R (2) < 13.0%, 141.5 < gamma-Toc < 342.4 microg g(-1)) and total VE (P < 0.0001, 2.0% < R (2) < 9.0%, 353.9 < total VE < 404.0 microg g(-1)). Another major QTL was detected by marker Satt266 on LG D1b that was associated with alpha-Toc (0.0002 > P > 0.0001, 4.0% < R (2) < 6.0%, 27.7 < alpha-Toc < 43.7 microg g(-1)) and gamma-Toc (0.0032 > P > 0.0001, 3.0% < R (2) < 10.0%, 69.7 < gamma-Toc < 345.7 microg g(-1)). Since beneficial alleles were all from 'OAC Bayfield', it was concluded that these three QTL would have great potential value for marker

  15. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.

    PubMed

    Liu, Liezhao; Qu, Cunmin; Wittkop, Benjamin; Yi, Bin; Xiao, Yang; He, Yajun; Snowdon, Rod J; Li, Jiana

    2013-01-01

    A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.

  16. A High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L

    PubMed Central

    Liu, Liezhao; Qu, Cunmin; Wittkop, Benjamin; Yi, Bin; Xiao, Yang; He, Yajun; Snowdon, Rod J.; Li, Jiana

    2013-01-01

    A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed. PMID:24386142

  17. Autosomal recessive pericentral pigmentary retinopathy.

    PubMed

    Traboulsi, E I; O'Neill, J F; Maumenee, I H

    1988-11-15

    A brother and sister, born to consanguineous parents, had pigmentary retinopathy in a pericentral distribution. The retinopathy was noted in infancy when the siblings were examined for strabismus. The optic disks, maculae, and retinal vessels were normal. There was mild reduction in amplitude of both scotopic and photopic electroretinographic responses. Both patients had moderate hyperopic astigmatism and esotropia. The fundus and visual acuity remained unchanged over periods of nine and 13 years in the brother and sister, respectively. Results of ocular examinations on the father, mother, and an older sister were normal. These findings support an autosomal recessive mode of inheritance in this family with pericentral pigmentary retinopathy.

  18. Autosomal dominant juvenile recurrent parotitis.

    PubMed Central

    Reid, E; Douglas, F; Crow, Y; Hollman, A; Gibson, J

    1998-01-01

    Juvenile recurrent parotitis is a common cause of inflammatory salivary gland swelling in children. A variety of aetiological factors has been proposed for the condition. Here we present a family where four members had juvenile recurrent parotitis and where two other family members may have had an atypical form of the condition. The segregation pattern in the family is consistent with autosomal dominant inheritance with incomplete penetrance and this suggests that, at least in some cases, genetic factors may be implicated in juvenile recurrent parotitis. PMID:9610807

  19. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major

  20. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis.

    PubMed

    Salunkhe, Arvindkumar Shivaji; Poornima, R; Prince, K Silvas Jebakumar; Kanagaraj, P; Sheeba, J Annie; Amudha, K; Suji, K K; Senthil, A; Babu, R Chandra

    2011-09-01

    Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212-RM302-RM8085-RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.

  1. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Norry, Fabian M; Scannapieco, Alejandra C; Sambucetti, Pablo; Bertoli, Carlos I; Loeschcke, Volker

    2008-10-01

    The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.

  2. A native QTL for Fusarium head blight resistance in North American barley (Hordeum vulgare L.) independent of height, maturity, and spike type loci.

    PubMed

    Yu, G T; Franckowiak, J D; Neate, S M; Zhang, B; Horsley, R D

    2010-02-01

    Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein.) Petch), is one of the major diseases of barley (Hordeum vulgare L.) in eastern China, the Upper Midwest of the USA, and the eastern Prairie Provinces of Canada. To identify quantitative trait loci (QTL) controlling FHB resistance, a recombinant inbred line population (F6:7) was developed from the cross Zhenongda 7/PI 643302. The population was phenotyped for resistance to FHB in two experiments in China and four experiments in North Dakota. Accumulation of the mycotoxin deoxynivalenol was determined in one experiment in China and two in North Dakota. Simplified composite interval mapping was performed on the whole genome level using the software MQTL. The QTL FHB-2 from PI 643302 for FHB resistance was found on the distal portion of chromosome 2HL in all six FHB screening environments. This QTL accounted for 14% of phenotypic variation over six environments and was not associated with heading date or plant height. The FHB resistance QTL FHB-2 detected near the end of chromosome 2HL is in a different location from those found previously and is therefore probably unique. Because the QTL was not contributed by the Chinese cultivar Zhenongda 7, it is likely a native QTL present in North American barley. The QTL FHB-2 represents the first reported QTL for native FHB resistance in North American germ plasm and has been given the provisional name Qrgz-2H-14. This QTL should be considered for pyramiding with other FHB QTL previously mapped.

  3. QTL mapping using high-throughput sequencing

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) mapping in plants dates to the 1980’s, but earlier studies were often hindered by the expense and time required to identify large numbers of polymorphic genetic markers that differentiated the parental genotypes and then to genotype them on large segregating mapping po...

  4. QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways.

    PubMed

    Wingler, Astrid; Purdy, Sarah Jane; Edwards, Sally-Anne; Chardon, Fabien; Masclaux-Daubresse, Céline

    2010-01-01

    *The aim of this work was to determine the genetic basis of sugar-regulated senescence and to explore the relationship with other traits, including flowering and nitrogen-use efficiency. *Quantitative trait loci (QTLs) for senescence were mapped in the Arabidopsis Bay-0 x Shahdara recombinant-inbred line (RIL) population after growth on glucose-containing medium, which accelerates senescence. The extent of whole-rosette senescence was determined by imaging the maximum quantum yield of photosystem II (F(v)/F(m)). *A major QTL on the top of chromosome 4 colocalized with FRI, a major determinant of flowering. This QTL interacted epistatically with a QTL on chromosome 5, where the floral repressor FLC localizes. Vernalization accelerated senescence in late-flowering lines with functional FRI and FLC alleles. Comparison with previous results using the Bay-0 x Shahdara population showed that rapid rosette senescence on glucose-containing medium was correlated with early flowering and high sugar content in compost-grown plants. In addition, correlation was found between the expression of flowering and senescence-associated genes in Arabidopsis accessions. However, an additional QTL on chromosome 3 was not linked to flowering, but to nitrogen-use efficiency. *The results show that whole-rosette senescence is genetically linked to the vernalization-dependent control of flowering, but is also controlled by flowering-independent pathways.

  5. Mapping of QTL for Tolerance to Cereal Yellow Dwarf Virus in Two-rowed Spring Barley

    PubMed Central

    Gallagher, L.; Falk, B. W.; Brown-Guedira, G.; Pellerin, E.; Dubcovsky, J.

    2016-01-01

    Cereal yellow dwarf virus (CYDV-RPV) causes a serious viral disease affecting small grain crops around the world. In the United States, it frequently is present in California where it causes significant yield losses, and when infections start early in development, plant death. CYDV is transmitted by aphids, and it has been a major impediment to developing malting barley in California. To identify chromosome locations associated with tolerance/resistance to CYDV, a segregating population of 184 recombinant inbred lines (RIL) from a cross of the California adapted malting barley line Butta 12 with the CYDV tolerant Madre Selva was used to construct a genetic map including 180 polymorphic markers mapping to 163 unique loci. Tolerance to CYDV was evaluated in replicated experiments where plants were challenged by aphid mediated inoculation with the isolate CYDV-RPV in a controlled environment. Quantitative trait loci (QTL) analysis revealed the presence of two major QTL for CYDV tolerance from Madre Selva on chromosomes 2H (Qcyd.MaBu-1) and 7H (Qcyd.MaBu-2), and 4 minor QTL from Butta 12 on chromosomes 3H, 4H, and 2H. This paper discusses the contribution of each QTL and their potential value to improve barley tolerance to CYDV. PMID:27212713

  6. Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments

    PubMed Central

    2012-01-01

    Background Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool

  7. Search for QTL affecting the shape of the egg laying curve of the Japanese quail

    PubMed Central

    Minvielle, Francis; Kayang, Boniface B; Inoue-Murayama, Miho; Miwa, Mitsuru; Vignal, Alain; Gourichon, David; Neau, André; Monvoisin, Jean-Louis; Ito, Shin' ichi

    2006-01-01

    Background Egg production is of critical importance in birds not only for their reproduction but also for human consumption as the egg is a highly nutritive and balanced food. Consequently, laying in poultry has been improved through selection to increase the total number of eggs laid per hen. This number is the cumulative result of the oviposition, a cyclic and repeated process which leads to a pattern over time (the egg laying curve) which can be modelled and described individually. Unlike the total egg number which compounds all variations, the shape of the curve gives information on the different phases of egg laying, and its genetic analysis using molecular markers might contribute to understand better the underlying mechanisms. The purpose of this study was to perform the first QTL search for traits involved in shaping the egg laying curve, in an F2 experiment with 359 female Japanese quail. Results Eight QTL were found on five autosomes, and six of them could be directly associated with egg production traits, although none was significant at the genome-wide level. One of them (on CJA13) had an effect on the first part of the laying curve, before the production peak. Another one (on CJA06) was related to the central part of the curve when laying is maintained at a high level, and the four others (on CJA05, CJA10 and CJA14) acted on the last part of the curve where persistency is determinant. The QTL for the central part of the curve was mapped at the same position on CJA06 than a genome-wide significant QTL for total egg number detected previously in the same F2. Conclusion Despite its limited scope (number of microsatellites, size of the phenotypic data set), this work has shown that it was possible to use the individual egg laying data collected daily to find new QTL which affect the shape of the egg laying curve. Beyond the present results, this new approach could also be applied to longitudinal traits in other species, like growth and lactation in

  8. Data-driven assessment of eQTL mapping methods

    PubMed Central

    2010-01-01

    Background The analysis of expression quantitative trait loci (eQTL) is a potentially powerful way to detect transcriptional regulatory relationships at the genomic scale. However, eQTL data sets often go underexploited because legacy QTL methods are used to map the relationship between the expression trait and genotype. Often these methods are inappropriate for complex traits such as gene expression, particularly in the case of epistasis. Results Here we compare legacy QTL mapping methods with several modern multi-locus methods and evaluate their ability to produce eQTL that agree with independent external data in a systematic way. We found that the modern multi-locus methods (Random Forests, sparse partial least squares, lasso, and elastic net) clearly outperformed the legacy QTL methods (Haley-Knott regression and composite interval mapping) in terms of biological relevance of the mapped eQTL. In particular, we found that our new approach, based on Random Forests, showed superior performance among the multi-locus methods. Conclusions Benchmarks based on the recapitulation of experimental findings provide valuable insight when selecting the appropriate eQTL mapping method. Our battery of tests suggests that Random Forests map eQTL that are more likely to be validated by independent data, when compared to competing multi-locus and legacy eQTL mapping methods. PMID:20849587

  9. A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL

    PubMed Central

    2009-01-01

    Background Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA) and total number of piglets born (TNB) in a three generation Iberian by Meishan F2 intercross. Results The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P < 0.001) and SSC17 (P < 0.01) with effects on both traits. This relative paucity of significant results contrasted very strongly with the wide array of highly significant epistatic QTL that emerged in the bi-dimensional genome-wide scan analysis. As much as 18 epistatic QTL were found for NBA (four at P < 0.01 and five at P < 0.05) and TNB (three at P < 0.01 and six at P < 0.05), respectively. These epistatic QTL were distributed in multiple genomic regions, which covered 13 of the 18 pig autosomes, and they had small individual effects that ranged between 3 to 4% of the phenotypic variance. Different patterns of interactions (a × a, a × d, d × a and d × d) were found amongst the epistatic QTL pairs identified in the current work. Conclusions The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17), dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the

  10. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.).

    PubMed

    Wang, Yijun; Xu, Jing; Deng, Dexiang; Ding, Haidong; Bian, Yunlong; Yin, Zhitong; Wu, Yarong; Zhou, Bo; Zhao, Ye

    2016-02-01

    The meta-QTL and candidate genes will facilitate the elucidation of molecular bases underlying agriculturally important traits and open new avenues for functional markers development and elite alleles introgression in maize breeding program. A large number of QTLs attributed to grain productivity and other agriculturally important traits have been identified and deposited in public repositories. The integration of fruitful QTL becomes a major issue in current plant genomics. To this end, we first collected QTL for six agriculturally important traits in maize, including yield, plant height, ear height, leaf angle, stay-green, and maize rough dwarf disease resistance. The meta-analysis method was then employed to retrieve 113 meta-QTL. Additionally, we also isolated candidate genes for target traits by the bioinformatic technique. Several candidates, including some well-characterized genes, GA3ox2 for plant height, lg1 and lg4 for leaf angle, zfl1 and zfl2 for flowering time, were co-localized with established meta-QTL intervals. Intriguingly, in a relatively narrow meta-QTL region, the maize ortholog of rice yield-related gene GW8/OsSPL16 was believed to be a candidate for yield. Leveraging results presented in this study will provide further insights into the genetic architecture of maize agronomic traits. Moreover, the meta-QTL and candidate genes reported here could be harnessed for the enhancement of stress tolerance and yield performance in maize and translation to other crops.

  11. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array.

    PubMed

    Atlija, Marina; Arranz, Juan-Jose; Martinez-Valladares, María; Gutiérrez-Gil, Beatriz

    2016-01-20

    Persistence of gastrointestinal nematode (GIN) infection and the related control methods have major impacts on the sheep industry worldwide. Based on the information generated with the Illumina OvineSNP50 BeadChip (50 K chip), this study aims at confirming quantitative trait loci (QTL) that were previously identified by microsatellite-based genome scans and identifying new QTL and allelic variants that are associated with indicator traits of parasite resistance in adult sheep. We used a commercial half-sib population of 518 Spanish Churra ewes with available data for fecal egg counts (FEC) and serum levels of immunoglobulin A (IgA) to perform different genome scan QTL mapping analyses based on classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) and a genome-wide association study (GWAS). For the FEC and IgA traits, we detected a total of three 5 % chromosome-wise significant QTL by LA and 63 significant regions by LDLA, of which 13 reached the 5 % genome-wise significance level. The GWAS also revealed 10 significant SNPs associated with IgAt, although no significant associations were found for LFEC. Some of the significant QTL for LFEC that were detected by LA and LDLA on OAR6 overlapped with a highly significant QTL that was previously detected in a different half-sib population of Churra sheep. In addition, several new QTL and SNP associations were identified, some of which show correspondence with effects that were reported for different populations of young sheep. Other significant associations that did not coincide with previously reported associations could be related to the specific immune response of adult animals. Our results replicate a FEC-related QTL located on OAR6 that was previously reported in Churra sheep and provide support for future research on the identification of the allelic variant that underlies this QTL. The small proportion of genetic variance explained by the detected QTL and the large number of

  12. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A.

    1988-01-01

    Combining data from animal and clinical studies with classical cytogenetic observations, the volume provides information on various aspects of mammalian autosomal rearrangements. Topics range from the reproductive consequences to carriers of autosomal rearrangements to the application of structural rearrangements and DNA probes to gene mapping. In addition, the book presents an overview of new perspectives and future directions for research.

  13. Genetic mapping of a QTL controlling source-sink size and heading date in rice.

    PubMed

    Zhan, Xiaodeng; Sun, Bin; Lin, Zechuan; Gao, Zhiqiang; Yu, Ping; Liu, Qunen; Shen, Xihong; Zhang, Yingxin; Chen, Daibo; Cheng, Shihua; Cao, Liyong

    2015-10-25

    Source size, sink size and heading date (HD) are three important classes of traits that determine the productivity of rice. In this study, a set of recombinant inbred lines (RILs) derived from the cross between an elite indica line Big Grain1 (BG1) and a japonica line Xiaolijing (XLJ) were used to map quantitative trait loci (QTLs) for source-sink size and heading date. Totally, thirty-one QTLs for source size, twenty-two for sink size, four for heading date and seven QTL clusters which included QTLs for multiple traits were identified in three environmental trials. Thirty QTLs could be consistently detected in at least two trials and generally located in the clusters. Using a set of BC4F2 lines, the QTL cluster in C5-1-C5-2 on chromosome 5 was validated to be a major QTL pleiotropically affecting heading date, source size (flag leaf area) and panicle type (neck length of panicle, primary branching number and the ratio of secondary branching number to primary branching number), and was narrowed down to a 309.52Kb region. QTL clusters described above have a large effect on source-sink size and/or heading date, therefore they should be good resources to improve the adaptability and high yield potential of cultivars genetically.

  14. Identification of Novel QTL Governing Root Architectural Traits in an Interspecific Soybean Population

    PubMed Central

    Musket, Theresa A.; Chaky, Julian; Deshmukh, Rupesh; Vuong, Tri D.; Song, Li; Cregan, Perry B.; Nelson, James C.; Shannon, J. Grover; Specht, James E.; Nguyen, Henry T.

    2015-01-01

    Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean. PMID:25756528

  15. QTL detection power of multi-parental RIL populations in Arabidopsis thaliana.

    PubMed

    Klasen, J R; Piepho, H-P; Stich, B

    2012-06-01

    A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.

  16. QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.).

    PubMed

    Billotte, N; Jourjon, M F; Marseillac, N; Berger, A; Flori, A; Asmady, H; Adon, B; Singh, R; Nouy, B; Potier, F; Cheah, S C; Rohde, W; Ritter, E; Courtois, B; Charrier, A; Mangin, B

    2010-05-01

    A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 x 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed.

  17. QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)

    PubMed Central

    Jourjon, M. F.; Marseillac, N.; Berger, A.; Flori, A.; Asmady, H.; Adon, B.; Singh, R.; Nouy, B.; Potier, F.; Cheah, S. C.; Rohde, W.; Ritter, E.; Courtois, B.; Charrier, A.; Mangin, B.

    2010-01-01

    A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1284-y) contains supplementary material, which is available to authorized users. PMID:20182696

  18. Multiple QTL Determine Dorsal Abdominal Scale Patterns in the Mosquito Aedes aegypti.

    PubMed

    Mori, Akio; Tsuda, Yoshio; Takagi, Masahiro; Higa, Yukiko; Severson, David W

    2016-09-01

    The mosquito, Aedes aegypti (L.) originated in Sub-Saharan Africa as a dark form sylvan species (A. aegypti formosus). Evolution of A. aegypti aegypti type form as a human commensal facilitated its colonization of most semitropical and tropical areas. We investigated the genetic basis for abdominal white scale presence that represents the diagnostic for sylvan A. aegypti formosus (scales absent), from type form (scales present) and A. aegypti queenslandensis form (dense scaling). We performed quantitative trait locus (QTL) mapping using 3 criteria for scale patterns among 192 F1 intercross progeny from matings between a queenslandensis type and an aegypti type form. Results identified 3 QTL determining scale patterns and indicated that classification criteria impact robustness of QTL LOD support. Dark- and light-colored forms exist in sympatry, but vary in multiple phenotypic characteristics, including preferences for vertebrate host, oviposition container, house-entering behavior, and dengue vector competence. Markers associated with 2 QTL regions reflected major reductions in recombination frequencies compared with the standard type form linkage map, suggestive of inversion polymorphisms associated with observed linkage disequilibrium between type-specific characteristics. Understanding the genic basis for differences in A. aegypti forms could inform efforts to develop new mosquito and arboviral disease control strategies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A New Method to Infer Causal Phenotype Networks Using QTL and Phenotypic Information

    PubMed Central

    Wang, Huange; van Eeuwijk, Fred A.

    2014-01-01

    In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request. PMID:25144184

  20. A new method to infer causal phenotype networks using QTL and phenotypic information.

    PubMed

    Wang, Huange; van Eeuwijk, Fred A

    2014-01-01

    In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request.

  1. QTL involved in the modification of cyanidin compounds in black and red raspberry fruit.

    PubMed

    Bushakra, J M; Krieger, C; Deng, D; Stephens, M J; Allan, A C; Storey, R; Symonds, V V; Stevenson, D; McGhie, T; Chagné, D; Buck, E J; Gardiner, S E

    2013-03-01

    Fruit from Rubus species are highly valued for their flavor and nutritive qualities. Anthocyanin content contributes to these qualities, and although many studies have been conducted to identify and quantify the major anthocyanin compounds from various Rubus species, the genetic control of the accumulation of these complex traits in Rubus is not yet well understood. The identification of the regions of the genome involved in the production of anthocyanins is an important first step in identifying the genes underlying their expression. In this study, ultra and high-performance liquid chromatography (UHPLC and HPLC) and two newly developed Rubus linkage maps were used to conduct QTL analyses to explore the presence of associations between concentrations of five anthocyanins in fruit and genotype. In total, 27 QTL were identified on the Rubus linkage maps, four of which are associated with molecular markers designed from transcription factors and three of which are associated with molecular markers designed from anthocyanin biosynthetic pathway candidate genes. The results of this study suggest that, while QTL for anthocyanin accumulation have been identified on six of seven Rubus linkage groups (RLG), the QTL on RLG2 and RLG7 may be very important for genetic control of cyanidin modification in Rubus.

  2. AraQTL - workbench and archive for systems genetics in Arabidopsis thaliana.

    PubMed

    Nijveen, Harm; Ligterink, Wilco; Keurentjes, Joost J B; Loudet, Olivier; Long, Jiao; Sterken, Mark G; Prins, Pjotr; Hilhorst, Henk W; de Ridder, Dick; Kammenga, Jan E; Snoek, Basten L

    2017-03-01

    Genetical genomics studies uncover genome-wide genetic interactions between genes and their transcriptional regulators. High-throughput measurement of gene expression in recombinant inbred line populations has enabled investigation of the genetic architecture of variation in gene expression. This has the potential to enrich our understanding of the molecular mechanisms affected by and underlying natural variation. Moreover, it contributes to the systems biology of natural variation, as a substantial number of experiments have resulted in a valuable amount of interconnectable phenotypic, molecular and genotypic data. A number of genetical genomics studies have been published for Arabidopsis thaliana, uncovering many expression quantitative trait loci (eQTLs). However, these complex data are not easily accessible to the plant research community, leaving most of the valuable genetic interactions unexplored as cross-analysis of these studies is a major effort. We address this problem with AraQTL (http://www.bioinformatics.nl/Ara QTL/), an easily accessible workbench and database for comparative analysis and meta-analysis of all published Arabidopsis eQTL datasets. AraQTL provides a workbench for comparing, re-using and extending upon the results of these experiments. For example, one can easily screen a physical region for specific local eQTLs that could harbour candidate genes for phenotypic QTLs, or detect gene-by-environment interactions by comparing eQTLs under different conditions.

  3. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL

    PubMed Central

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L.; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5–0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  4. QTL, additive and epistatic effects for SCN resistance in PI 437654.

    PubMed

    Wu, Xiaolei; Blake, Sean; Sleper, David A; Shannon, J Grover; Cregan, Perry; Nguyen, Henry T

    2009-04-01

    PI 437654 is a unique accession because of its resistance to nearly all HG types (races) of soybean cyst nematode (Heterodera glycines Ichinohe; SCN). Objectives of this study were to confirm and refine the locations and gene action associated with SCN resistance previously discovered in PI 437654, and to identify new QTLs that may have been missed because of low coverage with genetic markers used in previous studies. Using 205 F(7:9) RILs and 276 SSR and AFLP molecular markers covering 2,406.5 cM of 20 linkage groups (LGs), we confirmed and refined the locations of major SCN resistance QTLs on LG-A2, -B1, and -G previously identified in PI 437654 or other resistant sources. We found that these major QTLs have epistatic effects among them or with other loci for SCN resistance. We also detected some new QTLs with additive or epistatic effects for SCN resistance to different HG types (races) on all LGs except LGs-B2 and -D1b. The QTL on LG-G was associated with resistance to HG types 2.5.7, 1.2.5.7, 0, and 2.7 (races 1, 2, 3, and 5), and it contributed a large proportion of the additive effects. The QTL on LG-A2 was associated with resistance to HG types 2.5.7 and 0 (races 1 and 3). The QTL on LG-B1, associated with resistance to HG types 2.5.7, 0, 2.7 (races 1, 3, and 5), was the similar QTL found in PI 90763 and PI 404198B. In addition to QTL on LGs-A2, -B1 and -G, a novel additive QTL associated with SCN resistance to HG types 0, 2.7, and 1.3.5.6.7 (race 3, 5, and 14) was identified on LG-I flanked by Sat_299 and Sat_189. Several minor QTLs on LGs-C1, D1a, H, and K were also found to be associated with SCN resistance. Confirmation of the new resistance QTL is underway by evaluating another RIL population with a different genetic background.

  5. Advances in Bayesian Multiple QTL Mapping in Experimental Crosses

    PubMed Central

    Yi, Nengjun; Shriner, Daniel

    2016-01-01

    Many complex human diseases and traits of biological and/or economic importance are determined by interacting networks of multiple quantitative trait loci (QTL) and environmental factors. Mapping QTL is critical for understanding the genetic basis of complex traits, and for ultimate identification of responsible genes. A variety of sophisticated statistical methods for QTL mapping have been developed. Among these developments, the evolution of Bayesian approaches for multiple QTL mapping over the past decade has been remarkable. Bayesian methods can jointly infer the number of QTL, their genomic positions, and their genetic effects. Here, we review recently developed and still developing Bayesian methods and associated computer software for mapping multiple QTL in experimental crosses. We compare and contrast these methods to clearly describe the relationships among different Bayesian methods. We conclude this review by highlighting some areas of future research. PMID:17987056

  6. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize.

    PubMed

    Giraud, Héloïse; Lehermeier, Christina; Bauer, Eva; Falque, Matthieu; Segura, Vincent; Bauland, Cyril; Camisan, Christian; Campo, Laura; Meyer, Nina; Ranc, Nicolas; Schipprack, Wolfgang; Flament, Pascal; Melchinger, Albrecht E; Menz, Monica; Moreno-González, Jesús; Ouzunova, Milena; Charcosset, Alain; Schön, Chris-Carolin; Moreau, Laurence

    2014-12-01

    Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R(2) = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R(2) < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production. Copyright © 2014 by the Genetics Society of America.

  7. Association Test for X-Linked QTL in Family-Based Designs

    PubMed Central

    Zhang, Li; Martin, Eden R.; Morris, Richard W.; Li, Yi-Ju

    2009-01-01

    Family-based association methods for detecting quantitative trait loci (QTL) have been developed primarily for autosomes, and comparable methods for X-linked QTL have received less attention. We have developed a family-based association test for quantitative traits, named XQTL, which uses X-linked markers in a nuclear family design. XQTL adopts the framework of the orthogonal model implemented in the QTDT program, modifying the sex-specific score for X-linked genotypes. XQTL also takes into account the dosage effect due to female X chromosome inactivation. Restricted maximum likelihood (REML) and Fisher's scoring method are used to estimate variance components of random effects. Fixed effects, derived from the phenotypic differences among and within families, are estimated by the least-squares method. Our proposed XQTL can perform allelic and two-locus haplotypic association tests and can provide estimates of additive genetic effects and variance components. Simulation studies show correct type I error rates under the null hypothesis and robust statistical power under alternative scenarios. The loss of power observed when parental genotypes are missing can be compensated by an increase of offspring number. By treating age at onset of Parkinson disease as a quantitative trait, we illustrate our method, using MAO polymorphisms in 780 families. PMID:19344875

  8. Fatness QTL on chicken chromosome 5 and interaction with sex

    PubMed Central

    Abasht, Behnam; Pitel, Frédérique; Lagarrigue, Sandrine; Le Bihan-Duval, Elisabeth; Le Roy, Pascale; Demeure, Olivier; Vignoles, Florence; Simon, Jean; Cogburn, Larry; Aggrey, Sammy; Vignal, Alain; Douaire, Madeleine

    2006-01-01

    Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines. PMID:16635451

  9. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize.

    PubMed

    Boer, Martin P; Wright, Deanne; Feng, Lizhi; Podlich, Dean W; Luo, Lang; Cooper, Mark; van Eeuwijk, Fred A

    2007-11-01

    Complex quantitative traits of plants as measured on collections of genotypes across multiple environments are the outcome of processes that depend in intricate ways on genotype and environment simultaneously. For a better understanding of the genetic architecture of such traits as observed across environments, genotype-by-environment interaction should be modeled with statistical models that use explicit information on genotypes and environments. The modeling approach we propose explains genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed of 976 F(5) maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and 1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multi-environment data, modeling genotype-by-environment interactions and associated genetic correlations between environments, while taking into account intraenvironmental error structures. The phenotypic mixed models were then extended to QTL models via the incorporation of marker information as genotypic covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI). The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could be understood as differential QTL expression conditional on longitude or year, both consequences of temperature differences during critical stages of the growth.

  10. A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea

    PubMed Central

    Srivastava, Rishi; Upadhyaya, Hari D.; Kumar, Rajendra; Daware, Anurag; Basu, Udita; Shimray, Philanim W.; Tripathi, Shailesh; Bharadwaj, Chellapilla; Tyagi, Akhilesh K.; Parida, Swarup K.

