Sample records for major biotransformed compound

  1. In vitro antimalarial studies of novel artemisinin biotransformed products and its derivatives.

    PubMed

    Gaur, Rashmi; Darokar, Mahendra P; Ajayakumar, P V; Shukla, Ram Sajiwan; Bhakuni, Rajendra Singh

    2014-11-01

    Biotransformation of antimalarial drug artemisinin by fungi Rhizopus stolonifer afforded three sesquiterpenoid derivatives. The transformed products were 1α-hydroxyartemisinin (3), 3.0%, a new compound, 10β-hydroxyartemisinin, 54.5% (4) and deoxyartemisinin (2) in 9% yield. The fungus expressed high-metabolism activity (66.5%). The chemical structures of the compounds were elucidated by 1D, 2D NMR spectrometry and mass spectral data. The major compound 10β-hydroxyartemisinin (4) was chemically converted to five new derivatives 5-9. All the compounds 3-9 were subjected for in vitro anti-malarial activity. 10β-Hydroxy-12β-arteether (8), IC50 at 18.29nM was found to be 10 times better active than its precursor 4 (184.56nM) and equipotent antimalarial with natural drug artemisinin whereas the α-derivative 9 is 3 times better than 4 under in vitro conditions. Therefore, the major biotransformation product 4 can be exploited for further modification into new clinically potent molecules. The results show the versatility of microbial-catalyzed biotransformations leading to the introduction of a hydroxyl group at tertiary position in artemisinin in derivative (3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biotransformation of macrolide antibiotics using enriched activated sludge culture: Kinetics, transformation routes and ecotoxicological evaluation.

    PubMed

    Terzic, Senka; Udikovic-Kolic, Nikolina; Jurina, Tamara; Krizman-Matasic, Ivona; Senta, Ivan; Mihaljevic, Ivan; Loncar, Jovica; Smital, Tvrtko; Ahel, Marijan

    2018-05-05

    The biotransformation of three prominent macrolide antibiotics (azithromycin, clarithromycin and erythromycin) by an activated sludge culture, which was adapted to high concentrations of azithromycin (10 mg/L) was investigated. The study included determination of removal kinetics of the parent compounds, identification of their major biotransformation products (TPs) and assessment of ecotoxicological effects of biotransformation. The chemical analyses were performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry, which enabled a tentative identification of TPs formed during the experiments. The ecotoxicological evaluation included two end-points, residual antibiotic activity and toxicity to freshwater algae. The enriched activated sludge culture was capable of degrading all studied macrolide compounds with high removal efficiencies (>99%) of the parent compounds at elevated concentrations (10 mg/L). The elimination of all three macrolide antibiotics was associated with the formation of different TPs, including several novel compounds previously unreported in the literature. Some of the TPs were rather abundant and contributed significantly to the overall mass balance at the end of the biodegradation experiments. Biodegradation of all investigated macrolides was associated with a pronounced reduction of the residual antibiotic activity and algal toxicity, indicating a rather positive ecotoxicological outcome of the biotransformation processes achieved by the enriched sludge culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum).

    PubMed

    Hsu, Bo Yang; Lu, Ting Jang; Chen, Chia Hui; Wang, Shing Jung; Hwang, Lucy Sun

    2013-12-15

    Ginseng and lingzhi (Ganoderma lucidum) both are valuable traditional Chinese medicines and have been extensively utilised in functional foods and traditional medicines in many Asian countries. However, massive quantity of ginseng residue is produced after extraction of ginseng which still contains a lot of bioactive compounds such as ginsenosides. The goal of this study was to reuse the American ginseng extraction residue as the fermentation medium of G. lucidum to produce bioactive ginsenoside enriched biotransformation products. The changes of ginsenosides in the fermentation products were analysed during fermentation. Our results showed that after 30 days of fermentation, ginsenoside Rg1, Rd, and compound K (CK) significantly increased, especially Rd, while other ginsenosides (Re, Rb1 and Rc) decreased during fermentation. Ginsenoside Rd is the major ginsenoside in the final fermentation product. Furthermore, the biotransformation of ginsenosides was the major reaction in this fermentation process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.

  5. Microbial transformation of citral by Penicillium sp..

    PubMed

    Esmaeili, Akbar; Tavassoli, Afsaneh

    2010-01-01

    Thymol is present in the essential oils from herbs and spices, such as thyme. It is produced by these plant species as a chemical defense against phytopathogenic microorganisms. Therefore, this compound has attracted great attention in food industry, i.e., it has been used as a natural preservative in foods such as cheese to prevent fungal growth. Previous studies concerning the biotransformation of nerol by Penicillium sp. and microbial transformation of citral by sporulated surface cultures method (SSCM) of Penicillium digitatum have been reported. The objective of this research was to study the pathway involved during biotransformation of citral by Penicillium sp. using two methods. The culture preparation was done using different microbial methods and incubation periods to obtain Penicillium for citral biotransformation. The biotransformation products were identified by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). A comparison of the two methods showed that SSCM was more effective, its major products were thymol (21.5 %), geranial (18.6 %) and nerol (13.7 %). LM produced only one compound — thymol — with a low efficiency.

  6. Involvement of Tetrahymena pyriformis and selected fungi in the elimination of anthracene, and toxicity assessment of the biotransformation products.

    PubMed

    Guiraud, P; Bonnet, J L; Boumendjel, A; Kadri-Dakir, M; Dusser, M; Bohatier, J; Steiman, R

    2008-02-01

    Anthracene (AC) is a non-mutagenic and non-carcinogenic, low-molecular-weight polycyclic aromatic hydrocarbon present in the environment. Its toxicity can be dramatically increased after solar-light exposure. Biotransformation capacities of AC by Tetrahymena pyriformis and a selection of eight micromycetes were studied, and the ability of these microorganisms to detoxify the polluted ecosystems was assessed. We showed that T. pyriformis was able to accumulate high amounts of AC without any transformation. In contrast, the fungi Cunninghamella elegans, Absidia fusca, Absidia cylindrospora, Rhodotorula glutinis, and Aspergillus terreus were able to transform AC with a high efficiency. Cytotoxicity assays conducted on HeLa cells and T. pyriformis showed that crude extract from A. fusca culture medium obtained after AC biotransformation was not toxic. For A. fusca and A. cylindrospora, 1-4 dihydroxyanthraquinone was shown to be the major product during the biotransformation process. This compound seemed to be a dead-end metabolite at least for the Absidia strains. The cytotoxicity of 1-4 dihydroxyanthraquinone was higher than that of AC to T. pyriformis but lower to HeLa cells. On the whole our results showed that the microorganisms studied were all able to decontaminate an AC-polluted ecosystem, either by accumulating or transforming the compound. A possible detoxification process resulting from AC biotransformation can be considered only using the human cell model.

  7. Glycyrrhiza glabra (Linn.) and Lavandula officinalis (L.) cell suspension cultures-based biotransformation of β-artemether.

    PubMed

    Patel, Suman; Gaur, Rashmi; Upadhyaya, Mohita; Mathur, Archana; Mathur, Ajay K; Bhakuni, Rajendra S

    2011-07-01

    The biotransformation of β-artemether (1) by cell suspension cultures of Glycyrrhiza glabra and Lavandula officinalis is reported here for the first time. The major biotransformed product appeared as a grayish-blue color spot on thin-layer chromatography (TLC) with transparent crystal-like texture. Based on its infrared (IR) and (1)H nuclear magnetic resonance (NMR) spectra, the product was characterized as a tetrahydrofuran (THF)-acetate derivative (2). The highest conversion efficiencies of 57 and 60% were obtained when 8-9-day-old cell suspensions of G. glabra and L. officinalis were respectively fed with 4-7 mg of compound 1 in 40 ml of medium per culture and the cells were harvested after 2-5 days of incubation. The addition of compound 1 at the beginning of the culture cycle caused severe growth depression in a dose-dependent manner, resulting in poor bioconversion efficiency of ~25% at 2-5 mg/culture dose only.

  8. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    PubMed

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borden, R.C.; Bedient, P.B.

    A three well injection-production test was performed at the United Creosoting Company (UCC) site in Conroe, Texas, to estimate the effective in situ retardation factors for adsorption and to evaluate the significance of biotransformation in limiting the transport of polycyclic aromatics present in the shallow aquifer. The field test was also used as a model to determine if this type of testing would be feasible at other hazardous waste sites. During the test, chloride, a non-reactive tracer and two organic compounds, naphthalene and paradichlorobenzene (pDCB), were injected into a center well for 24 hours followed by clean ground water formore » six days. Ground water was continuously produced from two adjoining wells and monitored to observe the breakthrough of these compounds. Data from the test were analyzed by comparing the statistical moments of the chloride and organics distributions. Retardation factors for naphthalene and pDCB were estimated to be 0.03 and 0.97 by comparison of the statistical moments. A significant loss of naphthalene and pDCB was also observed during the three well test, apparently due to biotransformation. These results suggest that biotransformation is the major process limiting the transport of naphthalene and similar compounds at the UCC site.« less

  10. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  11. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    PubMed

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-03

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.

  12. Chemopreventive potential of the tannase-mediated biotransformation of green tea.

    PubMed

    Macedo, J A; Ferreira, L R; Camara, L E; Santos, J C; Gambero, A; Macedo, G A; Ribeiro, M L

    2012-07-15

    Green tea (Camellia sinensis) is one of the most widely consumed beverages in the world. The cancer chemopreventive qualities of green tea have been well documented. Epigallocatechin gallate (EGCG) is often described as the most potently chemopreventive green tea catechin; however, the low bioavailability of EGCG is a limiting factor for its biological effect. Thus, the aim of this work was to test the chemopreventive potential of green tea extract and EGCG after tannase-mediated hydrolysis. The results showed that the biotransformed compounds retained most of the beneficial properties of the original compounds, and some beneficial properties were improved in the biotransformed compounds. Biotransformation of EGCG decreased its toxicity without affecting its antiproliferative effects. Furthermore, human cells gene expression profiling showed that the biotransformed compounds modulated the expression of several genes related to carcinogenesis. These results demonstrate the benefits of the biotechnological modification of natural food molecules, allowing the improvement of the nutraceutical potential of a beverage as green tea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media.

    PubMed

    Bier, Mário Cesar Jucoski; Medeiros, Adriane Bianchi Pedroni; Soccol, Carlos Ricardo

    2017-02-01

    Aroma and fragrances have high commercial value for use in food, cosmetics and perfumes. The biotransformation of terpenes by microorganisms represents an attractive alternative method for production of flavourings. Endophytic fungi offer a great potential for the production of several groups of compounds; however, few studies have evaluated the biotransformation of limonene. Following preliminary studies on the biotransformation of limonene, submerged fermentation was carried out using an endophytic fungus isolated from Pinus taeda and identified as Phomopsis sp. The presence of several biotransformation products was detected and identified by mass spectrometry (GC-MS). The studied strain showed a divergent metabolic behaviour, as compounds of interest such as α-terpineol, carvone, and limoneno-1,2-diol were produced under different conditions. In addition to the minor metabolites terpinen-4-ol, menthol and carveol, this strain also produced major metabolites, including 0.536 g L -1 carvone and 2.08 g L -1 limonene-1,2-diol in synthetic medium and 2.10 g L -1 limonene-1,2-diol in a natural orange extract medium with single fed-batch, while the cyclic fed-batch resulted in concentrations less than 1 g L -1 . Therefore, our study produced a wide variety of limonene derivatives at a high concentration using a natural medium and a newly isolated endophytic fungal strain. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Nitroaryl-1,4-dihydropyridines as antioxidants against rat liver microsomes oxidation induced by iron/ascorbate, nitrofurantoin and naphthalene.

    PubMed

    Letelier, María Eugenia; Entrala, Paz; López-Alarcón, Camilo; González-Lira, Víctor; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Santander, Paola; Núñez-Vergara, Luis

    2007-12-01

    1,4-Dihydropyridines (DHPs) used in the treatment of cardiovascular diseases, are calcium channel antagonists and also antioxidant agents. These drugs are metabolized through cytochrome P(450) oxidative system, majority localized in the hepatic endoplasmic reticulum. Several lipophilic drugs generate oxidative stress to be metabolized by this cellular system. Thus, DHP antioxidant properties may prevent the oxidative stress associated with hepatic biotransformation of drugs. In this work, we tested the antioxidant capacity of several synthetic nitro-phenyl-DHPs. These compounds (I-IV) inhibited the microsomal lipid peroxidation, UDPGT oxidative activation and microsomal thiols oxidation; all phenomena induced by Fe(3+)/ascorbate, a generator system of oxygen free radicals. As the same manner, these compounds inhibited the oxygen consumption induced by Cu(2+)/ascorbate in the absence of microsomes. Furthermore, compound III (2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-ethyl-dicarboxylate) and compound V (N-ethyl-2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-methyl-dicarboxylate) inhibited the microsomal lipid peroxidation induced by Nitrofurantoin and naphthalene in the presence of NADPH. Oxidative stress induced on endoplasmic reticulum may alter the biotransformation of drugs, so, modifying their plasmatic concentrations and therapeutic effects. When drugs which are activated by biotransformation are administered together with antioxidant drugs, such as DHPs, oxidative stress induced in situ may be prevented.

  15. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    PubMed

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis

    PubMed Central

    2016-01-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  18. Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations.

    PubMed

    Nyanhongo, G S; Aichernig, N; Ortner, M; Steiner, Walter; Guebitz, G M

    2009-06-15

    Pseudomonas putida GG04 and Bacillus SF have been successfully incorporated into an explosive formulation to enhance biotransformation of TNT residues and/or explosives which fail to detonate due to technical faults. The incorporation of the microorganisms into the explosive did not affect the quality of the explosive (5 years storage) in terms of detonation velocity while complete biotransformation of TNT moieties upon transfer in liquid media was observed after 5 days. The incorporated microorganisms reduced TNT sequentially leading to the formation of hydroxylaminodinitrotoluenes (HADNT), 4-amino-2,6-dinitrotoluenes; 2-amino-4,6-dinitrotoluenes, different azoxy compounds; 2,6-diaminonitrotoluenes (2,4-DAMNT) and 2,4-diaminonitrotoluenes (2,6-DAMNT). However, the accumulation of AMDNT and DAMNT (major dead-end metabolites) was effectively prevented by incorporating guaiacol and catechol during the biotransformation process.

  19. COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION

    EPA Science Inventory

    Changes in the stable isotopic composition of organic contaminants (isotopic fractionation) are a useful indicator of biotransformation, and have been reported in literature for several volatile organic compounds. The technique offers an interesting alternative to time-consuming ...

  20. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review.

    PubMed

    Butt, Craig M; Muir, Derek C G; Mabury, Scott A

    2014-02-01

    The study reviews the current state of knowledge regarding the biotransformation of fluorotelomer-based compounds, with a focus on compounds that ultimately degrade to form perfluoroalkyl carboxylates (PFCAs). Most metabolism studies have been performed with either microbial systems or rats and mice, and comparatively few studies have used fish models. Furthermore, biotransformation studies thus far have predominately used the 8:2 fluorotelomer alcohol (FTOH) as the substrate. However, there have been an increasing number of studies investigating 6:2 FTOH biotransformation as a result of industry's transition to shorter-chain fluorotelomer chemistry. Studies with the 8:2 FTOH metabolism universally show the formation of perfluorooctanoate (PFOA) and, to a smaller fraction, perfluorononanoate (PFNA) and lower-chain-length PFCAs. In general, the overall yield of PFOA is low, presumably because of the multiple branches in the biotransformation pathways, including conjugation reactions in animal systems. There have been a few studies of non-FTOH biotransformation, which include polyfluoroalkyl phosphates (PAPs), 8:2 fluorotelomer acrylate (8:2 FTAC), and fluorotelomer carboxylates (FTCAs, FTUCAs). The PAPs compounds and 8:2 FTAC were shown to be direct precursors to FTOHs and thus follow similar degradation pathways. © 2013 SETAC.

  1. BIOTRANSFORMATION OF MIXTURES OF CHLORINATED ALIPHATIC HYDROCARBONS BY AN ACETATE-GROWN METHANOGENIC ENRICHMENT CULTURE. (R825549C053)

    EPA Science Inventory

    Biotransformation of chlorinated aliphatic hydrocarbons under anaerobic conditions has received considerable attention due to the prevalence of these compounds as groundwater contaminants. However, information concerning the impact of mixtures of chlorinated compounds on their...

  2. The Toluene o-Xylene Monooxygenase Enzymatic Activity for the Biosynthesis of Aromatic Antioxidants

    PubMed Central

    Pizzo, Elio; Notomista, Eugenio; Pezzella, Alessandro; Di Cristo, Carlo; De Lise, Federica; Di Donato, Alberto; Izzo, Viviana

    2015-01-01

    Monocyclic phenols and catechols are important antioxidant compounds for the food and pharmaceutic industries; their production through biotransformation of low-added value starting compounds is of major biotechnological interest. The toluene o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 is a bacterial multicomponent monooxygenase (BMM) that is able to hydroxylate a wide array of aromatic compounds and has already proven to be a versatile biochemical tool to produce mono- and dihydroxylated derivatives of aromatic compounds. The molecular determinants of its regioselectivity and substrate specificity have been thoroughly investigated, and a computational strategy has been developed which allows designing mutants able to hydroxylate non-natural substrates of this enzyme to obtain high-added value compounds of commercial interest. In this work, we have investigated the use of recombinant ToMO, expressed in cells of Escherichia coli strain JM109, for the biotransformation of non-natural substrates of this enzyme such as 2-phenoxyethanol, phthalan and 2-indanol to produce six hydroxylated derivatives. The hydroxylated products obtained were identified, isolated and their antioxidant potential was assessed both in vitro, using the DPPH assay, and on the rat cardiomyoblast cell line H9c2. Incubation of H9c2 cells with the hydroxylated compounds obtained from ToMO-catalyzed biotransformation induced a differential protective effect towards a mild oxidative stress induced by the presence of sodium arsenite. The results obtained confirm once again the versatility of the ToMO system for oxyfunctionalization reactions of biotechnological importance. Moreover, the hydroxylated derivatives obtained possess an interesting antioxidant potential that encourages the use of the enzyme for further functionalization reactions and their possible use as scaffolds to design novel bioactive molecules. PMID:25915063

  3. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation.

    PubMed

    Sultana, Nighat

    2018-01-31

    Steroids are perhaps one of the most widely used group of drugs in present day. Beside the established utilization as immunosuppressive, anti-inflammatory, anti-rheumatic, progestational, diuretic, sedative, anabolic and contraceptive agents, recent applications of steroid compounds include the treatment of some forms of cancer, osteoporosis, HIV infections and treatment of declared AIDS. Steroids isolated are often available in minute amounts. So biotransformation of natural products provides a powerful means in solving supply problems in clinical trials and marketing of the drug for obtaining natural products in bulk amounts. If the structure is complex, it is often an impossible task to isolate enough of the natural products for clinical trials. The microbial biotransformation of steroids yielded several novel metabolites, exhibiting different activities. The metabolites produced from pregnenolone acetate by Cunning hamella elegans and Rhizopus stolonifer were screened against tyrosinase and cholinesterase showed significant inhibitory activities than the parent compound. Diosgenin and its transformed sarsasapogenin were screened for their acetyl cholinesterase and butyryl cholinesterase inhibitory activities. Sarsasapogenin was screened for phytotoxicity, and was found to be more active than the parent compound. Diosgenin, prednisone and their derivatives were screened for their anti-leishmanial activity. All derivatives were found to be more active than the parent compound. The biotransformation of steroids have been reviewed to a little extent. This review focuses on the biotransformation and functions of selected steroids, the classification, advantages and agents of enzymatic biotransformation and examines the potential role of new enzymatically transformed steroids and their derivatives in the chemoprevention and treatment of other diseases. tyrosinase and cholinesterase inhibitory activities, severe asthma, rheumatic disorders, renal disorders and diseases of inflammatory bowel, skin, gastrointestinal tract. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Biotransformation of an uncured composite material

    NASA Technical Reports Server (NTRS)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  5. A new agent developed by biotransformation of polyphyllin VII inhibits chemoresistance in breast cancer.

    PubMed

    He, Dong-Xu; Li, Guo-Hong; Gu, Xiao-Ting; Zhang, Liang; Mao, Ai-Qin; Wei, Juan; Liu, De-Quan; Shi, Gui-Yang; Ma, Xin

    2016-05-31

    Biotransformation by the endophytes of certain plants changes various compounds, and this 'green' chemistry becomes increasingly important for finding new products with pharmacological activity. In this study, polyphyllin VII (PPL7) was biotransformed by endophytes from the medicinal plant Paris polyphylla Smith, var. yunnanensis. This produced a new compound, ZH-2, with pharmacological activity in vitro and in vivo. ZH-2 was more potent than PPL7 in selectively killing more chemoresistant than chemosensitive breast cancer cells. ZH-2 also re-sensitized chemoresistant breast cancer cells, as evidenced by the improved anti-cancer activity of commonly-used chemotherapeutic agent in vitro, in vivo, and in clinical samples. This anti-chemoresistance effect of ZH-2 was associated with inhibiting the epithelial-mesenchymal transition (EMT) pathway. Taken together, our findings are the first one to link biotransformation with a biomedicine. The results provide insights into developing new pharmacologically-active agents via biotransformation by endophytes.

  6. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4-substituted 1-(2-methoxyphenyl)piperazine derivatives.

    PubMed

    Słoczyńska, Karolina; Pańczyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk; Pękala, Elżbieta

    2016-12-01

    In vitro mutagenic, antimutagenic, and antioxidant potency evaluation and biotransformation of six novel 4-substituted 1-(2-methoxyphenyl)piperazine derivatives demonstrating antidepressant-like activity were investigated. Mutagenic and antimutagenic properties were assessed using the Ames test; free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and biotransformation was performed with liver microsomes. It was found that all tested compounds are not mutagenic in bacterial strains TA100 and TA1535 and exhibit antimutagenic effects in the Ames test. Noteworthy, compounds possessing propyl linker between phenoxyl and N-(2-methoxyphenyl)piperazine displayed more pronounced antimutagenic properties than derivatives with ethoxyethyl linker. Additionally, compounds 2 and 6 in vitro biotransformation showed that primarily their hydroxylated or O-dealkylated metabolites are formed. Some of the compounds exhibited intrinsic clearance values lower than those reported previously for antidepressant imipramine. To sum up, the results of the present study might represent a valuable step in designing and planning future studies with piperazine derivatives. © 2016 Wiley Periodicals, Inc.

  7. Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors.