    2017-01-01

    Identification of functionally relevant potential genomic loci using an economical, simpler and user-friendly genomics-assisted breeding strategy is vital for rapid genetic dissection of complex flowering time quantitative trait in chickpea. A high-throughput multiple QTL-seq strategy was employed in two inter (Cicer arietinum desi accession ICC 4958 × C reticulatum wild accession ICC 17160)- and intra (ICC 4958 × C. arietinum kabuli accession ICC 8261)-specific RIL mapping populations to identify the major QTL genomic regions governing flowering time in chickpea. The whole genome resequencing discovered 1635117 and 592486 SNPs exhibiting differentiation between early- and late-flowering mapping parents and bulks, constituted by pooling the homozygous individuals of extreme flowering time phenotypic trait from each of two aforesaid RIL populations. The multiple QTL-seq analysis using these mined SNPs in two RIL mapping populations narrowed-down two longer (907.1 kb and 1.99 Mb) major flowering time QTL genomic regions into the high-resolution shorter (757.7 kb and 1.39 Mb) QTL intervals on chickpea chromosome 4. This essentially identified regulatory as well as coding (non-synonymous/synonymous) novel SNP allelic variants from two efl1 (early flowering 1) and GI (GIGANTEA) genes regulating flowering time in chickpea. Interestingly, strong natural allelic diversity reduction (88–91%) of two known flowering genes especially mapped at major QTL intervals as compared to that of background genomic regions (where no flowering time QTLs were mapped; 61.8%) in cultivated vis-à-vis wild Cicer gene pools was evident inferring the significant impact of evolutionary bottlenecks on these loci during chickpea domestication. Higher association potential of coding non-synonymous and regulatory SNP alleles mined from efl1 (36–49%) and GI (33–42%) flowering genes for early and late flowering time differentiation among chickpea accessions was evident. The robustness and

  11. Clubroot resistance QTL are modulated by nitrogen input in Brassica napus.

    PubMed

    Laperche, A; Aigu, Y; Jubault, M; Ollier, M; Guichard, S; Glory, P; Strelkov, S E; Gravot, A; Manzanares-Dauleux, M J

    2017-04-01

    Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered. Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization. However, the genetic factors involved in clubroot resistance have not been characterized under nitrogen-limiting conditions. This study aimed to assess the variability of clubroot resistance under different nitrogen levels and to characterize the impact of nitrogen supply on genetic resistance factors. Linkage analyses and a genome-wide association study were conducted to detect QTL for clubroot resistance and evaluate their sensitivity to nitrogen. The clubroot response of a set of 92 diverse oilseed rape accessions and 108 lines derived from a cross between 'Darmor-bzh' (resistant) and 'Yudal' (susceptible) was studied in the greenhouse under high- and low-nitrogen conditions, following inoculation with the P. brassicae isolates eH and K92-16. Resistance to each isolate was controlled by a major QTL and a few small-effects QTL. While the same QTL were detected under both high and low nitrogen, their effects were altered. Clubroot resistance to isolate eH, but not K92-16, was greater under a low-N supply versus a high-N supply. New sources of resistance were found among the oilseed rape accessions under both low and high-N conditions. The results are discussed relative to the literature and from a crop improvement perspective.

  12. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se (eps) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62, consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111. SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  13. Power and false-positive rate in QTL detection with near-isogenic line libraries.

    PubMed

    Falke, K C; Frisch, M

    2011-04-01

    Libraries of near-isogenic lines (NILs) were used for quantitative trait locus (QTL) detection in model species and economically important crops. The experimental design and genetic architecture of the considered traits determine the statistical properties of QTL detection. The objectives of our simulation study were to (i) investigate the population sizes required to develop NIL libraries in barley and maize, (ii) compare NIL libraries with nonoverlapping and overlapping donor segments and (iii) study the number of QTLs and the size of their effects with respect to the power and the false-positive rate of QTL detection. In barley, the development of NIL libraries with target segment lengths of 10 c and marker distances of 5 cM was possible using a BC(3)S(2) backcrossing scheme and population sizes of 140. In maize, population sizes larger than 200 were required. Selection for the recipient parent genome at markers flanking the target segments with distances between 5 and 10 cM was required for an efficient control of the false-positive rate. NIL libraries with nonoverlapping donor chromosome segments had a greater power of QTL detection and a smaller false-positive rate than libraries with overlapping segments. Major genes explaining 30% of the genotypic difference between the donor and recipient were successfully detected even with low heritabilities of 0.5, whereas for minor genes explaining 5 !or 10%, high heritabilities of 0.8 or 0.9 were required. The presented results can assist geneticists and breeders in the efficient development of NIL libraries for QTL detection.

  14. Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; Schranz, M Eric; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; Michelmore, Richard W; van Tienderen, Peter H

    2014-01-01

    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives. PMID:25360276

  15. QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize.

    PubMed

    Kohls, Susanne; Stamp, Peter; Knaak, Carsten; Messmer, Rainer

    2011-07-01

    Partial restoration of male fertility limits the use of C-type cytoplasmic male sterility (C-CMS) for the production of hybrid seeds in maize. Nevertheless, the genetic basis of the trait is still unknown. Therefore, the aim to this study was to identify genomic regions that govern partial restoration by means of a QTL analysis carried out in an F(2) population (n = 180). This population was derived from the Corn Belt inbred lines B37C and K55. F(2)BC(1) progenies were phenotyped at three locations in Switzerland. Male fertility was rated according to the quality and number of anthers as well as the anthesis-silking interval. A weak effect of environment on the expression of partial restoration was reflected by high heritabilities of all fertility-related traits. Partial restoration was inherited like an oligogenic trait. Three major QTL regions were found consistently across environments in the chromosomal bins 2.09, 3.06 and 7.03. Therefore, a marker-assisted counter-selection of partial restoration is promising. Minor QTL regions were found on chromosomes 3, 4, 5, 6 and 8. A combination of partial restorer alleles at different QTL can lead to full restoration of fertility. The maternal parent was clearly involved in the partial restoration, because the restorer alleles at QTL in bins 2.09, 6.04 and 7.03 originated from B37. The three major QTL regions collocated with other restorer genes of maize, a phenomenon, which seems to be typical for restorer genes. Therefore, a study of the clusters of restorer genes in maize could lead to a better understanding of their evolution and function. In this respect, the long arm of chromosome 2 is particularly interesting, because it harbors restorer genes for the three major CMS systems (C, T and S) of maize.

  16. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.

    PubMed

    Zhang, Dan; Zhang, Hengyou; Chu, Shanshan; Li, Hongyan; Chi, Yingjun; Triebwasser-Freese, Daniella; Lv, Haiyan; Yu, Deyue

    2017-01-01

    Soybean is a high phosphorus (P) demand species that is sensitive to low-P stress. Although many quantitative trait loci (QTL) for P efficiency have been identified in soybean, but few of these have been cloned and agriculturally applied mainly due to various limitations on identifying suitable P efficiency candidate genes. Here, we combined QTL mapping, transcriptome profiling, and plant transformation to identify candidate genes underlying QTLs associated with low-P tolerance and response mechanisms to low-P stress in soybean. By performing QTL linkage mapping using 152 recombinant inbred lines (RILs) that were derived from a cross between a P-efficient variety, Nannong 94-156, and P-sensitive Bogao, we identified four major QTLs underlying P efficiency. Within these four QTL regions, 34/81 candidate genes in roots/leaves were identified using comparative transcriptome analysis between two transgressive RILs, low-P tolerant genotype B20 and sensitive B18. A total of 22 phosphatase family genes were up-regulated significantly under low-P condition in B20. Overexpression of an acid phosphatase candidate gene, GmACP2, in soybean hairy roots increased P efficiency by 15.43-24.54 % compared with that in controls. Our results suggest that integrating QTL mapping and transcriptome profiling could be useful for rapidly identifying candidate genes underlying complex traits, and phosphatase-encoding genes, such as GmACP2, play important roles involving in low-P stress tolerance in soybean.

  17. Hypertension in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Chapman, Arlene B.; Stepniakowski, Konrad; Rahbari-Oskoui, Frederic

    2010-01-01

    Hypertension is common and occurs in a majority of autosomal dominant polycystic kidney disease (ADPKD) patients prior to loss of kidney function. Hypertension relates to progressive kidney enlargement, and is a significant independent risk factor for progression to end stage renal disease. The pathogenesis of hypertension in ADPKD is complex and dependent on many factors that influence each other. Pkd1 and Pkd2 expression levels are highest in the major vessels and are present in the cilia of endothelial cells and in vascular smooth muscle cells. Decreased or absent polycystin 1 or 2 expression is associated with abnormal vascular structure and function. Pkd1/Pkd2 deficiency results in reduced nitric oxide (NO) levels, altered endothelial response to shear stress with attenuation in vascular relaxation. 10–20% of ADPKD children demonstrate hypertension and the majority of adults are hypertensive before any loss of kidney function. Cardiac abnormalities such as left ventricular hypertrophy and carotid intimal wall thickening are present prior to the development of hypertension in ADPKD. Activation of the renin-angiotensin-aldosterone system occurs in ADPKD due to decreased NO production as well as bilateral cyst expansion and intra-renal ischemia. With increasing cyst size, further activation of the RAAS occurs, blood pressure increases and a vicious cycle ensues with enhanced cyst growth and hypertension ultimately leading to ESRD. Inhibition of the angiotensin aldosterone system is possible with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. However, interventional studies have not yet demonstrated benefit in slowing progression to renal failure in ADPKD. Currently, large multicenter studies are being performed to determine the beneficial effects of RAAS inhibition both early and late in ADPKD. PMID:20219618

  18. Mimicry on the QT(L): genetics of speciation in Mimulus.

    PubMed

    Bleiweiss, R

    2001-08-01

    Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.

  19. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize.

    PubMed

    Courtial, Audrey; Thomas, Justine; Reymond, Matthieu; Méchin, Valérie; Grima-Pettenati, Jacqueline; Barrière, Yves

    2013-05-01

    Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.

  20. From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits.

    PubMed

    Slate, Jon

    2013-05-01

    Quantitative trait locus (QTL) mapping is frequently used in evolutionary studies to understand the genetic architecture of continuously varying traits. The majority of studies have been conducted in specially created crosses, in which genetic differences between parental lines are identified by linkage analysis. Detecting QTL segregating within populations is more problematic, especially in wild populations, because these populations typically have complicated and unbalanced multigenerational pedigrees. However, QTL mapping can still be conducted in such populations using a variance components mixed model approach, and the advent of appropriate statistical frameworks and better genotyping methods mean that the approach is gaining popularity. In this study it is shown that all studies described to date report evidence of QTL of major effect on trait variation, but that these findings are probably caused by inflated estimates of QTL effect sizes due to the Beavis effect. Using simulations I show that even the most powerful studies conducted to date are likely to give misleading descriptions of the genetic architecture of a trait. I show that an interpretation of a mapping study of beak color in the zebra finch (Taeniopygia guttata), that suggested genetic variation was determined by a small number of loci of large effect, which are possibly maintained by antagonistic pleiotropy, is likely to be incorrect. More generally, recommendations are made to how QTL mapping can be combined with other approaches to provide more accurate descriptions of a trait's genetic architecture.

  1. [Autosomal recessive ethnic diseases of Czech Gypsies].

    PubMed

    Seeman, P; Sisková, D

    2006-01-01

    Roma (Gypsy ethnic) form a genetically isolated ethnical group of the identical origin with the world population of 10 to 14 millions derived from a limited number of so-called founders. Majority (about 8 millions) of Roma ethnic live in Europe, namely at Balkan and in the southwest of Europe. Roma have specific hereditary diseases, namely those caused by recessive genetic mutations. The molecular-genetic mechanism has been recently elucidated and confirmed in several diseases of the Roma population. Owing to the significant proportion of Roma in the population, patients with those diseases are possible to meet also in the Czech Republic. However, the diagnostics of those diseases is frequently difficult and they are often under diagnosed or misdiagnosed. The article gives examples of autosomal recessive diseases, which can be confirmed at the DNA level which occur in Roma population of the Czech Republic: syndrome of congenital cataract, facial dysmorphism and demyelinating neuropathy, non-syndromic prelingual deafness with GJB2 gene impairment and the congenital myastenic syndrome.

  2. Autosomal dominant sensory ataxia: a neuroaxonal dystrophy.

    PubMed

    Moeller, Jeremy J; Macaulay, Robert J B; Valdmanis, Paul N; Weston, Lyle E; Rouleau, Guy A; Dupré, Nicolas

    2008-09-01

    Autosomal dominant sensory ataxia (ADSA), a rare hereditary ataxia, is characterized by progressive dysfunction of central sensory pathways. Its pathological features have not been previously documented. We report a case of a 61-year-old man with ADSA who died of congestive heart failure. Autopsy specimens of brain, thoracolumbar spinal cord, peripheral nerve and skeletal muscle were examined. There was no abnormality on gross examination. Microscopically, there were occasional swollen axons within the cerebral cortex and deep nuclei, particularly the subthalamic nucleus, with no neuronal loss, gliosis or microglial activation. There were many axonal spheroids within the medulla, particularly in the dorsal column nuclei. Axonal spheroids were also seen in the dorsal columns and ventral horns in the thoracolumbar spinal cord, but there was no Wallerian degeneration or demyelination. Amyloid precursor protein (APP) immunostaining of some of the spheroids suggested continuing dysfunction of axoplasmic flow in some regions. There was mild inflammation of peripheral nerve roots but no spheroid, and patchy chronic inflammation of skeletal muscle. In summary, the major pathological process in ADSA is a neuroaxonal dystrophy most prominent in the dorsal columns and dorsal column nuclei, consistent with the clinical pattern of central sensory pathway degeneration.

  3. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.).

    PubMed

    He, Xinyao; Skinnes, Helge; Oliver, Rebekah E; Jackson, Eric W; Bjørnstad, Asmund

    2013-10-01

    Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.

  4. Genetics Home Reference: autosomal recessive congenital methemoglobinemia

    MedlinePlus

    ... it alters a molecule within these cells called hemoglobin . Hemoglobin carries oxygen to cells and tissues throughout the ... autosomal recessive congenital methemoglobinemia , some of the normal hemoglobin is replaced by an abnormal form called methemoglobin, ...

  5. Autosomal recessive Klippel-Feil syndrome

    PubMed Central

    Silva, Elias Oliveira Da

    1982-01-01

    An inbred kindred with 12 cases of Klippel-Feil syndrome (seven females and five males) is reported. Inheritance is undoubtedly autosomal recessive. The main characteristic of the syndrome is fusion of cervical vertebrae. Images PMID:7077623

  6. Genetics Home Reference: autosomal dominant hypocalcemia

    MedlinePlus

    ... in the blood as well, including too much phosphate (hyperphosphatemia) or too little magnesium (hypomagnesemia). Some people ... the normal regulation of other molecules, such as phosphate and magnesium, leading to other signs of autosomal ...

  7. QTL for bacterial cold water disease resistance and spleen size are located on rainbow trout chromosome Omy19

    USDA-ARS?s Scientific Manuscript database

    Selective breeding of aquatic animals for improved disease resistance has become a major focus in aquaculture, although little is known about underlying QTL or correlated traits. At the National Center for Cool and Cold Water Aquaculture (NCCCWA), we have pursued a selective breeding program with t...

  8. Genotyping-By-Sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest sprouting (PHS) of wheat is a major constraint to wheat production in many wheat-growing areas worldwide, because it reduces both wheat grain yield and the end-use quality. To identify markers tightly linked to the quantitative trait loci (QTL) for PHS resistance and seed dormancy (SD), ...

  9. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  10. Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad.

    PubMed

    Witzig, C; Parry, M; Morgan, J C; Irving, H; Steven, A; Cuamba, N; Kerah-Hinzoumbé, C; Ranson, H; Wondji, C S

    2013-04-01

    Prevention of malaria transmission throughout much of Africa is dependent on bednets that are impregnated with pyrethroid insecticides. Anopheles arabiensis is the major malaria vector in Chad and efforts to control this vector are threatened by the emergence of pyrethroid resistance. WHO bioassays revealed that An. arabiensis from Ndjamena is resistant to pyrethroids and dichlorodiphenyltrichloroethane (DDT) but fully susceptible to carbamates and organophosphates. No 1014F or 1014S kdr alleles were detected in this population. To determine the mechanisms that are responsible for resistance, genetic crosses were established between the Ndja strain and an insecticide susceptible population from Mozambique. Resistance was inherited as an autosomal trait and quantitative trait locus (QTL) mapping identified a single major locus on chromosome 2R, which explained 24.4% of the variance in resistance. This QTL is enriched in P450 genes including 25 cytochrome P450s in total. One of these, Cyp6p4 is 22-fold upregulated in the Ndja strain compared with the susceptible. Piperonyl butoxide (PBO) synergist and biochemical assays further support a role for P450s in conferring pyrethroid resistance in this population.

  11. Effect of the Texel muscling QTL (TM-QTL) on spine characteristics in purebred Texel lambs

    PubMed Central

    Donaldson, C.L.; Lambe, N.R.; Maltin, C.A.; Knott, S.; Bünger, L.

    2014-01-01

    Previous work showed that the Texel muscling QTL (TM-QTL) results in pronounced hypertrophy in the loin muscle, with the largest phenotypic effects observed in lambs inheriting a single copy of the allele from the sire. As the loin runs parallel to the spinal vertebrae, and the development of muscle and bone are closely linked, the primary aim of this study was to investigate if there were any subsequent associations between TM-QTL inheritance and underlying spine characteristics (vertebrae number, VN; spine region length, SPL; average length of individual vertebrae, VL) of the thoracic, lumbar, and thoracolumbar spine regions. Spine characteristics were measured from X-ray computed tomography (CT) scans for 142 purebred Texel lambs which had been previously genotyped. Least-squares means were significantly different between genotype groups for lumbar and thoracic VN and lumbar SPL. Similarly for these traits, contrasts were shown to be significant for particular modes of gene action but overall were inconclusive. In general, the results showed little evidence that spine trait phenotypes were associated with differences in loin muscling associated with the different TM-QTL genotypes. PMID:25844019

  12. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  13. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  14. Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.)

    PubMed Central

    2013-01-01

    Background Despite the crucial role that heterosis has played in crop improvement, its genetic and molecular bases are still elusive. Several types of structured populations were used to discover the genetic architecture underlying complex phenotypes, and several QTL related to heterosis were detected. However, such analyses generally lacked the statistical power required for the detailed characterization of individual QTL. Currently, QTL introgression into near-isogenic materials is considered the most effective strategy to this end, despite such materials inevitably contain a variable, unknown and undesired proportion of non-isogenic genome. An introgression program based on residual heterozygous lines allowed us to develop five pairs of maize (Zea mays L.) near-isogenic lines (NILs) suitable for the fine characterization of three major heterotic QTL previously detected. Here we describe the results of the detailed genomic characterization of these NILs that we undertook to establish their genotypic structure, to verify the presence of the expected genotypes within target QTL regions, and to determine the extent and location of residual non-isogenic genomic regions. Results The SNP genotyping approach allowed us to determine the parent-of-origin allele for 14,937 polymorphic SNPs and to describe in detail the genotypic structure of all NILs. The correct introgression was confirmed for all target QTL in the respective NIL and several non-isogenic regions were detected genome-wide. Possible linkage drag effects associated to the specific introgressed regions were observed. The extent and position of other non-isogenic regions varied among NIL pairs, probably deriving from random segregating sections still present at the separation of lineages within pairs. Conclusions The results of this work strongly suggest that the actual isogenicity and the genotypic architecture of near-isogenic materials should be monitored both during the introgression procedure and on the

  15. Genome-Wide Association Mapping in the Global Diversity Set Reveals New QTL Controlling Root System and Related Shoot Variation in Barley

    PubMed Central

    Reinert, Stephan; Kortz, Annika; Léon, Jens; Naz, Ali A.

    2016-01-01

    The fibrous root system is a visible sign of ecological adaptation among barley natural populations. In the present study, we utilized rich barley diversity to dissect the genetic basis of root system variation and its link with shoot attributes under well-water and drought conditions. Genome-wide association mapping of phenotype data using a dense genetic map (5892 SNP markers) revealed 17 putative QTL for root and shoot traits. Among these, at 14 loci the preeminence of exotic QTL alleles resulted in trait improvements. The most promising QTL were quantified using haplotype analysis at local and global genome levels. The strongest QTL was found on chromosome 1H which accounted for root dry weight and tiller number simultaneously. Candidate gene analysis across the targeted region detected a crucial amino acid substitution mutation in the conserved domain of a WRKY29 transcription factor among genotypes bearing major and minor QTL alleles. Similarly, the drought inducible QTL QRdw.5H (5H, 95.0 cM) seems to underlie 37 amino acid deletion and substitution mutations in the conserved domain of two related genes CBF10B and CBF10A, respectively. The identification and further characterization of these candidate genes will be essential to decipher genetics behind developmental and natural adaptation mechanisms of barley. PMID:27486472

  16. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance.

    PubMed

    Zhou, Tao; Liu, Shikai; Geng, Xin; Jin, Yulin; Jiang, Chen; Bao, Lisui; Yao, Jun; Zhang, Yu; Zhang, Jiaren; Sun, Luyang; Wang, Xiaozhu; Li, Ning; Tan, Suxu; Liu, Zhanjiang

    2017-02-01

    Disease problems cause major economic losses for the aquaculture industries. In catfish, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the leading disease problem, causing tens of millions of dollars of annual economic losses. In this study, we conducted a genome-wide association study to determine quantitative trait loci (QTL) for resistance against ESC using an interspecific hybrid system. Five hundred fish were used in the analysis and 192 phenotypic extremes were used for genotyping with the catfish 250K SNP arrays. A genomic region on linkage group (LG) 1 was found significantly associated with ESC disease resistance. In addition, two suggestively associated QTL for ESC resistance were identified on LG 12 and LG 16. The nlrc3 duplicates were identified within all the three QTL, suggesting their importance in association with the QTL. Within the significant QTL on LG 1, 16 genes with known functions in immunity were identified. Of particular interest is the nck1 gene nearby the most significantly associated SNP. Nck1 was known to function as an adaptor to facilitating the pathogenesis of enteropathogenic Escherichia coli (EPEC) in humans. E. ictaluri and EPEC pathogens belong to the same bacterial family and share many common characteristics. The fact that nck1 is mapped in the QTL and that it was significantly upregulated in channel catfish intestine after ESC challenge suggested its candidacy of being involved in resistance/susceptibility of ESC.

  17. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils.

    PubMed

    Gailing, O; Macnair, M R; Bachmann, K

    2004-07-01

    The different response to growth on serpentine soil is a major autecological difference between the annual asteracean species Microseris douglasii and M. bigelovii, with nearly non-overlapping distribution ranges in California. Early flowering and seed set is regarded as a crucial character contributing to escape drought and thus is strongly correlated with survival and reproductive success on serpentine as naturally toxic soil. M. bigelovii (strain C94) from non-serpentine soil produces more leaves at the expense of bud production in the first growing phase than M. douglasii (B14) from serpentine soil. A QTL mapping study for this trade-off and for other growth-related traits was performed after six generations of inbreeding (F7) from a single interspecific hybrid between B14 and C94 on plants that were grown on serpentine and alternatively on normal potting soil. The trade-off is mainly correlated with markers on one map region on linkage group 03a (lg03a) with major phenotypic effects (phenotypic variance explained [PVE] = 18.8 - 31.7 %). Plants with the M. douglasii allele in QTL-B1 (QTL-NL1) produce more buds but fewer leaves in the first 119 days on both soil types. Three modifier QTL could be mapped for bud and leaf production. In one modifier (QTL-B2 = QTL-NL4) the M. douglasii allele is again associated with more buds but fewer leaves. QTL mapped for bud set in the F6 co-localize with QTL-B1 (major QTL) and QTL-B3. Two additional QTL for leaf length and red coloration of leaves could be mapped to one map region on lg03a. Co-localization of the two QTL loci with major phenotypic effects on bud and leaf production strongly suggests that a major genetic locus controls the trade-off between the two adaptive traits. The importance of mutational changes in major genes for the adaptation to stressful environments is discussed.

  18. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.).

    PubMed

    Xu, Liang; Wang, Liangju; Gong, Yiqin; Dai, Wenhao; Wang, Yan; Zhu, Xianwen; Wen, Tiancai; Liu, Liwang

    2012-08-01

    Cadmium (Cd) is a widespread soil pollutant and poses a significant threat to human health via the food chain. Large phenotypic variations in Cd concentration of radish roots and shoots have been observed. However, the genetic and molecular mechanisms of Cd accumulation in radish remain to be elucidated. In this study, a genetic linkage map was constructed using an F(2) mapping population derived from a cross between a high Cd-accumulating cultivar NAU-Dysx and a low Cd-accumulating cultivar NAU-Yh. The linkage map consisted of 523 SRAP, RAPD, SSR, ISSR, RAMP, and RGA markers and had a total length of 1,678.2 cM with a mean distance of 3.4 cM between two markers. All mapped markers distributed on nine linkage groups (LGs) having sizes between 134.7 and 236.8 cM. Four quantitative trait loci (QTLs) for root Cd accumulation were mapped on LGs 1, 4, 6, and 9, which accounted for 9.86 to 48.64 % of all phenotypic variance. Two QTLs associated with shoot Cd accumulation were detected on LG1 and 3, which accounted for 17.08 and 29.53 % of phenotypic variance, respectively. A major-effect QTL, qRCd9 (QTL for root Cd accumulation on LG9), was identified on LG 9 flanked by NAUrp011_754 and EM5me6_286 markers with a high LOD value of 23.6, which accounted for 48.64 % of the total phenotypic variance in Cd accumulation of F(2) lines. The results indicated that qRCd9 is a novel QTL responsible for controlling root Cd accumulation in radish, and the identification of specific molecular markers tightly linked to the major QTL could be further applied for marker-assisted selection (MAS) in low-Cd content radish breeding program.

  19. seeQTL: a searchable database for human eQTLs.

    PubMed

    Xia, Kai; Shabalin, Andrey A; Huang, Shunping; Madar, Vered; Zhou, Yi-Hui; Wang, Wei; Zou, Fei; Sun, Wei; Sullivan, Patrick F; Wright, Fred A

    2012-02-01

    seeQTL is a comprehensive and versatile eQTL database, including various eQTL studies and a meta-analysis of HapMap eQTL information. The database presents eQTL association results in a convenient browser, using both segmented local-association plots and genome-wide Manhattan plots. seeQTL is freely available for non-commercial use at http://www.bios.unc.edu/research/genomic_software/seeQTL/. fred_wright@unc.edu; kxia@bios.unc.edu Supplementary data are available at Bioinformatics online.

  20. seeQTL: a searchable database for human eQTLs

    PubMed Central

    Xia, Kai; Shabalin, Andrey A.; Huang, Shunping; Madar, Vered; Zhou, Yi-Hui; Wang, Wei; Zou, Fei; Sun, Wei; Sullivan, Patrick F.; Wright, Fred A.

    2012-01-01

    Summary: seeQTL is a comprehensive and versatile eQTL database, including various eQTL studies and a meta-analysis of HapMap eQTL information. The database presents eQTL association results in a convenient browser, using both segmented local-association plots and genome-wide Manhattan plots. Availability and implementation: seeQTL is freely available for non-commercial use at http://www.bios.unc.edu/research/genomic_software/seeQTL/. Contact: fred_wright@unc.edu; kxia@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22171328

  1. Deviance Information Criterion (DIC) in Bayesian Multiple QTL Mapping.

    PubMed

    Shriner, Daniel; Yi, Nengjun

    2009-03-15

    Mapping multiple quantitative trait loci (QTL) is commonly viewed as a problem of model selection. Various model selection criteria have been proposed, primarily in the non-Bayesian framework. The deviance information criterion (DIC) is the most popular criterion for Bayesian model selection and model comparison but has not been applied to Bayesian multiple QTL mapping. A derivation of the DIC is presented for multiple interacting QTL models and calculation of the DIC is demonstrated using posterior samples generated by Markov chain Monte Carlo (MCMC) algorithms. The DIC measures posterior predictive error by penalizing the fit of a model (deviance) by its complexity, determined by the effective number of parameters. The effective number of parameters simultaneously accounts for the sample size, the cross design, the number and lengths of chromosomes, covariates, the number of QTL, the type of QTL effects, and QTL effect sizes. The DIC provides a computationally efficient way to perform sensitivity analysis and can be used to quantitatively evaluate if including environmental effects, gene-gene interactions, and/or gene-environment interactions in the prior specification is worth the extra parameterization. The DIC has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of Bayesian methodology for genome-wide interacting QTL analysis.

  2. Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology

    PubMed Central

    2014-01-01

    Background The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations. Methods Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations. Results QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms. Conclusions For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view. PMID:24884971

  3. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.)

    PubMed Central

    Lee, Gyu-Ho; Kang, In-Kyu

    2016-01-01

    The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativa L.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning. PMID:27419124

  4. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions.

    PubMed

    Frérot, Hélène; Faucon, Michel-Pierre; Willems, Glenda; Godé, Cécile; Courseaux, Adeline; Darracq, Aude; Verbruggen, Nathalie; Saumitou-Laprade, Pierre

    2010-07-01

    This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.

  5. Identification of candidate genes encoding an LDL-C QTL in baboons[S

    PubMed Central

    Karere, Genesio M.; Glenn, Jeremy P.; Birnbaum, Shifra; Hafizi, Sussan; Rainwater, David L.; Mahaney, Michael C.; VandeBerg, John L.; Cox, Laura A.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in developed countries, and dyslipidemia is a major risk factor for CVD. We previously identified a cluster of quantitative trait loci (QTL) on baboon chromosome 11 for multiple, related quantitative traits for serum LDL-cholesterol (LDL-C). Here we report differentially regulated hepatic genes encoding an LDL-C QTL that influences LDL-C levels in baboons. We performed hepatic whole-genome expression profiling for LDL-C-discordant baboons fed a high-cholesterol, high-fat (HCHF) diet for seven weeks. We detected expression of 117 genes within the QTL 2-LOD support interval. Three genes were differentially expressed in low LDL-C responders and 8 in high LDL-C responders in response to a HCHF diet. Seven genes (ACVR1B, CALCOCO1, DGKA, ERBB3, KRT73, MYL6B, TENC1) showed discordant expression between low and high LDL-C responders. To prioritize candidate genes, we integrated miRNA and mRNA expression profiles using network tools and found that four candidates (ACVR1B, DGKA, ERBB3, TENC1) were miRNA targets and that the miRNAs were inversely expressed to the target genes. Candidate gene expression was validated using QRT-PCR and Western blotting. This study reveals candidate genes that influence variation in LDL-C in baboons and potential genetic mechanisms for further investigation. PMID:23596326

  6. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields.

    PubMed

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-07-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.

  7. Strategy for Mapping Quantitative Trait Loci (QTL) by Using Human Metapopulations

    PubMed Central

    Rudan, Igor; Biloglav, Zrinka; Carothers, Andrew D.; Wright, Alan F.; Campbell, Harry

    2006-01-01

    Aim To present a novel strategy for mapping quantitative trait loci (QTL), using human metapopulations. The strategy is based on the expectation that in geographic clusters of small and distinct human isolates, a combination of founder effect and genetic drift can dramatically increase population frequency of rare QTL variants with large effect. In such cases, the distribution of QT measurements in an “affected” isolate is expected to deviate from that observed in neighboring isolates. Methods We tested this hypothesis in 9 villages from a larger Croatian isolate resource, where 7 Mendelian disorders have been previously reported. The values of 10 physiological and biochemical QTs were measured in a random sample of 1001 individuals (100 inhabitants of each of 9 villages and 101 immigrant controls). Results Significant over- or under- representation of individuals from specific villages in extreme ends of standardized QT measurement distribution was found 10 times more frequently than expected by chance. The large majority of such clusters of individuals with extreme QT values (34/36, 94.4%) originated from the 6 villages with the most pronounced geographic isolation and endogamy. Conclusion Early epidemiological assessment supports the feasibility of the proposed strategy. Clusters of individuals with extreme QT values responsible for over-representation of single villages can usually be linked to a larger pedigree and may be useful for further QTL mapping, using linkage analysis. PMID:16909450

  8. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields

    PubMed Central

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-01-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles. PMID:23919159

  9. Arabidopsis Seed Content QTL Mapping Using High-Throughput Phenotyping: The Assets of Near Infrared Spectroscopy

    PubMed Central

    Jasinski, Sophie; Lécureuil, Alain; Durandet, Monique; Bernard-Moulin, Patrick; Guerche, Philippe

    2016-01-01

    Seed storage compounds are of crucial importance for human diet, feed and industrial uses. In oleo-proteaginous species like rapeseed, seed oil and protein are the qualitative determinants that conferred economic value to the harvested seed. To date, although the biosynthesis pathways of oil and storage protein are rather well-known, the factors that determine how these types of reserves are partitioned in seeds have to be identified. With the aim of implementing a quantitative genetics approach, requiring phenotyping of 100s of plants, our first objective was to establish near-infrared reflectance spectroscopic (NIRS) predictive equations in order to estimate oil, protein, carbon, and nitrogen content in Arabidopsis seed with high-throughput level. Our results demonstrated that NIRS is a powerful non-destructive, high-throughput method to assess the content of these four major components studied in Arabidopsis seed. With this tool in hand, we analyzed Arabidopsis natural variation for these four components and illustrated that they all displayed a wide range of variation. Finally, NIRS was used in order to map QTL for these four traits using seeds from the Arabidopsis thaliana Ct-1 × Col-0 recombinant inbred line population. Some QTL co-localized with QTL previously identified, but others mapped to chromosomal regions never identified so far for such traits. This paper illustrates the usefulness of NIRS predictive equations to perform accurate high-throughput phenotyping of Arabidopsis seed content, opening new perspectives in gene identification following QTL mapping and genome wide association studies. PMID:27891138

  10. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types.

    PubMed

    Li, Qiyuan; Stram, Alexander; Chen, Constance; Kar, Siddhartha; Gayther, Simon; Pharoah, Paul; Haiman, Christopher; Stranger, Barbara; Kraft, Peter; Freedman, Matthew L

    2014-10-01

    The majority of trait-associated loci discovered through genome-wide association studies are located outside of known protein coding regions. Consequently, it is difficult to ascertain the mechanism underlying these variants and to pinpoint the causal alleles. Expression quantitative trait loci (eQTLs) provide an organizing principle to address both of these issues. eQTLs are genetic loci that correlate with RNA transcript levels. Large-scale data sets such as the Cancer Genome Atlas (TCGA) provide an ideal opportunity to systematically evaluate eQTLs as they have generated multiple data types on hundreds of samples. We evaluated the determinants of gene expression (germline variants and somatic copy number and methylation) and performed cis-eQTL analyses for mRNA expression and miRNA expression in five tumor types (breast, colon, kidney, lung and prostate). We next tested 149 known cancer risk loci for eQTL effects, and observed that 42 (28.2%) were significantly associated with at least one transcript. Lastly, we described a fine-mapping strategy for these 42 eQTL target-gene associations based on an integrated strategy that combines the eQTL level of significance and the regulatory potential as measured by DNaseI hypersensitivity. For each of the risk loci, our analyses suggested 1 to 81 candidate causal variants that may be prioritized for downstream functional analysis. In summary, our study provided a comprehensive landscape of the genetic determinants of gene expression in different tumor types and ranked the genes and loci for further functional assessment of known cancer risk loci. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types

    PubMed Central

    Li, Qiyuan; Stram, Alexander; Chen, Constance; Kar, Siddhartha; Gayther, Simon; Pharoah, Paul; Haiman, Christopher; Stranger, Barbara; Kraft, Peter; Freedman, Matthew L.

    2014-01-01

    The majority of trait-associated loci discovered through genome-wide association studies are located outside of known protein coding regions. Consequently, it is difficult to ascertain the mechanism underlying these variants and to pinpoint the causal alleles. Expression quantitative trait loci (eQTLs) provide an organizing principle to address both of these issues. eQTLs are genetic loci that correlate with RNA transcript levels. Large-scale data sets such as the Cancer Genome Atlas (TCGA) provide an ideal opportunity to systematically evaluate eQTLs as they have generated multiple data types on hundreds of samples. We evaluated the determinants of gene expression (germline variants and somatic copy number and methylation) and performed cis-eQTL analyses for mRNA expression and miRNA expression in five tumor types (breast, colon, kidney, lung and prostate). We next tested 149 known cancer risk loci for eQTL effects, and observed that 42 (28.2%) were significantly associated with at least one transcript. Lastly, we described a fine-mapping strategy for these 42 eQTL target–gene associations based on an integrated strategy that combines the eQTL level of significance and the regulatory potential as measured by DNaseI hypersensitivity. For each of the risk loci, our analyses suggested 1 to 81 candidate causal variants that may be prioritized for downstream functional analysis. In summary, our study provided a comprehensive landscape of the genetic determinants of gene expression in different tumor types and ranked the genes and loci for further functional assessment of known cancer risk loci. PMID:24907074

  12. Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross.

    PubMed

    Xu, K; Riaz, S; Roncoroni, N C; Jin, Y; Hu, R; Zhou, R; Walker, M A

    2008-01-01

    Resistance to the dagger nematode Xiphinema index has been an important objective in grape rootstock breeding programs. This nematode not only causes severe feeding damage to the root system, but it also vectors grapevine fanleaf virus (GFLV), the causal agent of fanleaf degeneration and one of the most severe viral diseases of grape. The established screening procedures for dagger nematode resistance are time consuming and can produce inconsistent results. A fast and reliable greenhouse-based system for screening resistance to X. index that is suitable for genetic studies and capable of evaluating breeding populations is needed. In this report, the dynamics of nematode numbers, gall formation, and root weight loss were investigated using a variety of soil mixes and pot sizes over a 52-week period. Results indicated that the number of galls formed was correlated with the size of the nematode population and with the degree of root weight loss. After inoculation with 100 nematodes, gall formation could be reliably evaluated in 4-8 weeks in most plant growth conditions and results were obtained 6 months more rapidly than past evaluation methods. This modified X. index resistance screening method was successfully applied to 185 of the 188 F(1) progeny from a cross of D8909-15 x F8909-17 (the 9621 population), which segregates for a form of X. index resistance originally derived from Vitis arizonica. Quantitative trait loci (QTL) analysis was carried out on both parental genetic maps of 255 markers using MapQTL 4.0. Results revealed that X. index resistance is controlled by a major QTL, designated Xiphinema index Resistance 1 (XiR1), near marker VMC5a10 on chromosome 19. The XiR1 QTL was supported by a LOD score of 36.9 and explained 59.9% of the resistance variance in the mapping population.

  13. Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions.

    PubMed

    Dumont, Estelle; Fontaine, Véronique; Vuylsteker, Christophe; Sellier, Hélène; Bodèle, Sylvie; Voedts, Najia; Devaux, Rosemonde; Frise, Marlène; Avia, Komlan; Hilbert, Jean-Louis; Bahrman, Nasser; Hanocq, Eric; Lejeune-Hénaut, Isabelle; Delbreil, Bruno

    2009-05-01

    To increase yield in pea (Pisum sativum L.), autumn sowing would be preferable. Hence, frost tolerance of pea became a major trait of interest for breeders. In order to better understand the cold acclimation in pea, Champagne a frost tolerant line and Terese, a frost sensitive line, and their recombinant inbred lines (RIL) were studied. RIL frost tolerance was evaluated by a frost damage scale under field as well as controlled conditions. A quantitative trait loci (QTL) approach was used to identify chromosomal regions linked to frost tolerance. The detected QTL explained from 6.5 to 46.5% of the phenotypic variance. Amongst them, those located on linkage groups 5 and 6 were consistent with over all experiments, in field as well as in controlled environments. In order to improve the understanding of the frost tolerance mechanisms, several cold acclimation key characters such as concentration of sugars, electrolyte leakage, osmotic pressure, and activity of RuBisCO were assessed. Some of these physiological QTL colocalised with QTL for frost damage, in particular two raffinose QTL on LG5 and LG6 and one RuBisCO activity QTL on LG6, explaining 8.8 to 27.0% of the phenotypic variance. In addition, protein quantitative loci were mapped; some of them colocalised with frost damage and physiological QTL on LG5 and LG6, explaining 16.0-43.6% of the phenotypic variance. Raffinose metabolism and RuBisCO activity and its effect on photosynthesis might play a major role in cold acclimation of pea.

  14. Bilateral Nephrectomy for Autosomal Dominant Polycystic Kidney Disease and Timing of Kidney Transplant: A Review of the Technical Advances in Surgical Management of Autosomal Dominant Polycystic Disease.

    PubMed

    Dengu, Fungai; Azhar, Bilal; Patel, Shaneel; Hakim, Nadey

    2015-06-01

    Autosomal dominant polycystic disease is a multisystem inherited condition affecting the kidneys and is an important cause of end-stage renal disease. Patients with autosomal dominant polycystic disease experience symptoms related to size and cystic nature of their kidneys, which can be difficult to manage. Traditionally, the only surgical option for management was open bilateral/unilateral native nephrectomy, which carried with it significant morbidity and mortality. Therefore, it was deemed unsafe and rarely performed. However, surgery for autosomal dominant polycystic disease has evolved rapidly with the advent of minimally invasive surgery and improved medical management of end-stage renal failure patients. Laparoscopic and hand-assisted laparoscopic techniques have been adopted and have demonstrated reduced morbidity. The timing of this intervention in relation to transplant is controversial and presents a major challenge in managing this patient population.

  15. A new form of autosomal dominant arthrogryposis.

    PubMed Central

    Lai, M M; Tettenborn, M A; Hall, J G; Smith, L J; Berry, A C

    1991-01-01

    We report a man and his son with congenital limb contractures, limitation of ocular movements, and an electroretinal abnormality. They appear to have an autosomal dominant form of arthrogryposis, distinguishable from other previously classified forms of this disorder. Images PMID:1941966

  16. Autosomal Dominant Transmission of Accessory Navicular

    PubMed Central

    Dobbs, Matthew B; Walton, Tim

    2004-01-01

    The accessory navicular bone is one of the most symptomatic bones of the foot. Although it has been reported to be present in various members of the same family, there is a lack of knowledge about its inheritance pattern. We report two large pedigrees in which accessory navicular is inherited in an autosomal dominant fashion with incomplete penetrance. PMID:15296212

  17. Autosomal dominant transmission of accessory navicular.

    PubMed

    Dobbs, Matthew B; Walton, Tim

    2004-01-01

    The accessory navicular bone is one of the most symptomatic bones of the foot. Although it has been reported to be present in various members of the same family, there is a lack of knowledge about its inheritance pattern. We report two large pedigrees in which accessory navicular is inherited in an autosomal dominant fashion with incomplete penetrance.

  18. A new autosomal dominant craniofacial deafness syndrome.

    PubMed

    Kassutto, S; Kassutto, Z; Ben-Ami, T; Goodman, R M

    1987-11-01

    A Jewish family is reported in which the proband and her father had congenital hearing loss and unusual facies consisting of facial asymmetry, temporal alopecia with frontal bossing, a broad nasal root and small nasal alae. In addition, both were born with a short frenulum of the tongue. We believe these findings represent a new autosomal dominant deafness syndrome with distinct craniofacial features.

  19. A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6 and SU91 with bacterial strains

    USDA-ARS?s Scientific Manuscript database

    Common bacterial blight (CBB) is a severe disease in common bean. New resistance QTL should facilitate development of cultivars with high levels of resistance. Our objectives were to (i) identify new resistance QTL in VAX 1 and verify presence in VAX 3, (ii) determine interaction of new QTL with exi...

  20. Qtl Analysis of Transgressive Segregation in an Interspecific Tomato Cross

    PubMed Central

    deVicente, M. C.; Tanksley, S. D.

    1993-01-01

    Two accessions, representing the species Lycopersicon esculentum (cultivated tomato) and Lycopersicon pennellii (a wild relative), were evaluated for 11 quantitative traits and found to be significantly different for 10 of the traits. Transgressive segregation was observed for eight of the traits in a large interspecific F(2) population. When restriction fragment length polymorphism markers were used as probes for the quantitative trait loci (QTL) underlying the traits, 74 significant QTL (LOD > 2) were detected. Thirty-six percent of those QTL had alleles with effects opposite to those predicted by the parental phenotypes. These QTL were directly related to the appearance of transgressive individuals in the F(2) for those traits which showed transgressive segregration. However, the same types of QTL (with allelic effects opposite to those predicted by the parents) were also observed for traits that did not display transgressive segregation in the F(2). One such trait was dry weight accumulation. When two overdominant QTL (detected in the F(2)) for this trait were backcrossed into the L. esculentum genetic background, transgressive individuals were recovered and their occurrence was associated with the two QTL demonstrating the potential for transgressive segregation for all characters and implicating overdominance as a second cause of transgressive segregation. Epistasis was not implicated in transgressive segregation in either the F(2) or backcross generations. Results from this research not only reveal the basis of wide-cross transgressive segregation, but demonstrate that molecular markers can be used to identify QTL (from wild species) responsible for transgressive phenotypes and to selectively transfer them into crop species. This strategy might be used to improve many traits of economic importance including those for which wild species appear phenotypically inferior to their cultivated counterparts. PMID:8100788

  1. Aging Uncouples Heritability and Expression-QTL in Caenorhabditis elegans

    PubMed Central

    Viñuela, Ana; Snoek, L. Basten; Riksen, Joost A. G.; Kammenga, Jan E.

    2012-01-01

    The number and distribution of gene expression QTL (eQTL) represent the genetic architecture of many complex traits, including common human diseases. We previously reported that the heritable eQTL patterns are highly dynamic with age in an N2 × CB4856 recombinant inbred population of the nematode Caenorhabditis elegans. In particular, we showed that the number of eQTL decreased with age. Here, we investigated the reason for this decrease by combining gene expression profiles at three ages in the wild types N2 and CB4856 with the reported expression profiles of the RIL population. We determined heritability and transgression (when gene expression levels in the RILs are more extreme than the parents) and investigated their relation with eQTL changes with age. Transgressive segregation was widespread but depended on physiological age. The percentage of genes with an eQTL increased with a higher heritability in young worms. However, for old worms this percentage hardly increased. Using a single marker approach, we found that almost 20% of genes with heritability >0.9 had an eQTL in developing worms. Surprisingly, only 10% was found in old worms. Using a multimarker approach, this percentage increased to almost 30% for both age groups. Comparison of the single marker to a multiple marker eQTL mapping indicated that heritable regulation of gene expression becomes more polygenic in aging worms due to multiple loci and possible epistatic interactions. We conclude that linkage studies should account for the relation between increased polygenic regulation and diminished effects at older ages. PMID:22670229

  2. QTL analysis of transgressive segregation in an interspecific tomato cross.

    PubMed

    deVicente, M C; Tanksley, S D

    1993-06-01

    Two accessions, representing the species Lycopersicon esculentum (cultivated tomato) and Lycopersicon pennellii (a wild relative), were evaluated for 11 quantitative traits and found to be significantly different for 10 of the traits. Transgressive segregation was observed for eight of the traits in a large interspecific F2 population. When restriction fragment length polymorphism markers were used as probes for the quantitative trait loci (QTL) underlying the traits, 74 significant QTL (LOD > 2) were detected. Thirty-six percent of those QTL had alleles with effects opposite to those predicted by the parental phenotypes. These QTL were directly related to the appearance of transgressive individuals in the F2 for those traits which showed transgressive segregation. However, the same types of QTL (with allelic effects opposite to those predicted by the parents) were also observed for traits that did not display transgressive segregation in the F2. One such trait was dry weight accumulation. When two overdominant QTL (detected in the F2) for this trait were backcrossed into the L. esculentum genetic background, transgressive individuals were recovered and their occurrence was associated with the two QTL demonstrating the potential for transgressive segregation for all characters and implicating overdominance as a second cause of transgressive segregation. Epistasis was not implicated in transgressive segregation in either the F2 or backcross generations. Results from this research not only reveal the basis of wide-cross transgressive segregation, but demonstrate that molecular markers can be used to identify QTL (from wild species) responsible for transgressive phenotypes and to selectively transfer them into crop species. This strategy might be used to improve many traits of economic importance including those for which wild species appear phenotypically inferior to their cultivated counterparts.

  3. Transcriptomics of salinity tolerance capacity in Arctic charr (Salvelinus alpinus): a comparison of gene expression profiles between divergent QTL genotypes

    PubMed Central

    Ferguson, Moira M.; Danzmann, Roy G.

    2013-01-01

    Osmoregulatory capabilities have played an important role in the evolution, dispersal, and diversification of vertebrates. To better understand the genetic architecture of hypo-osmoregulation in fishes and to determine which genes and biological processes affect intraspecific variation in salinity tolerance, we used mRNA sequence libraries from Arctic charr gill tissue to compare gene expression profiles in fish exhibiting divergent salinity tolerance quantitative trait locus (QTL) genotypes. We compared differentially expressed genes with QTL positions to gain insight about the nature of the underlying polymorphisms and examined gene expression within the context of genome organization to gain insight about the evolution of hypo-osmoregulation in fishes. mRNA sequencing of 18 gill tissue libraries produced 417 million reads, and the final reduced de novo transcriptome assembly consisted of 92,543 contigs. Families contained a similar number of differentially expressed contigs between high and low salinity tolerance capacity groups, and log2 expression ratios ranged from 10.4 to −8.6. We found that intraspecific variation in salinity tolerance capacity correlated with differential expression of immune response genes. Some differentially expressed genes formed clusters along linkage groups. Most clusters comprised gene pairs, though clusters of three, four, and eight genes were also observed. We postulated that conserved synteny of gene clusters on multiple ancestral and teleost chromosomes may have been preserved via purifying selection. Colocalization of QTL with differentially expressed genes suggests that polymorphisms in cis-regulatory elements are part of a majority of QTL. PMID:24368751

  4. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model.

    PubMed

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C; Le Gouis, Jacques; Allard, Vincent

    2014-11-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.

  5. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model

    PubMed Central

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C.; Le Gouis, Jacques; Allard, Vincent

    2014-01-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base, representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology. PMID:25148833

  6. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice.

    PubMed

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K; Agarwal, Pinky; Parida, Swarup K; Tyagi, Akhilesh K

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16-74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7-8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse cultivar

  7. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice

    PubMed Central

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16–74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7–8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse

  8. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice.

    PubMed

    Ding, Xipeng; Li, Xiaokai; Xiong, Lizhong

    2011-09-01

    Drought stress is a major limiting factor for crop production and breeding for drought resistance is very challenging due to the complex nature of this trait. Previous studies in rice suggest that the upland japonica variety IRAT109 shows better drought resistance than the lowland indica variety Zhenshan 97. Numerous quantitative trait loci (QTL) have been previously mapped using a recombinant inbred line population derived from these two genotypes. In this study, near-isogenic lines (NILs) for 17 drought resistance-related QTL were constructed and phenotypic variations of these NILs were investigated under drought and normal conditions. Fourteen of these NILs showed significant phenotypic differences relative to the recurrent parent under at least one of the conditions and nine NILs showed significant differences under both conditions. After eliminating the effect of heading date on drought resistance, only four NILs carrying seven QTL (four for the same grain yield-related traits and three for the same or similar root traits QTL) showed differences consistent with the original QTL mapping results. One of these lines (N19) contains qFSR4, a QTL on chromosome 4 controlling root volume per tiller and co-segregating with flag leaf width and spikelet number per panicle. Using a population derived from N19, qFSR4 was mapped to a 38-kb region containing three open reading frames including the previously characterized NARROW LEAF 1 (NAL1) gene. NAL1, which controls leaf width and also affects vein patterning and polar auxin transport, is the most promising candidate genes for qFSR4. Our results underscore the importance of the development of NILs to confirm the identification of QTL affecting complex traits such as drought resistance.

  9. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  10. Quantitative Trait Loci (QTL) Study Identifies Novel Genomic Regions Associated to Chiari-Like Malformation in Griffon Bruxellois Dogs

    PubMed Central

    Lemay, Philippe; Knowler, Susan P.; Bouasker, Samir; Nédélec, Yohann; Platt, Simon; Freeman, Courtenay; Child, Georgina; Barreiro, Luis B.; Rouleau, Guy A.; Rusbridge, Clare; Kibar, Zoha

    2014-01-01

    Chiari-like malformation (CM) is a developmental abnormality of the craniocervical junction that is common in the Griffon Bruxellois (GB) breed with an estimated prevalence of 65%. This disease is characterized by overcrowding of the neural parenchyma at the craniocervical junction and disturbance of cerebrospinal fluid (CSF) flow. The most common clinical sign is pain either as a direct consequence of CM or neuropathic pain as a consequence of secondary syringomyelia. The etiology of CM remains unknown but genetic factors play an important role. To investigate the genetic complexity of the disease, a quantitative trait locus (QTL) approach was adopted. A total of 14 quantitative skull and atlas measurements were taken and were tested for association to CM. Six traits were found to be associated to CM and were subjected to a whole-genome association study using the Illumina canine high density bead chip in 74 GB dogs (50 affected and 24 controls). Linear and mixed regression analyses identified associated single nucleotide polymorphisms (SNPs) on 5 Canis Familiaris Autosomes (CFAs): CFA2, CFA9, CFA12, CFA14 and CFA24. A reconstructed haplotype of 0.53 Mb on CFA2 strongly associated to the height of the cranial fossa (diameter F) and an haplotype of 2.5 Mb on CFA14 associated to both the height of the rostral part of the caudal cranial fossa (AE) and the height of the brain (FG) were significantly associated to CM after 10 000 permutations strengthening their candidacy for this disease (P = 0.0421, P = 0.0094 respectively). The CFA2 QTL harbours the Sall-1 gene which is an excellent candidate since its orthologue in humans is mutated in Townes-Brocks syndrome which has previously been associated to Chiari malformation I. Our study demonstrates the implication of multiple traits in the etiology of CM and has successfully identified two new QTL associated to CM and a potential candidate gene. PMID:24740420

  11. Genetics Home Reference: autosomal dominant congenital stationary night blindness

    MedlinePlus

    ... stationary night blindness autosomal dominant congenital stationary night blindness Printable PDF Open All Close All Enable Javascript ... collapse boxes. Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is ...

  12. Genetics Home Reference: autosomal recessive congenital stationary night blindness

    MedlinePlus

    ... stationary night blindness autosomal recessive congenital stationary night blindness Printable PDF Open All Close All Enable Javascript ... collapse boxes. Description Autosomal recessive congenital stationary night blindness is a disorder of the retina , which is ...

  13. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    MedlinePlus

    ... recessive axonal neuropathy with neuromyotonia autosomal recessive axonal neuropathy with neuromyotonia Enable Javascript to view the expand/ ... Open All Close All Description Autosomal recessive axonal neuropathy with neuromyotonia is a disorder that affects the ...

  14. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    MedlinePlus

    ... Genetics Home Health Conditions ADPEAF autosomal dominant partial epilepsy with auditory features Enable Javascript to view the ... Open All Close All Description Autosomal dominant partial epilepsy with auditory features ( ADPEAF ) is an uncommon form ...

  15. Genetic Analysis of Grain Filling Rate Using Conditional QTL Mapping in Maize

    PubMed Central

    Cui, Zitian; Hu, Yanmin; Wang, Bin; Tang, Jihua

    2013-01-01

    The grain filling rate (GFR) is an important dynamic trait that determines the final grain yield and is controlled by a network of genes and environment factors. To determine the genetic basis of the GFR, a conditional quantitative trait locus (QTL) analysis method was conducted using time-related phenotypic values of the GFR collected from a set of 243 immortalized F2 (IF2) population, which were evaluated at two locations over 2 years. The GFR gradually rose in the 0–15 days after pollination (DAP) and 16–22 DAP, reaching a maximum at 23–29 DAP, and then gradually decreasing. The variation of kernel weight (KW) was mainly decided by the GFR, and not by the grain filling duration (GFD). Thirty-three different unconditional QTLs were identified for the GFR at the six sampling stages over 2 years. Among them, QTLs qGFR7b, qGFR9 and qGFR6d were identified at the same stages at two locations over 2 years. In addition, 14 conditional QTLs for GFR were detected at five stages. The conditional QTL qGFR7c was identified at stage V|IV (37–43 DAP) at two locations over 2 years, and qGFR7b was detected at the sixth stage (44–50 DAP) in all four environments, except at Anyang location in 2009. QTLs qQTL7b and qQTL6f were identified by unconditional and conditional QTL mapping at the same stages, and might represent major QTLs for regulating the GFR in maize in the IF2 population. Moreover, most of the QTLs identified were co-located with QTLs from previous studies that were associated with GFR, enzyme activities of starch synthesis, soluble carbohydrates, and grain filling related genes. These results indicated that the GFR is regulated by many genes, which are specifically expressed at different grain filling stages, and the specific expression of the genes between 16–35 DAP might be very important for deciding the final kernel weight. PMID:23441180

  16. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake

    PubMed Central

    Sharma, Parbodh C.; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C.T.; Yadav, Rattan S.

    2014-01-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na+ was recorded in roots. Further, the Na+ concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m−1 within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na+ ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na+ concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage affected the

  17. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake.

    PubMed

    Sharma, Parbodh C; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C T; Yadav, Rattan S

    2014-06-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na(+) was recorded in roots. Further, the Na(+) concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m(-1) within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na(+) ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na(+) concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage

  18. Genetic analysis of QTL for eye cross and eye diameter in common carp (Cyprinus carpio L.) using microsatellites and SNPs.

    PubMed

    Jin, S B; Zhang, X F; Lu, J G; Fu, H T; Jia, Z Y; Sun, X W

    2015-04-17

    A group of 107 F1 hybrid common carp was used to construct a linkage map using JoinMap 4.0. A total of 4877 microsatellite and single nucleotide polymorphism (SNP) markers isolated from a genomic library (978 microsatellite and 3899 SNP markers) were assigned to construct the genetic map, which comprised 50 linkage groups. The total length of the linkage map for the common carp was 4775.90 cM with an average distance between markers of 0.98 cM. Ten quantitative trait loci (QTL) were associated with eye diameter, corresponding to 10.5-57.2% of the total phenotypic variation. Twenty QTL were related to eye cross, contributing to 10.8-36.9% of the total phenotypic variation. Two QTL for eye diameter and four QTL for eye cross each accounted for more than 20% of the total phenotypic variation and were considered to be major QTL. One growth factor related to eye diameter was observed on LG10 of the common carp genome, and three growth factors related to eye cross were observed on LG10, LG35, and LG44 of the common carp genome. The significant positive relationship of eye cross and eye diameter with other commercial traits suggests that eye diameter and eye cross can be used to assist in indirect selection for many commercial traits, particularly body weight. Thus, the growth factor for eye cross may also contribute to the growth of body weight, implying that aggregate breeding could have multiple effects. These findings provide information for future genetic studies and breeding of common carp.

  19. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus.