    PubMed

    Torresi, Elena; Escolà Casas, Mònica; Polesel, Fabio; Plósz, Benedek G; Christensson, Magnus; Bester, Kai

    2017-01-01

    Addition of external carbon sources to post-denitrification systems is frequently used in wastewater treatment plants to enhance nitrate removal. However, little is known about the fate of micropollutants in post-denitrification systems and the influence of external carbon dosing on their removal. In this study, we assessed the effects of two different types and availability of commonly used carbon sources -methanol and ethanol- on the removal of micropollutants in biofilm systems. Two laboratory-scale moving bed biofilm reactors (MBBRs), containing AnoxKaldnes K1 carriers with acclimated biofilm from full-scale systems, were operated in continuous-flow using wastewater dosed with methanol and ethanol, respectively. Batch experiments with 22 spiked pharmaceuticals were performed to assess removal kinetics. Acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily biotransformed in both MBBRs (biotransformations rate constants k bio between 1.2 and 12.9 L g biomass -1  d -1 ), 13 compounds were moderately biotransformed (rate constants between 0.2 and 2 L g biomass -1  d -1 ) and 4 compounds were recalcitrant. The methanol-dosed MBBR showed higher k bio (e.g., 1.5-2.5-fold) than in the ethanol-dosed MBBR for 9 out of the 22 studied compounds, equal k bio for 10 compounds, while 3 compounds (i.e., targeted sulfonamides) were biotransformed faster in the ethanol-dosed MBBR. While biotransformation of most of the targeted compounds followed first-order kinetics, removal of venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole could be described with a cometabolic model. Analyses of the microbial composition in the biofilms using 16S rRNA amplicon sequencing revealed that the methanol-dosed MBBR contained higher microbial richness than the one dosed with ethanol, suggesting that improved biotransformation of targeted compounds could be associated with higher microbial richness. During continuous-flow operation, at conditions representative of full-scale denitrification systems (hydraulic residence time = 2 h), the removal efficiencies of micropollutants were below 35% in both MBBRs, with the exception of atenolol and trimethoprim (>80%). Overall, this study demonstrated that MBBRs used for post-denitrification could be optimized to enhance the biotransformation of a number of micropollutants by accounting for optimal carbon sources and extended residence time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation

    PubMed Central

    Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F.J.; van Wezel, Gilles P.; Claessen, Dennis; Hae Choi, Young

    2015-01-01

    Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782

  9. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    PubMed

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs. Enantioselective biotransformation of chiral POPs is dependent on enzyme amounts and activities. However, the role of cytochrome P450 in enantioselective biotransformation has not yet been confirmed. Currently available data on biotransformation of chiral POPs provide a preliminary understanding of the fate of chiral compounds in organisms. Further detailed studies of species-dependent biotransformation pathway and molecular mechanism in various animal models should be performed to comprehensively understand chiral POP biotransformation.

  10. Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters.

    PubMed

    Prigione, Valeria; Trocini, Bruno; Spina, Federica; Poli, Anna; Romanisio, Davide; Giovando, Samuele; Varese, Giovanna Cristina

    2018-05-01

    Tannins are a complex family of polyphenolic compounds, widely distributed in the plant kingdom where they act as growth inhibitors towards many microorganisms including bacteria, yeasts, and fungi. Tannins are one of the major components of tannery wastewaters and may cause serious environmental pollution. In the present study, four different tannins (the hydrolysable chestnut ellagitannin and tara gallotannin and the condensed quebracho and wattle tannins) were characterized from a mycological point of view with the aim of selecting fungal strains capable of growing in the presence of high tannin concentration and thus potentially useful in industrial biotransformations of these compounds or in the bioremediation of tannery wastewaters. A total of 125 isolates of filamentous fungi belonging to 10 species and four genera (Aspergillus, Paecilomyces, Penicillium, and Talaromyces) were isolated from the tannin industrial preparations. Miniaturized biotransformation tests were set up with 10 fungal strains and the high-performance liquid chromatography (HPLC) analysis pointed out a strong activity of all the tested fungi on both chestnut and tara tannins. Two strains (Aspergillus tubingensis MUT 990 and Paecilomyces variotii MUT 1125), tested against a real tannery wastewater, were particularly efficient in chemical oxygen demand (COD) and tannin removal (> 60%), with a detoxification above 74%. These results indicate that these fungi are potentially exploitable in the treatment of tannery wastewaters.

  11. A new agent developed by biotransformation of polyphyllin VII inhibits chemoresistance in breast cancer

    PubMed Central

    Zhang, Liang; Mao, Ai-Qin; Wei, Juan; Liu, De-Quan; Shi, Gui-Yang; Ma, Xin

    2016-01-01

    Biotransformation by the endophytes of certain plants changes various compounds, and this ‘green’ chemistry becomes increasingly important for finding new products with pharmacological activity. In this study, polyphyllin VII (PPL7) was biotransformed by endophytes from the medicinal plant Paris polyphylla Smith, var. yunnanensis. This produced a new compound, ZH-2, with pharmacological activity in vitro and in vivo. ZH-2 was more potent than PPL7 in selectively killing more chemoresistant than chemosensitive breast cancer cells. ZH-2 also re-sensitized chemoresistant breast cancer cells, as evidenced by the improved anti-cancer activity of commonly-used chemotherapeutic agent in vitro, in vivo, and in clinical samples. This anti-chemoresistance effect of ZH-2 was associated with inhibiting the epithelial-mesenchymal transition (EMT) pathway. Taken together, our findings are the first one to link biotransformation with a biomedicine. The results provide insights into developing new pharmacologically-active agents via biotransformation by endophytes. PMID:26701723

  12. Mercury Analysis of Acid- and Alkaline-Reduced Biological Samples: Identification of meta-Cinnabar as the Major Biotransformed Compound in Algae†

    PubMed Central

    Kelly, David; Budd, Kenneth; Lefebvre, Daniel D.

    2006-01-01

    The biotransformation of HgII in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only β-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of HgII applied as HgCl2 into a form with the analytical properties of β-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of β-HgS in biological samples. Under aerobic conditions, HgII is biotransformed mainly into β-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats. PMID:16391065

  13. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.

    PubMed

    Kelly, David; Budd, Kenneth; Lefebvre, Daniel D

    2006-01-01

    The biotransformation of Hg(II) in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only beta-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of Hg(II) applied as HgCl2 into a form with the analytical properties of beta-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of beta-HgS in biological samples. Under aerobic conditions, Hg(II) is biotransformed mainly into beta-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats.

  14. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li

    2016-10-01

    Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biotransformation of dichlorodiphenyltrichloroethane in the benthic polychaete, Nereis succinea: quantitative estimation by analyzing the partitioning of chemicals between gut fluid and lipid.

    PubMed

    Wang, Fei; Pei, Yuan-yuan; You, Jing

    2015-02-01

    Biotransformation plays an important role in the bioaccumulation and toxicity of a chemical in biota. Dichlorodiphenyltrichloroethane (DDT) commonly co-occurs with its metabolites (dichlorodiphenyldichloroethane [DDD] and dichlorodiphenyldichloroethylene [DDE]), in the environment; thus it is a challenge to accurately quantify the biotransformation rates of DDT and distinguish the sources of the accumulated metabolites in an organism. The present study describes a method developed to quantitatively analyze the biotransformation of p,p'-DDT in the benthic polychaete, Nereis succinea. The lugworms were exposed to sediments spiked with DDT at various concentrations for 28 d. Degradation of DDT to DDD and DDE occurred in sediments during the aging period, and approximately two-thirds of the DDT remained in the sediment. To calculate the biotransformation rates, residues of individual compounds measured in the bioaccumulation testing (after biotransformation) were compared with residues predicted by analyzing the partitioning of the parent and metabolite compounds between gut fluid and tissue lipid (before biotransformation). The results suggest that sediment ingestion rates decreased when DDT concentrations in sediment increased. Extensive biotransformation of DDT occurred in N. succinea, with 86% of DDT being metabolized to DDD and <2% being transformed to DDE. Of the DDD that accumulated in the lugworms, approximately 70% was the result of DDT biotransformation, and the remaining 30% was from direct uptake of sediment-associated DDD. In addition, the biotransformation was not dependent on bulk sediment concentrations, but rather on bioaccessible concentrations of the chemicals in sediment, which were quantified by gut fluid extraction. The newly established method improved the accuracy of prediction of the bioaccumulation and toxicity of DDTs. © 2014 SETAC.

  16. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  18. Biotransformation of BTEX under anaerobic, denitrifying conditions: Field and laboratory observations

    NASA Astrophysics Data System (ADS)

    Barbaro, J. R.; Barker, J. F.; Lemon, L. A.; Mayfield, C. I.

    1992-11-01

    Three natural-gradient injection experiments in the Borden aquifer (Ontario, Canada) (˜ 100-300 days in duration) and a 452-day laboratory microcosm experiment were performed to evaluate the biotransformation of BTEX (benzene, toluene, ethylbenzene and o-, m-, p-xylenes) derived from gasoline under anaerobic, denitrifying conditions. Both NO 3-- amended and unamended control (i.e. no NO 3- added) experiments were performed. In the unamended control injection experiment, toluene biotransformed between 1 and 5 m from the injection well. All other aromatic compounds were recalcitrant in this field experiment and all aromatic compounds were recalcitrant in unamended control microcosms. After an acclimatization period, toluene biotransformed relatively rapidly in the presence of NO 3- in both the laboratory and field to a residual level of ˜ 100 μg L -1. In the presence of NO 3- the xylene isomers and ethylbenzene biotransformed to a lesser degree. Benzene was recalcitrant in all experiments. The acetylene blockage technique was used to demonstrate that denitrifying bacteria were active in the presence of NO 3-. In the NO 3--amended injection experiments, little BTEX mass loss occurred beyond the 1-m multilevel-piezometer fence. However, NO 3- continued to decline downgradient, suggesting that other sources of carbon were being utilized by denitrifying bacteria in preference to residual BTEX. In addition to observations on mass loss, these experiments provided evidence of inhibition of BTEX biotransformation in the presence of acetylene, and competitive utilization between toluene, ethylbenzene and the xylene isomers. Given the recalcitrance of benzene and high thresholds of the compounds that did biotransform, the addition of NO 3- as an alternate electron acceptor would not be successful in this aquifer as a remedial measure.

  19. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    PubMed Central

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051

  20. Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole.

    PubMed

    Olivares, Christopher I; Sierra-Alvarez, Reyes; Abrell, Leif; Chorover, Jon; Simonich, Michael; Tanguay, Robert L; Field, Jim A

    2016-11-01

    2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound that readily undergoes anaerobic nitro-group reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by formation of unique azo dimers. Currently there is little knowledge on the ecotoxicity of DNAN (bio)transformation products. In the present study, mortality, development, and behavioral effects of DNAN (bio)transformation products were assessed using zebrafish (Danio rerio) embryos. The authors tested individual products, MENA and DAAN, as well as dimer and trimer surrogates. As pure compounds, 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused statistically significant effects, with lowest-observable-adverse effect levels (LOAEL) at 6.4 μM on 1 or 2 developmental endpoints, respectively. The latter had 6 additional statistically significant developmental endpoints with LOAELs of 64 μM. Based on light-to-dark swimming behavioral tests, DAAN (640 μM) caused reduction in swimming, suggestive of neurotoxicity. No statistically significant mortality occurred (≤64 μM) for any of the individual compounds. However, metabolite mixtures formed during different stages of MENA (bio)transformation in soil were characterized using high-resolution mass spectrometry in parallel with zebrafish embryo toxicity assays, which demonstrated statistically significant mortality during the onset of azo-dimer formation. Overall the results indicate that several DNAN (bio)transformation products cause different types of toxicity to zebrafish embryos. Environ Toxicol Chem 2016;35:2774-2781. © 2016 SETAC. © 2016 SETAC.

  1. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    PubMed

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19 +FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  2. Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data.

    PubMed

    Latino, Diogo A R S; Wicker, Jörg; Gütlein, Martin; Schmid, Emanuel; Kramer, Stefan; Fenner, Kathrin

    2017-03-22

    Developing models for the prediction of microbial biotransformation pathways and half-lives of trace organic contaminants in different environments requires as training data easily accessible and sufficiently large collections of respective biotransformation data that are annotated with metadata on study conditions. Here, we present the Eawag-Soil package, a public database that has been developed to contain all freely accessible regulatory data on pesticide degradation in laboratory soil simulation studies for pesticides registered in the EU (282 degradation pathways, 1535 reactions, 1619 compounds and 4716 biotransformation half-life values with corresponding metadata on study conditions). We provide a thorough description of this novel data resource, and discuss important features of the pesticide soil degradation data that are relevant for model development. Most notably, the variability of half-life values for individual compounds is large and only about one order of magnitude lower than the entire range of median half-life values spanned by all compounds, demonstrating the need to consider study conditions in the development of more accurate models for biotransformation prediction. We further show how the data can be used to find missing rules relevant for predicting soil biotransformation pathways. From this analysis, eight examples of reaction types were presented that should trigger the formulation of new biotransformation rules, e.g., Ar-OH methylation, or the extension of existing rules, e.g., hydroxylation in aliphatic rings. The data were also used to exemplarily explore the dependence of half-lives of different amide pesticides on chemical class and experimental parameters. This analysis highlighted the value of considering initial transformation reactions for the development of meaningful quantitative-structure biotransformation relationships (QSBR), which is a novel opportunity offered by the simultaneous encoding of transformation reactions and corresponding half-lives in Eawag-Soil. Overall, Eawag-Soil provides an unprecedentedly rich collection of manually extracted and curated biotransformation data, which should be useful in a great variety of applications.

  3. Bridging across OECD 308 and 309 Data in Search of a Robust Biotransformation Indicator.

    PubMed

    Honti, Mark; Hahn, Stefan; Hennecke, Dieter; Junker, Thomas; Shrestha, Prasit; Fenner, Kathrin

    2016-07-05

    The OECD guidelines 308 and 309 define simulation tests aimed at assessing biotransformation of chemicals in water-sediment systems. They should serve the estimation of persistence indicators for hazard assessment and half-lives for exposure modeling. Although dissipation half-lives of the parent compound are directly extractable from OECD 308 data, they are system-specific and mix up phase transfer with biotransformation. In contrast, aerobic biotransformation half-lives should be easier to extract from OECD 309 experiments with suspended sediments. Therefore, there is scope for OECD 309 tests with suspended sediment to serve as a proxy for degradation in the aerobic phase of the more complicated OECD 308 test, but that correspondence has remained untested so far. Our aim was to find a way to extract biotransformation rate constants that are universally valid across variants of water-sediment systems and, hence, provide a more general description of the compound's behavior in the environment. We developed a unified model that was able to simulate four experimental types (two variants of OECD 308 and two variants of OECD 309) for three compounds by using a biomass-corrected, generalized aerobic biotransformation parameter (k'bio). We used Bayesian calibration and uncertainty assessment to calibrate the models for individual experimental types separately and for combinations of experimental types. The results suggested that k'bio was a generally valid parameter for quantifying biotransformation across systems. However, its uncertainty remained significant when calibrated on individual systems alone. Using at least two different experimental types for the calibration of k'bio increased its robustness by clearly separating degradation from the phase-transfer processes taking place in the individual systems. Overall, k'bio has the potential to serve as a system-independent descriptor of aerobic biotransformation at the water-sediment interface that is equally and consistently applicable for both persistence and exposure assessment purposes.

  4. Bioactive metabolites from biotransformation of paeonol by the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Li, Xiao-Jun; Shi, Xin-Wei; Shuai, Qi; Gao, Jin-Ming; Zhang, An-Ling

    2011-08-01

    Biotransformation of paeonol (1) with the white-rot basidiomycete Coriolus versicolor afforded two metabolites, 2,4-dihydroxyacetophenone (2) and 2,5-dihydroxy-4-methoxyacetophenone (3), which were identified by spectroscopic methods. Compound 3 showed higher antioxidative, antibacterial, antifungal activities than 1 or 2. The results demonstrate for the first time that C. versicolor has the capacities to catalyze hydroxylation and demethylation reactions on the aromatic compound.

  5. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents.

    PubMed

    Zhao, Yujia; Lv, Bo; Feng, Xudong; Li, Chun

    2017-12-27

    Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.

  6. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices.

    PubMed

    Valero-Cases, Estefanía; Nuncio-Jáuregui, Nallely; Frutos, María José

    2017-08-09

    This study describes the effect of fermentation and the impact of simulated gastrointestinal digestion (SGD) of four fermented pomegranate juices with different lactic acid bacteria (LAB) on the biotransformation of phenolic compounds. The changes of the antioxidant capacity (AOC) and of LAB growth and survival in different fermented juices were also studied. Two new phenolic derivatives (catechin and α-punicalagin) were identified only in fermented juices. During SGD, the AOC increased together with the phenolic derivatives concentration mainly in the juices fermented with Lactobacillus. These derivatives were formed due to the LAB metabolism of the ellagitannins, epicatechin, and catechin after fermentation and during SGD. The FRAP assay performance might be associated with the degradation and biotransformation of catechin. The fermented pomegranate juices with these LAB increased the bioaccessibility of phenolic compounds, ensuring the survival of LAB after SGD, suggesting a possible prebiotic effect of phenolic compounds on LAB.

  7. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation.

    PubMed

    Men, Yujie; Achermann, Stefan; Helbling, Damian E; Johnson, David R; Fenner, Kathrin

    2017-02-01

    Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU- and OCT-treated samples, as well as before and after ammonia oxidation was recovered in OCT-treated samples, we were able to demonstrate that ammonia-oxidizing bacteria were highly involved in the biotransformation of four compounds: asulam, clomazone, monuron and trimethoprim. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus.

    PubMed

    Nielsen, S E; Breinholt, V; Cornett, C; Dragsted, L O

    2000-09-01

    The present study was carried out in order to investigate the in vivo biotransformation and excretion of the flavone, tangeretin, found in citrus fruits, by analysing urine and faeces samples from rats after repeated administration of 100 mg/kg body weight/day tangeretin. The formed metabolites were separated and identified by HPLC and the structures elucidated by LC/MS and 1H NMR. Ten new, major metabolites with intact flavonoid structure were identified. The metabolites identified were either demethylated or hydroxylated derivatives of the parent compound and metabolic changes were found primarily to occur in the 4' position of the B-ring. The total urinary excretion of tangeretin metabolites with intact flavan nucleus was about 11% of the administered daily dose.

  9. Biotransformation of perfumery terpenoids, (−)-ambrox® by a fungal culture Macrophomina phaseolina and a plant cell suspension culture of Peganum harmala

    PubMed Central

    2012-01-01

    Background Biotransformation offers chemo enzymatic system to modify the compounds into their novel analogues which are difficult to synthesize by chemical methods. This paper describes the biotransformational studies of ambrox, one of the most important components of natural Ambergris (wale sperm) with fungal and plant cell culture. Results Biotransformation of (−)-ambrox (1) with a fungal cell culture of Macrophomina phaseolina and a plant cell suspension cultures of Peganum harmala yielded oxygenated products, 3β-hydroxyambrox (2), 6β-hydroxyambrox (3), 1α-hydroxy-3oxoambrox (4), 1α,3β-dihydroxyambrox (5), 13,14,15,16-tetranorlabdane-3-oxo-8,12-diol (6), 3-oxoambrox (7), 2α-hydroxyambrox (8), 3β-hydroxysclareolide (9), and 2α,3β-dihydroxyambrox (10). Metabolite 4 was found to be new compound. These metabolites were structurally characterized on the basis of spectroscopic studies. Conclusion Nine oxygenated metabolites of (−)-ambrox (1) were obtained from Macrophomina phaseolina and Peganum harmala. Enzymatic system of screened organisms introduced hydroxyl and keto functionalities at various positions of compound 1 in a stereo- and regio-controlled manner. PMID:22863186

  10. COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION

    EPA Science Inventory

    Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...

  11. Biotransformation and metabolic profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, with rat intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis.

    PubMed

    Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi

    2018-04-01

    Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Uptake, biotransformation and elimination of selected pharmaceuticals in a freshwater invertebrate measured using liquid chromatography tandem mass spectrometry.

    PubMed

    Miller, Thomas H; Bury, Nicolas R; Owen, Stewart F; Barron, Leon P

    2017-09-01

    Methods were developed to assess uptake and elimination kinetics in Gammarus pulex of nine pharmaceuticals (sulfamethazine, carbamazepine, diazepam, temazepam, trimethoprim, warfarin, metoprolol, nifedipine and propranolol) using targeted LC-MS/MS to determine bioconcentration factors (BCFs) using a 96 h toxicokinetic exposure and depuration period. The derived BCFs for these pharmaceuticals did not trigger any regulatory thresholds and ranged from 0 to 73 L kg -1 (sulfamethazine showed no bioconcentration). Metabolism of chemicals can affect accurate BCF determination through parameterisation of the kinetic models. The added selectivity of LC-MS/MS allowed us to develop confirmatory methods to monitor the biotransformation of propranolol, carbamazepine and diazepam in G. pulex. Varying concentrations of the biotransformed products; 4-hydroxypropranolol sulphate, carbamazepine-10,11-epoxide, nordiazepam, oxazepam and temazepam were measured following exposure of the precursor compounds. For diazepam, the biotransformation product nordiazepam was present at higher concentrations than the parent compound at 94 ng g -1 dw. Overall, the results indicate that pharmaceutical accumulation is low in these freshwater amphipods, which can potentially be explained by the rapid biotransformation and excretion. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Tracing the biotransformation of polychlorinated biphenyls (PCBs) in common carp (Cryprinus carpio): Enantiomeric fraction and compound-specific stable carbon isotope analyses.

    PubMed

    Tang, Bin; Luo, Xiao-Jun; Zeng, Yan-Hong; Sun, Run-Xia; Chen, Hua-Shan; Li, Zong-Rui; Mai, Bi-Xian

    2016-09-01

    Metabolites of polychlorinated biphenyls (PCBs) in fish are difficult to detect in vivo due to the complexity of biometabolism. In the present study, atropisomeric fraction analysis of chiral PCB congeners and compound-specific isotopic analysis (CSIA) were applied to trace the biotransformation of PCBs in fish by exposure of common carp (Cryprinus carpio) to the commercial PCB mixture Aroclor 1242. Stereoselective elimination of the chiral PCB congeners 91, 95, and 136 was observed, indicating a stereoselective biotransformation process. The δ(13)C values of PCBs 5/8, 18, and 20/33 in fish were increased compared with those in the spiked food, while PCBs 47/48 and 49 showed significant heavy isotope depletion. These results suggested a significant biotransformation of the corresponding individual PCB congeners although the potential PCB metabolites, hydroxylated PCBs (OH-PCBs) and methylsulfone PCBs (MeSO2-PCBs), were not detected in the fish tissue samples throughout this experiment. The results of the present study demonstrated that a combination of chiral analysis and CSIA is a promising new approach for investigating the biotransformation of PCBs in biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Formation of harmful compounds in biotransformation of lilial by microorganisms isolated from human skin.

    PubMed

    Esmaeili, Akbar; Afshari, Shima; Esmaeili, Davood

    2015-01-01

    The biotransformation of lilial results in an acid that is used in the dairy industry, in perfumery, as an intermediate in the manufacture of pharmaceuticals and cosmetics, and as a food additive for enhancing taste. This study investigates the biotransformation of lilial by Staphylococcus aureus and Staphylococcus epidermidis, two bacterial species isolated from human skin. Both species of Staphylococcus were isolated in samples taken from the skin of individuals living in a rural area of Iran. The pH of the culture medium was optimized, and after culturing the microorganisms, the bacteria were added to a flask containing a nutrient broth and incubated for several hours. The flasks of bacteria were combined with lilial, and various biochemical tests and diagnostics were performed, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectrophotometry (UV-Vis), and gas chromatography-mass spectroscopy (GC-MS). The S. aureus produced isobutyric acid (2-methylpropanoic acid) after 72 h (71% of the total products yielded during biotransformation), whereas the S. epidermidis produced terpenoid alcoholic media after 24 h (90% of total products obtained). The results obtained indicate that biotransformation of lilial by S. aureus is more desirable than by S. epidermidis due to the highly efficient production of a single product. Bourgeonal and liliol were two toxic compounds produced during biotransformation, which indicates that the use of lilial in cosmetics can be harmful to the skin.

  15. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics.

    PubMed

    Rudik, Anastasia V; Dmitriev, Alexander V; Lagunin, Alexey A; Filimonov, Dmitry A; Poroikov, Vladimir V

    2016-01-01

    The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with the term "reacting atom", corresponding to a single atom in the substrate that is modified during the biotransformation reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions is necessary to generate drug metabolites. Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure-activity relationships. The average invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human isoforms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average). We report that reacting atoms may be predicted with reasonable accuracy for the major classes of metabolic reactions-aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. The proposed method is implemented as a freely available web service at http://www.way2drug.com/RA and may be used for the prediction of the most probable biotransformation reaction(s) and the appropriate reacting atoms in drug-like compounds.Graphical abstract.

  16. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    PubMed

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biotransformation of plant secondary metabolite decursin by Mycobacterium sp. PYR1001.

    PubMed

    Kim, Ki-Yeon; Lee, Sanghyun; Cha, Chang-Jun

    2010-03-10

    Decursin and its structural isomer decursinol angelate are major secondary metabolites in the root of Angelica gigas Nakai which possess several chemotherapeutic properties. We isolated bacteria capable of transforming decursin and determined metabolites and biotransformation kinetics. Decursinol angelate was not metabolized to any significant extent. Resting cells of Mycobacterium sp. PYR1001 were able to transform decursin. After 24 h incubation, 5 mM of decursin was completely transformed to a metabolite, the structure of which was determined by NMR and mass spectral analyses to be decursinol. This conversion was shown to be catalyzed by an esterase activity, and the activity was found to be specific for decursin. These results suggest that strain PYR1001 can be successfully used to transform decursin for the production of decursinol, a compound known to have cancer chemopreventive activity.

  18. EFFECT OF BTEX AND ETHANOL ON ANAEROBIC BIOTRANSFORMATION OF MTBE

    EPA Science Inventory

    We have recently demonstrated that natural anaerobic biotransformation of MTBE to TBA can account for the natural attenuation of MTBE in a plume from a gasoline spill at Parsippany, New Jersey. It is well established in the literature that the presence of the BTEX compounds natu...

  19. Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment.

    PubMed

    Zhang, Shu; Lu, Xiaoxia; Wang, Ning; Buck, Robert C

    2016-07-01

    Aqueous film-forming foam (AFFF) products are used in industrial and military firefighting around the globe. These products contain fluoroalkylthioamido sulfonates, fluoroalkylthiobetaine, and other related substances as the major ingredients, which can be biotransformed in the environment to form 6:2 fluorotelomer sulfonate (6:2 FTSA, F(CF2)6CH2CH2SO3-) as one of the major initial biotransformation products. Limited information is available on 6:2 FTSA aerobic biotransformation in activated sludge and pure microbial culture. This is the first study to report 6:2 FTSA biotransformation in aerobic and anaerobic sediment. 6:2 FTSA was rapidly biotransformed in aerobic river sediment with a half-life less than 5 d. Major stable transformation products observed after 90 d included 5:3 Acid [F(CF2)5CH2CH2COOH), 16 mol%), PFPeA [F(CF2)4COOH, 21 mol%] and PFHxA (F(CF2)5COOH, 20 mol%). 6:2 fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] was readily biotransfomed whereas 6:2 FTSA biotransformation did not occur in anaerobic sediment over 100 d, indicating that the enzymatic desulfonation step limited 6:2 FTSA biotransformation in anaerobic sediment. These results suggest that 6:2 FTSA related products, after release to the aerobic environment, is likely to biodegrade forming 5:3 Acid, PFPeA and PFHxA. This study also indicates that 6:2 FTSA formed from its aforementioned precursors may be persistent in the anaerobic environment after their potential release. This work provides insight to understanding the fate and environmental loading of AFFF-related products and their major transformation products in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biotransformation of (-)-α-pinene and geraniol to α-terpineol and p-menthane-3,8-diol by the white rot fungus, Polyporus brumalis.

    PubMed

    Lee, Su-Yeon; Kim, Seon-Hong; Hong, Chang-Young; Park, Se-Yeong; Choi, In-Gyu

    2015-07-01

    In this study, the monoterpenes, α-pinene and geraniol, were biotransformed to synthesize monoterpene alcohol compounds. Polyporus brumalis which is classified as a white rot fungus was used as a biocatalyst. Consequently α-terpineol was synthesized from α-pinene by P. brumalis mycelium, after three days. Moreover, another substrate, the acyclic monoterpenoids geraniol was transformed into the cyclic compound, p-menthane-3, 8-diol (PMD). The main metabolites, i.e., α-terpineol and PMD, are known to be bioactive monoterpene alcohol compounds. This study highlights the potential of fungal biocatalysts for monoterpene transformation.

  1. Highly Selective Bioconversion of Ginsenoside Rb1 to Compound K by the Mycelium of Cordyceps sinensis under Optimized Conditions.

    PubMed

    Wang, Wei-Nan; Yan, Bing-Xiong; Xu, Wen-Di; Qiu, Ye; Guo, Yun-Long; Qiu, Zhi-Dong

    2015-10-23

    Compound K (CK), a highly active and bioavailable derivative obtained from protopanaxadiol ginsenosides, displays a wide variety of pharmacological properties, especially antitumor activity. However, the inadequacy of natural sources limits its application in the pharmaceutical industry. In this study, we firstly discovered that Cordyceps sinensis was a potent biocatalyst for the biotransformation of ginsenoside Rb1 into CK. After a series of investigations on the biotransformation parameters, an optimal composition of the biotransformation culture was found to be lactose, soybean powder and MgSO₄ without controlling the pH. Also, an optimum temperature of 30 °C for the biotransformation process was suggested in a range of 25 °C-50 °C. Then, a biotransformation pathway of Rb1→Rd→F2→CK was established using high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Our results demonstrated that the molar bioconversion rate of Rb1 to CK was more than 82% and the purity of CK produced by C. sinensis under the optimized conditions was more than 91%. In conclusion, the combination of C. sinensis and the optimized conditions is applicable for the industrial preparation of CK for medicinal purposes.

  2. Biotransformation of 20(S)-protopanaxatriol by Mucor racemosus and the anti-cancer activities of some products.

    PubMed

    Chen, Guangtong; Ge, Hongjuan; Song, Yan; Li, Jianlin; Zhai, Xuguang; Wu, Juanjuan; Ling, Xiang

    2015-10-01

    To produce new derivatives of 20(S)-protopanaxatriol by fungal biotransformation. Biotransformation of 20(S)-protopanaxatriol (1) by Mucor racemosus AS 3.205 afforded six products. Their structures were elucidated on the basis of extensive spectroscopic analyses. M. racemosus could selectively catalyze dehydrogenation at C-12 and further hydroxylation at C-7, C-11, and C-15, as well as rearrangement of double bond at C-26. Two of these new compounds exhibited potent inhibitory activity against SH-SY5Y and HepG2 cell lines. Biotransformation by M. racemosus AS 3.205 was an effective approach to produce new derivatives of 20(S)-protopanaxatriol.

  3. Influence of auxochrome group in disperse dyes bearing azo groups as chromophore center in the biotransformation and molecular docking prediction by reductase enzyme: Implications and assessment for environmental toxicity of xenobiotics.

    PubMed

    Franco, Jefferson Honorio; da Silva, Bianca F; Dias, Elisangela Franciscon G; de Castro, Alexandre A; Ramalho, Teodorico C; Zanoni, Maria Valnice Boldrin

    2018-05-21

    Synthetic azo dyes have increasingly become a matter of great concern as a result of the genotoxic and mutagenic potential of the products derived from azo dye biotransformation. This work evaluates the manner in which reducing enzymes produced by Escherichia coli (E. coli) act on three disperse dyes bearing azo groups, namely Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). UV-Vis spectrophotometry, high-performance liquid chromatography with diode array detector (HPLC-DAD), and liquid chromatography mass spectrometry (LC-MS/MS) were applied towards the identification of the main products. Seven days of incubation of the azo dyes with the tested enzymes yielded a completely bleached solution. 3-4-Aminophenyl-ethyl-amino-propanitrile was detected following the biotransformation of both DR 73 and DR 78. 4-Nitroaniline and 2-chloro-4-nitroaniline were detected upon the biotransformation of DR 73 and DR 78, respectively. The main products derived from the biotransformation of DR 167 were dimethyl 3,3'-3-acetamido-4-aminophenyl-azanedyl-dipropanoate and 2-chloro-4-nitroaniline. The results imply that DR 73 lost the CN - substituent during the biotransformation. Furthermore, theoretical calculations were also carried out aiming at evaluating the interaction and reactivity of these compounds with DNA. Taken together, the results indicate that DR 73, DR 78, and DR 167 pose health risks and serious threats to both human beings and the environment at large as their biotransformation produces harmful compounds such as amines, which have been widely condemned by the International Agency for Research on Cancer. Copyright © 2018. Published by Elsevier Inc.

  4. Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system.

    PubMed

    Wang, Chen; Yin, Ying-Hao; Wei, Ying-Jie; Shi, Zi-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-09-15

    Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Novel Tandem Biotransformation Process for the Biosynthesis of a Novel Compound, 4-(2,3,5,6-Tetramethylpyrazine-1)-4′-Demethylepipodophyllotoxin▿

    PubMed Central

    Tang, Ya-Jie; Zhao, Wei; Li, Hong-Mei

    2011-01-01

    According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50 of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50 of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work. PMID:21398491

  6. Biotransformation of caffeine, cotinine, and nicotine in stream sediments: Implications for use as wastewater indicators

    USGS Publications Warehouse

    Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H.

    2007-01-01

    Microbially catalyzed cleavage of the imadazole ring of caffeine was observed in stream sediments collected upstream and downstream of municipal wastewater treatment plants (WWTP) in three geographically separate stream systems. Microbial demethylation of the N-methyl component of cotinine and its metabolic precursor, nicotine, also was observed in these sediments. These findings indicate that stream sediment microorganisms are able to substantially alter the chemical structure and thus the analytical signatures of these candidate waste indicator compounds. The potential for in situ biotransformation must be considered if these compounds are employed as markers to identify the sources and track the fate of wastewater compounds in surface-water systems.

  7. Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants.

    PubMed

    Mejia-Avendaño, Sandra; Vo Duy, Sung; Sauvé, Sébastien; Liu, Jinxia

    2016-09-20

    The aerobic biotransformation over 180 days of two cationic quaternary ammonium compounds (QACs) with perfluoroalkyl chains was determined in soil microcosms, and biotransformation pathways were proposed. This is the first time that polyfluoroalkyl cationic surfactants used in aqueous film-forming foam (AFFF) formulations were studied for their environmental fate. The biotransformation of perfluorooctaneamido quaternary ammonium salt (PFOAAmS) was characterized by a DT50 value (time necessary to consume half of the initial mass) of 142 days and significant generation of perfluoroalkyl carboxylic acid (PFOA) at a yield of 30 mol % by day 180. The biotransformation of perfluorooctane sulfonamide quaternary ammonium salt (PFOSAmS) was very slow with unobservable change of the spiked mass; yet the generation of perfluorooctanesulfonate (PFOS) at a yield of 0.3 mol % confirmed the biotransformation of PFOSAmS. Three novel biotransformation intermediates were identified for PFOAAmS and three products including perfluorooctane sulfonamide (FOSA) for PFOSAmS through high-resolution mass spectrometry (MS) analysis and t-MS(2) fragmentation. The significantly slower PFOSAmS biotransformation is hypothesized to be due to its stronger sorption to soil owing to a longer perfluoroalkyl chain and a bulkier sulfonyl group, when compared to PFOAAmS. This study has demonstrated that despite overall high stability of QACs and their biocide nature, the ones with perfluoroalkyl chains can be substantially biotransformed into perfluoroalkyl acids in aerobic soil.

  8. Dechlorination of PCBs in the rhizosphere of Switchgrass and Poplar

    PubMed Central

    Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei

    2014-01-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. PMID:23603468

  9. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  10. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    PubMed

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Extent of cutaneous metabolism during percutaneous absorption of xenobiotics.

    PubMed

    Bronaugh, R L; Stewart, R F; Storm, J E

    1989-07-01

    In vitro percutaneous absorption studies generally do not determine whether biotransformation occurs during passage of a substance through the skin. Since it has recently been demonstrated that several chemicals are metabolized during skin permeation, we investigated the metabolism of five additional compounds (14C-labeled) after application to fuzzy rat skin: caffeine, p,p'-DDT, butylated hydroxytoluene (BHT), salicylic acid, and acetyl ethyl tetramethyltetralin (AETT). The viability of skin was maintained with a tissue culture medium. Radioactivity of each substrate and any metabolites in skin and receptor fluid was measured so that the absorption and metabolism of water-insoluble compounds would be accurately determined. Percutaneous absorption ranged from a low of 13% of the applied dose for BHT to a high of 49% for DDT. BHT was metabolized in skin to 4-hydroxy-BHT and an unknown metabolite. Of the absorbed radioisotope, 6.6% was isolated in biotransformed products found mainly in the receptor fluid. AETT was also metabolized during absorption, with 1.9% of the absorbed radioisotope found in two unknown peaks. Caffeine, DDT, and salicylic acid were not metabolized during skin permeation. Skin and liver microsomal metabolism was measured for all compounds except DDT. Metabolism in skin was observed only for the compounds also biotransformed in the diffusion cell; BHT and AETT were metabolized at 113 and 2.5 pmol/min/mg protein, respectively. In this study, as in others, skin metabolism was substantially less than the corresponding metabolism in liver. Therefore, a low rate of liver metabolism such as that found for caffeine, salicylic acid, and DDT might often be predictive of the absence of measurable metabolism during skin permeation. It seems likely that for many compounds, the biotransformations in skin will be small in terms of the percentage of absorbed material that is metabolized. Nevertheless, with potent compounds, even small quantities of a metabolite can be important and for pharmacokinetic studies, viability of skin must be maintained.

  12. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    EPA Science Inventory

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  13. Biotransformation of two β-secretase inhibitors including ring opening and contraction of a pyrimidine ring.

    PubMed

    Lindgren, Anders; Eklund, Göran; Turek, Dominika; Malmquist, Jonas; Swahn, Britt-Marie; Holenz, Jörg; von Berg, Stefan; Karlström, Sofia; Bueters, Tjerk

    2013-05-01

    Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of β-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.

  14. Applications and Mechanisms of Ionic Liquids in Whole-Cell Biotransformation

    PubMed Central

    Fan, Lin-Lin; Li, Hong-Ji; Chen, Qi-He

    2014-01-01

    Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs’ interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed. PMID:25007820

  15. Applications and mechanisms of ionic liquids in whole-cell biotransformation.

    PubMed

    Fan, Lin-Lin; Li, Hong-Ji; Chen, Qi-He

    2014-07-09

    Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs' interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed.

  16. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  17. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkadir E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2017-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a potential technology for residual heavy oil recovery. Many heavy oil fields in Oman and elsewhere have difficulty in crude oil recovery because it is expensive due to its high viscosity. Indigenous microbes are capable of improving the fluidity of heavy oil, by changing its high viscosity and producing lighter oil fractions. Many spore-forming bacteria were isolated from soil samples collected from oil fields in Oman. Among the isolates, an autochthonous spore-forming bacterium was found to enhance heavy oil recovery, which was identified by 16S rDNA sequencing as Paenibacillus ehimensis BS1. The isolate showed maximum growth at high heavy oil concentrations within four days of incubation. Biotransformation of heavy crude oil to light aliphatic and aromatic compounds and its potential in EOR was analyzed under aerobic and anaerobic reservoir conditions. The isolates were grown aerobically in Bushnell-Haas medium with 1% (w/v) heavy crude oil. The crude oil analyzed by GC-MS showed a significant biotransformation from the ninth day of incubation under aerobic conditions. The total biotransformation of heavy crude oil was 67.1% with 45.9% in aliphatic and 85.3% in aromatic fractions. Core flooding experiments were carried out by injecting the isolates in brine supplemented with Bushnell-Haas medium into Berea sandstone cores and were incubated for twelve days under oil reservoir conditions (50°C). The extra recovered oil was analyzed by GC-MS. The residual oil recovered from core flood experiments ranged between 10–13% compared to the control experiment. The GC-MS analyses of the extra recovered oil showed 38.99% biotransformation of heavy to light oil. The results also indicated the presence of 22.9% extra aliphatic compounds in the residual crude oil recovered compared to that of a control. The most abundant compound in the extra recovered crude oil was identified as 1-bromoeicosane. The investigations showed the potential of P. ehimensis BS1 in MEOR technology by the biotransformation of heavy to lighter crude oil under aerobic and reservoir conditions. Heavy oil recovery and biotransformation to lighter components are of great economic value and a few studies have been done. PMID:28196087

  18. Microbial biotransformation of gentiopicroside by the endophytic fungus Penicillium crustosum 2T01Y01.

    PubMed

    Zeng, Wen-Liang; Li, Wan-Kui; Han, Han; Tao, Yan-Yan; Yang, Li; Wang, Zheng-Tao; Chen, Kai-Xian

    2014-01-01

    Endophytic fungi are symbiotic with plants and possess multienzyme systems showing promising metabolite potency with region selectivity and stereoselectivity. The aim of this study was to use these special microorganisms as an in vitro model to mimic the potential mammalian metabolites of a natural iridoid gentiopicroside (GPS, compound 1). The fungi isolated from a medicinal plant, Dendrobium candidum Wall. ex Lindl., were screened for their biotransformation abilities with GPS as the substrate, and one strain with high converting potency was identified as Penicillium crustosum 2T01Y01 on the basis of the sequence of the internal transcribed spacer of the ribosomal DNA region. Upon the optimized incubation of P. crustosum 2T01Y01 with the substrate, seven deglycosylated metabolites were detected by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Preparative-scale biotransformation with whole cells of the endophytic fungus resulted in the production of five metabolites, including three novel ones, 5α-(hydroxymethyl)-6β-methyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-1(8H)-one (compound 2), (Z)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 3), and (E)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 4), along with two known ones, 5α-(hydroxymethyl)-6β-methyl-1H,3H-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 5) and 5α-(hydroxymethyl)-6α-methyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 6), aided by nuclear magnetic resonance and high-resolution mass spectral analyses. The other two metabolites were tentatively identified by online UPLC/Q-TOF MS as 5-hydroxymethyl-5,6-dihydroisochromen-1-one (compound 7) and 5-hydroxymethyl-3,4,5,6-tetrahydroisochromen-1-one (compound 8), and compound 8 is a new metabolite. To test the metabolic mechanism, the β-glucosidase activity of the fungus P. crustosum 2T01Y01 was assayed with ρ-nitrophenyl-β-d-glucopyranoside as a probe substrate, and the pathway of GPS biotransformation by strain 2T01Y01 is proposed. In addition, the hepatoprotective activities of GPS and metabolite compounds 2, 5, and 6 against human hepatocyte line HL-7702 injury induced by hydrogen peroxide were evaluated.

  19. Microbial Biotransformation of Gentiopicroside by the Endophytic Fungus Penicillium crustosum 2T01Y01

    PubMed Central

    Zeng, Wen-Liang; Li, Wan-Kui; Han, Han; Tao, Yan-Yan; Yang, Li; Chen, Kai-Xian

    2014-01-01

    Endophytic fungi are symbiotic with plants and possess multienzyme systems showing promising metabolite potency with region selectivity and stereoselectivity. The aim of this study was to use these special microorganisms as an in vitro model to mimic the potential mammalian metabolites of a natural iridoid gentiopicroside (GPS, compound 1). The fungi isolated from a medicinal plant, Dendrobium candidum Wall. ex Lindl., were screened for their biotransformation abilities with GPS as the substrate, and one strain with high converting potency was identified as Penicillium crustosum 2T01Y01 on the basis of the sequence of the internal transcribed spacer of the ribosomal DNA region. Upon the optimized incubation of P. crustosum 2T01Y01 with the substrate, seven deglycosylated metabolites were detected by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Preparative-scale biotransformation with whole cells of the endophytic fungus resulted in the production of five metabolites, including three novel ones, 5α-(hydroxymethyl)-6β-methyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-1(8H)-one (compound 2), (Z)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 3), and (E)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 4), along with two known ones, 5α-(hydroxymethyl)-6β-methyl-1H,3H-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 5) and 5α-(hydroxymethyl)-6α-methyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 6), aided by nuclear magnetic resonance and high-resolution mass spectral analyses. The other two metabolites were tentatively identified by online UPLC/Q-TOF MS as 5-hydroxymethyl-5,6-dihydroisochromen-1-one (compound 7) and 5-hydroxymethyl-3,4,5,6-tetrahydroisochromen-1-one (compound 8), and compound 8 is a new metabolite. To test the metabolic mechanism, the β-glucosidase activity of the fungus P. crustosum 2T01Y01 was assayed with ρ-nitrophenyl-β-d-glucopyranoside as a probe substrate, and the pathway of GPS biotransformation by strain 2T01Y01 is proposed. In addition, the hepatoprotective activities of GPS and metabolite compounds 2, 5, and 6 against human hepatocyte line HL-7702 injury induced by hydrogen peroxide were evaluated. PMID:24141132

  20. Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus.