    PubMed

    Smooker, A M; Wells, R; Morgan, C; Beaudoin, F; Cho, K; Fraser, F; Bancroft, I

    2011-04-01

    We constructed a linkage map for the population QDH, which was derived from a cross between an oilseed rape cultivar and a resynthesised Brassica napus. The linkage map included ten markers linked to loci orthologous to those encoding fatty acid biosynthesis genes in Arabidopsis thaliana. The QDH population contains a high level of allelic variation, particularly in the C genome. We conducted quantitative trait locus (QTL) analyses, using field data obtained over 3 years, for the fatty acid composition of seed oil. The population segregates for the two major loci controlling erucic acid content, on linkage groups A8 and C3, which quantitatively affect the content of other fatty acids and is a problem generally encountered when crossing "wild" germplasm with cultivated "double low" oilseed rape cultivars. We assessed three methods for QTL analysis, interval mapping, multiple QTL mapping and single marker regression analysis of the subset of lines with low erucic acid. We found the third of these methods to be most appropriate for our main purpose, which was the study of the genetic control of the desaturation of 18-carbon fatty acids. This method enabled us to decouple the effect of the segregation of the erucic acid-controlling loci and identify 34 QTL for fatty acid content of seed oil, 14 in the A genome and 20 in the C genome. The QTL indicate the presence of 13 loci with novel alleles inherited from the progenitors of the resynthesised B. napus that might be useful for modulating the content or extent of desaturation of polyunsaturated fatty acids, only one of which coincides with the anticipated position of a candidate gene, an orthologue of FAD2.

  20. Autosomal recessive nonsyndromic deafness genes: a review.

    PubMed

    Duman, Duygu; Tekin, Mustafa

    2012-06-01

    More than 50 Percent of prelingual hearing loss is genetic in origin, and of these up to 93 Percent are monogenic autosomal recessive traits. Some forms of genetic deafness can be recognized by their associated syndromic features, but in most cases, hearing loss is the only finding and is referred to as nonsyndromic deafness. To date, more than 700 different mutations have been identified in one of 42 genes in individuals with autosomal recessive nonsyndromic hearing loss (ARNSHL). Reported mutations in GJB2, encoding connexin 26, makes this gene the most common cause of hearing loss in many populations. Other relatively common deafness genes include SLC26A4, MYO15A, OTOF, TMC1, CDH23, and TMPRSS3. In this report we summarize genes and mutations reported in families with ARNSHL. Founder effects were demonstrated for some recurrent mutations but the most significant findings are the extreme locus and allelic heterogeneity and different spectrum of genes and mutations in each population.

  1. Clinical Impact of Proximal Autosomal Imbalances

    PubMed Central

    Hamid, AB; Weise, A; Voigt, M; Bucksch, M; Kosyakova, N; Liehr, T; Klein, E

    2012-01-01

    Centromere-near gain of copy number can be induced by intra- or inter-chromosomal rearrangements or by the presence of a small supernumerary marker chromosome (sSMC). Interestingly, partial trisomy to hexasomy of euchromatic material may be present in clinically healthy or affected individuals, depending on origin and size of chromosomal material involved. Here we report the known minimal sizes of all centromere-near, i.e., proximal auto-somal regions in humans, which are tolerated; over 100 Mb of coding DNA are comprised in these regions. Additionally, we have summarized the typical symptoms for nine proximal autosomal regions including genes obviously sensitive to copy numbers. Overall, studying the carriers of specific chromosomal imbalances using genomics-based medicine, combined with single cell analysis can provide the genotype-phenotype correlations and can also give hints where copy-number-sensitive genes are located in the human genome. PMID:24052727

  2. Novel Resampling Improves Statistical Power for Multiple-Trait QTL Mapping

    PubMed Central

    Cheng, Riyan; Doerge, R. W.; Borevitz, Justin

    2017-01-01

    Multiple-trait analysis typically employs models that associate a quantitative trait locus (QTL) with all of the traits. As a result, statistical power for QTL detection may not be optimal if the QTL contributes to the phenotypic variation in only a small proportion of the traits. Excluding QTL effects that contribute little to the test statistic can improve statistical power. In this article, we show that an optimal power can be achieved when the number of QTL effects is best estimated, and that a stringent criterion for QTL effect selection may improve power when the number of QTL effects is small but can reduce power otherwise. We investigate strategies for excluding trivial QTL effects, and propose a method that improves statistical power when the number of QTL effects is relatively small, and fairly maintains the power when the number of QTL effects is large. The proposed method first uses resampling techniques to determine the number of nontrivial QTL effects, and then selects QTL effects by the backward elimination procedure for significance test. We also propose a method for testing QTL-trait associations that are desired for biological interpretation in applications. We validate our methods using simulations and Arabidopsis thaliana transcript data. PMID:28064191

  3. Nineteen autosomal microsatellite data from Antioquia (Colombia).

    PubMed

    Gaviria, Aníbal; Ibarra, Adriana Alexandra; Jaramillo, Nicolás; Palacio, Oscar Dario; Acosta, María Amparo; Brion, María; Carracedo, Angel

    2004-06-30

    Allele frequencies for 19 autosomal STRs (F13A01, FESFPS, F13B, LPL, D5S818, D7S820, THO1, TPOX, VWA31, CSF1P0, D16S539, D13S317, D3S1358, D8S1179, FGA, PENTA D, PENTA E, D21S11, D18S51) were estimated from a sample between 364 and 400 unrelated individuals living in the northern department of Antioquia.

  4. Autosomal microsatellite data from Northwestern Colombia.

    PubMed

    Palacio, Oscar Darío; Triana, Omar; Gaviria, Aníbal; Ibarra, Adriana Alexandra; Ochoa, Luz Mariela; Posada, Yeny; Maya, María Clara; Lareu, María Victoria; Brión, María; Acosta, María Amparo; Carracedo, Angel

    2006-07-13

    Allele frequencies and some forensic parameters for 12 autosomal microsatellites (CSF1PO, TPOX, THO1, VWA, D16S539, D7S820, D13S317, D5S818, F13A1, FESFPS, F13B, LPL) were estimated from three departments from Northwestern Colombia. The total number of samples analysed was 1045 individuals. Comparative analysis among the three studied departments and with other published Colombian populations were also performed and discussed.

  5. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations.

    PubMed

    Said, Joseph I; Knapka, Joseph A; Song, Mingzhou; Zhang, Jinfa

    2015-08-01

    A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

  6. Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.)

    PubMed Central

    Zhou, Yong; Tao, Yajun; Tang, Dongnan; Wang, Jun; Zhong, Jun; Wang, Yi; Yuan, Qiumei; Yu, Xiaofeng; Zhang, Yan; Wang, Yulong; Liang, Guohua; Dong, Guichun

    2017-01-01

    Nitrogen (N) availability is a major factor limiting crop growth and development. Identification of quantitative trait loci (QTL) for N uptake (NUP) and N use efficiency (NUE) can provide useful information regarding the genetic basis of these traits and their associated effects on yield production. In this study, a set of high throughput genotyped chromosome segment substitution lines (CSSLs) derived from a cross between recipient 9311 and donor Nipponbare were used to identify QTL for rice NUP and NUE. Using high throughput sequencing, each CSSL were genotyped and an ultra-high-quality physical map was constructed. A total of 13 QTL, seven for NUP and six for NUE, were identified in plants under hydroponic culture with all nutrients supplied in sufficient quantities. The proportion of phenotypic variation explained by these QTL for NUP and NUE ranged from 3.16–13.99% and 3.76–12.34%, respectively. We also identified several QTL for biomass yield (BY) and grain yield (GY), which were responsible for 3.21–45.54% and 6.28–7.31%, respectively, of observed phenotypic variation. GY were significantly positively correlated with NUP and NUE, with NUP more closely correlated than NUE. Our results contribute information to NUP and NUE improvement in rice. PMID:28744289

  7. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions.

    PubMed

    Lopes, Marta S; Reynolds, Matthew P; McIntyre, C Lynne; Mathews, Ky L; Jalal Kamali, M R; Mossad, Moussa; Feltaous, Yousef; Tahir, Izzat S A; Chatrath, Ravish; Ogbonnaya, Francis; Baum, Michael

    2013-04-01

    Heat and drought adaptive quantitative trait loci (QTL) in a spring bread wheat population resulting from the Seri/Babax cross designed to minimize confounding agronomic traits have been identified previously in trials conducted in Mexico. The same population was grown across a wide range of environments where heat and drought stress are naturally experienced including environments in Mexico, West Asia, North Africa (WANA), and South Asia regions. A molecular genetic linkage map including 475 marker loci associated to 29 linkage groups was used for QTL analysis of yield, days to heading (DH) and to maturity (DM), grain number (GM2), thousand kernel weight (TKW), plant height (PH), canopy temperature at the vegetative and grain filling stages (CTvg and CTgf), and early ground cover. A QTL for yield on chromosome 4A was confirmed across several environments, in subsets of lines with uniform allelic expression of a major phenology QTL, but not independently from PH. With terminal stress, TKW QTL was linked or pleiotropic to DH and DM. The link between phenology and TKW suggested that early maturity would favor the post-anthesis grain growth periods resulting in increased grain size and yields under terminal stress. GM2 and TKW were partially associated with markers at different positions suggesting different genetic regulation and room for improvement of both traits. Prediction accuracy of yield was improved by 5 % when using marker scores of component traits (GM2 and DH) together with yield in multiple regression. This procedure may provide accumulation of more favorable alleles during selection.

  8. Associations between STR autosomal markers and longevity.

    PubMed

    Bediaga, N G; Aznar, J M; Elcoroaristizabal, X; Albóniga, O; Gómez-Busto, F; Artaza Artabe, I; Rocandio, Ana; de Pancorbo, M M

    2015-10-01

    Life span is a complex and multifactorial trait, which is shaped by genetic, epigenetic, environmental, and stochastic factors. The possibility that highly hypervariable short tandem repeats (STRs) associated with longevity has been largely explored by comparing the genotypic pools of long lived and younger individuals, but results so far have been contradictory. In view of these contradictory findings, the present study aims to investigate whether HUMTHO1 and HUMCSF1PO STRs, previously associated with longevity, exert a role as a modulator of life expectancy, as well as to assess the extent to which other autosomal STR markers are associated with human longevity in population from northern Spain. To that end, 21 autosomal microsatellite markers have been studied in 304 nonagenarian individuals (more than 90 years old) and 516 younger controls of European descent. Our results do not confirm the association found in previous studies between longevity and THO1 and CSF1PO loci. However, significant association between longevity and autosomal STR markers D12S391, D22S1045, and DS441 was observed. Even more, when we compared allelic frequency distribution of the 21 STR markers between cases and controls, we found that 6 out of the 21 STRs studied showed different allelic frequencies, thus suggesting that the genomic portrait of the human longevity is far complex and probably shaped by a high number of genomic loci.

  9. An autosomal dwarfism in the domestic fowl.

    PubMed

    Cole, R K

    2000-11-01

    A mutation in the Cornell K-strain of White Leghorns, first recognized when two adult males in a pedigreed family were definitely smaller than their two other brothers, proved to be an autosomal recessive mutation and gave rise to the autosomal dwarf stock. The effect of this gene (adw) can be recognized during embryonic development and leads to a normal adult, except for a 30% reduction in body weight. Selection for small size, egg production, and egg weight over a period of 15 yr yielded an efficient layer. Production for 11 mo from first egg was at a rate of 70%, with egg weight at 56 g and body weight at 1,160 g at 10 to 11 mo of age, based on data for the last four generations. Viability of the caged hens averaged over 95% for the 13 generations involved. Sexual maturity was delayed by about 2 wk, and good incubation (85+%) required 18+/- more hours than normal. When an autosomal dwarf male is used as a sire and mated to sex-linked dwarf (dw) females, all progeny are of normal size. Compared with problems of mating normal size males with dwarf females, the use of the two types of dwarfism can yield good fertility.

  10. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    SciTech Connect

    King, R.A.; Summers, C.G.; Oetting, W.S.

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  11. Novel large deletion in the ACTA1 gene in a child with autosomal recessive nemaline myopathy.

    PubMed

    Friedman, Bethany; Simpson, Kara; Tesi-Rocha, Carolina; Zhou, Delu; Palmer, Cheryl A; Suchy, Sharon F

    2014-04-01

    Nemaline myopathy (NM) is a genetically and clinically heterogeneous disorder resulting from a disruption of the thin filament proteins of the striated muscle sarcomere. The disorder is typically characterized by muscle weakness including the face, neck, respiratory, and limb muscles and is clinically classified based on the age of onset and severity. Mutations in the ACTA1 gene contribute to a significant proportion of NM cases. The majority of ACTA1 gene mutations are missense mutations causing autosomal dominant NM by producing an abnormal protein. However, approximately 10% of ACTA1 gene mutations are associated with autosomal recessive NM; these mutations are associated with loss of protein function. We report the first case of a large deletion in the ACTA1 gene contributing to autosomal recessive NM. This case illustrates the importance of understanding disease mechanisms at the molecular level to accurately infer the inheritance pattern and potentially aid with clinical management. Copyright © 2014. Published by Elsevier B.V.

  12. Genetic analysis of the Trichuris muris-induced model of colitis reveals QTL overlap and a novel gene cluster for establishing colonic inflammation

    PubMed Central

    2013-01-01

    Background Genetic susceptibility to colonic inflammation is poorly defined at the gene level. Although Genome Wide Association studies (GWAS) have identified loci in the human genome which confer susceptibility to Inflammatory Bowel Disease (Crohn’s and Ulcerative Colitis), it is not clear if precise loci exist which confer susceptibility to inflammation at specific locations within the gut e.g. small versus large intestine. Susceptibility loci for colitis in particular have been defined in the mouse, although specific candidate genes have not been identified to date. We have previously shown that infection with Trichuris muris (T. muris) induces chronic colitis in susceptible mouse strains with clinical, histological, and immunological homology to human colonic Crohn’s disease. We performed an integrative analysis of colitis susceptibility, using an F2 inter-cross of resistant (BALB/c) and susceptible (AKR) mice following T. muris infection. Quantitative Trait Loci (QTL), polymorphic and expression data were analysed alongside in silico workflow analyses to discover novel candidate genes central to the development and biology of chronic colitis. Results 7 autosomal QTL regions were associated with the establishment of chronic colitis following infection. 144 QTL genes had parental strain SNPs and significant gene expression changes in chronic colitis (expression fold-change ≥ +/-1.4). The T. muris QTL on chromosome 3 (Tm3) mapped to published QTL in 3 unrelated experimental models of colitis and contained 33 significantly transcribed polymorphic genes. Phenotypic pathway analysis, text mining and time-course qPCR replication highlighted several potential cis-QTL candidate genes in colitis susceptibility, including FcgR1, Ptpn22, RORc, and Vav3. Conclusion Genetic susceptibility to induced colonic mucosal inflammation in the mouse is conserved at Tm3 and overlays Cdcs1.1. Genes central to the maintenance of intestinal homeostasis reside within this locus

  13. Mapping of QTL associated with seed amino acids content in MD96-5722 by "Spencer" RIL population of soybean using SNP markers

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds are major sources of essential amino acids, protein, and fatty acids. Limited information is available on the genetic analysis of amino acid composition in soybean. Therefore, the objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlli...

  14. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L.

    PubMed

    Capel, Carmen; Fernández del Carmen, Asunción; Alba, Juan Manuel; Lima-Silva, Viviana; Hernández-Gras, Francesc; Salinas, María; Boronat, Albert; Angosto, Trinidad; Botella, Miguel A; Fernández-Muñoz, Rafael; Granell, Antonio; Capel, Juan; Lozano, Rafael

    2015-10-01

    QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.

  15. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq).

    PubMed

    Pyne, Robert; Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37-55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21-28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5-16% and 4-18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome.

  16. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq)

    PubMed Central

    Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37–55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21–28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5–16% and 4–18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome. PMID:28922359

  17. Bayesian mixture structural equation modelling in multiple-trait QTL mapping

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait loci (QTL) mapping often results in data on a number of traits that have well established causal relationships. Many multi-trait QTL mapping methods that account for the correlation among multiple traits have been developed to improve the statistical power and the precision of QTL...

  18. R/qtlDesign: inbred line cross experimental design

    PubMed Central

    Sen, Śaunak; Satagopan, Jaya M.; Broman, Karl W.; Churchill, Gary A.

    2008-01-01

    An investigator planning a QTL (quantitative trait locus) experiment has to choose which strains to cross, the type of cross, genotyping strategies, and the number of progeny to raise and phenotype. To help make such choices, we have developed an interactive program for power and sample size calculations for QTL experiments, R/qtlDesign. Our software includes support for selective genotyping strategies, variable marker spacing, and tools to optimize information content subject to cost constraints for backcross, intercross, and recombinant inbred lines from two parental strains. We review the impact of experimental design choices on the variance attributable to a segregating locus, the residual error variance, and the effective sample size. We give examples of software usage in real-life settings. The software is available at http://www.biostat.ucsf.edu/sen/software.html. PMID:17347894

  19. Autosomal recessive and dominant polycystic kidney diseases.

    PubMed

    Sessa, A; Righetti, M; Battini, G

    2004-12-01

    It is possible to identify renal cysts in several subjects by ultrasonography imaging techniques. Among the inherited polycystic kidney diseases we include autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic diseases such as von Hippel-Lindau disease, tuberous sclerosis complex (TSC1 and TSC2), and autosomal dominant polycystic kidney disease (ADPKD). ARPKD is a rare disease, related to PKHD1 gene, located on chromosome 6p21, that encodes a protein named polyductin/fibrocystin. Pathoanatomical features are bilateral kidney involvement with multiple microcysts, and invariably liver involvement with portal and interlobular fibrosis. A single genetic defect leads to different degrees of renal and hepatic involvement with very different phenotypes and different clinical outcome, in the same family too. ARPKD clinically may show 4 different forms: perinatal, neonatal, infantile, and juvenile. ADPKD is much more frequent (1: 400-1000 live births), and can arise from mutations in 2 different genes, named PKD1 located on chromosome 16p13.3, and PKD2 located on chromosome 4q21-23. The proteins encoded by the PKD1 and PKD2 genes are named polycystins which play crucial roles in several biologic processes. To explain the focal lesions that affected different organs and tissues the "double hit" theory has been proposed (germinal mutation plus somatic mutation on PKD1 or PKD2). Recently, biologic evidence documented the crucial role of the renal primary cilia on the formation of polycystins to induce cystogenesis. ADPKD may be clinically characterized by abdominal pain, hypertension, episodes of gross hematuria, headache, renal stones, aortic and cerebral aneurysms, mitral valve prolapse, and polycystic liver disease. ADPKD is slowly progressive disease responsible for up 10% of end stage renal failure (ESRF) in every country of the world. Male sex, PKD1 gene, episodes of gross hematuria, and the precocity and severity of hypertension play an

  20. Transformation of QTL genotypic effects to allelic effects

    PubMed Central

    Nagamine, Yoshitaka

    2005-01-01

    The genotypic and allelic effect models are equivalent in terms of QTL detection in a simple additive model, but the QTL allelic model has the advantage of providing direct information for marker-assisted selection. However, the allelic matrix is four times as large as the genotypic IBD matrix, causing computational problems, especially in genome scans examining multiple positions. Transformation from genotypic to allelic effects, after estimating the genotypic effects with a smaller IBD matrix, can solve this problem. Although the validity of transformation from genotypic to allelic effects has been disputed, this work proves that transformation can successfully yield unique allelic effects when genotypic and allelic IBD matrixes exist. PMID:16093016

  1. Frontonasal dysplasia: a family presenting autosomal dominant inheritance pattern.

    PubMed

    Koçak, H; Ceylaner, G

    2009-01-01

    Frontonasal dysplasia (FND, also called frontonasal dysostosis or median cleft face syndrome) includes a spectrum of abnormalities affecting the eyes, forehead and nose, and resulting from midfacial dysraphia. The clinical picture is highly variable, but major findings in FND include ocular hypertelorism, a broad nasal root, median cleft affecting nose or both the nose and upper lip, and widow's peak. It is usually a sporadic disorder, although a few familial cases have been reported. We report here a three-generation family with multiple affected members with frontonasal dysplasia. This observation suggests autosomal dominant inheritance. Furthermore, some of the features e.g. over-riding toes, nail changes, vertical crease on plantar region of the feet in the index patient were not reported up to now.

  2. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population.

    PubMed

    Shi, Chun; Uzarowska, Anna; Ouzunova, Milena; Landbeck, Matthias; Wenzel, Gerhard; Lübberstedt, Thomas

    2007-01-18

    Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1) three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3), 5361 (5361 and 5361 bm3), and F2 (F2, F2 bm1, F2 bm2, and F2 bm3), 2) the contrasting extreme lines of FD (Flint x Dent, AS08 x AS 06), DD1 (Dent x Dent, AS11 x AS09), and DD2 (Dent x Dent, AS29 x AS30) mapping populations, and 3) two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint x Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p < 0.01), the expression patterns of 102 ESTs were significantly different between high and low quality groups. Using interval mapping, eQTL (LOD > or = 2.4) were detected for 20% (89 of 439) of the spotted ESTs. On average, these eQTL explained 39% of the transcription variation of the corresponding ESTs. Only 26% (23 of 89) ESTs detected a single eQTL. eQTL hotspots, containing greater than 5% of the total number of eQTL, were located in chromosomal bins 1.07, 1.12, 3.05, 8.03, and 9.04, respectively. Bin 3.05 was co-localized with a cell-wall digestibility related QTL cluster. 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members), trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico

  3. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population

    PubMed Central

    Shi, Chun; Uzarowska, Anna; Ouzunova, Milena; Landbeck, Matthias; Wenzel, Gerhard; Lübberstedt, Thomas

    2007-01-01

    Background Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. Results 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1) three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3), 5361 (5361 and 5361 bm3), and F2 (F2, F2 bm1, F2 bm2, and F2 bm3), 2) the contrasting extreme lines of FD (Flint × Dent, AS08 × AS 06), DD1 (Dent × Dent, AS11 × AS09), and DD2 (Dent × Dent, AS29 × AS30) mapping populations, and 3) two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint × Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p < 0.01), the expression patterns of 102 ESTs were significantly different between high and low quality groups. Using interval mapping, eQTL (LOD ≥ 2.4) were detected for 20% (89 of 439) of the spotted ESTs. On average, these eQTL explained 39% of the transcription variation of the corresponding ESTs. Only 26% (23 of 89) ESTs detected a single eQTL. eQTL hotspots, containing greater than 5% of the total number of eQTL, were located in chromosomal bins 1.07, 1.12, 3.05, 8.03, and 9.04, respectively. Bin 3.05 was co-localized with a cell-wall digestibility related QTL cluster. Conclusion 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members), trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell

  4. Towards candidate genes affecting body fatness at the SSC7 QTL by expression analyses.

    PubMed

    Gondret, F; Riquet, J; Tacher, S; Demars, J; Sanchez, M P; Billon, Y; Robic, A; Bidanel, J P; Milan, D

    2012-08-01

    A quantitative trait locus (QTL) affecting fatness in a way opposite to expectations based on breed means was mapped to swine chromosome 7 (SSC7) using crosses between Large White (LW) and Meishan (MS) founders. Defining the molecular fatness trait more explicitly would allow deducing positional candidate genes, for which expression differences must be analysed in experimental populations. First, mRNA levels of genes representing sequential steps in adipogenesis or involved in lipid metabolism were studied in backfat of pigs having homozygous LW(QTL7)/LW(QTL7) or heterozygous LW(QTL7)/MS(QTL7) alleles and considered at two ages. mRNA level of DLK1 expressed in preadipocytes was greater in MS(QTL7)/LW(QTL7) pigs than in homozygous pigs at 28 days. Transcript abundances of CEBPA involved in differentiation, the prolipogenic FASN gene and the adipocyte-specific marker FABP4 were lower in MS(QTL7)/LW(QTL7) pigs compared with LW(QTL7)/LW(QTL7) pigs at 150 days. Because these results suggest a lag time in terminal differentiation associated with the MS allele, seven genes in the QTL interval were deduced as promising candidates for the QTL effect by bioinformatics analysis. Among them, PPARD and CDKN1A had lower expression levels in MS(QTL7)/LW(QTL7) pigs at both ages. Genotype-related differences were observed in mRNA levels of PPARD target genes involved in cell differentiation (FZD7) or fatty acid oxidation (ACADL and ACOX1) at 150 days. These results re-evaluate the potential of PPARD to explain part of variation in pig adiposity.

  5. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL

    PubMed Central

    2010-01-01

    Background Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. Results The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Conclusions Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited

  6. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    PubMed

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in

  7. Management of pain in autosomal dominant polycystic kidney disease and anatomy of renal innervation.

    PubMed

    Tellman, Matthew W; Bahler, Clinton D; Shumate, Ashley M; Bacallao, Robert L; Sundaram, Chandru P

    2015-05-01

    Chronic pain is a prominent feature of autosomal dominant polycystic kidney disease that is difficult to treat and manage, often resulting in a decrease in quality of life. Understanding the underlying anatomy of renal innervation and the various etiologies of pain that occur in autosomal dominant polycystic kidney disease can help guide proper treatments to manage pain. Reviewing previously studied treatments for pain in autosomal dominant polycystic kidney disease can help characterize treatment in a stepwise fashion. We performed a literature search of the etiology and management of pain in autosomal dominant polycystic kidney disease and the anatomy of renal innervation using PubMed® and Embase® from January 1985 to April 2014 with limitations to human studies and English language. Pain occurs in the majority of patients with autosomal dominant polycystic kidney disease due to renal, hepatic and mechanical origins. Patients may experience different types of pain which can make it difficult to clinically confirm its etiology. An anatomical and histological evaluation of the complex renal innervation helps in understanding the mechanisms that can lead to renal pain. Understanding the complex nature of renal innervation is essential for surgeons to perform renal denervation. The management of pain in autosomal dominant polycystic kidney disease should be approached in a stepwise fashion. Acute causes of renal pain must first be ruled out due to the high incidence in autosomal dominant polycystic kidney disease. For chronic pain, nonopioid analgesics and conservative interventions can be used first, before opioid analgesics are considered. If pain continues there are surgical interventions such as renal cyst decortication, renal denervation and nephrectomy that can target pain produced by renal or hepatic cysts. Chronic pain in patients with autosomal dominant polycystic kidney disease is often refractory to conservative, medical and other noninvasive treatments

  8. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.

    PubMed

    Marullo, Philippe; Aigle, Michel; Bely, Marina; Masneuf-Pomarède, Isabelle; Durrens, Pascal; Dubourdieu, Denis; Yvert, Gaël

    2007-09-01

    Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms.

  9. Identification of QTL associated with resistance to bacterial spot race T4 in tomato.

    PubMed

    Hutton, Samuel F; Scott, Jay W; Yang, Wencai; Sim, Sung-Chur; Francis, David M; Jones, Jeffrey B

    2010-11-01

    Bacterial spot of tomato (Solanum lycopersicum L.), caused by several Xanthomonas sp., is a serious but difficult disease to control by chemical means. Development of resistance has been hindered by emergence of races virulent to tomato, by the quantitative inheritance of resistance, and by a low correlation between seedling assays and resistance in the field. Resistance to multiple races, including race T4, has been described in the S. lycopersicum var. cerasiformae accession PI 114490. We used molecular markers to identify associations with quantitative trait loci (QTL) in an elite inbred backcross (IBC) population derived from OH 9242, PI 114490 and Fla. 7600, a breeding line with tomato accession Hawaii 7998 (H7998) in its pedigree. Race T4 resistance has also been described in the advanced breeding lines Fla. 8233, Fla. 8517, and Fla. 8326, and a selective genotyping approach was used to identify introgressions associated with resistance in segregating progeny derived from crosses with these lines. In the IBC population, loci on chromosomes 11 and 3, respectively, explained as much as 29.4 and 4.8% of resistance variation. Both these loci were also confirmed by selective genotyping: PI 114490 and H7998 alleles on chromosome 11 each provided resistance. The PI 114490 allele on chromosome 3 was confirmed in the Fla. 8517 population, and an allele of undetermined descent was confirmed at this locus in the Fla. 8326 population. A chromosome 12 allele was associated with susceptibility in the Fla. 8517 population. Additional loci contributing minor effects were also implicated in the IBC population or by selective genotyping. Selection for the major QTL in a marker-directed phenotyping approach should significantly improve the efficiency of breeding for resistance to bacterial spot race T4, although as yet undetected QTL would be necessary to carry out strict marker assisted selection.

  10. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    SciTech Connect

    Induri, Brahma R; Ellis, Danielle R; Slavov, Gancho; Yin, Tongming; Muchero, Wellington; Tuskan, Gerald A; DiFazio, Stephen P

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  11. QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.).

    PubMed

    Burton, Amy L; Johnson, James; Foerster, Jillian; Hanlon, Meredith T; Kaeppler, Shawn M; Lynch, Jonathan P; Brown, Kathleen M

    2015-01-01

    Root anatomical trait variation is described for three maize RIL populations. Six quantitative trait loci (QTL) are presented for anatomical traits: root cross-sectional area, % living cortical area, aerenchyma area, and stele area. Root anatomy is directly related to plant performance, influencing resource acquisition and transport, the metabolic cost of growth, and the mechanical strength of the root system. Ten root anatomical traits were measured in greenhouse-grown plants from three recombinant inbred populations of maize [intermated B73 × Mo17 (IBM), Oh43 × W64a (OhW), and Ny821 × H99 (NyH)]. Traits included areas of cross section, stele, cortex, aerenchyma, and cortical cells, percentages of the cortex occupied by aerenchyma, and cortical cell file number. Significant phenotypic variation was observed for each of the traits, with maximum values typically seven to ten times greater than minimum values. Means and ranges were similar for the OhW and NyH populations for all traits, while the IBM population had lower mean values for the majority of traits, but a 50% greater range of variation for aerenchyma area. A principal component analysis showed a similar trait structure for the three families, with clustering of area and count traits. Strong correlations were observed among area traits in the cortex, stele, and cross-section. The aerenchyma and percent living cortical area traits were independent of other traits. Six QTL were identified for four of the traits. The phenotypic variation explained by the QTL ranged from 4.7% (root cross-sectional area, OhW population) to 12.0% (percent living cortical area, IBM population). Genetic variation for root anatomical traits can be harnessed to increase abiotic stress tolerance and provide insights into mechanisms controlling phenotypic variation for root anatomy.

  12. Joint QTL analyses for partial resistance to Phytophthora sojae using six nested inbred populations with heterogeneous conditions

    USDA-ARS?s Scientific Manuscript database

    Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect these QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred li...

  13. Autosomal recessive nonsyndromic deafness genes: a review

    PubMed Central

    Duman, Duygu; Tekin, Mustafa

    2013-01-01

    More than 50 percent of prelingual hearing loss is genetic in origin, and of these up to 93 percent are monogenic autosomal recessive traits. Some forms of genetic deafness can be recognized by their associated syndromic features, but in most cases, hearing loss is the only finding and is referred to as nonsyndromic deafness. To date, more than 700 different mutations have been identified in one of 42 genes in individuals with autosomal recessive nonsyndromic hearing loss (ARNSHL). Reported mutations in GJB2, encoding connexin 26, makes this gene the most common cause of hearing loss in many populations. Other relatively common deafness genes include SLC26A4, MYO15A, OTOF, TMC1, CDH23, and TMPRSS3. In this report we summarize genes and mutations reported in families with ARNSHL. Founder effects were demonstrated for some recurrent mutations but the most significant findings are the extreme locus and allelic heterogeneity and different spectrum of genes and mutations in each population. PMID:22652773

  14. Autosomal dominant cerebellar ataxia deafness and narcolepsy.

    PubMed

    Melberg, A; Hetta, J; Dahl, N; Nennesmo, I; Bengtsson, M; Wibom, R; Grant, C; Gustavson, K H; Lundberg, P O

    1995-12-01

    A new autosomal dominant syndrome in a Swedish pedigree is described. Five patients were affected with cerebellar ataxia and sensorineural deafness. Four of these patients had symptoms of narcolepsy. Optic atrophy, other neurological abnormalities and psychiatric symptoms developed with increasing disease duration. Three patients had non-neurological disease in addition, including diabetes mellitus in two and hypertrophic cardiomyopathy in one. Autopsy with neuropathological examination was performed in one case. Molecular studies focused on the short arm of chromosome 6, including the HLA DR2 locus associated with narcolepsy and the (CAG)n repeat at the spinocerebellar ataxia type 1 (SCA1) locus. Biochemical investigation of muscle biopsy of one case indicated mitochondrial dysfunction with selective decrease in ATP production for substrates that normally give the highest rates. The activity of glutamate dehydrogenase was reduced, indicating a low mitochondrial density. We postulate an autosomal dominant genetic factor responsible for this syndrome. Linkage was excluded to HLA DR2, and a normal sized SCA1 repeat was observed. We conclude that a locus predisposing to ataxia, deafness and narcolepsy exists outside this region of chromosome 6.

  15. [Treatment of autosomal dominant polycystic kidney disease].

    PubMed

    Torra, Roser

    2014-01-21

    Autosomal dominant polycystic kidney disease is the most frequent hereditary kidney disease. However it lacks a specific treatment. Its prevalence is 1/800 and causes the need for renal replacement therapy in 8-10% of patients on dialysis or kidney transplant. It is caused by mutations in the PKD1 and PKD2 genes, which cause a series of alterations in the polycystic cells, which have become therapeutic targets. There are many molecules that are being tested to counteract the alterations of these therapeutic targets. There are studies in all phases of research, from phase i to phase iv. Some of the molecules being tested are tolvaptan, mTOR inhibitors and, among many other, somatostatin analogues. These drugs are extensively reviewed in this article. Based on the accumulated experience the primary objective of the trials is the slowing of the increase in renal volume. Yet other renal end points such as renal function and hypertension are necessary. It is expected that in the coming years we can have specific, well tolerated, effective and affordable drugs for the treatment of autosomal dominant polycystic kidney disease.

  16. QTL x Genetic Background Interaction: Application to Predicting Progeny Value

    USDA-ARS?s Scientific Manuscript database

    Failures of the additive infinitesimal model continue to provide incentive to study other modes of gene action, in particular, epistasis. Epistasis can be modeled as a QTL by genetic background interaction. Association mapping models lend themselves to fitting such an interaction because they often ...

  17. Ensemble learning of QTL models improves prediction of complex traits

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...

  18. QTL architecture of reproductive fitness characters in Brassica rapa

    PubMed Central

    2014-01-01

    Background Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) × wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. Results Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. Conclusions This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations. PMID:24641198

  19. Confirmation of a seed yield QTL in soybean

    USDA-ARS?s Scientific Manuscript database

    Exotic germplasm can be an important source of genetic diversity for soybean [Glycine max (L.) Merr.] improvement. Previously, four yield quantitative trait loci (QTL) had been identified in a cross between the exotic soybean plant introduction (PI) 68658 and the U.S. cultivar Lawrence. The confirma...

  20. QTL analysis of fruit quality traits in muscadine grapes

    USDA-ARS?s Scientific Manuscript database

    Muscadine grapes (Vitis rotundifolia) are an important native fruit crop grown in the southeastern United States. To facilitate the breeding of improved cultivars of muscadine grapes a quantitative trait loci (QTL) analysis was conducted on several flower and fruit characteristics of two segregatin...

  1. Mapping QTL Contributing to SCMV Resistance in Tropical Maize

    USDA-ARS?s Scientific Manuscript database

    Sugarcane mosaic virus (SCMV) has been increasing in importance as a maize disease in Brazil. In this study, were mapped and characterized quantitative trait loci (QTL) associated to resistance to SCMV in a maize population consisting of 150 F2:3 families from the cross between two tropical maize i...

  2. An Interspecific Backcross of Lycopersicon Esculentum X L. Hirsutum: Linkage Analysis and a Qtl Study of Sexual Compatibility Factors and Floral Traits

    PubMed Central

    Bernacchi, D.; Tanksley, S. D.

    1997-01-01

    A BC(1) population of the self-compatible tomato Lycopersicon esculentum and its wild self-incompatible relative L. hirsutum f. typicum was used for restriction fragment length polymorphism linkage analysis and quantitative trait loci (QTL) mapping of reproductive behavior and floral traits. The self-incompatibility locus, S, on chromosome 1 harbored the only QTL for self-incompatibility indicating that the transition to self-compatibility in the lineage leading to the cultivated tomato was primarily the result of mutations at the S locus. Moreover, the major QTL controlling unilateral incongruity also mapped to the S locus, supporting the hypothesis that self-incompatibility and unilateral incongruity are not independent mechanisms. The mating behavior of near-isogenic lines carrying the L. hirsutum allele for the S locus on chromosome 1 in an otherwise L. esculentum background support these conclusions. The S locus region of chromosome 1 also harbors most major QTL for several floral traits important to pollination biology (e.g., number and size of flowers), suggesting a gene complex controlling both genetic and morphological mechanisms of reproduction control. Similar associations in other flowering plants suggest that such complex may have been conserved since early periods of plant evolution or else reflect a convergent evolutionary process. PMID:9335620

  3. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.).

    PubMed

    Varshney, Rajeev K; Pandey, Manish K; Janila, Pasupuleti; Nigam, Shyam N; Sudini, Harikishan; Gowda, M V C; Sriswathi, Manda; Radhakrishnan, T; Manohar, Surendra S; Nagesh, Patne

    2014-08-01

    Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield. Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar 'GPBD 4' into three rust susceptible varieties ('ICGV 91114', 'JL 24' and 'TAG 24') through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2-3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56-96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.

  4. Genetic linkage studies in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Mansfield, D.C.; Teague, P.W.; Barber, A.

    1994-09-01

    Autosomal recessive retinitis pigmentosa (arRP) is a severe retinal dystrophy characterized by night blindness, progressive constriction of the visual fields and loss of central vision in the fourth or fifth decades. The frequency of this form of retinitis pigmentosa (RP) varies in different populations. Mutations within the rhodopsin, cyclic GMP phosphodiesterase-{beta} subunit and cGMP-gated channel genes have been reported in some arRP families. The genetic loci responsible for the majority of cases have yet to be identified. Genetic heterogeneity is likely to be extensive. In order to minimize the amount of genetic heterogenity, a set of arRP families was ascertained within the South-Central Sardinian population, in which 81% of families with a known mode of inheritance show an autosomal recessive form of RP. The Sardinian population is an ethnic {open_quotes}outlier{close_quotes}, having remained relatively isolated from mainland and other cultures. Genetic linkage data has been obtained in a set of 11 Sardinian arRP kindreds containing 26 affected members. Under the assumption of genetic homogeneity, no evidence of linkage was found in the arRP kindreds using 195 markers, which excluded 62% of the genome (Z<-2). Positive lod scores were obtained with D14S80 which showed no recombination in a subset of 5 families. Heterogeneity testing using D14S80 and arRP showed no significant evidence of heterogeneity (p=0.18) but evidence of linkage ({chi}{sup 2}=3.64, p=0.028). We are currently screening the neural retina-specific leucine zipper gene (NRL) in 14q11 for mutations as a candidate locus.

  5. Clinical consequences of heterozygosity for autosomal-recessive diseases.

    PubMed

    Vogel, F

    1984-05-01

    Heterozygotes of autosomal-recessive diseases can often be recognized by special heterozygote tests, since enzyme activities are normally reduced in comparison with the normal homozygote state. In Drosophila, the majority of recessive lethal mutations shows a reduction of fitness in heterozygotes, whereas in a strong minority fitness of heterozygotes is increased. This review will be devoted to a consideration of the extent to which heterozygotes for a wide variety of nominally recessive diseases are subject either to an increased liability for common diseases or slight shifts of behavioral characteristics. The available evidence has been collected and will be discussed in three steps: Most studies are available for phenylketonuria. For this group of diseases, a slight reduction of average--especially verbal--I.Q. in heterozygotes has been reported together with signs of a slightly increased cerebral irritability, a possible slight increase of risk for mental disease, and an increase of blood phenylalanine levels in stress situations. The PKU example is used to discuss methodological problems involved in such studies. Other conditions for which relevant deviations in heterozygotes are possible or even likely include among others lipid storage diseases, microcephaly, myoclonus epilepsy, Wilson's disease, galaktokinase deficiency, homocystinuria, recessive myotonia and ataxia- teleangiectasia (increased cancer risk). Since heterozygotes for autosomal recessive diseases are common, it is possible that an appreciable fraction of "multifactorial" genetic liabilities for common, "constitutional" or mental disease might simply be due to heterozygosity for genes whose homozygous affects are already well known. By the same token, much of the "normal" genetic variability influencing cognitive performance (I.Q.)--especially in the lower range--and personality characteristics could also be caused by recessive genes in the heterozygous state.

  6. Genome-wide association study uncovers four QTL predisposing to supernumerary teats in cattle.

    PubMed

    Pausch, Hubert; Jung, Simone; Edel, Christian; Emmerling, Reiner; Krogmeier, Dieter; Götz, Kay-Uwe; Fries, Ruedi

    2012-12-01

    Supernumerary teats (hyperthelia, SNTs) are a common abnormality of the bovine udder with a medium to high heritability and a postulated oligogenic or polygenic inheritance pattern. SNTs not only negatively affect machine milking ability but also act as a reservoir for bacteria. A genome-wide association study was carried out to identify genes involved in the development of SNTs in the dual-purpose Fleckvieh breed. A total of 2467 progeny-tested bulls were genotyped at 43 698 single nucleotide polymorphisms, and daughter yield deviations (DYDs) for 'udder clearness' (UC) were used as high-heritability phenotypes. Massive structuring of the study population was accounted for by principal components analysis-based and mixed model-based approaches. Four loci on BTA5, BTA6, BTA11 and BTA17 were significantly associated with the UC DYD. Three associated regions contain genes of the highly conserved Wnt signalling pathway. The four QTL together account for 10.7% of the variance of the UC DYD, whereas the major fraction of the DYD variance is attributable to chromosomes with no identified QTL. Our results support both an oligogenic and a polygenic inheritance pattern of SNTs in cattle. The identified candidate genes permit insights into the genetic architecture of teat malformations in cattle and provide clues to unravel the molecular mechanisms of mammary gland alterations in cattle and other species.

  7. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL

    PubMed Central

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H.; Raorane, Manish L.; Longkumer, Toshisangba; Pabuayon, Isaiah M.; Mutte, Sumanth K.; Vardarajan, Adithi R.; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C.; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor ‘no apical meristem’ (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  8. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor.

    PubMed

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

    2011-12-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.

  9. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq

    PubMed Central

    Wang, Hui; Cheng, Hongtao; Wang, Wenxiang; Liu, Jia; Hao, Mengyu; Mei, Desheng; Zhou, Rijin; Fu, Li; Hu, Qiong

    2016-01-01

    Oilseed rape (Brassica napus L.) is one of the most important oil crops in China as well as worldwide. Branch angle as a plant architecture component trait plays an important role for high density planting and yield performance. In this study, bulked segregant analysis (BSA) combined with next generation sequencing technology was used to fine map QTL for branch angle. A major QTL, designated as branch angle 1 (ba1) was identified on A06 and further validated by Indel marker-based classical QTL mapping in an F2 population. Eighty-two genes were identified in the ba1 region. Among these genes, BnaA0639380D is a homolog of AtYUCCA6. Sequence comparison of BnaA0639380D from small- and big-branch angle oilseed rape lines identified six SNPs and four amino acid variation in the promoter and coding region, respectively. The expression level of BnaA0639380D is significantly higher in the small branch angle line Purler than in the big branch angle line Huyou19, suggesting that the genomic mutations may result in reduced activity of BnaA0639380D in Huyou19. Phytohormone determination showed that the IAA content in Purler was also obviously increased. Taken together, our results suggested BnaA0639380D is a possible candidate gene for branch angle in oilseed rape. PMID:27922076

  10. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor

    PubMed Central

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

    2011-01-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock. PMID:22393513

  11. First evidence for family-specific QTL for temperature-dependent sex reversal in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lühmann, L M; Knorr, C; Hörstgen-Schwark, G; Wessels, S

    2012-01-01

    This study for the first time screens microsatellite markers for associations with the temperature-dependent sex of Oreochromis niloticus. Previous studies revealed markers on linkage groups (LG) 1, 3, and 23 to be linked to the phenotypic sex of Oreochromis spp. at normal rearing temperatures. Moreover, candidate genes for sex determination and differentiation have been mapped to these linkage groups. Here, 6 families of a temperature-treated genetically all-female (XX) F(1)-population were genotyped for 21 microsatellites on the 3 LGs. No population-wide QTL (quantitative trait loci) or marker trait associations could be detected. However, family-specific QTL were found on LG 1 flanked by UNH995 and UNH104, on LG 3 at the position of GM213, and on LG 23 next to GM283. Moreover, family-specific single marker associations for UNH995 and UNH104 on LG 1, GM213 on LG 3, as well as for UNH898 and GM283 on LG 23 were detected. Yet, marker trait associations could not explain the temperature-dependent sex of all fish in the respective families. The molecular cue for the temperature-dependent sex in Nile tilapia might partially coincide with allelic variants at major and minor genetic sex determining factors. Moreover, additional QTL contributing to variable liabilities towards temperature might persist on other LGs. Copyright © 2012 S. Karger AG, Basel.

  12. Pedigree-Based Analysis in a Multiparental Population of Octoploid Strawberry Reveals QTL Alleles Conferring Resistance to Phytophthora cactorum

    PubMed Central

    Mangandi, Jozer; Verma, Sujeet; Osorio, Luis; Peres, Natalia A.; van de Weg, Eric; Whitaker, Vance M.

    2017-01-01

    Understanding the genetic architecture of traits in breeding programs can be critical for making genetic progress. Important factors include the number of loci controlling a trait, allele frequencies at those loci, and allele effects in breeding germplasm. To this end, multiparental populations offer many advantages for quantitative trait locus (QTL) analyses compared to biparental populations. These include increased power for QTL detection, the ability to sample a larger number of segregating loci and alleles, and estimation of allele effects across diverse genetic backgrounds. Here, we investigate the genetic architecture of resistance to crown rot disease caused by Phytophthora cactorum in strawberry (Fragaria × ananassa), using connected full-sib families from a breeding population. Clonal replicates of > 1100 seedlings from 139 full-sib families arising from 61 parents were control-inoculated during two consecutive seasons. Subgenome-specific single nucleotide polymorphism (SNP) loci were mapped in allo-octoploid strawberry (2n = 8 × = 56), and FlexQTL software was utilized to perform a Bayesian, pedigree-based QTL analysis. A major locus on linkage group (LG) 7D, which we name FaRPc2, accounts for most of the genetic variation for resistance. Four predominant SNP haplotypes were detected in the FaRPc2 region, two of which are strongly associated with two different levels of resistance, suggesting the presence of multiple resistance alleles. The phenotypic effects of FaRPc2 alleles across trials and across numerous genetic backgrounds make this locus a highly desirable target for genetic improvement of resistance in cultivated strawberry. PMID:28592652

  13. Estimating parent-specific QTL effects through cumulating linked identity-by-state SNP effects in multiparental populations

    PubMed Central

    Maurer, A; Sannemann, W; Léon, J; Pillen, K

    2017-01-01

    The emergence of multiparental mapping populations enabled plant geneticists to gain deeper insights into the genetic architecture of major agronomic traits and to map quantitative trait loci (QTLs) controlling the expression of these traits. Although the investigated mapping populations are similar, one open question is whether genotype data should be modelled as identical by state (IBS) or identical by descent (IBD). Whereas IBS simply makes use of raw genotype scores to distinguish alleles, IBD data are derived from parental offspring information. We report on comparing IBS and IBD by applying two multiple regression models on four traits studied in the barley nested association mapping (NAM) population HEB-25. We observed that modelling parent-specific IBD genotypes produced a lower number of significant QTLs with increased prediction abilities compared with modelling IBS genotypes. However, at lower trait heritabilities the IBS model produced higher prediction abilities. We developed a method to estimate multiallelic QTL effects in multiparental populations from simple biallelic IBS data. This method is based on cumulating IBS-derived single-nucleotide polymorphism (SNP) effect estimates in a defined genetic region surrounding a QTL. Comparing the resulting parent-specific QTL effects with those obtained from IBD approaches revealed high accordance that could be confirmed through simulations. The method turned out to be also applicable to a barley multiparent advanced generation inter-cross (MAGIC) population. The ‘cumulation method’ represents a universal approach to differentiate parent-specific QTL effects in multiparental populations, even if no IBD information is available. In future, the method could further benefit from the availability of much denser SNP maps. PMID:27966535

  14. A QTL that confers resistance to Colorado potato beetle (Leptinotarsa decemlineata [Say]) in tetraploid potato populations segregating for leptine.

    PubMed

    Sagredo, Boris; Balbyshev, N; Lafta, A; Casper, H; Lorenzen, J

    2009-11-01

    Genetic resistance to Colorado potato beetle (Leptinotarsa decemlineata [Say]) from Solanum chacoense has been incorporated in the tetraploid potato selection, ND4382-19, which is highly resistant and contains moderate level of foliar leptines. We recently reported using ND4382-19 progeny, population ND5873 (ND4382-19 x Chipeta), to map two genes that segregated as complementary epistatic genes that allow accumulation of leptinidine (Lep) and acetyl-leptinidine (AL) on chromosomes 2 and 8, respectively. We describe here the characterization of a second half-sib population NDG116 (ND4382-19 x N142-72). In this population, solasodine from parent N142-72, which has Solanum berthaultii in its background, was predominant over solanidine-based alkaloids. Concentrations of solanidine, leptinidine, and acetyl-leptinidine were 15-, 5-, and 14-fold lower than in the ND5873 population. Nevertheless, Lep and AL mapped to the same locations on chromosomes 2 and 8 of parent ND4382-19, respectively. The two populations were evaluated for resistance to Leptinotarsa in field assays, and by detached leaf assay for population NDG116. In both families, QTL analysis identified a major QTL from ND4382-19 on the distal end of chromosome 2, close to the Lep locus. The contribution of this QTL to resistance ranged from 11 to 34% for ND5873 at four field sites. Contribution to resistance from the linkage group that contains the gene AL for the accumulation of leptine was not detected. In family NDG116, the same chromosome 2 QTL was detected for field and detached leaf assays, explaining 26 and 12% of the variance for defoliation and larval development, respectively. These data may indicate another resistance mechanism besides leptine in the Leptinotarsa resistance observed in these populations.

  15. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population.

    PubMed

    Blair, Matthew W; Medina, Juliana I; Astudillo, Carolina; Rengifo, Judith; Beebe, Steve E; Machado, Gloria; Graham, Robin

    2010-10-01

    Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool.

  16. Confirmation of ADAMTSL4 mutations for autosomal recessive isolated bilateral ectopia lentis.

    PubMed

    Greene, V Bennouna; Stoetzel, C; Pelletier, V; Perdomo-Trujillo, Y; Liebermann, L; Marion, V; De Korvin, H; Boileau, C; Dufier, J L; Dollfus, H

    2010-03-01

    Ectopia lentis (EL) is a zonular disease where alteration of the zonular fibers leads progressively to lens dislocation. It is most often associated with systemic diseases such as Marfan syndrome, Weill-Marchesani syndrome or homocystinuria. Isolated non syndromic ectopia lentis (IEL) is reported in families with autosomal inheritance, with dominant forms being more common than recessive. LTBP2 truncating mutations have been described as a cause of autosomal recessive ectopia lentis as a primary or secondary feature in patients showing ocular (eg, glaucoma) or extraocular manifestations (eg, Marfanoid habitus). Recently, ADAMTSL4 has been shown to be responsible for isolated autosomal recessive ectopia lentis in an inbred family. Herein we show a consanguineous family that carries a novel homozygous splice mutation IVS4-1G>A/IVS4-1G>A in ADAMTSL4 responsible for isolated autosomal recessive EL, thus confirming the involvement of this gene in this condition and underlining the major role of ADAMTS proteases in zonular fibers homeostasis.

  17. Cattle ancestry in bison: explanations for higher mtDNA than autosomal ancestry.

    PubMed

    Hedrick, Philip W

    2010-08-01

    Understanding and documenting the process of hybridization and introgression between related species is a major focus of recent evolutionary research using molecular techniques. Many North American bison herds have cattle ancestry introduced by crossbreeding over a century ago. Molecular estimates of this ancestry have shown much higher levels for cattle mtDNA than for autosomal cattle genes. A large part of this difference appears to be the result of partial reproductive isolation between the two species where only bison bull x domestic cow crosses are successful, and all the surviving progeny are females. In addition, selection against autosomal cattle genes in bison may have contributed to differential levels of cattle ancestry. The impact of selection against cattle mtDNA and gene flow of bison mtDNA are examined to explain particular combinations of mtDNA and autosomal cattle ancestry. A bottleneck, after the level of cattle ancestry in bison was reduced to a low level, is consistent with the high variance over autosomal loci observed for cattle ancestry, and differential selection among cattle loci in bison does not need to be invoked. Further examination of the cattle genome in bison may shed light on whether these markers, or their associated regions, are indeed neutral.

  18. Floral Genetic Architecture: An Examination of QTL Architecture Underlying Floral (Co)Variation Across Environments

    PubMed Central

    Brock, Marcus T.; Dechaine, Jennifer M.; Iniguez-Luy, Federico L.; Maloof, Julin N.; Stinchcombe, John R.; Weinig, Cynthia

    2010-01-01

    Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ∼80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL × QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL × QTL epistasis for floral traits were environment dependent. PMID:20837996

  19. QTL mapping under truncation selection in homozygous lines derived from biparental crosses.

    PubMed

    Melchinger, Albrecht E; Orsini, Elena; Schön, Chris C

    2012-02-01

    In plant breeding, a large number of progenies that will be discarded later in the breeding process must be phenotyped and marker genotyped for conducting QTL analysis. In many cases, phenotypic preselection of lines could be useful. However, in QTL analyses even moderate preselection can have a significant effect on the power of QTL detection and estimation of effects of the target traits. In this study, we provide exact formulas for quantifying the change of allele frequencies within marker classes, expectations of marker contrasts and the variance of the marker contrasts under truncation selection, for the general case of two QTL affecting the target trait and a correlated trait. We focused on homozygous lines derived at random from biparental crosses. The effects of linkage between the marker and the QTL under selection as well as the effect of selection on a correlated trait can be quantified with the given formulas. Theoretical results clearly show that depending on the magnitude of QTL effects, high selection intensities can lead to a dramatic reduction in power of QTL detection and that approximations based on the infinitesimal model deviate substantially from exact solutions. The presented formulas are valuable for choosing appropriate selection intensity when performing QTL mapping experiments on the data on phenotypically preselected traits and enable the calculation and bias correction of the effects of QTL under selection. Application of our theory to experimental data revealed that selection-induced bias of QTL effects can be successfully corrected.

  20. Autosomal dominant polycystic kidney disease diagnosed in utero. Review.

    PubMed

    Nowak, Magdalena; Huras, Hubert; Wiecheć, Marcin; Jach, Robert; Radoń-Pokracka, Małgorzata; Górecka, Joanna

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of most common inherited renal diseases. It is estimated that very early onset ADPKD affects even 2% patients. The purpose of this article is to provide a comprehensive review of genetics, prenatal diagnosis and prognosis in very early onset autosomal dominant polycystic kidney disease.

  1. Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits.

    PubMed

    Schatzki, Jörg; Ecke, Wolfgang; Becker, Heiko C; Möllers, Christian

    2014-05-01

    Cruciferin (cru) and napin (nap) were negatively correlated and the cru/nap ratio was closely negative correlated with glucosinolate content indicating a link between the two biosynthetic pathways. Canola-type oilseed rape (Brassica napus L.) is an economically important oilseed crop in temperate zones. Apart from the oil, the canola protein shows potential as a value-added food and nutraceutical ingredient. The two major storage protein groups occurring in oilseed rape are the 2 S napins and 12 S cruciferins. The aim of the present study was to analyse the genetic variation and the inheritance of napin and cruciferin content of the seed protein in the winter oilseed rape doubled haploid population Express 617 × R53 and to determine correlations to other seed traits. Seed samples were obtained from field experiments performed in 2 years at two locations with two replicates in Germany. A previously developed molecular marker map of the DH population was used to map quantitative trait loci (QTL) of the relevant traits. The results indicated highly significant effects of the year and the genotype on napin and cruciferin content as well as on the ratio of cruciferin to napin. Heritabilities were comparatively high with 0.79 for napin and 0.77 for cruciferin. Napin and cruciferin showed a significant negative correlation (-0.36**) and a close negative correlation of the cru/nap ratio to glucosinolate content was observed (-0.81**). Three QTL for napin and two QTL for cruciferin were detected, together explaining 47 and 35 % of the phenotypic variance. A major QTL for glucosinolate content was detected on linkage group N19 whose confidence interval overlapped with QTL for napin and cruciferin content. Results indicate a relationship between seed protein composition and glucosinolate content.

  2. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of solanum pimpinellifolium using genotyping by sequencing.

    PubMed

    Celik, Ibrahim; Gurbuz, Nergiz; Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2017-01-03

    Solanum pimpinellifolium has high breeding potential for fruit quality traits and has been used as a donor in tomato breeding programs. Unlocking the genetic potential of S. pimpinellifolium requires high-throughput polymorphism identification protocols for QTL mapping and introgression of favourable alleles into cultivated tomato by both positive and background selection. In this study we identified SNP loci using a genotyping by sequencing (GBS) approach in an IBL mapping population derived from the cross between a high yielding fresh market tomato and S. pimpinellifolium (LA1589) as the recurrent and donor parents, respectively. A total of 120,983,088 reads were generated by the Illumina HiSeq next-generation sequencing platform. From these reads 448,539 sequence tags were generated. A majority of the sequence tags (84.4%) were uniquely aligned to the tomato genome. A total of 3.125 unique SNP loci were identified as a result of tag alignment to the genome assembly and were used in QTL analysis of 11 fruit quality traits. As a result, 37 QTLs were identified. S. pimpinellifolium contributed favourable alleles for 16 QTLs (43.2%), thus confirming the high breeding potential of this wild species. The present work introduced a set of SNPs at sufficiently high density for QTL mapping in populations derived from S. pimpinellifolium (LA1589). Moreover, this study demonstrated the high efficiency of the GBS approach for SNP identification, genotyping and QTL mapping in an interspecific tomato population.

  3. Inferring molecular interactions pathways from eQTL data

    SciTech Connect

    Rashid, Imran; McDermott, Jason E.; Samudrala, Ram

    2009-04-20

    Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring graphs of molecular interactions. We show several simple methods can find complete pathways the explain the mechanism of differential expression in eQTL data.

  4. Autosomal dominant polycystic kidney disease in children

    PubMed Central

    Cadnapaphornchai, Melissa A.

    2015-01-01

    Purpose of review Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting one in 500 individuals. The cardinal manifestation of ADPKD is progressive cystic dilatation of renal tubules with kidney enlargement and progression to end-stage renal disease in approximately half of cases by 60 years of age. Although previously considered a condition of adults, it is clear that children and young adults are subject to the complications of ADPKD. Recent findings It has been increasingly recognized that interventions early in life are necessary in order to confer the best long-term outcome in this common condition. Therefore, it is imperative for pediatricians to recognize the manifestations and complications of this disease. Until recently ADPKD management focused on general principles of chronic kidney disease. However, several recent clinical trials in children and adults with ADPKD have focused on disease-specific therapies. Summary This review will highlight the clinical manifestations, diagnosis, and appropriate management of ADPKD in childhood and will review recent relevant clinical trials in children and adults with this condition. PMID:25635587

  5. Non-syndromic autosomal-dominant deafness.

    PubMed

    Petersen, M B

    2002-07-01

    Non-syndromic deafness is a paradigm of genetic heterogeneity. More than 70 loci have been mapped, and 25 of the nuclear genes responsible for non-syndromic deafness have been identified. Autosomal-dominant genes are responsible for about 20% of the cases of hereditary non-syndromic deafness, with 16 different genes identified to date. In the present article we review these 16 genes, their function and their contribution to deafness in different populations. The complexity is underlined by the fact that several of the genes are involved in both dominant and recessive non-syndromic deafness or in both non-syndromic and syndromic deafness. Mutations in eight of the genes have so far been detected in only single dominant deafness families, and their contribution to deafness on a population base might therefore be limited, or is currently unknown. Identification of all genes involved in hereditary hearing loss will help in the understanding of the basic mechanisms underlying normal hearing, will facilitate early diagnosis and intervention and might offer opportunities for rational therapy.