    PubMed

    Zhou, Di; Zhang, Yuhua; Jiang, Zhe; Hou, Yue; Jiao, Kun; Yan, Chunyan; Li, Ning

    2017-01-15

    Isofraxetin-6-O-β-d-glucopyranoside, identified from traditional medicinal herbal Xanthoceras sorbifolia Bunge, has been demonstrated to be a natural neuroinflammatory inhibitor. In order to obtain more derivatives with potential anti-neuroinflammatory effects, biotransformation was carried out. According to the characteristics of coumarin skeleton, suspension cultures of Angelica sinensis (Oliv.) Diels callus (A. sinensis callus) were employed because of the presence of diverse phenylpropanoids biosynthetic enzymes. As a result, 15 products were yielded from the suspension cultures, including a new coumarin: 8'-dehydroxymethyl cleomiscosin A (1), together with 14 known compounds. Their structures were elucidated by extensive spectroscopic analysis. Furthermore, the biotransformed pathways were discussed. Among them, compound 13 was transformed from isofraxetin-6-O-β-d-glucopyranoside, while compounds 1-6, 10-12, 14-15 were derived from the culture medium stimulated by the substrate. The biotransformation processes include hydroxylation, oxidation and esterification. Furthermore, their inhibitory effects on lipopolysaccharide (LPS)-activated nitric oxide (NO) production were evaluated in BV2 microglial cells. It is worth noting that, 1, 1'-methanediylbis(4-methoxybenzene) (3), obtucarbamates A (5), 2-nonyl-4-hydroxyquinoline N-oxide (10) and 1H-indole-3-carbaldehyde (11) exhibited significant inhibitory effect against neuroinflammation with IC 50 values at 1.22, 10.57, 1.02 and 0.76μM respectively, much stronger than that of the positive control minocycline (IC 50 35.82μM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment: Correspondence of performance to microbial community functional structure.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Gao, Yinxin; Liu, Yuan; Yang, Min

    2017-09-15

    Although coking wastewater is generally considered to contain high concentration of nitrogen- and sulfur-containing pollutants, the biotransformation processes of these compounds have not been well understood. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina MiSeq sequencing of the 16S rRNA gene were used to identify microbial functional traits and their role in biotransformation of nitrogen- and sulfur-containing compounds in a bench-scale aerobic coking wastewater treatment system operated for 488 days. Biotransformation of nitrogen and sulfur-containing pollutants deteriorated when pH of the bioreactor was increased to >8.0, and the microbial community functional structure was significantly associated with pH (Mantels test, P < 0.05). The release of ammonia nitrogen and sulfate was correlated with both the taxonomic and functional microbial community structure (P < 0.05). Considering the abundance and correlation with the release of ammonia nitrogen and sulfate, aromatic dioxygenases (e.g. xylXY, nagG), nitrilases (e.g. nhh, nitrilase), dibenzothiophene oxidase (DbtAc), and thiocyanate hydrolase (scnABC) were important functional genes for biotransformation of nitrogen- and sulfur-containing pollutants. Functional characterization of taxa and network analysis suggested that Burkholderiales, Actinomycetales, Rhizobiales, Pseudomonadales, and Hydrogenophiliales (Thiobacillus) were key functional taxa. Variance partitioning analysis showed that pH and influent ammonia nitrogen jointly explained 25.9% and 35.5% of variation in organic pollutant degrading genes and microbial community structure, respectively. This study revealed a linkage between microbial community functional structure and the likely biotransformation of nitrogen- and sulfur-containing pollutants, along with a suitable range of pH (7.0-7.5) for stability of the biological system treating coking wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less

  3. Toxicokinetics of ethers used as fuel oxygenates.

    PubMed

    Dekant, W; Bernauer, U; Rosner, E; Amberg, A

    2001-10-15

    The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.

  4. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  5. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA)

    USGS Publications Warehouse

    Mundle, S.O.C.; Johnson, T.; Lacrampe-Couloume, G.; Perez-De-Mora, A.; Duhamel, M.; Edwards, E.A.; McMaster, M.L.; Cox, E.; Revesz, K.; Lollar, B. Sherwood

    2012-01-01

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = −6.7‰ ± 0.4‰, and −4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = −3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ13C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  6. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).

    PubMed

    Mundle, Scott O C; Johnson, Tiffany; Lacrampe-Couloume, Georges; Pérez-de-Mora, Alfredo; Duhamel, Melanie; Edwards, Elizabeth A; McMaster, Michaye L; Cox, Evan; Révész, Kinga; Sherwood Lollar, Barbara

    2012-02-07

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  7. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  8. Isolation and biotransformation of goniothalamin in the production of goniothalamin analogue

    NASA Astrophysics Data System (ADS)

    Azizan, Izzatul Hidayah; Khalid, Rozida Mohd; Din, Laily; Latip, Jalifah

    2016-11-01

    Goniothalamin is a pharmacologically active styrylpyrone compound extracted from Goniothalamus species. It was found to be selectively preventing proliferation of several cancer cell lines without being cytotoxic towards normal cells. Further research on this compound and its derivatives revealed that some of the derivatives also possess anti proliferative activity. The purpose of this study is to synthesise goniothalamin derivatives via biotransformation of goniothalamin using an enzyme assay. Goniothalamin which was isolated from Goniothalamus andersonii, was allowed to react with dienelactone hydrolase for 30 minutes. The enzyme reaction's product was extracted and analysed using LC-MS. Based on the pseudomelecular ion, one goniothalamin analogue with dihydro functionality was obtained.

  9. A Macrosphelide as the Unexpected Product of a Pleurotus ostreatus Strain-Mediated Biotransformation of Halolactones Containing the gem-Dimethylcyclohexane Ring. Part 1.

    PubMed

    Wińska, Katarzyna; Mączka, Wanda; Grabarczyk, Małgorzata; Sugimoto, Kenji; Matsuya, Yuji; Szumny, Antoni; Anioł, Mirosław

    2016-06-30

    The aim of the study was to obtain new compounds during biotransformation of two halocompounds, the δ-bromo and δ-iodo-γ-bicyclolactones 1 and 2. Unexpectedly Pleurotus ostreatus produced together with the hydroxylactone, 2-hydroxy-4,4-dimethyl-9-oxabicyclo[4.3.0]nonane-8-one (3), its own metabolite (3S,9S,15S)-(6E,12E)-3,9,15-trimethyl-4,10,16-trioxacyclohexa-deca-6,12-diene-1,5,8,11,14-pentaone (4). The method presented here, in which this macrosphelide 4 was obtained by biotransformation, has not been previously described in the literature. To the best of our knowledge, this compound has been prepared only by chemical synthesis to date. This is the first report on the possibility of the biosynthesis of this compound by the Pleurotus ostreatus strain. The conditions and factors, like temperature, salts, organic solvents, affecting the production of this macrosphelide by Pleurotus ostreatus strain were examined. The highest yield of macroshphelide production was noticed for halolactones, as well with iodide, bromide, iron and copper (2+) ions as inductors.

  10. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors.

    PubMed

    Fernandez-Fontaina, E; Carballa, M; Omil, F; Lema, J M

    2014-11-15

    Cometabolism is the ability of microorganisms to degrade non-growth substrates in the presence of primary substrates, being the main removal mechanism behind the biotransformation of organic micropollutants in wastewater treatment plants. In this paper, a cometabolic Monod-type kinetics, linking biotransformation of micropollutants with primary substrate degradation, was applied to a highly enriched nitrifying activated sludge (NAS) reactor operated under different operational conditions (hydraulic retention time (HRT) and nitrifying activity). A dynamic model of the bioreactor was built taking into account biotransformation, sorption and volatilization. The micropollutant transformation capacity (Tc), the half-saturation constant (Ksc) and the solid-liquid partitioning coefficient (Kd) of several organic micropollutants were estimated at 25 °C using an optimization algorithm to fit experimental data to the proposed model with the cometabolic Monod-type biotransformation kinetics. The cometabolic Monod-type kinetic model was validated under different HRTs (1.0-3.7 d) and nitrification rates (0.12-0.45 g N/g VSS d), describing more accurately the fate of those compounds affected by the biological activity of nitrifiers (ibuprofen, naproxen, erythromycin and roxithromycin) compared to the commonly applied pseudo-first order micropollutant biotransformation kinetics, which does not link biotransformation of micropollutants to consumption of primary substrate. Furthermore, in contrast to the pseudo-first order biotransformation constant (k(biol)), the proposed cometabolic kinetic coefficients are independent of operational conditions such as the nitrogen loading rate applied. Also, the influence of the kinetic parameters on the biotransformation efficiency of NAS reactors, defined as the relative amount of the total inlet micropollutant load being biotransformed, was assessed considering different HRTs and nitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    PubMed

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  12. Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fish, K.M.

    1996-08-01

    PCBs are a family of compounds sold with various levels of chlorination and under different trade names. They have accumulated in soils, sediments, and biota, raising concerns about possible health risks. The upper Hudson River was contaminated with Aroclor 1242. This study examines the influence of Aroclor concentration on PCB biotransformations in the upper Hudson River sediment. 6 refs., 3 figs.

  13. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7.

    PubMed

    Guevara-Luna, Joseph; Alvarez-Fitz, Patricia; Ríos-Leal, Elvira; Acevedo-Quiroz, Macdiel; Encarnación-Guevara, Sergio; Moreno-Godinez, Ma Elena; Castellanos-Escamilla, Mildred; Toribio-Jiménez, Jeiry; Romero-Ramírez, Yanet

    2018-06-09

    Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C 6 H 4 (COOH) 2 , confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg -1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.

  14. Biodegradation of Chlorofluorocarbons in a Groundwater Plume using Compound Specific Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Phillips, E.; Manna, J.; Horst, A.; Gilevska, T.; Sherwood Lollar, B.; Mack, E. E.; Seger, E.; Lutz, E. J.; Norcoss, S.; Morgan, S. E.; West, K. A.; Dworatzek, S.; Webb, J.

    2017-12-01

    Compound specific isotope analysis (CSIA) measures isotope ratios of organic hydrocarbons to monitor intrinsic bioremediation processes that can transform contaminants in field settings. The fraction of original contaminant remaining can be determined using the measured isotope ratio of the contaminant by an experimentally determined fractionation factor. In this study, two separate biotransformation experiments were performed in the Stable Isotope Laboratory at the University of Toronto using CSIA. In these two experiments, a mixed culture derived from a contaminated site was amended with trichlorotrifluoroethane (CFC-113), or trichlorofluoromethane (CFC-11), respectively. The concentrations and carbon isotope ratios of CFC-113, or CFC-11 were analyzed to calculate the fractionation factor for the transformation of each compound. Subsequently, groundwater samples from 9 wells at a historically contaminated site were collected and analyzed. The experimentally determined fractionation factors were then used to evaluate the extent of transformation that had occurred at the field site. In the laboratory studies, significant carbon isotope fractionation was observed for both CFC-113 and CFC-11 as biotransformation proceeded. This significant fractionation is beneficial when evaluating biotransformation at field sites as it can be clearly differentiated from the effects of other physical processes such as transport, or volatilization. Although there was significant variation in the carbon isotope values of CFC-113 between different well locations at the field site, these variations may be due to differences in source carbon isotope signatures. For CFC-11, much more significant isotopic variation was observed within the same well and between wells, showing trends consistent with in situ biotransformation. Results from this study demonstrate that CSIA can be successfully applied to evaluate the extent of transformation of chlorofluorocarbons (CFCs) at contaminated field sites, which has not been shown previously. This study also demonstrates that biotransformation may play a more significant role in the natural attenuation of CFCs than has previously been recognized.

  15. Process for Biotransformation of Androsta-4-ene-3, 17-Dione (4-AD) to Androsta-1,4-Diene-3,17-Dione (ADD).

    PubMed

    Prakash, Surya; Bajaj, Abhay

    2017-01-01

    Androsta-1,4-diene-3,17-dione (androstadienedione, ADD) is key intermediate for the organic synthesis of a variety of female sex hormones such as estrone, estradiol, estriol and other related derivatives. De novo synthesis of this molecule is not yet reported in any form of living system, i.e., microbial, plant, and animal. The structural complexities due to presence of several chiral carbon centers create significant hurdles in chemical synthesis of such molecules. Microbe-mediated biotransformation offer a highly reliable, cost-effective, and relatively non hazardous way for commercial manufacturing of steroidal key intermediates. Currently microbial biotransformations are extensively being exploited for large-scale production of basic intermediates such as androstenedione (AD), ADD, and several types of hydroxylated derivatives of androstane compounds. In this chapter several aspects of microbial biotransformation process of AD to ADD are discussed.

  16. A new technique for promoting cyclic utilization of cyclodextrins in biotransformation.

    PubMed

    Shen, Yanbing; Yu, Ziqi; Yang, Xu; Wang, Fang; Luo, Jianmei; Wang, Min

    2017-01-01

    Cyclodextrins (CDs) can improve the productivity of steroid biotransformation by enhancing substrate solubility. CDs can be recycled by grafting them with appropriate carriers. Loofah fiber is an excellent grafting material for CDs, and can be applied to the biotransformation and recycling of β-cyclodextrin (β-CD). In this work, a technique for recycling β-CD in cortisone acetate (CA) biotransformation by Arthrobacter simplex CPCC 140451 was studied. Loofah fiber-grafted β-CD (LF-β-CD) was prepared using epichlorohydrin, which is a cross-linking agent. The grafting yield of β-CD was 74.8 mg g -1 dried fibers. LF-β-CD could increase the solubility of CA and enhance biotransformation. The initial conversion rate of CA was 1.5-fold higher than that of the blank group. LF-β-CD was also used in biocatalytic reactions for eight cycles, and it maintained the conversion ratio of CA at approximately 90%. Given the above positive results, LF-β-CD can be utilized in biotechnological recycling applications. This method can also be applied to CD derivatives and hydrophobic compounds.

  17. Biotransformation and Incorporation into Proteins along a Simulated Terrestrial Food Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unrine, J.M., B.P. Jackson and W.A. Hopkins

    2007-01-01

    Selenium is an essential trace element in vertebrates, but there is a narrow concentration range between dietary requirement and toxicity threshold. Although a great deal is known about the biochemistry of Se from a nutritional perspective, considerably less attention has been focused on the specific biochemistry of Se as an environmental toxicant. Recent advances in hyphenated analytical techniques have provided the capability of quantifying specific chemical forms of Se in biological tissues as well as the distribution of Se among macromolecules. We applied liquid chromatography coupled to inductively coupled plasma mass spectrometry to investigate biotransformations of selenomethionine along a simulatedmore » terrestrial food chain consisting of selenomethionine exposed crickets (Acheta domesticus) fed to western fence lizards (Sceloporus occidentalis). Evidence was obtained for selenomethionine biotransformation as well as for sex-specific differences in the metabolism of Se compounds and their subsequent incorporation into proteins in the lizard. The results demonstrate the complexities involved in trophic transfer of Se due to the potential for extensive biotransformation and the species- and even sex-specific nature of these biotransformations.« less

  18. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota.

    PubMed

    Wan, Jin-Yi; Wang, Chong-Zhi; Zhang, Qi-Hui; Liu, Zhi; Musch, Mark W; Bissonnette, Marc; Chang, Eugene B; Li, Ping; Qi, Lian-Wen; Yuan, Chun-Su

    2017-04-01

    After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb 1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb 1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Organochlorine compounds in Lake Superior: Chiral polychlorinated biphenyls and biotransformation in the aquatic food web

    USGS Publications Warehouse

    Wong, Charles S.; Mabury, Scott A.; Whittle, D. Michael; Backus, Sean M.; Teixeira, Camilla; DeVault, David S.; Bronte, Charles R.; Muir, Derek C.G.

    2004-01-01

    The enantiomeric composition of seven chiral PCB congeners was measured in the Lake Superior aquatic food web sampled in 1998, to determine the extent of enantioselective biotransformation in aquatic biota. All chiral PCB congeners studied (CBs 91, 95, 136, 149, 174, 176, and 183) biomagnified in the Lake Superior aquatic food web, based on biomagnification and food web magnification factors greater than unity. PCB atropisomers were racemic in phytoplankton and zooplankton, suggesting no biotransformation potential toward PCBs for these low trophic level organisms. However, Diporeia and mysids had significantly nonracemic residues for most chiral congeners studied. This observation suggests that these macrozooplankton can stereoselectively metabolize chiral congeners. Alternatively, macrozooplankton obtained nonracemic residues from feeding on organic-rich suspended particles and sediments, which would imply that stereoselective microbial PCB biotransformation may be occurring in Lake Superior sediments at PCB concentrations far lower than that previously associated with such activity. Widely nonracemic PCB residues in forage fish (lake herring, rainbow smelt, and slimy sculpin) and lake trout suggest a combination of both in vivo biotransformation and uptake of nonracemic residues from prey for these species. Minimum biotransformation rates, calculated from enantiomer mass balances between predators and prey, suggest metabolic half-lives on the order of 8 yr for CB 136 in lake trout and 2.6 yr for CB 95 in sculpins. This result suggests that significant biotransformation may occur for metaboliz able PCB congeners over the lifespan of these biota. This study highlights the potential of chiral analysis to study biotransformation processes in food webs.

  20. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    USDA-ARS?s Scientific Manuscript database

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  1. Extractive biotransformation for production of metabolites of poorly soluble compounds: synthesis of 32-hydroxy-rifalazil.

    PubMed

    Mozhaev, Vadim V; Mozhaeva, Lyudmila V; Michels, Peter C; Khmelnitsky, Yuri L

    2008-10-01

    A novel reaction system was developed for the production of metabolites of poorly water-soluble parent compounds using mammalian liver microsomes. The system includes the selection and use of an appropriate hydrophobic polymeric resin as a reservoir for the hydrophobic parent compounds and its metabolites. The utility of the extractive biotransformation approach was shown for the production of a low-yielding, synthetically challenging 32-hydroxylated metabolite of the antibiotic rifalazil using mouse liver microsomes. To address the low solubility and reactivity of rifalazil in the predominantly aqueous microsomal catalytic system, a variety of strategies were tested for the enhanced delivery of hydrophobic substrates, including the addition of mild detergents, polyvinylpyrrolidone, glycerol, bovine serum albumin, and hydrophobic polymeric resins. The latter strategy was identified as the most suitable for the production of 32-hydroxy-rifalazil, resulting in up to 13-fold enhancement of the volumetric productivity compared with the standard aqueous system operating at the solubility limit of rifalazil. The production process was optimized for a wide range of reaction parameters; the most important for improving volumetric productivity included the type and amount of the polymeric resin, cofactor recycling system, concentrations of the biocatalyst and rifalazil, reaction temperature, and agitation rate. The optimized extractive biotransformation system was used to synthesize 32-hydroxy-rifalazil on a multimilligram scale.

  2. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the toxins in creosote and the evolution of diet switching in woodrats. On a larger level, this work advances our understanding of the mechanisms used by mammalian herbivores to process toxic diets and illustrates the importance of the selective relationship of PSCs in shaping herbivore diversity. PMID:25123454

  3. The fate of chlorinated aliphatics in anaerobic treatment under transient loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Y.C.

    1993-01-01

    A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less

  4. Glucosylation and Other Biotransformations of T-2 Toxin by Yeasts of the Trichomonascus Clade

    PubMed Central

    Price, Neil P. J.; Kurtzman, Cletus P.

    2012-01-01

    Trichothecenes are sesquiterpenoid toxins produced by Fusarium species. Since these mycotoxins are very stable, there is interest in microbial transformations that can remove toxins from contaminated grain or cereal products. Twenty-three yeast species assigned to the Trichomonascus clade (Saccharomycotina, Ascomycota), including four Trichomonascus species and 19 anamorphic species presently classified in Blastobotrys, were tested for their ability to convert the trichothecene T-2 toxin to less-toxic products. These species gave three types of biotransformations: acetylation to 3-acetyl T-2 toxin, glycosylation to T-2 toxin 3-glucoside, and removal of the isovaleryl group to form neosolaniol. Some species gave more than one type of biotransformation. Three Blastobotrys species converted T-2 toxin into T-2 toxin 3-glucoside, a compound that has been identified as a masked mycotoxin in Fusarium-infected grain. This is the first report of a microbial whole-cell method for producing trichothecene glycosides, and the potential large-scale availability of T-2 toxin 3-glucoside will facilitate toxicity testing and development of methods for detection of this compound in agricultural and other products. PMID:23042183

  5. Aspergillus niger-mediated biotransformation of methenolone enanthate, and immunomodulatory activity of its transformed products.

    PubMed

    Hussain, Zahid; Dastagir, Nida; Hussain, Shabbir; Jabeen, Almas; Zafar, Salman; Malik, Rizwana; Bano, Saira; Wajid, Abdul; Choudhary, M Iqbal

    2016-08-01

    Two fungal cultures Aspergillus niger and Cunninghamella blakesleeana were used for the biotransformation of methenolone enanthate (1). Biotransformation with A. niger led to the synthesis of three new (2-4), and three known (5-7) metabolites, while fermentation with C. blakesleeana yielded metabolite 6. Substrate 1 and the resulting metabolites were evaluated for their immunomodulatory activities. Substrate 1 was found to be inactive, while metabolites 2 and 3 showed a potent inhibition of ROS generation by whole blood (IC50=8.60 and 7.05μg/mL), as well as from isolated polymorphonuclear leukocytes (PMNs) (IC50=14.0 and 4.70μg/mL), respectively. Moreover, compound 3 (34.21%) moderately inhibited the production of TNF-α, whereas 2 (88.63%) showed a potent inhibition of TNF-α produced by the THP-1 cells. These activities indicated immunomodulatory potential of compounds 2 and 3. All products were found to be non-toxic to 3T3 mouse fibroblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Biotransformation of potentially persistent alkylphenols in natural seawater.

    PubMed

    Lofthus, Synnøve; Almås, Inger K; Evans, Peter; Pelz, Oliver; Brakstad, Odd Gunnar

    2016-08-01

    Produced water (PW) discharged to the marine environment may contain both natural substances and industrial chemicals that are potentially persistent, bioaccumulating and toxic (PBT). Identification of substances as PBT is dependent upon accurate assessment of biodegradation rates, but these measurements can be impeded where substances exhibit inherently low solubility in water. Examples of substances of this kind include some alkylated phenols (APs). Biotransformation of three APs, suspected to be PBT compounds in PW, was investigated by adopting a new methodology in which they were immobilized to hydrophobic adsorbents submerged in natural seawater. These compounds were not ready biodegradable by conventional screening biochemical oxygen demand (BOD) methods at high concentrations (2 mg/L). However, potential biodegradability for two of the three APs were demonstrated by the immobilization method at low concentrations (appr. 100 μg/L), with biotransformation half-lives <50 days. Thus, standard screening tests should be supplemented by biodegradation methods suited for testing of poorly soluble substances before the persistence of potential PBT substances are defined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    PubMed

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  8. Biotransformation of petroleum hydrocarbons and microbial communities in seawater with oil dispersions and copepod feces.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar

    2015-12-30

    To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 4-Hydroxy-2(E)-nonenal metabolism differs in Apc(+/+) cells and in Apc(Min/+) cells: it may explain colon cancer promotion by heme iron.