  6. Non-syndromic, autosomal-recessive deafness.

    PubMed

    Petersen, M B; Willems, P J

    2006-05-01

    Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.

  7. Autosomal dominant polycystic kidney disease in children.

    PubMed

    Cadnapaphornchai, Melissa A

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting one in 500 individuals. The cardinal manifestation of ADPKD is progressive cystic dilatation of renal tubules with kidney enlargement and progression to end-stage renal disease in approximately half of cases by 60 years of age. Although previously considered a condition of adults, it is clear that children and young adults are subject to the complications of ADPKD. It has been increasingly recognized that interventions early in life are necessary in order to confer the best long-term outcome in this common condition. Therefore, it is imperative for pediatricians to recognize the manifestations and complications of this disease. Until recently ADPKD management focused on general principles of chronic kidney disease. However, several recent clinical trials in children and adults with ADPKD have focused on disease-specific therapies. This review will highlight the clinical manifestations, diagnosis, and appropriate management of ADPKD in childhood and will review recent relevant clinical trials in children and adults with this condition.

  8. Autosomal Trisomies and Partial Trisomy Syndromes

    PubMed Central

    Zaleski, W. A.

    1963-01-01

    The establishing of 46 chromosomes as the normal complement in man and the report of the sex chromatin bodies in buccal smears were followed by reports of trisomies and other abnormal patterns of the X and Y chromosomes in Klinefelter's and Turner's syndromes. Abnormal autosomal complements were described in mongolism, in the E-trisomy syndrome, the D-trisomy syndrome, in the Sturge-Weber syndrome, Waldenstrom's macroglobulinemia, benign congenital hypotonia, atrial septal defect and in the schizoid personality. Certain of these conditions, as well as the “oral-facial-digital” syndrome, were also found to exist as partial trisomies. The mechanism of a trisomy is one of non-disjunction and of partial trisomy translocation or insertion. Two cases of the partial trisomy in the E group are described; these are of especial interest because of the familial incidence, longer survival and male sex occurrence, features which are rarely seen in the full E-trisomy syndrome. ImagesFig. 4Fig. 5Fig. 6 PMID:20327419

  9. Analysis of morphine responses in mice reveals a QTL on Chromosome 7

    PubMed Central

    Crusio, Wim E.; Dhawan, Esha; Chesler, Elissa J.; Delprato, Anna

    2016-01-01

    In this study we identified a quantitative trait locus (QTL) on mouse Chromosome 7 associated with locomotor activity and rearing post morphine treatment. This QTL was revealed after correcting for the effects of another QTL peak on Chromosome 10 using composite interval mapping. The positional candidate genes are Syt9 and Ppfibp2. Several other genes within the interval are linked to neural processes, locomotor activity, and the defensive response to harmful stimuli. PMID:27746909

  10. Analysis of morphine responses in mice reveals a QTL on Chromosome 7.

    PubMed

    Crusio, Wim E; Dhawan, Esha; Chesler, Elissa J; Delprato, Anna

    2016-01-01

    In this study we identified a quantitative trait locus (QTL) on mouse Chromosome 7 associated with locomotor activity and rearing post morphine treatment. This QTL was revealed after correcting for the effects of another QTL peak on Chromosome 10 using composite interval mapping. The positional candidate genes are Syt9 and Ppfibp2. Several other genes within the interval are linked to neural processes, locomotor activity, and the defensive response to harmful stimuli.

  11. Adaptive linear rank tests for eQTL studies

    PubMed Central

    Szymczak, Silke; Scheinhardt, Markus O.; Zeller, Tanja; Wild, Philipp S.; Blankenberg, Stefan; Ziegler, Andreas

    2013-01-01

    Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal–Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literature using extensive Monte Carlo simulations of a wide range of different symmetric and skewed distributions. We derive a new adaptive test that combines the advantages of both literature-based approaches. The new test does not require the user to specify a distribution. It is slightly less powerful than the locally most powerful rank test for the correct distribution and at least as powerful as the maximin efficiency robust rank test. We illustrate the application of all tests using two examples from different eQTL studies. PMID:22933317

  12. Adaptive linear rank tests for eQTL studies.

    PubMed

    Szymczak, Silke; Scheinhardt, Markus O; Zeller, Tanja; Wild, Philipp S; Blankenberg, Stefan; Ziegler, Andreas

    2013-02-10

    Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal-Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literature using extensive Monte Carlo simulations of a wide range of different symmetric and skewed distributions. We derive a new adaptive test that combines the advantages of both literature-based approaches. The new test does not require the user to specify a distribution. It is slightly less powerful than the locally most powerful rank test for the correct distribution and at least as powerful as the maximin efficiency robust rank test. We illustrate the application of all tests using two examples from different eQTL studies. Copyright © 2012 John Wiley & Sons, Ltd.

  13. QTL analysis of soft scald in two apple populations

    PubMed Central

    McClure, Kendra A; Gardner, Kyle M; Toivonen, Peter MA; Hampson, Cheryl R; Song, Jun; Forney, Charles F; DeLong, John; Rajcan, Istvan; Myles, Sean

    2016-01-01

    The apple (Malus×domestica Borkh.) is one of the world’s most widely grown and valuable fruit crops. With demand for apples year round, storability has emerged as an important consideration for apple breeding programs. Soft scald is a cold storage-related disorder that results in sunken, darkened tissue on the fruit surface. Apple breeders are keen to generate new cultivars that do not suffer from soft scald and can thus be marketed year round. Traditional breeding approaches are protracted and labor intensive, and therefore marker-assisted selection (MAS) is a valuable tool for breeders. To advance MAS for storage disorders in apple, we used genotyping-by-sequencing (GBS) to generate high-density genetic maps in two F1 apple populations, which were then used for quantitative trait locus (QTL) mapping of soft scald. In total, 900 million DNA sequence reads were generated, but after several data filtering steps, only 2% of reads were ultimately used to create two genetic maps that included 1918 and 2818 single-nucleotide polymorphisms. Two QTL associated with soft scald were identified in one of the bi-parental populations originating from parent 11W-12-11, an advanced breeding line. This study demonstrates the utility of next-generation DNA sequencing technologies for QTL mapping in F1 populations, and provides a basis for the advancement of MAS to improve storability of apples. PMID:27651916

  14. QTL Hotspots for Early Vigor and Related Traits under Dry Direct-Seeded System in Rice (Oryza sativa L.).

    PubMed

    Singh, Uma M; Yadav, Shailesh; Dixit, Shilpi; Ramayya, P Janaki; Devi, M Nagamallika; Raman, K Anitha; Kumar, Arvind

    2017-01-01

    Strong seedling vigor is desirable trait in dry direct-seeded rice (DSR) for enhancing crop establishment and the ability to compete against weeds. A set of 253 BC3F4 lines derived from cross between Swarna and Moroberekan was phenotyped for early vigor (EV) and 8 related traits viz., early uniform emergence (EUE), shoot length (SHL), stem length (SL), shoot fresh weight (SFW), total fresh weight (TFW), shoot dry weight (SDW), total dry weight (TDW), and root dry weight (RDW). Composite interval mapping analysis using genotypic data from 194 SNP markers identified six genomic regions associated with traits on chromosomes 3, 4, 5, and 6 with phenotypic variance ranging from 2.5 to 18.6%. Among them 2 QTL regions; one on chr3 (id3001701-id300833) and the other on chr5 (wd5002636-id5001470) were identified as QTL hotspots A and B respectively and expressed consistently in field as well as glasshouse condition. The majority of QTLs identified for early vigor, and related traits were clustered in the QTL hotspots A (qEV3.1, qEUE3.1, qSHL3.1, qSL3.1, qSFW3.1, qTFW3.1, qRDW3.1 ) and QTL hotspot B (qEV5.1, qEUE5.1, qSHL5.1, qSL5.1, qSFW5.1, qSDW5.1, qTDW5.1 ). Ten putative candidate genes viz., 1-alpha-amylase precursor, 2-glutamate decarboxylase, 1-ethylene-insensitive 3, 3-expansin precursor, and 3-phenylalanine ammonia-lyase associated with the target traits were identified in the selected QTL regions. Mutations were identified in the coding region of alpha-amylase precursor and ethylene-insensitive 3 gene between the parents which can be utilized in marker assisted breeding. Trait relationships among the agro-physiological traits were examined to select the best genotypes for the given traits for use in future breeding programs.

  15. QTL Hotspots for Early Vigor and Related Traits under Dry Direct-Seeded System in Rice (Oryza sativa L.)

    PubMed Central

    Singh, Uma M.; Yadav, Shailesh; Dixit, Shilpi; Ramayya, P. Janaki; Devi, M. Nagamallika; Raman, K. Anitha; Kumar, Arvind

    2017-01-01

    Strong seedling vigor is desirable trait in dry direct-seeded rice (DSR) for enhancing crop establishment and the ability to compete against weeds. A set of 253 BC3F4 lines derived from cross between Swarna and Moroberekan was phenotyped for early vigor (EV) and 8 related traits viz., early uniform emergence (EUE), shoot length (SHL), stem length (SL), shoot fresh weight (SFW), total fresh weight (TFW), shoot dry weight (SDW), total dry weight (TDW), and root dry weight (RDW). Composite interval mapping analysis using genotypic data from 194 SNP markers identified six genomic regions associated with traits on chromosomes 3, 4, 5, and 6 with phenotypic variance ranging from 2.5 to 18.6%. Among them 2 QTL regions; one on chr3 (id3001701-id300833) and the other on chr5 (wd5002636-id5001470) were identified as QTL hotspots A and B respectively and expressed consistently in field as well as glasshouse condition. The majority of QTLs identified for early vigor, and related traits were clustered in the QTL hotspots A (qEV3.1, qEUE3.1, qSHL3.1, qSL3.1, qSFW3.1, qTFW3.1, qRDW3.1) and QTL hotspot B (qEV5.1, qEUE5.1, qSHL5.1, qSL5.1, qSFW5.1, qSDW5.1, qTDW5.1). Ten putative candidate genes viz., 1-alpha-amylase precursor, 2-glutamate decarboxylase, 1-ethylene-insensitive 3, 3-expansin precursor, and 3-phenylalanine ammonia-lyase associated with the target traits were identified in the selected QTL regions. Mutations were identified in the coding region of alpha-amylase precursor and ethylene-insensitive 3 gene between the parents which can be utilized in marker assisted breeding. Trait relationships among the agro-physiological traits were examined to select the best genotypes for the given traits for use in future breeding programs. PMID:28303149

  16. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina

    PubMed Central

    2014-01-01

    Background Gray leaf spot (GLS) is a globally important foliar disease of maize. Cercospora zeina, one of the two fungal species that cause the disease, is prevalent in southern Africa, China, Brazil and the eastern corn belt of the USA. Identification of QTL for GLS resistance in subtropical germplasm is important to support breeding programmes in developing countries where C. zeina limits production of this staple food crop. Results A maize RIL population (F7:S6) from a cross between CML444 and SC Malawi was field-tested under GLS disease pressure at five field sites over three seasons in KwaZulu-Natal, South Africa. Thirty QTL identified from eleven field trials (environments) were consolidated to seven QTL for GLS resistance based on their expression in at least two environments and location in the same core maize bins. Four GLS resistance alleles were derived from the more resistant parent CML444 (bin 1.10, 4.08, 9.04/9.05, 10.06/10.07), whereas the remainder were from SC Malawi (bin 6.06/6.07, 7.02/7.03, 9.06). QTLs in bin 4.08 and bin 6.06/6.07 were also detected as joint QTLs, each explained more than 11% of the phenotypic variation, and were identified in four and seven environments, respectively. Common markers were used to allocate GLS QTL from eleven previous studies to bins on the IBM2005 map, and GLS QTL “hotspots” were noted. Bin 4.08 and 7.02/7.03 GLS QTL from this study overlapped with hotspots, whereas the bin 6.06/6.07 and bin 9.06 QTLs appeared to be unique. QTL for flowering time (bin 1.07, 4.09) in this population did not correspond to QTL for GLS resistance. Conclusions QTL mapping of a RIL population from the subtropical maize parents CML444 and SC Malawi identified seven QTL for resistance to gray leaf spot disease caused by C. zeina. These QTL together with QTL from eleven studies were allocated to bins on the IBM2005 map to provide a basis for comparison. Hotspots of GLS QTL were identified on chromosomes one, two, four, five and

  17. Investigation of a QTL region for loin eye area and fatness on pig chromosome 1.

    PubMed

    Grapes, Laura; Rothschild, Max F

    2006-06-01

    Previously, quantitative trait loci (QTL) for tenth-rib backfat (TENTHRIB) and loin eye area (LEA) were identified on pig Chromosome 1 (SSC 1) near microsatellite S0008 from a three-generation Berkshire x Yorkshire cross (BY). This work attempted to refine these QTL positions and identify genes associated with these QTL. Genotypes of BY (n = 555) were determined by PCR-RFLP or PCR tests for 13 polymorphisms identified in BY F(0) individuals for candidate genes, BAC end sequences, and genomic clones. Using least-squares regression interval mapping, the LEA QTL was estimated at S0008; the TENTHRIB QTL position was shifted approximately 1 cM downstream from S0008. Of the genes/sequences mapped in the QTL region, CL349415 was significantly associated with TENTHRIB (p = 0.02) and solute carrier family 2, member 12 (SLC2A12) was significantly associated with LEA (p = 0.02). These results suggest that the gene(s) responsible for the LEA and TENTHRIB QTL effects are tightly linked to S0008 or that the high informativeness of S0008 relative to surrounding markers is influencing the QTL position estimates. In addition, janus kinase 2 (JAK2) was mapped to a suggestive LEA QTL region and showed association with LEA (p = 0.009), fatness, color, and pH traits in BY.

  18. Common QTL Affect the Rate of Tomato Seed Germination under Different Stress and Nonstress Conditions

    PubMed Central

    Foolad, Majid R.; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC1 progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapidly-germinating seeds were selected, grown to maturity, and subjected to molecular marker analysis. A selective genotyping approach detected between 6 and 9 QTL affecting germination rate under each of the four conditions, with a total of 14 QTL identified. Ten QTL affected germination rate under 2 or 3 conditions, which were considered germination-related common QTL. Four QTL affected germination rate only in one treatment, which were considered germination-related, condition-specific QTL . The results indicated that mostly the same QTL affected seed germination under different stress and nonstress conditions, supporting a previous suggestion that similar physiological mechanisms contribute to rapid seed germination under different conditions. Marker-assisted selection for the common QTL may result in progeny with rapid seed germinability under different conditions. PMID:18317505

  19. Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions.

    PubMed

    Foolad, Majid R; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC(1) progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapidly-germinating seeds were selected, grown to maturity, and subjected to molecular marker analysis. A selective genotyping approach detected between 6 and 9 QTL affecting germination rate under each of the four conditions, with a total of 14 QTL identified. Ten QTL affected germination rate under 2 or 3 conditions, which were considered germination-related common QTL. Four QTL affected germination rate only in one treatment, which were considered germination-related, condition-specific QTL . The results indicated that mostly the same QTL affected seed germination under different stress and nonstress conditions, supporting a previous suggestion that similar physiological mechanisms contribute to rapid seed germination under different conditions. Marker-assisted selection for the common QTL may result in progeny with rapid seed germinability under different conditions.

  20. Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice.

    PubMed

    Leduc, Magalie S; Hageman, Rachael S; Verdugo, Ricardo A; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A; Paigen, Beverly

    2011-09-01

    To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a "toolbox" of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits.

  1. Unilateral Autosomal Recessive Anophthalmia in a Patient with Cystic Craniopharyngioma

    PubMed Central

    Kumar, Amandeep; Bansal, Ankit; Garg, Ajay; Sharma, Bhawani S.

    2014-01-01

    Abstract Anophthalmia is a rare ocular malformation. It is a genetically determined disorder and is typically associated with syndromes. However, sporadic nonsyndromic familial as well as non-familial cases of anophthalmia have also been reported. Non-syndromic familial cases are usually bilateral and have been attributed to autosomal recessive, autosomal dominant, and X-linked inheritance patterns. The authors hereby report a rare case of autosomal recessive unilateral anophthalmia in a patient with no other associated congenital anomaly. Patient was operated for craniopharyngioma. The clinical, radiological and intraoperative findings are discussed. PMID:27928292

  2. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions.

    PubMed

    Wang, Zhoufei; Cheng, Jinping; Chen, Zhiwei; Huang, Ji; Bao, Yongmei; Wang, Jianfei; Zhang, Hongsheng

    2012-08-01

    Salt tolerance of rice (Oryza sativa L.) at the seedling stage is one of the major determinants of its stable establishment in saline soil. One population of recombinant inbred lines (RILs, F (2:9)) derived from a cross between the salt-tolerant variety Jiucaiqing and the salt-sensitive variety IR26 was used to determine the genetic mechanism of four salt tolerance indices, seedling height (SH), dry shoot weight (DSW), dry root weight (DRW) and Na/K ratios (Na/K) in roots after 10 days in three salt concentrations (0.0, 0.5 and 0.7 % NaCl). The main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) were detected by QTL IciMapping program using single environment phenotypic values. Eleven M-QTLs and 11 E-QTLs were identified for the salt tolerance indices. There were six M-QTLs and two E-QTLs identified for SH, three M-QTLs and five E-QTLs identified for DSW, two M-QTLs and one E-QTL identified for DRW, and three E-QTLs identified for Na/K. The phenotypic variation explained by each M-QTL and E-QTL ranged from 7.8 to 23.9 % and 13.3 to 73.7 %, respectively. The QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values. Six M-QTLs and five E-QTLs were identified. The phenotypic variation explained by each QTL and QTL × environment interaction ranged from 0.95 to 6.90 % and 0.02 to 0.50 %, respectively. By comparing chromosomal positions of these M-QTLs with those previously identified, five M-QTLs qSH1.3, qSH12.1, qSH12.2, qDSW12.1 and qDRW11 might represent novel salt tolerance genes. Five selected RILs with high salt tolerance had six to eight positive alleles of the M-QTLs, indicating that pyramiding by marker-assisted selection (MAS) of M-QTLs can be applied in rice salt tolerance breeding programs.

  3. QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits

    PubMed Central

    2013-01-01

    Background Asparagus bean (Vigna. unguiculata. ssp sesquipedalis) is a subspecies and special vegetable type of cowpea (Vigna. unguiculata L. Walp.) important in Asia. Genetic basis of horticulturally important traits of asparagus bean is still poorly understood, hindering the utilization of targeted, DNA marker-assisted breeding in this crop. Here we report the identification of quantitative trait loci (QTLs) and epistatic interactions for four horticultural traits, namely, days to first flowering (FLD), nodes to first flower (NFF), leaf senescence (LS) and pod number per plant (PN) using a recombinant inbred line (RIL) population of asparagus bean. Results A similar genetic mode of one major QTL plus a few minor QTLs was found to dominate each of the four traits, with the number of QTLs for individual traits ranging from three to four. These QTLs were distributed on 7 of the 11 chromosomes. Major QTLs for FLD, NFF and LS were co-localized on LG 11, indicative of tight linkage. Genome wide epistasis analysis detected two and one interactive locus pairs that significantly affect FLD and LS, respectively, and the epistatic QTLs for FLD appeared to work in different ways. Synteny based comparison of QTL locations revealed conservation of chromosome regions controlling these traits in related legume crops. Conclusion Major, minor, and epistatic QTLs were found to contribute to the inheritance of the FLD, NFF, LS, and PN. Positions of many of these QTLs are conserved among closely related legume species, indicating common mechanisms they share. To our best knowledge, this is the first QTL mapping report using an asparagus bean × asparagus bean intervarietal population and provides marker-trait associations for marker-assisted approaches to selection. PMID:23375055

  4. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  5. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  6. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids.

    PubMed

    Shang, Lianguang; Wang, Yumei; Cai, Shihu; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Hua, Jinping

    2015-12-29

    Based on two recombinant inbred line (RIL) populations, two corresponding backcross (BC) populations were constructed to elucidate the genetic basis of heterosis in Upland cotton (Gossypium hirsutum L.). The yield, and yield components, of these populations were evaluated in three environments. At the single-locus level, 78 and 66 quantitative trait loci (QTL) were detected using composite interval mapping in RIL and BC populations, respectively, and 29 QTL were identified based on mid-parental heterosis (MPH) data of two hybrids. Considering all traits together, a total of 50 (64.9%) QTL with partial dominance effect, and 27 (35.1%) QTL for overdominance effect were identified in two BC populations. At the two-locus level, 120 and 88 QTL with main effects (M-QTL), and 335 and 99 QTL involved in digenic interactions (E-QTL), were detected by inclusive composite interval mapping in RIL and BC populations, respectively. A large number of QTL by environment interactions (QEs) for M-QTL and E-QTL were detected in three environments. For most traits, average E-QTL explained a larger proportion of phenotypic variation than did M-QTL in two RIL populations and two BC populations. It was concluded that partial dominance, overdominance, epistasis, and QEs all contribute to heterosis in Upland cotton, and that partial dominance resulting from single loci and epistasis play a relatively more important role than other genetic effects in heterosis in Upland cotton. Copyright © 2016 Shang et al.

  7. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids

    PubMed Central

    Shang, Lianguang; Wang, Yumei; Cai, Shihu; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Hua, Jinping

    2015-01-01

    Based on two recombinant inbred line (RIL) populations, two corresponding backcross (BC) populations were constructed to elucidate the genetic basis of heterosis in Upland cotton (Gossypium hirsutum L.). The yield, and yield components, of these populations were evaluated in three environments. At the single-locus level, 78 and 66 quantitative trait loci (QTL) were detected using composite interval mapping in RIL and BC populations, respectively, and 29 QTL were identified based on mid-parental heterosis (MPH) data of two hybrids. Considering all traits together, a total of 50 (64.9%) QTL with partial dominance effect, and 27 (35.1%) QTL for overdominance effect were identified in two BC populations. At the two-locus level, 120 and 88 QTL with main effects (M-QTL), and 335 and 99 QTL involved in digenic interactions (E-QTL), were detected by inclusive composite interval mapping in RIL and BC populations, respectively. A large number of QTL by environment interactions (QEs) for M-QTL and E-QTL were detected in three environments. For most traits, average E-QTL explained a larger proportion of phenotypic variation than did M-QTL in two RIL populations and two BC populations. It was concluded that partial dominance, overdominance, epistasis, and QEs all contribute to heterosis in Upland cotton, and that partial dominance resulting from single loci and epistasis play a relatively more important role than other genetic effects in heterosis in Upland cotton. PMID:26715091

  8. Symptom onset in autosomal dominant Alzheimer disease

    PubMed Central

    Acosta-Baena, Natalia; Aisen, Paul S.; Bird, Thomas; Danek, Adrian; Fox, Nick C.; Goate, Alison; Frommelt, Peter; Ghetti, Bernardino; Langbaum, Jessica B.S.; Lopera, Francisco; Martins, Ralph; Masters, Colin L.; Mayeux, Richard P.; McDade, Eric; Moreno, Sonia; Reiman, Eric M.; Ringman, John M.; Salloway, Steve; Schofield, Peter R.; Sperling, Reisa; Tariot, Pierre N.; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.

    2014-01-01

    Objective: To identify factors influencing age at symptom onset and disease course in autosomal dominant Alzheimer disease (ADAD), and develop evidence-based criteria for predicting symptom onset in ADAD. Methods: We have collected individual-level data on ages at symptom onset and death from 387 ADAD pedigrees, compiled from 137 peer-reviewed publications, the Dominantly Inherited Alzheimer Network (DIAN) database, and 2 large kindreds of Colombian (PSEN1 E280A) and Volga German (PSEN2 N141I) ancestry. Our combined dataset includes 3,275 individuals, of whom 1,307 were affected by ADAD with known age at symptom onset. We assessed the relative contributions of several factors in influencing age at onset, including parental age at onset, age at onset by mutation type and family, and APOE genotype and sex. We additionally performed survival analysis using data on symptom onset collected from 183 ADAD mutation carriers followed longitudinally in the DIAN Study. Results: We report summary statistics on age at onset and disease course for 174 ADAD mutations, and discover strong and highly significant (p < 10−16, r2 > 0.38) correlations between individual age at symptom onset and predicted values based on parental age at onset and mean ages at onset by mutation type and family, which persist after controlling for APOE genotype and sex. Conclusions: Significant proportions of the observed variance in age at symptom onset in ADAD can be explained by family history and mutation type, providing empirical support for use of these data to estimate onset in clinical research. PMID:24928124

  9. Meloidogyne incognita nematode resistance QTL in carrot

    USDA-ARS?s Scientific Manuscript database

    Root-knot nematodes (Meloidogyne spp.) are major pests attacking carrots (Daucus carota) worldwide, causing galling and forking of the storage roots, rendering them unacceptable for market. Genetic resistance could significantly reduce the need for broad-spectrum soil fumigants in carrot production....

  10. New treatments for autosomal dominant polycystic kidney disease.

    PubMed

    Chang, Ming-Yang; Ong, Albert C M

    2013-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and results from mutations in PKD1 or PKD2. Cyst initiation and expansion arise from a combination of abnormal cell proliferation, fluid secretion and extracellular matrix defects and results in kidney enlargement and interstitial fibrosis. Since its first description over 200 years ago, ADPKD has been considered an untreatable condition and its management is limited to blood pressure reduction and symptomatic treatment of disease complications. Results of the recently reported TEMPO 3/4 trial thus represent a paradigm shift in demonstrating for the first time that cystic disease and loss of renal function can be slowed in humans. In this paper, we review the major therapeutic strategies currently being explored in ADPKD including a range of novel approaches in preclinical models. It is anticipated that the clinical management of ADPKD will undergo a revolution in the next decade with the translation of new treatments into routine clinical use. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  11. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease

    PubMed Central

    Ecder, Tevfik; Schrier, Robert W.

    2009-01-01

    Cardiovascular problems are a major cause of morbidity and mortality in patients with autosomal-dominant polycystic kidney disease (ADPKD). Hypertension is a common early symptom of ADPKD, and occurs in approximately 60% of patients before renal function has become impaired. Hypertension is associated with an increased rate of progression to end-stage renal disease and is the most important potentially treatable variable in ADPKD. Left ventricular hypertrophy, which is a powerful, independent risk factor for cardiovascular morbidity and mortality, also occurs frequently in patients with ADPKD. Both hypertension and left ventricular hypertrophy have important roles in cardiovascular complications in these individuals. Moreover, biventricular diastolic dysfunction, endothelial dysfunction, increased carotid intima-media thickness, and impaired coronary flow velocity reserve are present even in young patients with ADPKD who have normal blood pressure and well-preserved renal function. These findings suggest that cardiovascular involvement starts very early in the course of ADPKD. Intracranial and extracranial aneurysms and cardiac valvular defects are other potential cardiovascular problems in patients with ADPKD. Early diagnosis and treatment of hypertension, with drugs that block the renin-angiotensin-aldosterone system, has the potential to decrease the cardiovascular complications and slow the progression of renal disease in ADPKD. PMID:19322187

  12. Autosomal Dominant Polycystic Kidney Disease: A Path Forward.

    PubMed

    Rangan, Gopala K; Lopez-Vargas, Pamela; Nankivell, Brian J; Tchan, Michel; Tong, Allison; Tunnicliffe, David J; Savige, Judy

    2015-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the commonest inherited cause of renal failure in adults, and is due to loss-of-function mutations in either the PKD1 or PKD2 genes, which encode polycystin-1 and polycystin-2, respectively. These proteins have an essential role in maintaining the geometric structure of the distal collecting duct in the kidney in adult life, and their dysfunction predisposes to renal cyst formation. The typical renal phenotype of ADPKD is the insidious development of hundreds of renal cysts, which form in childhood and grow progressively through life, causing end-stage kidney failure in the fifth decade in about half affected by the mutation. Over the past 2 decades, major advances in genetics and disease pathogenesis have led to well-conducted randomized controlled trials, and observational studies that have resulted in an accumulation of evidence-based data, and raise hope that the lifetime risk of kidney failure due to ADPKD will be progressively curtailed during this century. This review will provide a contemporary summary of the current state of the field in disease pathogenesis and therapeutics, and also briefly highlights the importance of clinical practice guidelines, patient perspectives, patient-reported outcomes, uniform trial reporting, and health-economics in ADPKD.

  13. A New Locus for Autosomal Dominant Pure Spastic Paraplegia, on Chromosome 2q24-q34

    PubMed Central

    Fontaine, Bertrand; Davoine, Claire-Sophie; Dürr, Alexandra; Paternotte, Caroline; Feki, Imed; Weissenbach, Jean; Hazan, Jamilé; Brice, Alexis

    2000-01-01

    Summary Hereditary spastic paraplegia (HSP) comprises a group of clinically and genetically heterogeneous disorders causing progressive spasticity and weakness of the lower limbs. We report a large family of French descent with autosomal dominant pure HSP. We excluded genetic linkage to the known loci causing HSP and performed a genomewide search. We found evidence for linkage of the disorder to polymorphic markers on chromosome 2q24-q34: a maximum LOD score of 3.03 was obtained for marker D2S2318. By comparison with families having linkage to the major locus of pure autosomal dominant HSP (SPG4 on chromosome 2p), there were significantly more patients without Babinski signs, with increased reflexes in the upper limbs, and with severe functional handicaps. PMID:10677329

  14. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat.

    PubMed Central

    Casimir, C M; Bu-Ghanim, H N; Rodaway, A R; Bentley, D L; Rowe, P; Segal, A W

    1991-01-01

    Chronic granulomatous disease (CGD) is a rare inherited condition rendering neutrophils incapable of killing invading pathogens. This condition is due to the failure of a multicomponent microbicidal oxidase that normally yields a low-midpoint-potential b cytochrome (cytochrome b245). Although defects in the X chromosome-linked cytochrome account for the majority of CGD patients, as many as 30% of CGD cases are due to an autosomal recessive disease. Of these, greater than 90% have been shown to be defective in the synthesis of a 47-kDa cytosolic component of the oxidase. We demonstrate here in three unrelated cases of autosomal recessive CGD that the identical underlying molecular lesion is a dinucleotide deletion at a GTGT tandem repeat, corresponding to the acceptor site of the first intron-exon junction. Slippage of the DNA duplex at this site may contribute to the high frequency of defects in this gene. Images PMID:2011585

  15. Genetics Home Reference: autosomal dominant leukodystrophy with autonomic disease

    MedlinePlus

    ... need a cane, walker, or wheelchair for assistance. Intelligence is usually unaffected; however, people who have had ... Hobson G, Brusco A, Brussino A, Padiath QS. Analysis of LMNB1 duplications in autosomal dominant leukodystrophy provides ...

  16. Genetics Home Reference: autosomal dominant hyper-IgE syndrome

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions autosomal dominant hyper-IgE syndrome ...

  17. Arthrogryposis Multiplex Congenita: Neurogenic Type with Autosomal Recessive Inheritance

    PubMed Central

    Rosenmann, A.; Arad, I.

    1974-01-01

    An infant affected by severe arthrogryposis multiplex congenita leading to death in infancy due to neurogenic atrophy is described. Six other sibs were similarly affected. An autosomal recessive mode of inheritance is suggested. Images PMID:4837288

  18. X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads.

    PubMed

    Chen, Zhen-Xia; Oliver, Brian

    2015-04-07

    X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change.

  19. Region-based and pathway-based QTL mapping using a p-value combination method.

    PubMed

    Yang, Hsin-Chou; Chen, Chia-Wei

    2011-11-29

    Quantitative trait locus (QTL) mapping using deep DNA sequencing data is a challenging task. In this study we performed region-based and pathway-based QTL mappings using a p-value combination method to analyze the simulated quantitative traits Q1 and Q4 and the exome sequencing data. The aims were to evaluate the performance of the QTL mapping approaches that were used and to suggest plausible strategies for QTL mapping of DNA sequencing data. We conducted single-locus QTL mappings using a linear regression model with adjustments for age and smoking status, and we also conducted region-based and pathway-based QTL mappings using a truncated product method for combining p-values from the single-locus QTL mapping. To account for the features of rare variants and common single-nucleotide polymorphisms (SNPs), we considered independently rare-variant-only, common-SNP-only, and combined analyses. An analysis of 200 simulated replications showed that the three region-based methods reasonably controlled type I error, whereas the combined analysis yielded the greatest statistical power. Rare-variant-only, common-SNP-only, and combined analyses were also applied to pathway-based QTL mappings. We found that pathway-based QTL mappings had a power of approximately 100% when the significance of the vascular endothelial growth factor pathway was evaluated, but type I errors were slightly inflated. Our approach complements single-locus QTL mapping. An integrated approach using single-locus, combined region-based, and combined pathway-based analyses should yield promising results for QTL mapping of DNA sequencing data.

  20. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components.

    PubMed

    Wang, Lin; Cui, Fa; Wang, Jinping; Jun, Li; Ding, Anming; Zhao, Chunhua; Li, Xingfeng; Feng, Deshun; Gao, Jurong; Wang, Honggang

    2012-01-01

    Grain protein content in wheat (Triticum aestivum L.) is generally considered a highly heritable character that is negatively correlated with grain yield and yield-related traits. Quantitative trait loci (QTL) for protein content was mapped using data on protein content and protein content conditioned on the putatively interrelated traits to evaluate possible genetic interrelationships between protein content and yield, as well as yield-related traits. Phenotypic data were evaluated in a recombinant inbred line population with 302 lines derived from a cross between the Chinese cultivar Weimai 8 and Luohan 2. Inclusive composite interval mapping using IciMapping 3.0 was employed for mapping unconditional and conditional QTL with additives. A strong genetic relationship was found between protein content and grain yield, and yield-related traits. Unconditional QTL mapping analysis detected seven additive QTL for protein content, with additive effects ranging in absolute size from 0.1898% to 0.3407% protein content, jointly accounting for 43.45% of the trait variance. Conditional QTL mapping analysis indicated two QTL independent from yield, which can be used in marker-assisted selection for increasing yield without affecting grain protein content. Three additional QTL with minor effects were identified in the conditional mapping. Of the three QTLs, two were identified when protein content was conditioned on yield, which had pleiotropic effects on those two traits. Conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the individual QTL level for closely correlated traits. Further, conditional QTL mapping can reveal additional QTL with minor effects that are undetectable in unconditional mapping.

  1. Autosomal dominant inheritance of Brachmann-de Lange syndrome

    SciTech Connect

    Kozma, C.

    1996-12-30

    A mother with mild phenotype and her severely affected son, both with classic manifestations of Brachmann-de Lange syndrome (BDLS), are described. This documented mother-to-child transmission supports the hypothesis of autosomal dominant transmission with intrafamilial variability. Known cases of BDLS with autosomal dominant inheritance are reviewed. Although most cases of BDLS are sporadic, a careful evaluation of parents of affected children is important for appropriate genetic counseling. 15 refs., 3 figs., 1 tab.

  2. Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations

    PubMed Central

    2011-01-01

    Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ≤ 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping

  3. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B.

    PubMed

    Winter, Shawn M J; Shelp, Barry J; Anderson, Terry R; Welacky, Tom W; Rajcan, Istvan

    2007-02-01

    the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.

  4. A medium density genetic map and QTL for behavioral and production traits in Japanese quail.

    PubMed

    Recoquillay, Julien; Pitel, Frédérique; Arnould, Cécile; Leroux, Sophie; Dehais, Patrice; Moréno, Carole; Calandreau, Ludovic; Bertin, Aline; Gourichon, David; Bouchez, Olivier; Vignal, Alain; Fariello, Maria Ines; Minvielle, Francis; Beaumont, Catherine; Leterrier, Christine; Le Bihan-Duval, Elisabeth

    2015-01-22

    Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the

  5. Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (Glycine max)

    PubMed Central

    Mamidi, Sujan; Lee, Rian K.; Goos, Jay R.; McClean, Phillip E.

    2014-01-01

    Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection. PMID:25225893

  6. Variable effect of a fiber length QTL deployed within several regionally adapted cultivars

    USDA-ARS?s Scientific Manuscript database

    Originally identified from Sealand 883, this QTL had a significant effect on fiber length in the testing population, but varied by as much as 3 to 4 fold depending on the genetic background in which it was deployed. It is the purpose of this project to examine the effect of this QTL in four differen...

  7. Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions

    PubMed Central

    Bhatia, Aatish; Yadav, Anupama; Zhu, Chenchen; Gagneur, Julien; Radhakrishnan, Aparna; Steinmetz, Lars M.; Bhanot, Gyan; Sinha, Himanshu

    2014-01-01

    For a unicellular, non-motile organism like Saccharomyces cerevisiae, carbon sources act both as nutrients and as signaling molecules and consequently affect various fitness parameters including growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation. The ability of a given genotype to manifest different phenotypes in varying environments is known as phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth parameters (growth rate and biomass) were measured in a published dataset from meiotic recombinants of two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to plasticity across pairs of environments, gene–environment interaction mapping was performed, which identified several QTL that have a differential effect across environments, some of which act antagonistically across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant independent effect was found to alter growth rate and biomass for several carbon sources through two-QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one described here, can help unravel mechanisms regulating phenotypic plasticity. PMID:24474169

  8. QTL detection for a medium density SNP panel: comparison of different LD and LA methods

    PubMed Central

    Filangi, Olivier; Le Roy, Pascale

    2010-01-01

    Background New molecular technologies allow high throughput genotyping for QTL mapping with dense genetic maps. Therefore, the interest of linkage analysis models against linkage disequilibrium could be questioned. As these two strategies are very sensitive to marker density, experimental design structures, linkage disequilibrium extent and QTL effect, we propose to investigate these parameters effects on QTL detection. Methods The XIIIth QTLMAS workshop simulated dataset was analysed using three linkage disequilibrium models and a linkage analysis model. Interval mapping, multivariate and interaction between QTL analyses were performed using QTLMAP. Results The linkage analysis models identified 13 QTL, from which 10 mapped close of the 18 which were simulated and three other positions being falsely mapped as containing a QTL. Most of the QTLs identified by interval mapping analysis are not clearly detected by any linkage disequilibrium model. In addition, QTL effects are evolving during the time which was not observed using the linkage disequilibrium models. Conclusions Our results show that for such a marker density the interval mapping strategy is still better than using the linkage disequilibrium only. While the experimental design structure gives a lot of power to both approaches, the marker density and informativity clearly affect linkage disequilibrium efficiency for QTL detection. PMID:20380753

  9. Overview of QTL detection in plants and tests for synergistic epistatic interactions

    USDA-ARS?s Scientific Manuscript database

    Improvements in the usefulness of QTL analysis arise from better statistical methods applied to the problem, ability to analyze more complex mating designs, and the fitting of less simplified genetic models. Here we review the advantages of different plant mating designs in QTL analysis and conclude...

  10. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  11. Graph theoretical approach to study eQTL: a case study of Plasmodium falciparum.

    PubMed

    Huang, Yang; Wuchty, Stefan; Ferdig, Michael T; Przytycka, Teresa M

    2009-06-15

    Analysis of expression quantitative trait loci (eQTL) significantly contributes to the determination of gene regulation programs. However, the discovery and analysis of associations of gene expression levels and their underlying sequence polymorphisms continue to pose many challenges. Methods are limited in their ability to illuminate the full structure of the eQTL data. Most rely on an exhaustive, genome scale search that considers all possible locus-gene pairs and tests the linkage between each locus and gene. To analyze eQTLs in a more comprehensive and efficient way, we developed the Graph based eQTL Decomposition method (GeD) that allows us to model genotype and expression data using an eQTL association graph. Through graph-based heuristics, GeD identifies dense subgraphs in the eQTL association graph. By identifying eQTL association cliques that expose the hidden structure of genotype and expression data, GeD effectively filters out most locus-gene pairs that are unlikely to have significant linkage. We apply GeD on eQTL data from Plasmodium falciparum, the human malaria parasite, and show that GeD reveals the structure of the relationship between all loci and all genes on a whole genome level. Furthermore, GeD allows us to uncover additional eQTLs with lower FDR, providing an important complement to traditional eQTL analysis methods.

  12. Dynamic QTL and epistasis analysis on seedling root traits in upland cotton.

    PubMed

    Liang, Qingzhi; Li, Pengbo; Hu, Cheng; Hua, Hua; Li, Zhaohu; Rong, Yihua; Wang, Kunbo; Hua, Jinping

    2014-04-01

    Roots are involved in acquisition of water and nutrients, as well as in providing structural support to plant. The root system provides a dynamic model for developmental analysis. Here, we investigated quantitative trait loci (QTL), dynamic conditional QTL and epistatic interactions for seedling root traits using an upland cotton F2 population and a constructed genetic map. Totally, 37 QTLs for root traits, 35 dynamic conditional QTLs based on the net increased amount of root traits (root tips, forks, length, surface area and volume) (i) after transplanting 10 days compared to 5 days, and (ii) after transplanting 15 days to 10 days were detected. Obvious dynamic characteristic of QTL and dynamic conditional QTL existed at different developmental stages of root because QTL and dynamic conditional QTL had not been detected simultaneously. We further confirmed that additive and dominance effects of QTL qRSA-chr1-1 in interval time 5 to 10 DAT (days after transplant) offset the effects in 10 to 15 DAT. Lots of two-locus interactions for root traits were identified unconditionally or dynamically, and a few epistatic interactions were only detected simultaneously in interval time of 5-10 DAT and 10-15 DAT, suggesting different interactive genetic mechanisms on root development at different stages. Dynamic conditional QTL and epistasis effects provide new attempts to understand the dynamics of roots and provide clues for root architecture selection in upland cotton.

  13. Use of maternal information for QTL detection in a (grand)daughter design

    PubMed Central

    Bolard, Marc; Boichard, Didier

    2002-01-01

    In a (grand)daughter design, maternal information is often neglected because the number of progeny per dam is limited. The number of dams per maternal grandsire (MGS), however, could be large enough to contribute to QTL detection. But dams and MGS usually are not genotyped, there are two recombination opportunities between the MGS and the progeny, and at a given location, only half the progeny receive a MGS chromosomal segment. A 3-step procedure was developed to estimate: (1) the marker phenotypes probabilities of the MGS; (2) the probability of each possible MGS haplotype; (3) the probabilities that the progeny receives either the first, or second MGS segment, or a maternal grandam segment. These probabilities were used for QTL detection in a linear model including the effects of sire, MGS, paternal QTL, MGS QTL and maternal grandam QTL. Including the grandam QTL effect makes it possible to detect QTL in the grandam population, even when MGS are not informative. The detection power, studied by simulation, was rather high, provided that MGS family size was greater than 50. Using maternal information in the French dairy cattle granddaughter design made it possible to detect 23 additional QTL genomewise significant. PMID:12081801

  14. QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter].

    PubMed

    Yu, Ju-Kyung; Graznak, Elizabeth; Breseghello, Flavio; Tefera, Hailu; Sorrells, Mark E

    2007-06-12

    Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4x = 40) and a genome size of 730 Mbp. The goal of this study was to identify agronomically important quantitative trait loci (QTL) using recombinant inbred lines (RIL) derived from an inter-specific cross between E. tef and E. pilosa (30-5). Twenty-two yield-related and morphological traits were assessed across eight different locations in Ethiopia during the growing seasons of 1999 and 2000. Using composite interval mapping and a linkage map incorporating 192 loci, 99 QTLs were identified on 15 of the 21 linkage groups for 19 traits. Twelve QTLs on nine linkage groups were identified for grain yield. Clusters of more than five QTLs for various traits were identified on seven linkage groups. The largest cluster (10 QTLs) was identified on linkage group 8; eight of these QTLs were for yield or yield components, suggesting linkage or pleotrophic effects of loci. There were 15 two-way interactions of loci to detect potential epistasis identified and 75% of the interactions were derived from yield and shoot biomass. Thirty-one percent of the QTLs were observed in multiple environments; two yield QTLs were consistent across all agro-ecology zones. For 29.3% of the QTLs, the alleles from E. pilosa (30-5) had a beneficial effect. The extensive QTL data generated for tef in this study will provide a basis for initiating molecular breeding to improve agronomic traits in this staple food crop for the people of Ethiopia.

  15. QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter

    PubMed Central

    Yu, Ju-Kyung; Graznak, Elizabeth; Breseghello, Flavio; Tefera, Hailu; Sorrells, Mark E

    2007-01-01

    Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4× = 40) and a genome size of 730 Mbp. The goal of this study was to identify agronomically important quantitative trait loci (QTL) using recombinant inbred lines (RIL) derived from an inter-specific cross between E. tef and E. pilosa (30-5). Results Twenty-two yield-related and morphological traits were assessed across eight different locations in Ethiopia during the growing seasons of 1999 and 2000. Using composite interval mapping and a linkage map incorporating 192 loci, 99 QTLs were identified on 15 of the 21 linkage groups for 19 traits. Twelve QTLs on nine linkage groups were identified for grain yield. Clusters of more than five QTLs for various traits were identified on seven linkage groups. The largest cluster (10 QTLs) was identified on linkage group 8; eight of these QTLs were for yield or yield components, suggesting linkage or pleotrophic effects of loci. There were 15 two-way interactions of loci to detect potential epistasis identified and 75% of the interactions were derived from yield and shoot biomass. Thirty-one percent of the QTLs were observed in multiple environments; two yield QTLs were consistent across all agro-ecology zones. For 29.3% of the QTLs, the alleles from E. pilosa (30-5) had a beneficial effect. Conclusion The extensive QTL data generated for tef in this study will provide a basis for initiating molecular breeding to improve agronomic traits in this staple food crop for the people of Ethiopia. PMID:17565675

  16. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat.

    PubMed

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E; Krugman, Tamar; Saranga, Yehoshua

    2017-01-01

    A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat (Triticum turgidum ssp. dicoccoides) into the background of bread wheat (T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2's agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and 'BarNir' were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a 'cigar-roll' seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40-100 cm) than 'BarNir,' with the most pronounced effect recorded in the 60-80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than 'BarNir' under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.

  17. Functional screening of an asthma QTL in YAC transgenic mice

    SciTech Connect

    Symula, Derek J.; Frazer, Kelly A.; Ueda, Yukihiko; Denefle, Patrice; Stevens, Mary E.; Wang, Zhi-En; Locksley, Richard; Rubin, Edward M.

    1999-07-02

    While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q33, the authors characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a one megabase interva2048 chromosome 5q31 containing 23 genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180 kb region containing 5 genes, including human interleukin 4 (IL4) and interleukin 13 (IL13), which induce IgE class switching in B cells5. Further analysis of these mice and mice transgenic for only murine Il4 and Il13 demonstrated that moderate changes in murine Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled them to sift through multiple genes in the 5q3 asthma QTL without prior consideration of assumed individual gene function and identify genes that influence the QTL phenotype in vivo.

  18. The effect of conditioning period on loin muscle tenderness in crossbred lambs with or without the Texel muscling QTL (TM-QTL).

    PubMed

    Lambe, N R; Haresign, W; Macfarlane, J; Richardson, R I; Matika, O; Bünger, L

    2010-08-01

    A Texel muscling quantitative trait locus (TM-QTL) has been identified on chromosome 18, which increases loin muscling, but may also have a negative impact on mechanically-measured loin tenderness in crossbred lambs, depending on conditioning time. This study investigated the influence of a range of conditioning times (3, 5, 7 or 9 days) on the effect of TM-QTL on loin muscle tenderness. Using Texel rams heterozygous for TM-QTL, mated to non-carrier Mule ewes, heterozygous (n=45) and wild-type (n=50) crossbred lambs were produced. Weight of the valuable Longissimus lumborum muscle was higher in TM-QTL carriers than non-carriers, when compared at a fixed age (+11.5%; P=0.038), with the same trend at a fixed carcass weight (+10.2%; P=0.064). Toughness, measured by shear force, was significantly higher in samples from TM-QTL carriers than non-carriers, after conditioning for 3 days (P=0.002), 5 days (P=0.003) or 7 days (P=0.03), but was not significantly different after 9 days of conditioning (P=0.32). Compared to non-carrier lambs, the proportion of samples above consumer acceptability thresholds for toughness was greater in the TM-QTL carrier lambs after 3 and 5 days of conditioning, similar at 7 days, but lower at 9 days. The results suggest that the negative effect of TM-QTL on loin tenderness in crossbred lambs can be overcome by conditioning for more than 7 days. Marketing of TM-QTL carrier lambs through companies that use enhanced processing protocols could be beneficial, due to higher loin muscle weights, without negative effects on meat quality.

  19. Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL.

    PubMed

    Timmerman-Vaughan, Gail M; Moya, Leire; Frew, Tonya J; Murray, Sarah R; Crowhurst, Ross

    2016-05-01

    Advances have been made in our understanding of Ascochyta blight resistance genetics through mapping candidate genes associated with QTL regions and demonstrating the importance of epistatic interactions in determining resistance. Ascochyta blight disease of pea (Pisum sativum L.) is economically significant with worldwide distribution. The causal pathogens are Didymella pinodes, Phoma medicaginis var pinodella and, in South Australia, P. koolunga. This study aimed to identify candidate genes that map to quantitative trait loci (QTL) for Ascochyta blight field disease resistance and to explore the role of epistatic interactions. Candidate genes associated with QTL were identified beginning with 101 defence-related genes from the published literature. Synteny between pea and Medicago truncatula was used to narrow down the candidates for mapping. Fourteen pea candidate sequences were mapped in two QTL mapping populations, A26 × Rovar and A88 × Rovar. QTL peaks, or the intervals containing QTL peaks, for the Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL were defined by four of these candidate genes, while another three candidate genes occurred within 1.0 LOD confidence intervals. Epistasis involving QTL × background marker and background marker × background marker interactions contributed to the disease response phenotypes observed in the two mapping populations. For each population, five pairwise interactions exceeded the 5% false discovery rate threshold. Two candidate genes were involved in significant pairwise interactions. Markers in three genomic regions were involved in two or more epistatic interactions. Therefore, this study has identified pea defence-related sequences that are candidates for resistance determination, and that may be useful for marker-assisted selection. The demonstration of epistasis informs breeders that the architecture of this complex quantitative resistance includes epistatic interactions with non-additive effects.

  20. Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus

    PubMed Central

    Zhao, Weiguo; Wang, Xiaodong; Wang, Hao; Tian, Jianhua; Li, Baojun; Chen, Li; Chao, Hongbo; Long, Yan; Xiang, Jun; Gan, Jianping; Liang, Wusheng; Li, Maoteng

    2016-01-01

    Seed yield (SY) is the most important trait in rapeseed, is determined by multiple seed yield-related traits (SYRTs) and is also easily subject to environmental influence. Many quantitative trait loci (QTLs) for SY and SYRTs have been reported in Brassica napus; however, no studies have focused on seven agronomic traits simultaneously affecting SY. Genome-wide QTL analysis for SY and seven SYRTs in eight environments was conducted in a doubled haploid population containing 348 lines. Totally, 18 and 208 QTLs for SY and SYRTs were observed, respectively, and then these QTLs were integrated into 144 consensus QTLs using a meta-analysis. Three major QTLs for SY were observed, including cqSY-C6-2 and cqSY-C6-3 that were expressed stably in winter cultivation area for 3 years and cqSY-A2-2 only expressed in spring rapeseed area. Trait-by-trait meta-analysis revealed that the 144 consensus QTLs were integrated into 72 pleiotropic unique QTLs. Among them, all the unique QTLs affected SY, except for uq.A6-1, including uq.A2-3, uq.C1-2, uq.C1-3, uq.C6-1, uq.C6-5, and uq.C6-6 could also affect more than two SYRTs. According to the constructed high-density consensus map and QTL comparison from literatures, 36 QTLs from five populations were co-localized with QTLs identified in this study. In addition, 13 orthologous genes were observed, including five each gene for SY and thousand seed weight, and one gene each for biomass yield, branch height, and plant height. The genomic information of these QTLs will be valuable in hybrid cultivar breeding and in analyzing QTL expression in different environments. PMID:26858737

  1. A Major Locus for Chloride Accumulation on Chromosome 5A in Bread Wheat

    PubMed Central

    Genc, Yusuf; Taylor, Julian; Rongala, Jay; Oldach, Klaus

    2014-01-01

    Chloride (Cl−) is an essential micronutrient for plant growth, but can be toxic at high concentrations resulting in reduced growth and yield. Although saline soils are generally dominated by both sodium (Na+) and Cl− ions, compared to Na+ toxicity, very little is known about physiological and genetic control mechanisms of tolerance to Cl− toxicity. In hydroponics and field studies, a bread wheat mapping population was tested to examine the relationships between physiological traits [Na+, potassium (K+) and Cl− concentration] involved in salinity tolerance (ST) and seedling growth or grain yield, and to elucidate the genetic control mechanism of plant Cl− accumulation using a quantitative trait loci (QTL) analysis approach. Plant Na+ or Cl− concentration were moderately correlated (genetically) with seedling biomass in hydroponics, but showed no correlations with grain yield in the field, indicating little value in selecting for ion concentration to improve ST. In accordance with phenotypic responses, QTL controlling Cl− accumulation differed entirely between hydroponics and field locations, and few were detected in two or more environments, demonstrating substantial QTL-by-environment interactions. The presence of several QTL for Cl− concentration indicated that uptake and accumulation was a polygenic trait. A major Cl− concentration QTL (5A; barc56/gwm186) was identified in three field environments, and accounted for 27–32% of the total genetic variance. Alignment between the 5A QTL interval and its corresponding physical genome regions in wheat and other grasses has enabled the search for candidate genes involved in Cl− transport, which is discussed. PMID:24893005

  2. Autosomal recessive Charcot-Marie-Tooth disease: from genes to phenotypes.

    PubMed

    Tazir, Meriem; Bellatache, Mounia; Nouioua, Sonia; Vallat, Jean-Michel

    2013-06-01

    The prevalence of Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy (HMSN) varies in different populations. While in some countries of Western Europe, the United States and Japan the dominant form of HMSN is the most frequent, in other countries such as those of the Mediterranean Basin, the autosomal recessive form (AR-CMT) is more common. Autosomal recessive CMT cases are generally characterized by earlier onset, usually before the age of 2 or 3 years, and rapid clinical progression that results in severe polyneuropathy and more marked distal limb deformities such as pes equino-varus, claw-like hands, and often major spinal deformities. Recent clinical, morphological and molecular investigations of CMT families with autosomal recessive inheritance allowed the identification of many genes such as GDAP1, MTMR2, SBF2, NDRG1, EGR2, SH3TC2, PRX, FGD4, and FIG4, implicated in demyelinating forms (ARCMT1 or CMT4), and LMNA, MED25, HINT1, GDAP1, LRSAM1, NEFL, HSPB1 and MFN2 in axonal forms (ARCMT2). However, many patients remain without genetic diagnosis to date, prompting investigations into ARCMT families in order to help discover new genes and common pathways. This review summarizes recent advances regarding the genotypes and corresponding phenotypes of AR-CMT.

  3. Proprotein Convertase Subtilisin Kexin Type 9 Inhibition for Autosomal Recessive Hypercholesterolemia-Brief Report.

    PubMed

    Thedrez, Aurélie; Sjouke, Barbara; Passard, Maxime; Prampart-Fauvet, Simon; Guédon, Alexis; Croyal, Mikael; Dallinga-Thie, Geesje; Peter, Jorge; Blom, Dirk; Ciccarese, Milco; Cefalù, Angelo B; Pisciotta, Livia; Santos, Raul D; Averna, Maurizio; Raal, Frederick; Pintus, Paolo; Cossu, Maria; Hovingh, Kees; Lambert, Gilles

    2016-08-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients. © 2016 American Heart Association, Inc.

  4. [Gene analysis and literature review of autosomal recessive polycystic kidney disease].

    PubMed

    Zhang, Jiang-wei; Wang, Chen; Wang, Chang-yan; Qiu, Zheng-qing

    2013-09-01

    The purpose of this study was to investigate the clinical and genetic characteristics of autosomal recessive polycystic kidney disease. Targeted sequencing was used on a children who was accurately diagnosed as autosomal recessive polycystic kidney disease in Peking Union Medical College Hospital to analyze the major clinical manifestations of the disease. An analysis of the PKHD1 genes was made on the patient, and then verified by polymerase chain reaction (PCR). And the related literature was reviewed also. The patient was a boy, 2 years and 3 months old, and had abdominal distention for about one year. The abdominal ultrasound suggested diffuse liver lesions, mild intrahepatic bile duct dilatation, structure disturbance of both kidneys, appearance of multiple strong echo. The child was clinically highly suspected of polycystic kidney disease. Targeted sequencing showed two mutations in exon 32 and exon 50 of PKHD1 gene, respectively, c.4274T > G, leading to p.Leu1425Arg, c.7973T > A, leading to p.Leu2658Ter. Verified by PCR, the father has one mutation of c.4274T > G. The clinical manifestations of autosomal recessive polycystic kidney disease are multiple renal cyst, cyst of liver and liver fibrosis, intrahepatic bile duct dilatation. Two mutations (c.4274T > G, c.7973T > A) in PKHD1 gene may be pathogenic.

  5. Evolution of the polymorphism at molecular markers in QTL and non-QTL regions in selected chicken lines (Open Access publication)

    PubMed Central

    Loywyck, Valérie; Bed'hom, Bertrand; Pinard-van der Laan, Marie-Hélène; Pitel, Frédérique; Verrier, Étienne; Bijma, Piter

    2008-01-01

    We investigated the joint evolution of neutral and selected genomic regions in three chicken lines selected for immune response and in one control line. We compared the evolution of polymorphism of 21 supposedly neutral microsatellite markers versus 30 microsatellite markers located in seven quantitative trait loci (QTL) regions. Divergence of lines was observed by factor analysis. Five supposedly neutral markers and 12 markers in theQTL regions showed Fst values greater than 0.15. However, the non-significant difference (P > 0.05) between matrices of genetic distances based on genotypes at supposedly neutral markers on the one hand, and at markers in QTL regions, on the other hand, showed that none of the markers in the QTL regions were influenced by selection. A supposedly neutral marker and a marker located in the QTL region on chromosome 14 showed temporal variations in allele frequencies that could not be explained by drift only. Finally, to confirm thatmarkers located inQTL regions on chromosomes 1, 7 and 14were under the influence of selection, simulations were performed using haplotype dropping along the existing pedigree. In the zone located on chromosome 14, the simulation results confirmed that selection had an effect on the evolution of polymorphism of markers within the zone. PMID:18990356

  6. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL.