    PubMed

    Baradat, Maryse; Jouanin, Isabelle; Dalleau, Sabine; Taché, Sylviane; Gieules, Mathilde; Debrauwer, Laurent; Canlet, Cécile; Huc, Laurence; Dupuy, Jacques; Pierre, Fabrice H F; Guéraud, Françoise

    2011-11-21

    Animal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene. The latter thus have a selective advantage, possibly leading to cancer promotion. This mutation is an early and frequent event in human colorectal cancer. To explain this difference, the HNE biotransformation capacities of the two cell types have been studied using radiolabeled and stable isotope-labeled HNE. Apc-mutated cells showed better biotransformation capacities than nonmutated cells did. Thiol compound conjugation capacities were higher for mutated cells, with an important advantage for the extracellular conjugation to cysteine. Both cells types were able to reduce HNE to 4-hydroxynonanal, a biotransformation pathway that has not been reported for other intestinal cells. Mutated cells showed higher capacities to oxidize 4-hydroxynonanal into 4-hydroxynonanoic acid. The mRNA expression of different enzymes involved in HNE metabolism such as aldehyde dehydrogenase 1A1, 2 and 3A1, glutathione transferase A4-4, or cystine transporter xCT was upregulated in mutated cells compared with wild-type cells. In conclusion, this study suggests that Apc-mutated cells are more efficient than wild-type cells in metabolizing HNE into thiol conjugates and 4-hydroxynonanoic acid due to the higher expression of key biotransformation enzymes. These differential biotransformation capacities would explain the differences of susceptibility between normal and Apc-mutated cells regarding secondary lipid oxidation products.

  10. Biodegradation in seawater of PAH and alkylphenols from produced water of a North Sea platform.

    PubMed

    Lofthus, Synnøve; Almås, Inger K; Evans, Peter; Pelz, Oliver; Brakstad, Odd Gunnar

    2018-09-01

    Operational planned discharges of produced water (PW) to the marine environment from offshore oil production installations, contain low concentrations of dispersed oil compounds, like polycyclic aromatic hydrocarbons (PAHs) and alkylated phenols (APs). Biotransformation in natural seawater (SW) of naphthalenes/PAHs and phenol/APs in field-collected PW from a North Sea platform was investigated in this biodegradation study. The PW was diluted in SW from a Norwegian fjord, and the biodegradation study was performed in slowly rotating carousels at 13 °C over a period of 62 days. Naphthalenes/PAHs and phenol/APs biotransformation was determined by first-order rate kinetics, after normalization against the recalcitrant biomarker 17α(H),21β(H)-Hopane. The results from this study showed total biotransformation half-lives ranging from 10 to 19 days for groups of naphthalenes and PAHs, while half-lives for APs (C0- to C9-alkylated) were 10-14 days. Biotransformation half-lives of single compounds ranged from 8 to >100 days for naphthalenes and PAHs (median 16 days), and from 5 to 70 days (median 15 days) for phenols and APs. Four of the tested PAHs (chrysene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene) and one AP (4-tert-butylphenol) showed biotransformation half-lives >50 days. This is one of a few studies that has investigated the potential for biodegradation of PW in natural SW. Methods and data from this study may be used as a part of Risk Based Approaches (RBA) for assessments of environmental fate of PW released to the marine environment and as part of the persistence related to risk. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  11. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production

    PubMed Central

    Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca

    2017-01-01

    Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877

  12. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry.

    PubMed

    Righetti, Laura; Dellafiora, Luca; Cavanna, Daniele; Rolli, Enrico; Galaverna, Gianni; Bruni, Renato; Suman, Michele; Dall'Asta, Chiara

    2018-04-30

    Zearalenone (ZEN) major biotransformation pathways described so far are based on glycosylation and sulfation, although acetylation of trichothecenes has been reported as well. We investigated herein the ZEN acetylation metabolism route in micropropagated durum wheat leaf, artificially contaminated with ZEN. We report the first experimental evidence of the formation of novel ZEN acetylated forms in wheat, attached both to the aglycone backbone as well as on the glucose moiety. Thanks to the advantages provided by high-resolution mass spectrometry, identification and structure annotation of 20 metabolites was achieved. In addition, a preliminary assessment of the toxicity of the annotated metabolites was performed in silico focusing on the toxicodynamic of ZEN group toxicity. All the metabolites showed a worse fitting within the estrogen receptor pocket in comparison with ZEN. Nevertheless, possible hydrolysis to the respective parent compounds (i.e., ZEN) may raise concern from the health perspective because these are well-known xenoestrogens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans. Graphical abstract ᅟ.

  13. The microbial composition and metabolic potential of the ovine rumen

    USDA-ARS?s Scientific Manuscript database

    The rumen is efficient at biotransforming nitroaromatic explosive compounds, such as TNT, RDX, and HMX, which have been used widely in US military munitions. These compounds are present in > 4,000 military items, from large bombs to very small igniters. However, their manufacturing processes have g...

  14. The Extent of Fermentative Transformation of Phenolic Compounds in the Bioanode Controls Exoelectrogenic Activity in a Microbial Electrolysis Cell

    DOE PAGES

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.; ...

    2016-11-27

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less

  15. Organohalogen Compounds in Pet Dog and Cat: Do Pets Biotransform Natural Brominated Products in Food to Harmful Hydroxlated Substances?

    PubMed

    Mizukawa, Hazuki; Nomiyama, Kei; Nakatsu, Susumu; Iwata, Hisato; Yoo, Jean; Kubota, Akira; Yamamoto, Miyuki; Ishizuka, Mayumi; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kunisue, Tatsuya; Tanabe, Shinsuke

    2016-01-05

    There are growing concerns about the increase in hyperthyroidism in pet cats due to exposure to organohalogen contaminants and their hydroxylated metabolites. This study investigated the blood contaminants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH-PCBs, OH-PBDEs, and MeO-PBDEs), in pet dogs and cats. We also measured the residue levels of these compounds in commercially available pet foods. Chemical analyses of PCBs and OH-PCBs showed that the OH-PCB levels were 1 to 2 orders of magnitude lower in cat and dog food products than in their blood, suggesting that the origin of OH-PCBs in pet dogs and cats is PCBs ingested with their food. The major congeners of OH-/MeO-PBDEs identified in both pet food products and blood were natural products (6OH-/MeO-BDE47 and 2'OH-/MeO-BDE68) from marine organisms. In particular, higher concentrations of 6OH-BDE47 than 2'OH-BDE68 and two MeO-PBDE congeners were observed in the cat blood, although MeO-BDEs were dominant in cat foods, suggesting the efficient biotransformation of 6OH-BDE47 from 6MeO-BDE47 in cats. We performed in vitro demethylation experiments to confirm the biotransformation of MeO-PBDEs to OH-PBDEs using liver microsomes. The results showed that 6MeO-BDE47 and 2'MeO-BDE68 were demethylated to 6OH-BDE47 and 2'OH-BDE68 in both animals, whereas no hydroxylated metabolite from BDE47 was detected. The present study suggests that pet cats are exposed to MeO-PBDEs through cat food products containing fish flavors and that the OH-PBDEs in cat blood are derived from the CYP-dependent demethylation of naturally occurring MeO-PBDE congeners, not from the hydroxylation of PBDEs.

  16. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide

    PubMed Central

    Zharikova, Olga L.; Fokina, Valentina M.; Nanovskaya, Tatiana N.; Hill, Ronald A.; Mattison, Donald R.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2014-01-01

    One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans- (M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a( 4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo. PMID:19679108

  17. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide.

    PubMed

    Zharikova, Olga L; Fokina, Valentina M; Nanovskaya, Tatiana N; Hill, Ronald A; Mattison, Donald R; Hankins, Gary D V; Ahmed, Mahmoud S

    2009-12-15

    One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans-(M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a (4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo.

  18. IN VITRO CYTOTOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS IN BLUEGILL SUNFISH BF-2 CELLS

    EPA Science Inventory

    Toluene (methylbenzene) is a common environmental pollutant that is found in many hazardous waste sites and it is an aquifer contaminant. A concern is the potential risk to human and ecosystem health due to exposure to toluene and its major biotransformation products. The cytotox...

  19. A comparison of octanol-water partitioning between organic chemicals and their metabolites in mammals.

    PubMed

    Pirovano, Alessandra; Borile, Nicolò; Jan Hendriks, A

    2012-08-01

    Bioaccumulation models take various elimination and uptake processes into account, estimating rates from chemical lipophilicity, expressed as the octanol-water partition ratio (K(ow)). Here, we focussed on metabolism, which transforms parent compounds into usually more polar metabolites, thus enhancing elimination. The aim of this study was to quantify the change in lipophilicity of relevant organic pollutants undergoing various biotransformation reactions in mammals. We considered oxidation reactions catalyzed by three enzyme groups: cytochrome P450 (CYP), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Estimated logK(ow) values of a selected dataset of parent compounds were compared with the logK(ow) of their first metabolites. The logK(ow) decreased by a factor that varies between 0 and -2, depending on the metabolic pathway. For reactions mediated by CYP, the decrease in K(ow) was one order of magnitude for hydroxylated and epoxidated compounds and two orders of magnitude for dihydroxylated and sulphoxidated xenobiotics. On the other hand, no significant change in lipophilicity was observed for compounds N-hydroxylated by CYP and for alcohols and aldehydes metabolized by ADH and ALDH. These trends could be anticipated by the calculus method of logK(ow). Yet, they were validated using experimental logK(ow) values, when available. These relationships estimate the extent to which the elimination of pollutants is increased by biotransformation. Thus, the quantification of the K(ow) reduction can be considered as a first necessary step in an alternative approach to anticipate biotransformation rates, which are hard to estimate with existing methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea.

    PubMed

    Kovačec, Eva; Regvar, Marjana; van Elteren, Johannes Teun; Arčon, Iztok; Papp, Tamás; Makovec, Darko; Vogel-Mikuš, Katarina

    2017-08-01

    Two plant pathogenic fungi, Botrytis cinerea and Alternaria alternata, isolated from crop plants, were exposed to Cu in ionic (Cu 2+ ), microparticulate (MP, CuO) or nanoparticulate (NP, Cu or CuO) form, in solid and liquid culturing media in order to test fungal response and toxic effects of the mentioned compounds for the potential use as fungicides. B. cinerea has shown pronounced growth and lower levels of lipid peroxidation compared to A. alternata. Its higher resistance/tolerance is attributed mainly to biotransformation of CuO and Cu NPs and CuO MPs into a blue compound at the fungal/culturing media interface, recognized by Cu K-edge EXAFS analysis as Cu-oxalate complex. The pronounced activity of catechol-type siderophores and organic acid secretion in B. cinerea induce leaching and mobilization of Cu ions from the particles and their further complexation with extracellularly secreted oxalic acid. The ability of pathogenic fungus to biotransform CuO MPs and NPs hampers their use as fungicides. However the results show that B. cinerea has a potential to be used in degradation of Cu(O) nanoparticles in environment, copper extraction and purification techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations.

    PubMed

    Sprenger, Georg A; Baumgärtner, Florian; Albermann, Christoph

    2017-09-20

    Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus.

    PubMed

    Pan, Chang-Gui; Peng, Feng-Jiao; Ying, Guang-Guo

    2018-05-11

    Climbazole (CBZ) is an antibacterial and antifungal agent widely used in personal care products. In this study, we investigated the interactions between climbazole (CBZ) and freshwater microalgae Scenedesmus obliquus (S. obliquus). Dose-effect relationships between CBZ concentrations and growth inhibitions or chlorophyll a content were observed. After 12 days of incubation, the algae density and chlorophyll a content in 2 mg/L treatment group was 56.6% and 15.8% of those in the control group, respectively. Biotransformation was the predominant way to remove CBZ in the culture solution, whereas the contribution of bioaccumulation and bioadsorption were negligible. More than 88% of CBZ was removed by S. obliquus across all treatments after 12 days of incubation, and the biotransformation of CBZ followed the first order kinetic model with half-lives of approximately 4.5 days at different treatments. CBZ-alcohol (CBZ-OH) was the only biotransformation product identified in algal solution. Moreover, the toxicity of biotransformation products was much lower than its corresponding precursor compound (CBZ). The results of this study revealed that S. obliquus might have a great impact on the environmental fates of CBZ and could be further applied to remove organic pollutants in aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase.

    PubMed

    Baik, Joo Hyun; Shin, Kwang-Soon; Park, Yooheon; Yu, Kwang-Won; Suh, Hyung Joo; Choi, Hyeon-Son

    2015-08-30

    Green tea is a dietary source of bioactive compounds for human health. Enzymatic treatments induce the bioconversion of bioactive components, which can improve biological activities. In this study, we investigated the effect of simultaneous treatment with tannase and Rapidase on biotransformation of catechins and extraction of polysaccharide from green tea extract (GTE). Tannase and pectinase treatments induced the biotransformation of catechins and altered tea polysaccharide () content. The addition of GTE to the enzyme reaction resulted in a significant increase in degallated catechins, including gallic acid, a product of the tannase reaction (314.5-4076.0 µg mL(-1)) and a reduction in epigallocatechin gallate (EGCG). Biotransformation of catechins improved the radical scavenging activity of GTE. Pectinase treatment led to change of TPS composition in GTE by hydrolyzing polysaccharides. In addition, pectinase-driven hydrolysis in polysaccharides significantly increased TPS-induced Interleukin 6 (IL-6) production in macrophages. In particular, treatment of Rapidase (TPS-Ra) led to the highest IL-6 production among TPS samples, similar to treatment of highly purified pectinase (TPS-GTE), a positive control. Simultaneous processing with tannase and Rapidase can be an efficient method for the extraction of bioactive polysaccharides and biotransformation of catechins with enhanced radical scavenging activity from green tea. © 2014 Society of Chemical Industry.

  4. (Bio)transformation of 2,4-dinitroanisole (DNAN) in Soils

    PubMed Central

    Olivares, Christopher I.; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.

    2015-01-01

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations. PMID:26551225

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less

  6. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    PubMed

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-11-17

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.

  7. Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius

    PubMed Central

    Chiang, Chien-Min; Ding, Hsiou-Yu; Tsai, Ya-Ting; Chang, Te-Sheng

    2015-01-01

    Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT) SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4′-dihydroxy-8-methoxy-isoflavone (1) and 8,4′-dihydroxy-7-methoxy-isoflavone (2), based on mass, 1H-nuclear magnetic resonance (NMR) and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1) and (2) in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1) decreased melanogenesis to 63.5% of the control at 25 μM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1) with potent melanogenesis inhibitory activity. PMID:26610478

  8. Synthesis of a new allelopathic agent from the biotransformation of ent-15α-hydroxy-16-kauren-19-oic acid with Fusarium proliferatum.

    PubMed

    Rocha, A D; Vieira, H da S; Takahashi, J A; Boaventura, M A D

    2017-11-01

    The use of kaurane diterpenes as substrates in fungal biotransformation to achieve bioactive compounds has been widely reported. In this work, the natural product kaurenoic acid, a diterpene widely distributed in the plant Kingdom, was chemically converted into ent-15α-hydroxy-kaur-16-en-19-oic acid (1). Substrate 1 was subjected to biotransformation by the fungus Fusarium proliferatum, furnishing a new derivative, ent-2α,15α-dihydroxy-kaur-16-en-19-oic acid (2). The structure of metabolite 2 was deduced on the basis of spectroscopy and MS data. Derivative 2 showed allelopathic activity on germination and growth of root and stem of lettuce (Lactuca sativa), inhibiting 100% of germination and growth of roots and stem, at higher concentration assayed (10 -4  mol/L).

  9. Production of human metabolites by gastrointestinal bacteria as a potential source of post-mortem alteration of antemortem drug/metabolite concentrations.

    PubMed

    Martindale, Stephanie M; Powers, Robert H; Bell, Suzanne C

    2015-01-01

    Previous studies have demonstrated that bacterial species are capable of transforming complex chemical substances. Several of these species, native to the human gastrointestinal tract, are active in postmortem decomposition. They have potential to cause biotransformations affecting compound-to-metabolite ratios within the human body, especially after death. Investigation of postmortem effects could supply valuable information, especially concerning compound identification and confirmation. The purpose of this research was to investigate the effects of Escherichia coli, Bacteroides fragilis, and Clostridium perfringens on diazepam and flunitrazepam in Reinforced Clostridial Medium, and to compare bacterial biotransformation products to those of human metabolism. A decrease in diazepam concentration between pre- and post-incubation was observed for samples inoculated with Escherichia coli (14.7-20.2%) as well as Bacteroides fragilis (13.9-25.7%); however there was no corresponding increase in concentration for the monitored human metabolites. Flunitrazepam demonstrated a greater concentration loss when incubated with individual bacterial species as well as mixed culture (79.2-100.0%). Samples incubated with Bacteroides fragilis, Clostridium perfringens, and mixed culture resulted in nearly complete conversion of flunitrazepam. Increased 7-aminoflunitrazepam concentrations accounted for the majority of the conversion; however discrepancies in the mass balance of the reaction suggested the possibility of a minor metabolite that was not monitored in the current analysis. These experiments served as a pilot study and proof of concept that can be adapted and applied to a realm of possibilities. Ultimately, this methodology would be ideal to study compounds that are too toxic or lethal for animal and human metabolic investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  10. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  11. Microbial Transformation of Biomacromolecules in a Membrane Bioreactor: Implications for Membrane Fouling Investigation

    PubMed Central

    Zhou, Zhongbo; Meng, Fangang; Chae, So-Ryong; Huang, Guocheng; Fu, Wenjie; Jia, Xiaoshan; Li, Shiyu; Chen, Guang-Hao

    2012-01-01

    Background The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). Findings In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. Significance The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF. PMID:22912694

  12. Performance of a biomass adapted to oncological ward wastewater vs. biomass from municipal WWTP on the removal of pharmaceutical molecules.

    PubMed

    Hamon, P; Moulin, P; Ercolei, L; Marrot, B

    2018-01-01

    The performance of a biomass adapted to Oncological Ward Wastewater (OWW) in a membrane bioreactor (MBR) was compared with that of a municipal WWTP, on the removal of pharmaceutical molecules and more specifically on their overall resistance and purifying ability in the presence of pharmaceutical cocktails. Sorption and biotransformation mechanisms on two antineoplastics, one antibiotic and a painkiller were evaluated. Sludge acclimated to OWW allowed for a 34% increase in the removal rate and in the minimum inhibition concentration. The percentage of the amounts of specific pharmaceutical compounds removed by biotransformation or by sorption were measured. These results are positive, as they show that the observed removal of pharmaceutical molecules by biomass acclimated to OWW can mostly be attributed to developed biotransformation, unlike the biomass from the municipal WWTP for which sorption is sometimes the only removal mechanism. The biotransformation kinetic and the solid-water distribution coefficients in this study show good agreement with literature data, even for much higher pharmaceutical concentrations in OWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Use of cyclodextrins in biotransformation reactions with cell cultures of Morus nigra: biosynthesis of prenylated chalcone isocordoin.

    PubMed

    Bolasco, Adriana; Fioravanti, Rossella; Rossi, Francesca; Rossi, Paola; Vitali, Alberto

    2010-06-16

    In vivo biotransformation experiments were performed by using a cell suspension culture of Morus nigra expressing a high PT (prenyltransferase) activity, fed with the target substrate 2',4'-dihydroxychalcone. In order to improve the reaction yields by enhancing the chalcone solubility, three different cyclodextrins have been used to host the substrate. The respective complexes have been studied by means of both spectroscopic and calorimetric techniques (Fourier-transform infrared, 1H-NMR and differential scanning calorimetry) and the solution behaviours have been characterized by solubility phase studies. The hydroxypropyl-beta-cyclodextrin complex was found to be the most suitable for biotransformation, and the reaction of prenylation resulted in a 6-fold higher yield of the final product when compared with the use of the free substrate. The reaction provided as the sole product the 3'-dimethylallyl derivative isocordoin, a biologically active plant compound. The results obtained allow the development of systems based on the use of biofermentors or the use of immobilized cells in order to enhance the biotransformation yields.

  14. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    PubMed

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  15. Biotransformation of Trichoderma spp. and Their Tolerance to Aromatic Amines, a Major Class of Pollutants

    PubMed Central

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando

    2013-01-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813

  16. Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus).

    PubMed

    Felício, Andréia Arantes; Freitas, Juliane Silberschmidt; Scarin, Jéssica Bolpeti; de Souza Ondei, Luciana; Teresa, Fabrício Barreto; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-03-01

    Diuron is one of the most used herbicide in the world, and its field application has been particularly increased in Brazil due to the expansion of sugarcane crops. Diuron has often been detected in freshwater ecosystems and it can be biodegraded into three main metabolites in the environment, the 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU). Negative effects under aquatic biota are still not well established for diuron, especially when considering its presence in mixture with its different metabolites. In this study, we evaluated the effects of diuron alone or in combination with its metabolites, DCPMU, DCPU and 3,4-DCA on biochemical stress responses and biotransformation activity of the fish Oreochromis niloticus. Results showed that diuron and its metabolites caused significant but dispersed alterations in oxidative stress markers and biotransformation enzymes, except for ethoxyresorufin-O-deethylase (EROD) activity, that presented a dose-dependent increase after exposure to either diuron or its metabolites. Glutathione S-transferase (GST) activity was significant lower in gills after exposure to diuron metabolites, but not diuron. Diuron, DCPMU and DCA also decreased the multixenobiotic resistance (MXR) activity. Lipid peroxidation levels were increased in gill after exposure to all compounds, indicating that the original compound and diuron metabolites can induce oxidative stress in fish. The integration of all biochemical responses by the Integrated Biomarker Response (IBR) model indicated that all compounds caused significant alterations in O. niloticus, but DCPMU caused the higher alterations in both liver and gill. Our findings imply that diuron and its metabolites may impair the physiological response related to biotransformation and antioxidant activity in fish at field concentrations. Such alterations could interfere with the ability of aquatic animals to adapt to environments contaminated by agriculture. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil.

    PubMed

    Liu, Chen; Liu, Jinxia

    2016-05-01

    Microbial transformation of polyfluoroalkyl phosphate esters (PAPs) into perfluorocarboxylic acids (PFCAs) has recently been confirmed to occur in activated sludge and soil. However, there lacks quantitative information about the half-lives of the PAPs and their significance as the precursors to PFCAs. In the present study, the biotransformation of 6:2 and 8:2 diPAP in aerobic soil was investigated in semi-dynamics reactors using improved sample preparation methods. To develop an efficient extraction method for PAPs, six different extraction solvents were compared, and the phenomenon of solvent-enhanced hydrolysis was investigated. It was found that adding acetic acid could enhance the recoveries of the diPAPs and inhibit undesirable hydrolysis during solvent extraction of soil. However 6:2 and 8:2 monoPAPs, which are the first breakdown products from diPAPs, were found to be unstable in the six solvents tested and quickly hydrolyzed to form fluorotelomer alcohols. Therefore reliable measurement of the monoPAPs from a live soil was not achievable. The apparent DT50 values of 6:2 diPAP and 8:2 diPAP biotransformation were estimated to be 12 and > 1000 days, respectively, using a double first-order in parallel model. At the end of incubation of day 112, the major degradation products of 6:2 diPAP were 5:3 fluorotelomer carboxylic acid (5:3 acid, 9.3% by mole), perfluoropentanoic acid (PFPeA, 6.4%) and perfluorohexanoic acid (PFHxA, 6.0%). The primary product of 8:2 diPAP was perfluorooctanoic acid (PFOA, 2.1%). The approximately linear relationship between the half-lives of eleven polyfluoroalkyl and perfluoroalkyl substances (PFASs, including 6:2 and 8:2 diPAPs) that biotransform in aerobic soils and their molecular weights suggested that the molecular weight is a good indicator of the general stability of low-molecular-weight PFAS-based compounds in aerobic soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pollutant Dehalogenation Capability May Depend on the Trophic Evolutionary History of the Organism: PBDEs in Freshwater Food Webs

    PubMed Central

    Bartrons, Mireia; Grimalt, Joan O.; de Mendoza, Guillermo; Catalan, Jordi

    2012-01-01

    Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms’ trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce biotransformation capability may be selectively more exposed to these halogenated hydrophobic semi-volatile organic pollutants due to their high bioaccumulation potential. PMID:22848624

  19. [Mechanism study on difference of biotransformation between Mycobacterium fortuitum MF2 and MF96].

    PubMed

    Ling, Liang-Fei; Ge, Mei; Fu, Lei; Huang, Wei-Yi; Chen, Dai-Jie

    2005-08-01

    Biotransformation difference between parent strain (MF2) and mutant strain (MF96) of Mycobacterium fortuitum was observed. Biotransformation with resting cells showed that the major products of biotransformation by both parent and mutant strains are delta4-androstenedione(4AD) and testosterone(TS). Experiments with cell-free extract system showed that the proportion of 4AD/TS obtained from parent and mutant strains was almost same when enough NAD+ and NADH were supplied in this system. It was suggested that the difference of the ratio of products transformed by both strains in resting cell system may result from their different ratio of NAD+/NADH. This speculation was verified to be true by determination of the amount of NAD+ and NADH presented in both strains.

  20. Perfluorooctanesulfonate (PFOS) Conversion from N-Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) in male Sprague Dawley rats after inhalation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Sue, E-mail: s.chang@mmm.com

    Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) was one of the key building blocks for many of the perfluorooctanesulfonyl-based chemistry and laboratory studies have shown that EtFOSE can metabolically degrade to perfluorooctanesulfonate (PFOS). Non-occupational contribution sources to PFOS are thought to occur in general population via diets, drinking water, air and dust. For workers, however, the exposure route was mostly airborne and the exposure source was predominantly to precursor compounds such as EtFOSE. We undertook this study to investigate how much EtFOSE was converted to PFOS in the serum for male rats after 6 h of exposure to EtFOSE vapor (whole body) at ambient temperature,more » which simulated a work place exposure scenario. There were no abnormal clinical observations and all rats gained weight during study. Interim tail-vein blood samples, collected up to 21 days after exposure, were analyzed for Et-FOSE and PFOS concentrations by LC-MS/MS. Upon inhalation exposure, the biotransformation of EtFOSE to PFOS in serum in the male rats was rapid and very little EtFOSE was detected in the serum within 24 h after EtFOSE exposure. The highest conversion to PFOS in serum after exposure to EtFOSE vapor appeared to occur between Day 8−14 post exposure. Considering the potential surface and fur adsorption of test compound in the whole-body exposure system, our data would support that at least 10% of the inhaled EtFOSE was biotransformed to PFOS in the serum based on the range of lower 95% CI (confidence interval) values. This information is valuable because it quantitatively translates EtFOSE exposure into serum PFOS concentration, which serves as a matrix for internal dosimetry (of PFOS exposure) that can be used as an anchor across species as well as between different exposure routes. - Highlights: • First inhalation study reported in rats that investigates the conversion of a major precursor compound (EtFOSE) to form PFOS. • Systemic absorption of EtFOSE in rats can occur upon inhalation exposure. • Our data suggest that at least 10% of the inhaled EtFOSE can be biotransformed to PFOS in the serum.« less

  1. Stereoselective Formation of Mono- and Di-Hydroxylated Polychlorinated Biphenyls by Rat Cytochrome P450 2B1

    PubMed Central

    Lehmler, Hans-Joachim; Wong, Charles S.

    2013-01-01

    Changes in atropisomer composition of chiral polychlorinated biphenyls (PCBs) and their mono- and di- hydroxylated metabolites (OH- and diOH-PCBs) via rat cytochrome P450 2B1 (CYP2B1) mediated biotransformation were investigated in vitro. Rat CYP2B1 could stereoselectively biotransform chiral PCBs to generate meta-OH-PCBs as the major metabolites after 60 min incubations. Non-racemic enantiomer fractions (EFs: concentration ratios of the (+)-atropisomer or the first-eluting atropisomer over the total concentrations of two atropisomers) of 5-OH-PCBs, were 0.17, 0.20, 0.85, 0.77 and 0.41 for incubations with PCBs 91, 95, 132, 136 and 149, respectively. CYP-mediated stereoselective formation of diOH-PCBs from OH-PCBs was observed for the first time. After 60 min stereoselective biotransformation, the EFs of both 4-OH-PCB 95 and 5-OH-PCB 95 changed from racemic (i.e., 0.50) to 0.62 and 0.46, respectively. These transformations generated statistically non-racemic 4,5-diOH-PCB 95, with EFs of 0.53 and 0.58 for 4-OH-PCB 95 and 5-OH-PCB 95 incubations, respectively. Biotransformation of PCBs 91 and 136 also generated 4,5-diOH-PCB 91 and 4,5-diOH-PCB 136, respectively. These in vitro results were consistent with that observed for stereoselective PCB biotransformation by rat liver microsomes and in vivo. Biotransformation interference between two atropisomers of PCB 136 was investigated for the first time in this study. The biotransformation process of (−)-PCB 136 was significantly disrupted by the presence of (+)-PCB 136, but not the other way around. Thus, stereoselective metabolism of chiral PCBs and OH-PCBs by CYPs is a major mechanism for atropisomer composition change of PCBs and their metabolites in the environment, with the degree of composition change dependent, at least in part, on stereoselective interference of atropisomers with each other at the enzyme level. PMID:24060104

  2. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    PubMed

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  3. Biotransformation of (-)-(1R,4S)-Menthone and (+)-(1S,4R)-Menthone by the Common Cutworm Spodoptera litura Larvae.

    PubMed

    Marumoto, Shinsuke; Okuno, Yoshiharu; Hagiwara, Yuki; Miyazawa, Mitsuo

    2017-08-01

    Using biotransformation as a biocatalytic process has the advantage of being able to proceed under mild conditions and with high regio- and enantioselectivity. This study investigated the biotransformation of (-)-(1R,4S)-menthone (1) and (+)-(1S,4R)-menthone (2) by Spodoptera litura larvae. Compound 1 was converted to (-)-(1R,4S)-7-hydroxymenthone (1-1), (+)-(1R,3S,4S)-7-hydroxyneomenthol (1-2) and (-)-(1R,4S,8R)-p-menth-3-one-9-oic acid (1-3). The metabolism of substrate 2 generated three enantiomers of the above metabolites, designated as 2-1 to 2-3, respectively. The C-9 position of (-)-menthone and (+)-menthone was oxidized to carboxylic acid by S. litura, which is a metabolic pathway not observed in any other example of biocatalysis.

  4. Biotransformation of RDX and HMX by Anaerobic Granular Sludge with Enriched Sulfate and Nitrate.

    PubMed

    An, Chunjiang; Shi, Yarong; He, Yanling; Huang, Guohe; Liu, Yonghong; Yang, Shucheng

    2017-05-01

      RDX and HMX are widely used energetic materials and they are recognized as environmental contaminants at numerous locations. The present study investigated the biotransformation of RDX and HMX by anaerobic granular sludge under sulfate- and nitrate-enriched conditions. The results showed that RDX and HMX could be transformed by anaerobic granular sludge when nitrate was present. However, the biotransformation of RDX and HMX was negatively influenced, especially with high nitrate concentrations. Sulfate-enriched conditions were more favorable for the removal of ammunition compounds by anaerobic granular sludge than nitrate-enriched conditions. The removal of RDX and HMX under both nitrate- and sulfate-enriched conditions was facilitated by the use of glucose as additional substrate. This knowledge may help identify factors required for rapid removal of RDX and HMX in high-rate bioreactors. These results can also be applied to devise an appropriate and practical biological treatment strategy for explosive contaminated wastewater.

  5. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer.

    PubMed

    Yao, Haiqiang; Wan, Jin-Yi; Zeng, Jinxiang; Huang, Wei-Hua; Sava-Segal, Clara; Li, Lingru; Niu, Xin; Wang, Qi; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Ginsenoside Rb1, a major component of different ginseng species, can be bioconverted into compound K by gut microbiota, and the latter possess much stronger cancer chemopreventive potential. However, while the initiation and progression of colorectal cancer is closely associated with gut inflammation, to date, the effects of compound K on inflammation-linked cancer chemoprevention have not been reported. In the present study, liquid chromatography quadrupole time-of-flight mass spectrometry analysis was applied to evaluate the biotransformation of Rb1 in American ginseng by human enteric microflora. The in vitro inhibitory effects of Rb1 and compound K were compared using the HCT-116 and HT-19 human colorectal cancer cell lines by a MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Using ELISA, the anti-inflammatory effects of Rb1 and compound K were compared for their inhibition of interleukin-8 secretion in HT-29 cells, induced by lipopolysaccharide. The results revealed that compound K is the major intestinal microbiome metabolite of Rb1. When compared with Rb1, compound K had significantly stronger anti-proliferative effects in HCT-116 and HT-29 cell lines (P<0.01). Compound K significantly arrested HCT-116 and HT-29 cells in the G1 phase, and induced cell apoptosis (P<0.01). By contrast, Rb1 did not markedly influence the cell cycle or apoptosis. Furthermore, compound K exerted significant anti-inflammatory effects even at low concentrations (P<0.05), while Rb1 did not have any distinct effects. The data obtained from the present study demonstrated that compound K, an intestinal microbiome metabolite of Rb1, may have a potential clinical value in the prevention of inflammatory-associated colorectal cancer.

  6. IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

  7. Halothane hepatotoxicity and the reduced derivative, 1,1,1-trifluoro-2-chloroethane.

    PubMed Central

    Brown, B R; Sipes, I G; Baker, R K

    1977-01-01

    Halothane (1,1,1-trifluoro-2-bromo-2-chloroethane) is a safe, clinically useful inhalation anesthetic. Rare, unpredictable cases of liver necrosis have been reported following its use. Although the mechanism of this reaction in man is unknown the most plausible is biotransformation to reactive intermediates compounds. The oxidative metabolism of halothane appears to be benign. There is early evidence that reductive (nonoxygen dependent) may be harmful. Since the bromine atom of halothane appears to possess weak bond energy, the reduced, debrominated derivative of halothane, 1,1,1-trifluoro-2-chloroethane, was synthesized and tested for hepatotoxicity in the rat. The derivative is unstable and thus was prepared anaerobically and trapped in propylene glycol solvent. Injection of small amounts of this compound into the portal vein of rats produces extensive liver necrosis. It is postulated that biotransformation of halothane via a reductive pathway could produce this reactive intermediate metabolite. Images FIGURE 1. PMID:612444

  8. Quantification of the Influence of Extracellular Laccase and Intracellular Reactions on the Isomer-Specific Biotransformation of the Xenoestrogen Technical Nonylphenol by the Aquatic Hyphomycete Clavariopsis aquatica▿

    PubMed Central

    Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar

    2009-01-01

    The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559

  9. Biotransformation of nitroso aromatic compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by thiamine-dependent enzymes in rat liver.

    PubMed

    Yoshioka, T; Uematsu, T

    1998-07-01

    The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.

  10. Frontiers of chemical bioaccumulation modeling with fish

    EPA Science Inventory

    Predictive models for chemical accumulation in fish have been provided by numerous authors. Historically, these models were developed to describe the accumulation of neutral hydrophobic compounds which undergo little or no biotransformation. In such cases, accumulation can be p...

  11. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  12. Biotransformation and mass balance of tipranavir, a nonpeptidic protease inhibitor, when co-administered with ritonavir in Sprague-Dawley rats.

    PubMed

    Macha, Sreeraj; Chen, Linzhi; Norris, Stephen H; Philip, Elsy; Mao, Yanping; Silverstein, Helga; Struble, Craig; Beers, Wendy

    2007-09-01

    In this study, tipranavir (TPV) biotransformation and disposition when co-administered with ritonavir (RTV) were characterized in Sprague-Dawley rats. Rats were administered a single intravenous (5 mg kg(-1)) or oral (10 mg kg(-1)) dose of [(14)C]TPV with co-administration of RTV (10 mg kg(-1)). Blood, urine, faeces and bile samples were collected at specified time-points over a period of 168 h. Absorption of TPV-related radioactivity ranged from 53.2-59.6%. Faecal excretion was on average 86.7% and 82.4% (intravenous) and 75.0% and 82.0% (oral) of dosed radioactivity in males and females, respectively. Urinary excretion was on average 4.06% and 6.73% (intravenous) and 9.71% and 8.28% (oral) of dosed radioactivity in males and females, respectively. In bile-duct-cannulated rats, 39.8% of the dose was recovered in bile. After oral administration, unchanged TPV accounted for the majority of the radioactivity in plasma (85.7-96.3%), faeces (71.8-80.1%) and urine (33.3-62.3%). The most abundant metabolite in faeces was an oxidation metabolite R-2 (5.9-7.4% of faecal radioactivity, 4.4-6.1% of dose). In urine, no single metabolite was found to be significant, and comprised <1% of dose. TPV when co-administered with RTV to rats was mainly excreted in feces via bile and the parent compound was the major component in plasma and faeces.

  13. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    PubMed

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is efficient under optimized conditions. Moreover, our study of one-pot biotransformation also provides useful information on the combination of biotechnological processes for the biotransformation of other compounds.

  14. Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: The NMR tube bioreactor.

    PubMed

    Chatzikonstantinou, Alexandra V; Chatziathanasiadou, Maria V; Ravera, Enrico; Fragai, Marco; Parigi, Giacomo; Gerothanassis, Ioannis P; Luchinat, Claudio; Stamatis, Haralambos; Tzakos, Andreas G

    2018-01-01

    Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Research Progress of Natural Product Gentiopicroside - a Secoiridoid Compound.

    PubMed

    Wu, Shaoping; Ning, Yaoyao; Zhao, Yingyong; Sun, Wenji; Thorimbert, Serge; Dechoux, Luc; Sollogoub, Matthieu; Zhang, Yongmin

    2017-01-01

    Gentiopicroside is a secoiridoid compound isolated from Gentiana lutea which is called Qin Jiao in Chinese. It is one of the most common herbal medicines used in China. In this article, we review the pharmacological and biological activity (antiviral, anti-inflammatory, analgesia, antihepatotoxic and choleretic), as well as biotransformation of the gentiopicroside. In addition, attempt towards the total synthesis of gentiopicroside is also presented.

  16. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    PubMed

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.

  17. Use of deuterium labeling by high-temperature solid-state hydrogen-exchange reaction for mass spectrometric analysis of bradykinin biotransformation.

    PubMed

    Kopylov, Arthur T; Myasoedov, Nikolay F; Dadayan, Alexander K; Zgoda, Victor G; Medvedev, Alexei E; Zolotarev, Yurii A

    2016-06-15

    Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Microbial transformation of hederagenin by Cunninghamella echinulate, Mucor subtilissimus, and Pseudomonas oleovorans.

    PubMed

    Liu, Zhen; Lu, Yan-Hua; Feng, Xu; Zou, Ying-Xin; Diao, Zhuo; Chu, Zhi-Yong

    2017-07-01

    The pentacyclic triterpenoid hederagenin (1) was subjected to biotransformation by Cunninghamella echinulate CGMCC 3.2000, Mucor subtilissimus CGMCC 3.2454 and Pseudomonas oleovorans CGMCC 1.1641. Three metabolites were obtained. On the basis of nuclear magnetic resonance and high-resolution mass spectral analyses, their structures were characterized as 3β, 23-dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (2), 3β, 15α, 23-trihydroxyolean-12-en-28-oic acid (3), 1β, 3β, 23-trihydroxyolean-12-en-28-oic acid (4), and metabolite (3) was a new compound. This was the first report on the biotransformation of hederagenin.

  19. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  20. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (TCE), cis-and trans-1,2-dichloroethene (DCE), an...

  1. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  2. Pharmacokinetics of intravenous pan-class I phosphatidylinositol 3-kinase (PI3K) inhibitor [14C]copanlisib (BAY 80-6946) in a mass balance study in healthy male volunteers.

    PubMed

    Gerisch, Michael; Schwarz, Thomas; Lang, Dieter; Rohde, Gabriele; Reif, Stefanie; Genvresse, Isabelle; Reschke, Susanne; van der Mey, Dorina; Granvil, Camille

    2017-09-01

    To determine the pharmacokinetics of radiolabeled copanlisib (BAY 80-6946) in healthy male volunteers and to investigate the disposition and biotransformation of copanlisib. A single dose of 12 mg copanlisib containing 2.76 MBq [ 14 C]copanlisib was administered as a 1-h intravenous infusion to 6 volunteers with subsequent sampling up to 34 days. Blood, plasma, urine and feces were collected to monitor total radioactivity, parent compound and metabolites. Copanlisib treatment was well tolerated. Copanlisib was rapidly distributed throughout the body with a volume distribution of 1870 L and an elimination half-life of 52.1-h (range 40.4-67.5-h). Copanlisib was the predominant component in human plasma (84% of total radioactivity AUC) and the morpholinone metabolite M1 was the only circulating metabolite (about 5%). Excretion of drug-derived radioactivity based on all 6 subjects was 86% of the dose within a collection interval of 20-34 days with 64% excreted into feces as major route of elimination and 22% into urine. Unchanged copanlisib was the main component excreted into urine (15% of dose) and feces (30% of dose). Excreted metabolites (41% of dose) of copanlisib resulted from oxidative biotransformation. Copanlisib was eliminated predominantly in the feces compared to urine as well as by hepatic biotransformation, suggesting that the clearance of copanlisib would more likely be affected by hepatic impairment than by renal dysfunction. The dual mode of elimination via unchanged excretion of copanlisib and oxidative metabolism decreases the risk of clinically relevant PK-related drug-drug interactions.

  3. White rot fungi and advanced combined biotechnology with nanomaterials: promising tools for endocrine-disrupting compounds biotransformation.

    PubMed

    Huang, Danlian; Guo, Xueying; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Gong, Xiaomin; Deng, Rui; Xue, Wenjing; Wang, Rongzhong; Yi, Huan; Liu, Caihong

    2018-08-01

    Endocrine-disrupting compounds (EDCs) can interfere with endocrine systems and bio-accumulate through the food chain and even decrease biodiversity in contaminated areas. This review discusses a critical overview of recent research progress in the biotransformation of EDCs (including polychlorinated biphenyl and nonylphenol, and suspected EDCs such as heavy metals and sulfonamide antibiotics) by white rot fungi (WRF) based on techniques with an emphasis on summarizing and analyzing fungal molecular, metabolic and genetic mechanisms. Not only intracellular metabolism which seems to perform essential roles in the ability of WRF to transform EDCs, but also advanced applications are deeply discussed. This review mainly reveals the removal pathway of heavy metal and antibiotic pollutants because the single pollution almost did not exist in a real environment while the combined pollution has become more serious and close to people's life. The trends in WRF technology and its related advanced applications which use the combined technology, including biocatalysis of WRF and adsorption of nanomaterials, to degrade EDCs have also been introduced. Furthermore, challenges and future research needs EDCs biotransformation by WRF are also discussed. This research, referring to metabolic mechanisms and the combined technology of WRF with nanomaterials, undoubtedly contributes to the applications of biotechnology. This review will be of great benefit to an understanding of the trends in biotechnology for the removal of EDCs.

  4. Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact.

    PubMed

    Mafla, S; Moraga, R; León, C G; Guzmán-Fierro, V G; Yañez, J; Smith, C T; Mondaca, M A; Campos, V L

    2015-08-01

    Roxarsone is included in chicken food as anticoccidial and mainly excreted unchanged in faeces. Microorganisms biotransform roxarsone into toxic compounds that leach and contaminate underground waters used for human consumption. This study evaluated roxarsone biotransformation by underground water microorganisms and the toxicity of the resulting compounds. Underground water from an agricultural field was used to prepare microcosms, containing 0.05 mM roxarsone, and cultured under aerobic or anaerobic conditions. Bacterial communities of microcosms were characterized by PCR-DGGE. Roxarsone degradation was measured by HPLC/HG/AAS. Toxicity was evaluated using HUVEC cells and the Toxi-ChromoTest kit. Roxarsone degradation analysis, after 15 days, showed that microcosms of underground water with nutrients degraded 90 and 83.3% of roxarsone under anaerobic and aerobic conditions, respectively. Microcosms without nutrients degraded 50 and 33.1% under anaerobic and aerobic conditions, respectively. Microcosms including nutrients showed more roxarsone conversion into toxic inorganic arsenic species. DGGE analyses showed the presence of Proteobacteria, Firmicutes, Actinobacteria, Planctomycetes and Spirochaetes. Toxicity assays showed that roxarsone biotransformation by underground water microorganisms in all microcosms generated degradation products toxic for eukaryotic and prokaryotic cells. Furthermore, toxicity increased when roxarsone leached though a soil column and was further transformed by the bacterial community present in underground water. Therefore, using underground water from areas where roxarsone containing manure is used as fertilizer might be a health risk.

  5. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  6. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.

    PubMed

    Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale

    2018-04-21

    The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A Genomic Outlook on Bioremediation: The Case of Arsenic Removal.