    PubMed

    Thomson, Michael J; Edwards, Jeremy D; Septiningsih, Endang M; Harrington, Sandra E; McCouch, Susan R

    2006-04-01

    A quantitative trait locus (QTL), dth1.1, was associated with transgressive variation for days to heading in an advanced backcross population derived from the Oryza sativa variety Jefferson and an accession of the wild rice relative Oryza rufipogon. A series of near-isogenic lines (NILs) containing different O. rufipogon introgressions across the target region were constructed to dissect dth1.1 using substitution mapping. In contrast to the late-flowering O. rufipogon parent, O. rufipogon alleles in the substitution lines caused early flowering under both short- and long-day lengths and provided evidence for at least two distinct sub-QTL: dth1.1a and dth1.1b. Potential candidate genes underlying these sub-QTL include genes with sequence similarity to Arabidopsis GI, FT, SOC1, and EMF1, and Pharbitis nil PNZIP. Evidence from families with nontarget O. rufipogon introgressions in combination with dth1.1 alleles also detected an early flowering QTL on chromosome 4 and a late-flowering QTL on chromosome 6 and provided evidence for additional sub-QTL in the dth1.1 region. The availability of a series of near-isogenic lines with alleles introgressed from a wild relative of rice provides an opportunity to better understand the molecular basis of transgressive variation in a quantitative trait.

  7. Substitution Mapping of dth1.1, a Flowering-Time Quantitative Trait Locus (QTL) Associated With Transgressive Variation in Rice, Reveals Multiple Sub-QTL

    PubMed Central

    Thomson, Michael J.; Edwards, Jeremy D.; Septiningsih, Endang M.; Harrington, Sandra E.; McCouch, Susan R.

    2006-01-01

    A quantitative trait locus (QTL), dth1.1, was associated with transgressive variation for days to heading in an advanced backcross population derived from the Oryza sativa variety Jefferson and an accession of the wild rice relative Oryza rufipogon. A series of near-isogenic lines (NILs) containing different O. rufipogon introgressions across the target region were constructed to dissect dth1.1 using substitution mapping. In contrast to the late-flowering O. rufipogon parent, O. rufipogon alleles in the substitution lines caused early flowering under both short- and long-day lengths and provided evidence for at least two distinct sub-QTL: dth1.1a and dth1.1b. Potential candidate genes underlying these sub-QTL include genes with sequence similarity to Arabidopsis GI, FT, SOC1, and EMF1, and Pharbitis nil PNZIP. Evidence from families with nontarget O. rufipogon introgressions in combination with dth1.1 alleles also detected an early flowering QTL on chromosome 4 and a late-flowering QTL on chromosome 6 and provided evidence for additional sub-QTL in the dth1.1 region. The availability of a series of near-isogenic lines with alleles introgressed from a wild relative of rice provides an opportunity to better understand the molecular basis of transgressive variation in a quantitative trait. PMID:16452146

  8. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments.

    PubMed

    Gahlaut, Vijay; Jaiswal, Vandana; Tyagi, Bhudeva S; Singh, Gyanendra; Sareen, Sindhu; Balyan, Harindra S; Gupta, Pushpendra Kumar

    2017-01-01

    In bread wheat, QTL interval mapping was conducted for nine important drought responsive agronomic traits. For this purpose, a doubled haploid (DH) mapping population derived from Kukri/Excalibur was grown over three years at four separate locations in India, both under irrigated and rain-fed environments. Single locus analysis using composite interval mapping (CIM) allowed detection of 98 QTL, which included 66 QTL for nine individual agronomic traits and 32 QTL, which affected drought sensitivity index (DSI) for the same nine traits. Two-locus analysis allowed detection of 19 main effect QTL (M-QTL) for four traits (days to anthesis, days to maturity, grain filling duration and thousand grain weight) and 19 pairs of epistatic QTL (E-QTL) for two traits (days to anthesis and thousand grain weight). Eight QTL were common in single locus analysis and two locus analysis. These QTL (identified both in single- and two-locus analysis) were distributed on 20 different chromosomes (except 4D). Important genomic regions on chromosomes 5A and 7A were also identified (5A carried QTL for seven traits and 7A carried QTL for six traits). Marker-assisted recurrent selection (MARS) involving pyramiding of important QTL reported in the present study, together with important QTL reported earlier, may be used for improvement of drought tolerance in wheat. In future, more closely linked markers for the QTL reported here may be developed through fine mapping, and the candidate genes may be identified and used for developing a better understanding of the genetic basis of drought tolerance in wheat.

  9. Multiple QTL for Horticultural Traits and Quantitative Resistance to Phytophthora infestans Linked on Solanum habrochaites Chromosome 11

    PubMed Central

    Haggard, J. Erron; Johnson, Emily B.; St. Clair, Dina A.

    2014-01-01

    Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato. PMID:25504736

  10. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut.

    PubMed

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-02-22

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.

  11. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut

    PubMed Central

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops. PMID:28241413

  12. Levels and Patterns of Nucleotide Variation in Domestication QTL Regions on Rice Chromosome 3 Suggest Lineage-Specific Selection

    PubMed Central

    Xie, Xianfa; Molina, Jeanmaire; Hernandez, Ryan; Reynolds, Andy; Boyko, Adam R.; Bustamante, Carlos D.; Purugganan, Michael D.

    2011-01-01

    Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL) mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa—indica and tropical japonica—as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups. PMID:21674010

  13. Relevance of ultrasound examination in general practice. A case report of a patient with autosomal dominant polycystic kidney disease.

    PubMed

    Cwojdzińska-Jankowska, Izabela; Plewa, Anna

    2013-09-01

    Autosomal dominant polycystic kidney disease is a genetic disorder which results in the development of multiple cysts in the kidneys and other parenchymal organs. The two genes in which mutations are known to cause autosomal dominant polycystic kidney disease are PKD1 and PKD2. Approximately 50% of individuals with autosomal dominant polycystic kidney disease will develop end-stage renal disease by the age of 60. Early stages of the disease are usually asymptomatic and at the moment of establishing a definitive diagnosis, complications and associated disorders, including end-stage renal disease, occur frequently. About 95% of individuals with autosomal dominant polycystic kidney disease have an affected parent and about 5% have a de novo mutation. Each child of an affected individual has a 50% chance of inheriting the mutation. The first symptoms of disease usually develop in the third or fourth decades of life. Imaging examinations of relatives at risk allow for an early detection when no clinical symptoms are present as well as enable treatment of complications and associated disorders. Ultrasound examination as a basic and minimally invasive imaging technique can be easily used in general practice. In the majority of patients with autosomal dominant polycystic kidney disease, sonography allows for a certain and reliable diagnosis of this disease. Additionally, it enables to perform follow-up examinations both of the patient and their family. The possibility of ultrasound imaging in general practice broadens clinical examination and facilitates establishing a proper diagnosis. The paper presents a case report of a patient with autosomal dominant polycystic kidney disease. Its aim was to present the relevance of ultrasound examination in general practice.

  14. A new simple method for improving QTL mapping under selective genotyping.

    PubMed

    Lee, Hsin-I; Ho, Hsiang-An; Kao, Chen-Hung

    2014-12-01

    The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger genotyping proportions may provide roughly equivalent power to complete

  15. Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders

    PubMed Central

    Voss, S R; Kump, D K; Walker, J A; Shaffer, H B; Voss, G J

    2012-01-01

    The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size. PMID:22850698

  16. QTL mapping of clubroot resistance in radish (Raphanus sativus L.).

    PubMed

    Kamei, Akito; Tsuro, Masato; Kubo, Nakao; Hayashi, Takeshi; Wang, Ning; Fujimura, Tatsuhito; Hirai, Masashi

    2010-03-01

    A QTL analysis for clubroot resistance (CR) of radish was performed using an F(2) population derived from a crossing of a CR Japanese radish and a clubroot-susceptible (CS) Chinese radish. F(3) plants obtained by selfing of F(2) plants were used for the CR tests. The potted seedlings were inoculated and the symptom was evaluated 6 weeks thereafter. The mean disease indexes of the F(3) plants were used for the phenotype of the F(2). The results of two CR tests were analyzed for the presence of QTL. A linkage map was constructed using AFLP and SSR markers; it spanned 554 cM and contained 18 linkage groups. A CR locus was observed in the top region of linkage group 1 in two tests. Therefore, the present results suggest that a large part of radish CR is controlled by a single gene or closely linked genes in this radish population, although minor effects of other genomic areas cannot be ruled out. The CR locus was named Crs1. Markers linked to Crs1 showed sequence homology to the genomic region of the top of chromosome 3 of Arabidopsis, as in the case of Crr3, a CR locus in Brassica rapa. These markers should be useful for breeding CR cultivars of radish. As Japanese radishes are known to be highly resistant or immune to clubroot, these markers may also be useful in the introgression of this CR gene to Brassica crops.

  17. Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders.

    PubMed

    Voss, S R; Kump, D K; Walker, J A; Shaffer, H B; Voss, G J

    2012-11-01

    The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1-3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.

  18. Improvement of Rice Biomass Yield through QTL-Based Selection

    PubMed Central

    Matsubara, Kazuki; Yamamoto, Eiji; Kobayashi, Nobuya; Ishii, Takuro; Tanaka, Junichi; Tsunematsu, Hiroshi; Yoshinaga, Satoshi; Matsumura, Osamu; Yonemaru, Jun-ichi; Mizobuchi, Ritsuko; Yamamoto, Toshio; Kato, Hiroshi; Yano, Masahiro

    2016-01-01

    Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to improve because the trait is complex and phenotyping is laborious. Using progeny derived from a cross between two high-yielding Japanese cultivars, we evaluated whether quantitative trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass yield, we used plant weight (aboveground parts only), which included grain weight and stem and leaf weight. We measured these and related traits in recombinant inbred lines. Phenotypic values for these traits showed a continuous distribution with transgressive segregation, suggesting that selection can affect plant weight in the progeny. Four significant QTLs were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at α = 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of the QTLs. From F2 plants derived from the same parental cross as the recombinant inbred lines, we divergently selected lines that carried alleles with positive or negative additive effects at these QTLs, and performed successive selfing. In the resulting F6 lines and parents, plant weight significantly differed among the genotypes (at α = 0.05). These results demonstrate that QTL-based selection is effective in improving rice biomass yield. PMID:26986071

  19. [Dynamic QTL and correlated characters of tomato soluble solid content.].

    PubMed

    Jia, Jun-Zhong; Tian, Li-Ping; Xue, Lin; Wei, Yi-Nong

    2010-10-01

    Two hundred and six F2:3 families from the cross between TD22 and HT-1-1-1-1 were used for dynamic QTL research of tomato soluble solid content and correlative traits, and correlation analysis of soluble solid content (SSC) with fruit weight (FW), fruit shape index (FSI), soluble sugar, vitamin C (VC), and organic acid at three different development stages. The results showed that there were differences in QTL loci for soluble solid content during the three stages of tomato fruit development. Four and eight QTLs were detected in green ripe stage and red ripe stage, respectively. These QTLs showed dynamic changes, and two markers LEaat006 and Tomato|TC162363 were detected in two stages, which might be useful in molecular-marker assisted selection (MAS). The result also showed that there was extremely significant difference in SSC at the three different stages, and its main correlative traits were different at different stages. Soluble solid content was positively correlated with soluble sugar, but negatively correlated with FW at green ripe stage; SSC was positively correlated with soluble sugar and organic acid at yellow ripe stage; SSC was positively correlated with soluble sugar and organic acid, but negatively correlated with fruit weight at red ripe stage. Based on correlation analysis of these traits, linear regression model was constructed. Non-tested varieties were used to test the fitness, and the result showed that it is well fitted, and the fitness is above 95%.

  20. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    PubMed

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  1. Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences.

    PubMed

    Hill, W D; Davies, G; Liewald, D C; Payton, A; McNeil, C J; Whalley, L J; Horan, M; Ollier, W; Starr, J M; Pendleton, N; Hansel, N K; Montgomery, G W; Medland, S E; Martin, N G; Wright, M J; Bates, T C; Deary, I J

    2016-01-01

    Two themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences.

  2. Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences☆

    PubMed Central

    Hill, W.D.; Davies, G.; Liewald, D.C.; Payton, A.; McNeil, C.J.; Whalley, L.J.; Horan, M.; Ollier, W.; Starr, J.M.; Pendleton, N.; Hansel, N.K.; Montgomery, G.W.; Medland, S.E.; Martin, N.G.; Wright, M.J.; Bates, T.C.; Deary, I.J.

    2016-01-01

    Two themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences. PMID:26912939

  3. Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton

    PubMed Central

    Wang, Hantao; Huang, Cong; Zhao, Wenxia; Dai, Baosheng; Shen, Chao; Zhang, Beibei; Li, Dingguo; Lin, Zhongxu

    2016-01-01

    Two immortalized backcross populations (DHBCF1s and JMBCF1s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F2 population, a RIL population in 3 environments and the current two BCF1 populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF1s and JMBCF1s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning. PMID:27907098

  4. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius

    PubMed Central

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K.

    2016-01-01

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. PMID:27733453

  5. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius.

    PubMed

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K

    2016-12-07

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species.

  6. Genetics of non-syndromic autosomal recessive mental retardation.

    PubMed

    Afroze, Bushra; Chaudhry, Bushra

    2013-01-01

    Non-syndromic mental retardation is one of the most serious neurodevelopmental disorders, which has a serious impact not only on the affected individuals and their families but also on the health care system and society. Previously research has been more focused on the X-linked mental retardation and only recently studies have shown that non-syndromic autosomal recessive mental retardation is extremely heterogeneous and contributes much more than the X-linked mental retardation. But very little is known about the genes and loci involved in nonsyndromic autosomal recessive mental retardation than the X-linked mental retardation. To date only thirty loci and ten genes have been established associated with the non-syndromic autosomal recessive mental retardation. This short review presents an overview of the current knowledge on clinical information available for the ten genes associated with this unexplored group of genetic disorder.

  7. Selection on multiple QTL with control of gene diversity and inbreeding for long-term benefit.

    PubMed

    Li, Y; Kadarmideen, H N; Dekkers, J C M

    2008-10-01

    The purpose of this study was to develop and investigate selection strategies that aim at maximizing long-term genetic response while conserving gene diversity and controlling inbreeding in populations of limited effective size, assuming complete knowledge of all genes affecting a quantitative trait. Three selection strategies were proposed to select on 100 quantitative trait loci (QTL) and compared with truncation selection on breeding value. Alternative selection strategies aimed at maximizing the average breeding value of parents with a penalty on (1) the number of unfavourable QTL genotypes among parents (OS-I), (2) the negative of the logarithm of the frequency of the favourable allele at each QTL among parents (OS-II), and (3) the average pedigree relationship among parents (OS-III). When all QTL and their effects were known, the strategies examined were able to obtain extra long-term responses, conserve QTL diversity and reduce inbreeding, compared with truncation selection. Strategy OS-II was the most effective in conserving QTL diversity and OS-III in reducing inbreeding. By changing the magnitude of the penalties applied, the impact on long-term response, inbreeding and diversity can be controlled. Extra long-term responses over truncation selection of OS-I and OS-II were even greater when effects of QTL were estimated rather than assumed known, indicating the applicability of results to practical strategies for marker-assisted selection. Extra responses are expected to be reduced for larger population sizes.

  8. Optimizing purebred selection for crossbred performance using QTL with different degrees of dominance

    PubMed Central

    Dekkers, Jack CM; Chakraborty, Reena

    2004-01-01

    A method was developed to optimize simultaneous selection for a quantitative trait with a known QTL within a male and a female line to maximize crossbred performance from a two-way cross. Strategies to maximize cumulative discounted response in crossbred performance over ten generations were derived by optimizing weights in an index of a QTL and phenotype. Strategies were compared to selection on purebred phenotype. Extra responses were limited for QTL with additive and partial dominance effects, but substantial for QTL with over-dominance, for which optimal QTL selection resulted in differential selection in male and female lines to increase the frequency of heterozygotes and polygenic responses. For over-dominant QTL, maximization of crossbred performance one generation at a time resulted in similar responses as optimization across all generations and simultaneous optimal selection in a male and female line resulted in greater response than optimal selection within a single line without crossbreeding. Results show that strategic use of information on over-dominant QTL can enhance crossbred performance without crossbred testing. PMID:15107268

  9. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    PubMed Central

    Fulop, Daniel; Ranjan, Aashish; Ofner, Itai; Covington, Michael F.; Chitwood, Daniel H.; West, Donelly; Ichihashi, Yasunori; Headland, Lauren; Zamir, Daniel; Maloof, Julin N.; Sinha, Neelima R.

    2016-01-01

    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping. PMID:27510891

  10. QTL mapping for combining ability in different population-based NCII designs: a simulation study.

    PubMed

    Li, Lanzhi; Sun, Congwei; Chen, Yuan; Dai, Zhijun; Qu, Zhen; Zheng, Xingfei; Yu, Sibin; Mou, Tongmin; Xu, Chenwu; Hu, Zhongli

    2013-12-01

    The NCII design (North Carolina mating design II) has been widely applied in studies of combining ability and heterosis. The objective of our research was to estimate how different base populations, sample sizes, testcross numbers and heritability influence QTL analyses of combining ability and heterosis. A series of Monte Carlo simulation experiments with QTL mapping were then conducted for the base population performance, testcross population phenotypic values and the general combining ability (GCA), specific combining ability (SCA) and Hmp (midparental heterosis) datasets. The results indicated that: (i) increasing the number of testers did not necessarily enhance the QTL detection power for GCA, but it was significantly related to the QTL effect. (ii) The QTLs identified in the base population may be different from those from GCA dataset. Similar phenomena can be seen from QTL detected in SCA and Hmp datasets. (iii) The QTL detection power for GCA ranked in the order of DH(RIL) based > F2 based > BC based NCII design, when the heritability was low. The recombinant inbred lines (RILs) (or DHs) allows more recombination and offers higher mapping resolution than other populations. Further, their testcross progeny can be repeatedly generated and phenotyped. Thus, RIL based (or DH based) NCII design was highly recommend for combining ability QTL analysis. Our results expect to facilitate selecting elite parental lines with high combining ability and for geneticists to research the genetic basis of combining ability.

  11. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis)

    PubMed Central

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-01-01

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016

  12. Autosomal Dominant Centronuclear Myopathy with Unique Clinical Presentations

    PubMed Central

    Lee, Jee-Young; Min, Ju-Hong; Hong, Yoon-Ho; Sung, Jung-Joon; Park, Sung-Hye; Park, Seong-Ho; Lee, Kwang-Woo

    2007-01-01

    Centronuclear myopathies are clinically and genetically heterogenous diseases with common histological findings, namely, centrally located nuclei in muscle fibers with a predominance and hypotrophy of type 1 fibers. We describe two cases from one family with autosomal dominant centronuclear myopathy with unusual clinical features that had initially suggested distal myopathy. Clinically, the patients presented with muscle weakness and atrophy localized mainly to the posterior compartment of the distal lower extremities. Magnetic resonance imaging revealed predominant atrophy and fatty changes of bilateral gastrocnemius and soleus muscles. This report demonstrates the expanding clinical heterogeneity of autosomal dominant centronuclear myopathy. PMID:18162732

  13. Autosomal dominant centronuclear myopathy with unique clinical presentations.

    PubMed

    Lee, Jee Young; Min, Ju Hong; Hong, Yoon Ho; Sung, Jung Joon; Park, Sung Hye; Park, Seong Ho; Lee, Kwang Woo; Park, Kyung Seok

    2007-12-01

    Centronuclear myopathies are clinically and genetically heterogenous diseases with common histological findings, namely, centrally located nuclei in muscle fibers with a predominance and hypotrophy of type 1 fibers. We describe two cases from one family with autosomal dominant centronuclear myopathy with unusual clinical features that had initially suggested distal myopathy. Clinically, the patients presented with muscle weakness and atrophy localized mainly to the posterior compartment of the distal lower extremities. Magnetic resonance imaging revealed predominant atrophy and fatty changes of bilateral gastrocnemius and soleus muscles. This report demonstrates the expanding clinical heterogeneity of autosomal dominant centronuclear myopathy.

  14. Evidence for further genetic heterogeneity in autosomal dominant retinitis pigmentosa

    SciTech Connect

    Kumar-Singh, R.; Kenna, P.F.; Farrar, G.J.; Humphries, P. )

    1993-01-01

    We have investigated the possible involvement of further genetic heterogeneity in autosomal dominant retinitis pigmentosa using a previously unreported large Irish family with the disease. We have utilized polymorphic microsatellite markers to exclude the disease gene segregating in this family from 3q, 6p, and the pericentric region of 8, that is, each of the three chromosomal regions to which adRP loci are known to map. Hence, we provide definitive evidence for the involvement of a fourth locus in autosomal dominant retinitis pigmentosa. 25 refs., 2 figs.

  15. QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2.

    PubMed

    Tang, Shao-qing; Shao, Gao-neng; Wei, Xiang-jin; Chen, Ming-liang; Sheng, Zhong-hua; Luo, Ju; Jiao, Gui-ai; Xie, Li-hong; Hu, Pei-song

    2013-09-15

    A recombinant inbred line (RIL) population bred from a cross between a javanica type (cv. D50) and an indica type (cv. HB277) rice was used to map seven quantitative trait loci (QTLs) for thousand grain weight (TGW). The loci were distributed on chromosomes 2, 3, 5, 6, 8 and 10. The chromosome 3 QTL qTGW3.2 was stably expressed over two years, and contributed 9-10% of the phenotypic variance. A residual heterozygous line (RHL) was selected from the RIL population and its selfed progeny was used to fine map qTGW3.2. In this "F2" population, the QTL explained about 23% of the variance, rising to nearly 33% in the subsequent "F2:3" generation. The physical location of qTGW3.2 was confined to a ~556 kb region flanked by the microsatellite loci RM16162 and RM16194. The region also contains other factors influencing certain yield-related traits, although it is also possible that qTGW3.2 affects these in a pleiotropic fashion.

  16. Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato

    PubMed Central

    Gur, Amit; Zamir, Dani

    2015-01-01

    Molecular markers allowed breeders to mendelize quantitative trait loci (QTL) providing another demonstration that quantitative traits are governed by the same principles as single qualitative genes. This research extends the QTL analysis to two and three QTL and tests our ability to mendelize an oligogenic trait. In tomato, agricultural yield is determined by the weight of the fruits harvested per unit area and the total soluble solids (% Brix)–sugars and acids. The current study explores the segregation of multiple independent yield-related QTL that were identified and mapped using introgression lines (IL) of Solanum pennellii in cultivated processing tomato (S. lycopersicum). We screened 45 different double and triple IL-QTL combinations for agricultural yield, to identify QTL pyramids that behaved in an additive manner and were suitable substrate for mendelizing an oligogenic trait. A pyramid of three independent QTL that significantly improved Brix∗Yield (BXY - the soluble solids output per unit area) compared to M82 was selected. In the progenies of the tri-hybrid we bred using markers a nearly isogenic ‘immortalized F2.’ While the common mode of QTL–QTL interactions across the 45 IL-QTLs combinations was less than additive, the three QTLs in the selected triple-stack performed in an additive manner which made it an exceptional material for breeding. This study demonstrates that using the phenotypic effect of all 27 possible QTL-alleles combinations it is possible to make reliable predictions about the genotypes that will maximize the yield. PMID:26697048

  17. Genetic Analysis and QTL Mapping of Fruit Peduncle Length in Cucumber (Cucumis sativus L.)

    PubMed Central

    Zhang, Song; Wang, Ye; Zhang, Sheng-Ping; Gu, Xing-Fang

    2016-01-01

    Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding. PMID:27936210

  18. Genetic Analysis and QTL Mapping of Fruit Peduncle Length in Cucumber (Cucumis sativus L.).

    PubMed

    Song, Zi-Chao; Miao, Han; Zhang, Song; Wang, Ye; Zhang, Sheng-Ping; Gu, Xing-Fang

    2016-01-01

    Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding.

  19. Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster

    PubMed Central

    Griffin, Robert M.; Schielzeth, Holger; Friberg, Urban

    2016-01-01

    Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented. PMID:27678519

  20. Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster.

    PubMed

    Griffin, Robert M; Schielzeth, Holger; Friberg, Urban

    2016-12-07

    Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.

  1. A major QTL associated with host response to Porcine Reproductive and Respiratory Syndrome virus challenge

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome (PRRS) causes severely decreased reproductive performance in breeding animals and increased respiratory problems and morbidity in growing animals, ultimately resulting in great economic losses in the swine industry. Vaccination has not generally been eff...

  2. Fine mapping of qGW1, a major QTL for grain weight in sorghum.

    PubMed

    Han, Lijie; Chen, Jun; Mace, Emma S; Liu, Yishan; Zhu, Mengjiao; Yuyama, Nana; Jordan, David R; Cai, Hongwei

    2015-09-01

    We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.

  3. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system

    PubMed Central

    2012-01-01

    Background In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent ‘Scarlett’. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. Results The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P < 0.01) effects for at least one trait. Forty-three, 41 and 42 S42ILs revealed effects across both N treatments, under low N and under high N treatment, respectively. Due to overlapping or flanking wild barley introgressions of the S42ILs, these associations were summarised to 58 QTL. In total, 12 QTL of the hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Conclusion Our results suggest that the QTL we identified under hydroponic N cultivation partly

  4. Design database for quantitative trait loci (QTL) data warehouse, data mining, and meta-analysis.

    PubMed

    Hu, Zhi-Liang; Reecy, James M; Wu, Xiao-Lin

    2012-01-01

    A database can be used to warehouse quantitative trait loci (QTL) data from multiple sources for comparison, genomic data mining, and meta-analysis. A robust database design involves sound data structure logistics, meaningful data transformations, normalization, and proper user interface designs. This chapter starts with a brief review of relational database basics and concentrates on issues associated with curation of QTL data into a relational database, with emphasis on the principles of data normalization and structure optimization. In addition, some simple examples of QTL data mining and meta-analysis are included. These examples are provided to help readers better understand the potential and importance of sound database design.

  5. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system.

    PubMed

    Hoffmann, Astrid; Maurer, Andreas; Pillen, Klaus

    2012-10-20

    In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P < 0.01) effects for at least one trait. Forty-three, 41 and 42 S42ILs revealed effects across both N treatments, under low N and under high N treatment, respectively. Due to overlapping or flanking wild barley introgressions of the S42ILs, these associations were summarised to 58 QTL. In total, 12 QTL of the hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field

  6. Carbohydrate metabolic pathway genes associated with quantitative trait loci (QTL) for obesity and type 2 diabetes: identification by data mining.

    PubMed

    Varma, Vijayalakshmi; Wise, Carolyn; Kaput, Jim

    2010-09-01

    Increasing consumption of refined carbohydrates is now being recognized as a primary contributor to the development of nutritionally related chronic diseases such as obesity and type 2 diabetes mellitus (T2DM). A data mining approach was used to evaluate the role of carbohydrate metabolic pathway genes in the development of obesity and T2DM. Data from public databases were used to map the position of the carbohydrate metabolic pathway genes to known quantitative trait loci (QTL) for obesity and T2DM and for examining the pathway genes for the presence of sequence and structural genetic variants such as single nucleotide polymorphisms (SNPs) and copy number variants (CNS), respectively. The results demonstrated that a majority of the genes of the carbohydrate metabolic pathways are associated with QTL for obesity and many for T2DM. In addition, some key genes of the pathways also encode non-synonymous SNPs that exhibit significant differences in population frequencies. This study emphasizes the significance of the metabolic pathways genes in the development of disease phenotypes, its differential occurrence across populations and between individuals, and a strategy for interpreting an individuals' risk for disease.

  7. A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis.

    PubMed

    Zhang, Peifen; Wang, Yibin; Zhang, Jianbo; Maddock, Sheila; Snook, Maurice; Peterson, Thomas

    2003-05-01

    The maize p1 locus coincides with a major QTL (quantitative trait locus) determining levels of maysin, a C-glycosyl flavone that deters feeding by corn ear-worm. The p1 gene is tightly linked with a second gene, p2, and both genes encode similar Myb-domain proteins. We show here that maize cell cultures transformed with either the p1 or p2 genes expressed under a constitutive promoter accumulate transcripts for flavonoid biosynthetic genes, and synthesize phenylpropanoids and C-glycosyl flavones related to maysin. Additionally, maize plants that are deleted for the p1 gene have reduced maysin levels and moderate silk-browning reaction, whereas plants with a deletion of both p1 and p2 have non-detectable silk maysin and non-browning silks. We conclude that both p1 and p2 induce maysin biosynthesis in silk, although the two genes differ in their expression and pigmentation effects in other tissues. These results show that a QTL for flavone biosynthesis actually comprises two tightly linked genes with related functions.

  8. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses

    PubMed Central

    Cubillos, Francisco A.; Brice, Claire; Molinet, Jennifer; Tisné, Sebastién; Abarca, Valentina; Tapia, Sebastián M.; Oporto, Christian; García, Verónica; Liti, Gianni; Martínez, Claudio

    2017-01-01

    Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics. PMID:28592651

  9. A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping

    PubMed Central

    Wang, Baohua; Liu, Limei; Zhang, Dong; Zhuang, Zhimin; Guo, Hui; Qiao, Xin; Wei, Lijuan; Rong, Junkang; May, O. Lloyd; Paterson, Andrew H.; Chee, Peng W.

    2016-01-01

    Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum. In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relatio