    PubMed

    Plewniak, Frédéric; Crognale, Simona; Rossetti, Simona; Bertin, Philippe N

    2018-01-01

    Microorganisms play a major role in biogeochemical cycles. As such they are attractive candidates for developing new or improving existing biotechnological applications, in order to deal with the accumulation and pollution of organic and inorganic compounds. Their ability to participate in bioremediation processes mainly depends on their capacity to metabolize toxic elements and catalyze reactions resulting in, for example, precipitation, biotransformation, dissolution, or sequestration. The contribution of genomics may be of prime importance to a thorough understanding of these metabolisms and the interactions of microorganisms with pollutants at the level of both single species and microbial communities. Such approaches should pave the way for the utilization of microorganisms to design new, efficient and environmentally sound remediation strategies, as exemplified by the case of arsenic contamination, which has been declared as a major risk for human health in various parts of the world.

  8. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    PubMed

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  9. Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaerobic environments.

    PubMed

    Lahti, Marja; Oikari, Aimo

    2011-08-01

    Although biotransformation is generally considered to be the main process by which to remove pharmaceuticals, both in sewage treatment plants and in aquatic environments, quantitative information on specific compounds is scarce. In this study, the transformations of diclofenac (DCF), naproxen (NPX), and bisoprolol (BSP) were studied under aerobic and anaerobic conditions using inocula taken from activated and digested sludge processes, respectively. Whereas concentration decays were monitored by LC-tandem mass spectrometry, oxygen consumption and methane production were used for the evaluation of the performance of overall conditions. DCF was recalcitrant against both aerobic and anaerobic biotransformation. More than one third of the BSP disappeared under aerobic conditions, whereas only 14% was anaerobically biotransformed in 161 days. Under aerobic conditions, complete removal of NPX was evident within 14 days, but anaerobic transformation was also efficient. Formation of 6-O-desmethylnaproxen, a previously reported aerobic metabolite, was also detected under anaerobic conditions and persisted for 161 days.

  10. Influence of polychlorinated aromatic compounds on the biotransformation and toxicity of organophosphorus pesticides (OP) to the Daphnia magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkopii, V.; Zagrebin, A.; Sherstneva, L.

    1995-12-31

    The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besidesmore » that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.« less

  11. Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Jie; Chan, Wan

    2013-02-23

    Osthole is an active ingredient and one of the major coumarin compounds that were identified in the genus Cnidium moonnieri (L.) Cussion, the fruit of which was used as traditional Chinese medicine to treat male impotence, ringworm infection and blood stasis conventionally. Recent studies revealed that osthole has diverse pharmacological effects, such as improving male sexual dysfunction, anti-diabetes, and anti-hypertentions. The inhibition of thrombosis and platelet aggregation and protection of central nerve were also observed. On the other hand, the metabolism of osthole has not yet been investigated thoroughly. Herein the biotransformation of osthole in rat was investigated after oral administration of osthole by using efficient and sensitive ultra-performance liquid chromatography-tandem quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS). Eighteen osthole metabolites and the parent drug were detected and identified in rat urine. Fourteen metabolites of osthole were identified and characterized for the first time. Structures of metabolites of osthole were elucidated by comparing fragment pattern under MS/MS scan and change of molecular weight with those of osthole. The main phase I metabolic pathways were summed as 7-demethylation, 8-dehydrogenation, hydroxylation on coumarin and 3,4-epoxide. Sulfate conjugates were detected as phase II metabolites of osthole. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae.

    PubMed

    Kelly, David J A; Budd, Kenneth; Lefebvre, Daniel D

    2007-01-01

    Eukaryotic algae were studied to determine their ability to biotransform Hg(II) under aerated and pH controlled conditions. All algae converted Hg(II) into beta-HgS and Hg(0) to varying degrees. When Hg(II) was administered as HgCl(2) to the algae, biotransformation by species of Chlorophyceae (Selenastrum minutum and Chlorella fusca var. fusca) was initiated with beta-HgS synthesis (K (1/2) of hours) and concomitant Hg degrees evolution occurred in the first hour. Hg degrees synthesis was impeded by the formation of beta-HgS and this inhibition was released in C. fusca var. fusca when cellular thiols were oxidized by the addition of dimethylfumarate (DMF). The diatom, Navicula pelliculosa (Bacillariophyceae), converted a substantially greater proportion of the applied Hg(II) into Hg(0), whereas the thermophilic alga, Galdieria sulphuraria (Cyanidiophyceae), rapidly biotransformed as much as 90% of applied Hg(II) into beta-HgS (K (1/2) approximately 20 min). This thermophile was also able to generate Hg(0) even after all exogenously applied HgCl(2) had been biotransformed. The results suggest that beta-HgS may be the major dietary mercurial for grazers of contaminated eukaryotic algae.

  13. QSAR ANALYSIS OF SORPTION-CORRECTED RATE CONSTANTS FOR REDUCTIVE BIOTRANSFORMATION OF HALOGENATED AROMATICS

    EPA Science Inventory

    The inherent coupling among geochemical and microbial reactions may have significant effects on the environmental fate of a containinant. For example, sorption processes may decrease the concentration of an organic compound in solution, thereby reducing the biodegradation rate of...

  14. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.).

    PubMed

    Geng, Qianqian; Li, Tian; Li, Pingliang; Wang, Xin; Chu, Weijing; Ma, Yanan; Ma, Hui; Ni, Hanwen

    2018-09-01

    Potential risk of endocrine disrupting compounds on non-target organisms has received extensive attentions in recent years. The present work aimed to investigate the behavior and effect of a synthetic steroid estrogen quinestrol in duckweed Spirodela polyrhiza L. Experimental results showed that quinestrol could be uptaken, accumulated, and biotransformed into 17 α-ethynylestradiol in S. polyrhiza L. The accumulation of quinestrol had a positive relation to the exposure concentration. The bioaccumulation rate was higher when the duckweed was exposed to quinestrol solutions at low concentrations than at high concentration. While the transformation of quinestrol showed no concentration-dependent manner. Quinestrol reduced the biomass and pigment content and increased superoxide dismutase and catalase activities and malondialdehyde contents in the duckweed. The results demonstrated that quinestrol could be accumulated and biotransformed in aquatic plant S. polyrhiza L. This work would provide supplemental data on the behavior of this steroid estrogen compound in aquatic system. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments.

    PubMed

    Gaion, Andrea; Sartori, Davide; Scuderi, Alice; Fattorini, Daniele

    2014-05-01

    This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172 ± 176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.

  16. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.

    PubMed

    Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L

    2014-08-01

    Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.

  17. Olea europaea L. leaf extract and derivatives: antioxidant properties.

    PubMed

    Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto

    2002-08-14

    This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.

  18. [Synthesis, biotransformation and pharmacodynamics of a new theophylline derivative].

    PubMed

    Oelschläger, H; Harsche, C; Engel, J

    1991-09-01

    7-[(RS)2-((S)-1-Methyl-2-phenyl-ethylamino)propyl]-theophylline (3) was not described until now. This fenetylline analogue is available by reaction of 7 with an excess of 2 at 150 degrees C. If 2 reacts with 4, an E2-elimination overwhelms SN-nucleophilic displacement yielding compound 5. In vivo studies with male White-Wistar rats, comparing biotransformation of 3 and 1, demonstrate, that the amount of 2 is decreased from 4.7% of (RS)-2 to 1%, probably due to steric hindrance of the attacking monooxygenases by the methyl group at C-11 of 3. Pharmacodynamic studies of 3, tested with mice, gave similar results to those obtained with 1.

  19. Biodegradation of pentafluorosulfanyl-substituted aminophenol in Pseudomonas spp.

    PubMed

    Saccomanno, Marta; Hussain, Sabir; O'Connor, Neil K; Beier, Petr; Somlyay, Mate; Konrat, Robert; Murphy, Cormac D

    2018-06-01

    The pentafluorosulfanyl (SF 5 -) substituent conveys properties that are beneficial to drugs and agrochemicals. As synthetic methodologies improve the number of compounds containing this group will expand and these chemicals may be viewed as emerging pollutants. As many microorganisms can degrade aromatic xenobiotics, we investigated the catabolism of SF 5 -substituted aminophenols by bacteria and found that some Pseudomonas spp. can utilise these compounds as sole carbon and energy sources. GC-MS analysis of the culture supernatants from cultures grown in 5-(pentafluorosulfanyl) 2-aminophenol demonstrated the presence of the N-acetylated derivative of the starting substrate and 4-(pentafluorosulfanyl)catechol. Biotransformation experiments with re-suspended cells were also conducted and fluorine-19 NMR analyses of the organic extract and aqueous fraction from suspended cell experiments revealed new resonances of SF 5 -substituted intermediates. Supplementation of suspended cell cultures with yeast extract dramatically improved the degradation of the substrate as well as the release of fluoride ion. 4-(Pentafluorosulfanyl)catechol was shown to be a shunt metabolite and toxic to some of the bacteria. This is the first study to demonstrate that microorganisms can biodegrade SF 5 -substituted aromatic compounds releasing fluoride ion, and biotransform them generating a toxic metabolite.

  20. Fungal biotransformation of diuretic and antihypertensive drug spironolactone with Gibberella fujikuroi, Curvularia lunata, Fusarium lini, and Aspergillus alliaceus.

    PubMed

    Al-Aboudi, Amal; Kana'an, Belal Muneeb; Zarga, Musa Abu; Bano, Saira; Atia-Tul-Wahab; Javed, Kulsoom; Choudhary, M Iqbal

    2017-12-01

    Derivatives of spironolactone (1), a diuretic and antihypertensive drug, were synthesized by using fungal cells for the first time. Ten different fungi were screened for their ability to biotransform 1, four of which were able to produce metabolites 2-8. Gibberella fujikuroi produced canrenone (2), 1-dehydrocanrenone (3), Curvularia lunuta provided compound 2, and 7α-thio-spironolactone (4), Fusarium lini yielded compounds 2, 3, 1β-hydroxycanrenone (5), 1α-hydroxycanrenone (6), 1-dehydro-15α-hydroxycanrenone (7), and 15α-hydroxycanrenone (8), while Aspergillus alliaceus was able to produce all the seven metabolites. Metabolites 5, 6, and 7 were identified as new compounds. Their structures were elucidated by using different spectroscopic techniques. Substrate 1 and its metabolites 2, 3, and 5-8 were also evaluated for α-glucosidase inhibitory activity in vitro. Substrate 1 was found to be strongly active with IC 50  = 335 ± 4.3 μM as compared to the standard drug acarbose IC 50  = 840 ± 1.73 μM, whereas all of resulting metabolites were found to be inactive. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fluorotelomer ethoxylates: sources of highly fluorinated environmental contaminants part I: biotransformation.

    PubMed

    Frömel, Tobias; Knepper, Thomas P

    2010-09-01

    Polyethoxylated 2-perfluoroalkylethanols ('fluorotelomer ethoxylates', F-(CF(2)-CF(2)-)(x)-(CH(2)-CH(2)-O)(y)-H, FTEO) are an important class of non-ionic fluorinated surfactants, which have been disregarded as potential source of per- and polyfluorinated organic pollutants despite their high production and application amounts. A commercial mixture of FTEO with a perfluoroalkyl chain length between 6 and 10 carbon atoms and an ethoxymer distribution between 0 and 13 was subjected to a biodegradation test. Monitoring of the aerobic biotransformation process by HPLC-ESI-MS/MS showed that FTEO are rapidly transformed with a half-life of approximately 1d. Structural elucidation of the biotransformation products with the help of hybrid quadrupole--linear ion trap tandem mass spectrometry revealed oxidation to the respective carboxylic acid followed by sequential shortening of ethoxylate units which led to FTEO carboxylates (FTEOC). The conversion rate of FTEOC was found to diminish with decreasing number of ethoxylate units and virtually ceased for compounds with seven intact ethoxy units. These short-chain FTEOC were not further degraded within 48d. Nonetheless, perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were detected, whose formation is ascribed to degradation of residual fluorotelomer alcohols present in the commercial product. This article represents the first of two parts of a series concerning FTEO. Whilst this part is clearly focused on results of a biodegradation study of FTEO, part two will pinpoint analytical aspects, synthesis of biotransformation products and first evidence of environmental presence of the biotransformation products. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Biotransformation in the zebrafish embryo -temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene.

    PubMed

    Kühnert, Agnes; Vogs, Carolina; Seiwert, Bettina; Aulhorn, Silke; Altenburger, Rolf; Hollert, Henner; Küster, Eberhard; Busch, Wibke

    2017-11-01

    Not much is known about the biotransformation capability of zebrafish (Danio rerio) embryos. For understanding possible toxicity differences to adult fish, it might be crucial to understand the biotransformation of chemicals in zebrafish embryos i.e. as part of toxicokinetics. The biotransformation capabilities were analysed for two different stages of zebrafish embryos in conjunction with the internal concentrations of a xenobiotic. Zebrafish embryos of the late cleavage/early blastula period (2-26 hpf) and the early pharyngula period (26-50 hpf) were exposed for 24 h to the AhR binding compound benz[a]anthracene (BaA). Time dependent changes in cyp transcription (cyp1a, cyp1b1, cyp1c1 and cyp1c2) as well as concentration & time-dependent courses of BaA in the fish embryo and the exposure medium were analysed. Additionally, the CYP mediated formation of biotransformation products was investigated. We found correlations between transcriptional responses and the internal concentration for both exposure types. These correlations were depending on the start of the exposure i.e. the age of the exposed embryo. While no significant induction of the examined gene transcripts was observed in the first 12 h of exposure beginning in the blastula period a correlation was apparent when exposure started later i.e. in the pharyngula period. A significant induction of cyp1a was detected already after 1.5 h of BaA exposure. Gene transcripts for cyp1b1, cyp1c1 and cyp1c2 showed expressions distinctly different from cyp1a and were, in general, less inducible by BaA in both exposure windows. The toxicokinetic analysis showed that the biotransformation capability was fivefold higher in the older fish embryos. Biotransformation products of phase I reactions were found between 32 hpf and 50 hpf and were tentatively identified as benz[a]anthracene-phenol and benz[a]anthracene-dihydrodiol-epoxide. In conclusion, not only duration but also onset of exposure in relation to the developmental stage of zebrafish embryos is important in the analysis and interpretation of effects due to different biotransformation capabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.

    PubMed

    Kuo, Dave T F; Di Toro, Dominic M

    2013-08-01

    A model for whole-body in vivo biotransformation of neutral and weakly polar organic chemicals in fish is presented. It considers internal chemical partitioning and uses Abraham solvation parameters as reactivity descriptors. It assumes that only chemicals freely dissolved in the body fluid may bind with enzymes and subsequently undergo biotransformation reactions. Consequently, the whole-body biotransformation rate of a chemical is retarded by the extent of its distribution in different biological compartments. Using a randomly generated training set (n = 64), the biotransformation model is found to be: log (HLφfish ) = 2.2 (±0.3)B - 2.1 (±0.2)V - 0.6 (±0.3) (root mean square error of prediction [RMSE] = 0.71), where HL is the whole-body biotransformation half-life in days, φfish is the freely dissolved fraction in body fluid, and B and V are the chemical's H-bond acceptance capacity and molecular volume. Abraham-type linear free energy equations were also developed for lipid-water (Klipidw ) and protein-water (Kprotw ) partition coefficients needed for the computation of φfish from independent determinations. These were found to be 1) log Klipidw  = 0.77E - 1.10S - 0.47A - 3.52B + 3.37V + 0.84 (in Lwat /kglipid ; n = 248, RMSE = 0.57) and 2) log Kprotw  = 0.74E - 0.37S - 0.13A - 1.37B + 1.06V - 0.88 (in Lwat /kgprot ; n = 69, RMSE = 0.38), where E, S, and A quantify dispersive/polarization, dipolar, and H-bond-donating interactions, respectively. The biotransformation model performs well in the validation of HL (n = 424, RMSE = 0.71). The predicted rate constants do not exceed the transport limit due to circulatory flow. Furthermore, the model adequately captures variation in biotransformation rate between chemicals with varying log octanol-water partitioning coefficient, B, and V and exhibits high degree of independence from the choice of training chemicals. The present study suggests a new framework for modeling chemical reactivity in biological systems. Copyright © 2013 SETAC.

  4. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by Fusarium species

    USDA-ARS?s Scientific Manuscript database

    Microbes encounter a broad spectrum of chemical compounds in their diverse environments. These xenobiotics may negatively impact growth or cause death. To counter such adverse effects, many microbes possess metabolic strategies to detoxify and biotransform xenobiotics. Fusarium verticillioides is a ...

  5. Metabolism and excretion of 2-ethoxyethanol in the adult male rat.

    PubMed Central

    Cheever, K L; Plotnick, H B; Richards, D E; Weigel, W W

    1984-01-01

    The routes of 14C excretion following the administration of a single oral 230 mg/kg body weight dose of 2-ethoxyethanol [ethanol-1,2-14C] or 2-ethoxyethanol [ethoxy-1-14C] to male Sprague-Dawley rats were investigated. Elimination of the 14C by the urinary route accounted for 76 to 80% of the dose within 96 hr. The main pathway of biotransformation is oxidation to the corresponding acid, with some subsequent conjugation of the acid metabolite with glycine. The major metabolites, ethoxyacetic acid and N-ethoxy-acetyl glycine, representing 73 to 76% of the administered dose, were eliminated in the urine. The major difference in the metabolic profiles of the two radiochemicals was in the rate and amount of 14CO2 expired via the lung. Of the administered 14C, 11.7% of the ethoxy-labeled and 4.6% of the ethanol-labeled compounds were eliminated as CO2. The biological half-time was 9.9 +/- 1.5 hr for the ethoxy-labeled compound and 12.5 +/- 1.9 hr for the ethanol label. After administration of the ethanol-labeled compound, the only radiolabeled component found in the rat testes was identified as ethoxyacetic acid. Results of this study suggest that the reported testicular effects in the rat may be a result of tissue levels of ethoxyacetic acid. PMID:6437805

  6. Estimation of biotransformation and sorption of emerging organic compounds (EOCs) during artificial recharge through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Martinez-Landa, L.; Carrera, J.; Hidalgo, J. J.; Ayora, C.

    2016-12-01

    The reuse of lesser quality water such as effluents from wastewater treatment plants or effluent-receiving water bodies has been promoted due to the water shortages affecting many regions of the world. Artificial recharge through infiltration basins is known to improve several water quality parameters including the attenuation of emerging organic compounds (EOCs). Many of these contaminants exhibit redox dependent biotransformation because the redox state is one of the factors controlling microbial community development. Together with biotransformation, sorption also affects the behavior of EOCs in their passage through the soil. We studied EOCs attenuation in an infiltration system is located in Sant Vicenç dells Horts on the Llobregat delta (Barcelona, Spain), where the local water agency has an artificial recharge pilot project . The Llobregat river water used for the artificial recharge is affected by treatment plant effluents which contain EOCs. A reactive barrier consisting of vegetable compost, clay, and iron oxide was installed in the bottom of the infiltration basin to enhance biotransformation and sorption of EOCs. The barrier releases dissolved organic carbon, which favors the development of a broad range of redox environments, and supplies neutral, cationic, and anionic surfaces to favor sorption of different types of contaminants. Results were excellent, but quantitative evaluation of the EOCs attenuation requires knowledge of the residence time distribution of infiltrated water. A tracer test was performed by adding tracers to the infiltration water and interpreting the breakthrough curves at diverse monitoring points with a 2D multilayer numerical model. The calibrated model quantify degradation, as a first order law, and sorption through a linear distribution coefficient for ten selected EOCs. Results indicate higher degradation rates and sorption coefficients in the reactive barrier than in the rest of the aquifer for nine and eight of the ten studied EOCs, respectively, which demonstrates the efficiency of the reactive barrier to enhance the removal of EOCs.

  7. Mass Spectrometry Based Identification of Geometric Isomers during Metabolic Stability Study of a New Cytotoxic Sulfonamide Derivatives Supported by Quantitative Structure-Retention Relationships

    PubMed Central

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the identification of cis-trans isomers based on retention data. This methodology can be helpful during the structural identification of biotransformation and degradation products of new chemical entities - potential new drugs. PMID:24893169

  8. Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater

    NASA Astrophysics Data System (ADS)

    Klečka, G. M.; Carpenter, C. L.; Gonsior, S. J.

    1998-10-01

    The ability of naturally occurring microorganisms to biodegrade 1,2-dichloroethane was examined in soil/water microcosms prepared using aquifer material obtained from manufacturing sites in Louisiana and Texas with known histories of exposure to the compound, as well as in aquifer samples taken from a site in Oklahoma with no known history of 1,2-dichloroethane contamination. Biotransformation of 1,2-dichloroethane was noted under methanogenic or sulfate reducing conditions in all samples. Under anaerobic conditions, 1,2-dichloroethane was transformed to ethylene in a single step via reductive dihaloelimination. No other metabolites were detected in the reaction mixtures. Microbial adaptation appeared to be required for biotransformation of 1,2-dichloroethane. Lag periods ranging from 7 to 8 weeks preceded degradation in microcosms prepared with aquifer material from the Texas and Oklahoma sites. In contrast, no lag period was evident prior to biotransformation in microcosms prepared from the Louisiana manufacturing site, which is consistent with field evidence for natural biological attenuation in situ based on analysis of the groundwater chemistry. Aerobic biodegradation of 1,2-dichloroethane to carbon dioxide was also observed after 13 weeks in aquifer material from the Louisiana site, but was not evident in samples from the Texas or Oklahoma sites following 18 weeks of incubation. The ability of naturally occurring microorganisms to degrade 1,2-dichloroethane has bearing on assessments of the fate and lifetime of the compound in the environment, as well as having potential application in the remediation of contaminated groundwater.

  9. In vitro degradation of hexanitrohexaazaisowurtzitane (CL-20) by cytosolic enzymes of Japanese quail and the rabbit.

    PubMed

    Bardai, Ghalib K; Halasz, Annamaria; Sunahara, Geoffrey I; Dodard, Sabine; Spear, Philip A; Grosse, Stephan; Hoang, Johnston; Hawari, Jalal

    2006-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) is a polycyclic nitramine explosive and propellant, currently being considered as a potential replacement for existing cyclic nitramine explosives. Earlier studies have provided evidence suggestive of adverse liver effects in adult Coturnix spp. exposed to CL-20, yet analysis of tissue samples (plasma, liver, brain, heart, or spleen) indicated that CL-20 was not detectable in these treated animals. The present study was conducted to identify and purify the enzymes capable of CL-20 biotransformation. Results indicate that the hepatic biotransformation of CL-20 in vitro was inhibited by ethacrynic acid (93%) and by the glutathione (GSH) analogue S-octylglutathione (80%), suggesting the involvement of glutathione-S-transferase (GST). Partially purified cytosolic alpha- and mu-type GST (requiring presence of GSH as a cofactor) from quail and rabbit liver was capable of CL-20 biotransformation. The degradation of CL-20 (0.30 +/- 0.05 and 0.40 +/- 0.02 nmol/min/mg protein for quail and rabbit, respectively) was accompanied with the formation of nitrite and consumption of GSH. Using liquid chromatography/mass spectrometry, we detected two intermediates, that is, open-ring, monodenitrated GSH-conjugated CL-20 biotransformation product with the same deprotonated molecular mass ion at 699 Da, suggesting isomeric forms of the intermediate metabolites. Identity of the conjugated metabolites was confirmed by using ring-labeled [15N]CL-20 and the nitro group-labeled [15NO2]CL-20. These data suggest that the in vitro biotransformation of CL-20 by GST under the conditions tested may be a key initial step in the in vivo degradation of CL-20 in the quail and resulted in the formation of more biologically reactive intermediates than the parent compound. These data will aid in our understanding of the biotransformation processes of CL-20 in vivo.

  10. [35S]-LABELING OF THE SALMONELLA TYPHIMURIUM GLUTATHIONE POOL TO ASSESS GLUTATHIONE-MEDIATED DNA BINDING BY 1,2-DIBROMOETHANE

    EPA Science Inventory

    Biotransformation of drugs and environmental chemicals to reactive intermediates is often studied with the use of radiolabeled compounds that are synthesized by expensive and technically difficult procedures. In general, glutathione (GSH) conjugation serves as a detoxification m...

  11. Which molecular features affect the intrinsic hepatic clearance rate of ionizable organic chemicals in fish?

    EPA Science Inventory

    Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study we measured in vitro hepatic clearance rates for 50 IOCs using a p...

  12. EFFECTS OF THREE CONCENTRATIONS OF MIXED FATTY ACIDS ON DECHLORINATION OF TETRACHLOROETHENE IN AQUIFER MICRO- COSMS

    EPA Science Inventory

    Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalo...

  13. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals.

    PubMed

    De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G

    2016-12-08

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.

  14. Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals

    PubMed Central

    De Zutter, N.; Audenaert, K.; Arroyo-Manzanares, N.; De Boevre, M.; Van Poucke, C.; De Saeger, S.; Haesaert, G.; Smagghe, G.

    2016-01-01

    Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON. PMID:27929076

  15. Pretreatment with broad-spectrum antibiotics alters the pharmacokinetics of major constituents of Shaoyao-Gancao decoction in rats after oral administration.

    PubMed

    Liu, Meng; Yuan, Jie; Hu, Wen-Juan; Ke, Chang-Qiang; Zhang, Yi-Fan; Ye, Yang; Zhong, Da-Fang; Zhao, Guang-Rong; Yao, Sheng; Liu, Jia

    2018-05-17

    The influence of broad-spectrum antibiotics on the pharmacokinetics and biotransformation of major constituents of Shaoyao-Gancao decoction (SGD) in rats was investigated. The pharmacokinetic behaviors of paeoniflorin (PF), albiflorin (AF), liquiritin (LT), isoliquiritin (ILT), liquiritin apioside (LA), isoliquiritin apioside (ILA), and glycyrrhizic acid (GL), seven major constituents of SGD, as well as glycyrrhetinic acid (GA), a major metabolite of GL, were analyzed. A 1-week pretreatment with broad-spectrum antibiotics (ampicillin, metronidazole, neomycin, 1 g L -1 ; and vancomycin, 0.5 g L -1 ) via drinking water reduced plasma exposure of the major constituents. The AUC 0-24 h of PF and LT was significantly decreased by 28.7% and 33.8% (P < 0.05 and P < 0.005), respectively. Although the differences were not statistically significant, the AUC 0-24 h of AF, ILT, LA, ILA, and GL was decreased by 31.4%, 50.9%, 16.9%, 44.1%, and 37.0%, respectively, compared with the control group. In addition, the plasma GA exposure in the antibiotic-pretreated group was significantly lower (P < 0.005) than the control group. The in vitro stability of the major constituents of SGD in the rat intestinal contents with or without broad-spectrum antibiotics was also investigated. The major constituents were comparatively stable in the rat duodenum contents, and the biotransformation of GL mainly occurred in the rat colon contents. In summary, broad-spectrum antibiotics suppressed the absorption of the major constituents of SGD and significantly inhibited the biotransformation of GL to GA by suppressing the colon microbiota. The results indicated a potential clinical drug-drug interaction (DDI) when SGD was administered with broad-spectrum antibiotics.

  16. Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes.

    PubMed

    Bosse, Andrea K; Fraatz, Marco A; Zorn, Holger

    2013-12-01

    Altogether 30 different basidiomycetes were grown submerged in liquid culture media using seven different by-products of the food industry as the only carbon source. Seven fungus/substrate combinations revealed interesting flavour profiles. Culture supernatants of Tyromyces chioneus grown on apple pomace were extracted, and the aroma compounds were analysed by gas chromatography-olfactometry (GC-O). Potent odorants were identified by aroma extract dilution analysis (AEDA), calculation of the odour activity values (OAV), and proven by confection of an aroma model. 3-Phenylpropanal, 3-phenyl-1-propanol, and benzyl alcohol were identified as potent aroma biotransformation products. Headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) experiments showed that 3-phenylpropanal, 3-phenyl-1-propanol, benzyl alcohol, methyl 3-phenylpropionate, methyl 2-phenylacetate, cinnamaldehyde and methyl cinnamate were produced during the cultivation period of eight days. By means of labelling experiments, (E)-cinnamic acid was identified as the precursor of 3-phenylpropanal and 3-phenyl-1-propanol. Basidiomycetes were able to biotransform food by-products to pleasant complex flavour mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. In vitro metabolism study of Strychnos alkaloids using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry.

    PubMed

    Tian, Ji-Xin; Peng, Can; Xu, Lei; Tian, Yuan; Zhang, Zun-Jian

    2013-06-01

    In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high-resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate-C18 column, and then analyzed by on-line ion trap/time-of-flight mass spectrometry. With the assistance of mass defect filtering technique, full-scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MS(n) spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N-oxidation, epoxidation, methylation, dehydrogenation, de-methoxylation, O-demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products.

    PubMed

    Kim, Sunah; Rossmassler, Karen; Broeckling, Corey D; Galloway, Sarah; Prenni, Jessica; De Long, Susan K

    2017-11-15

    Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  1. Biotransformation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) by Denitrifying Pseudomonas sp. Strain FA1

    PubMed Central

    Bhushan, Bharat; Paquet, Louise; Spain, Jim C.; Hawari, Jalal

    2003-01-01

    The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2−), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20. PMID:12957905

  2. Mutagenic, cytotoxic, and teratogenic effects of 2-acetylaminofluorene and reactive metabolites in vitro.

    PubMed

    Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R

    1984-01-01

    The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.

  3. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  4. New cryptotanshinone derivatives with anti-influenza A virus activities obtained via biotransformation by Mucor rouxii.

    PubMed

    He, Wenni; Li, Yao; Qin, Yuejie; Tong, Xiaomei; Song, Zhijun; Zhao, Yu; Wei, Ran; Li, Li; Dai, Huanqin; Wang, Wenzhao; Luo, Houwei; Ye, Xin; Zhang, Lixin; Liu, Xueting

    2017-08-01

    This paper provides an efficient platform to diversify the structure and pharmaceutical potentials of known natural products. Seven metabolites were obtained via the biotransformation of cryptotanshinone by the fungus Mucor rouxii AS 3.3447, and assigned as 13R-14R-hydroxy-anhydride of 16R-cryptotanshinone (1), 1S-hydroxy-anhydride of 16R-cryptotanshinone (2), 1R-hydroxy-anhydride of 16R-cryptotanshinone (3), 3S-hydroxy-epicryptoacetalide (4), 3S-hydroxy-cryptoacetalide (5), epicryptoacetalide (6), and cryptoacetalide (7). Among these compounds, 1-5 are novel. The ortho-naphthoquinone chromophore of cryptotanshinone was degraded and rearranged by M. rouxii. 1 and 3 showed good anti-influenza A virus activities with the reduced cytotoxic activities compared to the parent substrate cryptotanshinone (8). The structures of all the new compounds were determined on the basis of HRESIMS (high-resolution electrospray ionization mass spectroscopy) spectrometry, NMR (nuclear magnetic resonance) spectroscopy, ECD (electronic circular dichroism) calculations, and the CD (circular dichroism) of "in situ" method with [Rh 2 (OCOCF 3 ) 4 ].

  5. Understanding and Modulating Mammalian-Microbial Communication for Improved Human Health

    PubMed Central

    Mani, Sridhar; Boelsterli, Urs A.; Redinbo, Matthew R.

    2013-01-01

    The fact that the bacteria in the human gastrointestinal (GI) tract play a symbiotic role was noted as early as 1885, well before we began to manage microbial infections using antibiotics. However, even with the first antimicrobial compounds used in humans, the sulfa drugs, microbes were recognized to be critically involved in the biotransformation of these therapeutics. Thus, the roles played by the microbiota in physiology and in the management of human health have long been appreciated. Detailed examinations of GI symbiotic bacteria that started in the early 2000s and the first phases of the Human Microbiome Project that were completed in 2012 have ushered in an exciting period of granularity with respect to the ecology, genetics, and chemistry of the mammalian-microbial axes of communication. Here we review aspects of the biochemical pathways at play between commensal GI bacteria and several mammalian systems, including both local-epithelia and nonlocal responses including inflammation, immunology, metabolism, and neurobiology. Finally, we discuss how the microbial biotransformation of therapeutic compounds, such as anticancer or nonsteroidal anti-inflammatory drugs, can be modulated to reduce toxicity and potentially improve therapeutic efficacy. PMID:24160697

  6. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria.

    PubMed

    Decréau, Richard A; Marson, Charles M; Smith, Kelvin E; Behan, John M

    2003-12-01

    The biotransformations of a number of steroids, chiefly 5,6,16,17-tetradehydro-androstanes, are reported. The strains investigated were Corynebacteria sp. G38, G40, G41, B, Brevis sp. CW5 and Micrococcus sp. M-DH2. Corynebacterium sp. G41 proved remarkably efficient in effecting oxidative isomerisation of 5-ene-3-sterols into the corresponding 4-en-3-ones. The main biochemical reactions involved were oxidation at C-3; no reduction processes were observed. Conversions of 3beta-sterols into the C-3 oxo-steroids were high, but were correspondingly low for the 3alpha-sterol epimers. Androsta-4,16-dien-3-one and 5beta-androsta-16-en-3-one are crucial to the formation of malodour. The rate of formation of these compounds was measured over 72 h incubation periods using three substrates: androsta-5,16-dien-3beta-ol, androsta-4,16-dien-3beta-ol and androsta-5,16-dien-3-one. Induction studies of the transformation of the androsta-5,16-dien-3beta-ol into the very odorous compound androsta-4,16-dien-3-one showed that cells incubated with a mixture of antibiotics displayed the same extent of biotransformation as normal cells if the concentration of antibiotic was low (1, 3, 5 and 7 microg/ml), although at concentrations higher than 10 microg/ml, biotransformation yields were reduced. Pre-incubation with a 3beta-fluoro-steroid inhibited the formation of the odorous androsta-4,16-dien-3-one.

  7. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.C.R.; Boyd, D.R.; Hempenstall, F.

    The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueousmore » solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.« less

  8. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    PubMed

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Impact of Microbial Biotransformation of Catechin in Enhancing the Allelopathic Effects of Rhododendron formosanum

    PubMed Central

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy. PMID:24391991

  10. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum.

    PubMed

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.

  11. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.

    PubMed

    Lo, Justin C; Campbell, David A; Kennedy, Christopher J; Gobas, Frank A P C

    2015-10-01

    To improve current bioaccumulation assessment methods, a methodology is developed, applied, and investigated for measuring in vivo biotransformation rates of hydrophobic organic substances in the body (soma) and gastrointestinal tract of the fish. The method resembles the Organisation for Economic Co-operation and Development (OECD) 305 dietary bioaccumulation test but includes reference chemicals to determine both somatic and gastrointestinal biotransformation rates of test chemicals. Somatic biotransformation rate constants for the test chemicals ranged between 0 d(-1) and 0.38 (standard error [SE] 0.03)/d(-1) . Gastrointestinal biotransformation rate constants varied from 0 d(-1) to 46 (SE 7) d(-1) . Gastrointestinal biotransformation contributed more to the overall biotransformation in fish than somatic biotransformation for all test substances but 1. Results suggest that biomagnification tests can reveal the full extent of biotransformation in fish. The common presumption that the liver is the main site of biotransformation may not apply to many substances exposed through the diet. The results suggest that the application of quantitative structure-activity relationships (QSARs) for somatic biotransformation rates and hepatic in vitro models to assess the effect of biotransformation on bioaccumulation can underestimate biotransformation rates and overestimate the biomagnification potential of chemicals that are biotransformed in the gastrointestinal tract. With some modifications, the OECD 305 test can generate somatic and gastrointestinal biotransformation data to develop biotransformation QSARs and test in vitro-in vivo biotransformation extrapolation methods. © 2015 SETAC.

  12. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha

    2009-05-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating thatmore » inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.« less

  13. Transcriptional and catalytic responses of antioxidant and biotransformation pathways in mussels, Mytilus galloprovincialis, exposed to chemical mixtures.

    PubMed

    Giuliani, Maria Elisa; Benedetti, Maura; Arukwe, Augustine; Regoli, Francesco

    2013-06-15

    Antioxidant and biotransformation pathways are widely studied in marine organisms exposed to environmental stressors. However, mechanisms of responses and links between different intracellular levels are not always easy to elucidate and conflicting results are frequently observed between molecular and enzymatic data. In this study, transcriptional and catalytic responses of antioxidant and biotransformation parameters were analyzed after a 4-week exposure of a marine invertebrate, Mytilus galloprovincialis, to chemical mixtures from low polluted and highly polluted sediments. A significant, dose-dependent bioaccumulation was observed for polycyclic aromatic hydrocarbons, especially low molecular weight compounds. Among antioxidant defences, catalase and glutathione peroxidases did not exhibit variations in enzymatic activity, while the corresponding gene transcriptions were up- and down-regulated, respectively; unchanged mRNA levels of superoxide dismutase confirmed the non-synchronous pathways of variations for such antioxidants. Biotransformation responses also revealed inconsistent trends between transcriptional and catalytic variations of glutathione S-transferases, and a significant increase in mRNA levels for cytochrome P450 3A1. The overall results indicated that transcriptional responses might be sensitive but do not necessarily correspond to functional changes, being more useful as "exposure" rather than "effect" biomarkers. Data on gene transcription and catalytic activities should be carefully interpreted when assessing the impact of chemical pollutants and additional studies are needed on modulation of post-transcriptional mechanisms by environmental stressors. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Identification of isoquercitrin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Lu, Linling; Qian, Dawei; Yang, Jing; Jiang, Shu; Guo, Jianming; Shang, Er-xin; Duan, Jin-ao

    2013-04-01

    In this paper, ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and the MetaboLynx™ software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC-Q-TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.

    PubMed

    Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P

    2015-05-25

    The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (p<0.01) and intraluminal media. The metabolite 8-OH-NVP was not detected in the intraluminal media from either males or females. In this study, important inter-sex differences were detected in both organs, providing further clues to the sex-dimorphic profile of NVP toxicity. Moreover, an extra-hepatic contribution to NVP biotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Biotransformation of Stypotriol triacetate by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Areche, Carlos; Vaca, Inmaculada; Labbe, Pamela; Soto-Delgado, Jorge; Astudillo, Luis; Silva, Mario; Rovirosa, Juana; San-Martin, Aurelio

    2011-07-01

    Biological transformation of the meroditerpenoid, stypotriol triacetate ( 1) by the fungi Aspergillus niger, Cunninghamella elegans, Gibberella fujikuroi and Mucor plumbeus was studied. The incubation of 1 with A. niger yielded the new compound 6',14-diacetoxy-stypol-4,5-dione ( 2) whose structure was established by 1H, 13C and 2D NMR and supported by DFT/GIAO.

  17. Synthesis and biosynthesis of isocordoin.

    PubMed

    Vitali, A; Ferrari, F; Monache, G D; Bombardelli, E; Botta, B

    2001-07-01

    In the search of a convenient synthesis for isocordoin (1), a potential anticancer natural product, 2',4'-dihydroxychalcone was inoculated in cell suspension cultures of Morus nigra, which were expected to contain an active prenyltransferase. After 24 hours the target compound was easily isolated from the metabolite extract. Optimization of the biotransformation resulted in a 85% yield of the prenyl derivative.

  18. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi.

    PubMed

    Supreeth, M; Raju, N S

    2017-08-01

    Large quantities of pesticides are applied on crops to protect them from pests in modern agricultural practices around the globe. The two insecticides, chlorpyrifos, belonging to the organophosphorous group and endosulfan, belonging to the organochlorine group, are vastly used insecticides on agricultural crops in the last three decades. Hence, both these insecticides are ubiquitous in the environment. Once applied, these two insecticides undergo transformation in the environment either biologically or non-biologically. Microbial degradation has been considered a safe and cost-effective method for removing contaminants from the environment. Both the insecticides have been subjected to biodegradation studies using various bacteria and fungi by the researchers. Here, in this review, we report on biotransformed products formed during the course of biodegradation of these two insecticides and also discuss about the aftereffects of their transformed metabolites. This is important, because the primary biotransformed metabolites 3,5,6, trichloro-2-pyridinol of chlorpyrifos and endosulfan sulfate of endosulfan are toxic as their parent compounds and are noxious to variety of organisms. In conclusion, it is recommended to obtain microbial cultures capable of mineralizing pesticides completely without formation of any such toxic by-product before adopting bioremediation or bioaugmentation technology.

  19. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  20. Biotransformation and Degradation of the Insensitive Munitions Compound, 3-Nitro-1,2,4-triazol-5-one, by Soil Bacterial Communities.

    PubMed

    Krzmarzick, Mark J; Khatiwada, Raju; Olivares, Christopher I; Abrell, Leif; Sierra-Alvarez, Reyes; Chorover, Jon; Field, James A

    2015-05-05

    Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.

  1. Microbial transformation of pseudoprotodioscin by Gibberella fujikuroi.

    PubMed

    Hu, Hong-Xiu; Gao, Ran-Ran; Gao, Zhao-Hui; Qiao, Yue; Dong, Xin-Ran; Ding, Gang; Sun, Di-An

    2018-05-07

    Three new (6, 9, and 12) and nine known steroidal saponins were obtained from the fermentation broth of pseudoprotodioscin (PPD) incubated with a fungus Gibberella fujikuroi CGMCC 3.4663. Structures of the metabolites were elucidated by 1-D ( 1 H, 13 C), 2-D (HMBC, HSQC, NOESY) NMR, and HR-MS analyses. The biotransformation pathway of pseudoprotodioscin by Gibberella fujikuroi CGMCC 3.4663 was proposed. Compounds 1-11 were tested in vitro for their cytotoxic activities against two human cancer cell lines (HepG2 and Hela). Compounds 1, 6, 9, and 10 exhibited cytotoxic activity against HepG2 cells. Compound 10 exhibited cytotoxicity to Hela cells.

  2. Synthesis and Characterization of Arsenolipids: Naturally Occurring Arsenic Compounds in Fish and Algae

    PubMed Central

    2014-01-01

    Arsenic-containing lipids (arsenolipids) are natural products present in fish and algae. Because these compounds occur in foods, there is considerable interest in their human toxicology. We report the synthesis and characterization of seven arsenic-containing lipids, including six natural products. The compounds comprise dimethylarsinyl groups attached to saturated long-chain hydrocarbons (three compounds), saturated long-chain fatty acids (two compounds), and monounsaturated long chain fatty acids (two compounds). The arsenic group was introduced through sodium dimethylarsenide or bis(dimethylarsenic) oxide. The latter route provided higher and more reproducible yields, and consequently, this pathway was followed to synthesize six of the seven compounds. Mass spectral properties are described to assist in the identification of these compounds in natural samples. The pure synthesized arsenolipids will be used for in vitro experiments with human cells to test their uptake, biotransformation, and possible toxic effects. PMID:24683287

  3. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  4. Assessment of In-Situ Reductive Dechlorination Using Compound-Specific Stable Isotopes, Functional-Gene Pcr, and Geochemical Data

    PubMed Central

    Carreón-Diazconti, Concepción; Santamaría, Johanna; Berkompas, Justin; Field, James A.; Brusseau, Mark L.

    2010-01-01

    Isotopic analysis and molecular-based bioassay methods were used in conjunction with geochemical data to assess intrinsic reductive dechlorination processes for a chlorinated-solvent contaminated site in Tucson, Arizona. Groundwater samples were obtained from monitoring wells within a contaminant plume comprising tetrachloroethene and its metabolites trichloroethene, cis-1,2-dichloroethene, vinyl chloride, and ethene, as well as compounds associated with free-phase diesel present at the site. Compound specific isotope (CSI) analysis was performed to characterize biotransformation processes influencing the transport and fate of the chlorinated contaminants. PCR analysis was used to assess the presence of indigenous reductive dechlorinators. The target regions employed were the 16s rRNA gene sequences of Dehalococcoides sp. and Desulfuromonas sp., and DNA sequences of genes pceA, tceA, bvcA, and vcrA, which encode reductive dehalogenases. The results of the analyses indicate that relevant microbial populations are present and that reductive dechlorination is presently occurring at the site. The results further show that potential degrader populations as well as biotransformation activity is non-uniformly distributed within the site. The results of laboratory microcosm studies conducted using groundwater collected from the field site confirmed the reductive dechlorination of tetrachloroethene to dichloroethene. This study illustrates the use of an integrated, multiple-method approach for assessing natural attenuation at a complex chlorinated-solvent contaminated site. PMID:19603638

  5. Rearranged diterpenoids from the biotransformation of ent-trachyloban-18-oic acid by Rhizopus arrhizus.

    PubMed

    Leverrier, Aurélie; Martin, Marie-Thérèse; Servy, Claudine; Ouazzani, Jamal; Retailleau, Pascal; Awang, Khalijah; Mukhtar, Mat Ropi; Guéritte, Françoise; Litaudon, Marc

    2010-06-25

    In our search for inhibitors of the antiapoptotic protein Bcl-xL, investigation of Xylopia caudata afforded a new diterpenoid, ent-trachyloban-4beta-ol (2), and five known ent-trachylobane or ent-atisane compounds. Only ent-trachyloban-18-oic acid (1) exhibited weak binding activity to Bcl-xL. These compounds exhibited cytotoxicity against KB and HCT-116 cell lines with IC(50) values between 10 and 30 microM. Bioconversion of compound 1 by Rhizopus arrhizus afforded new hydroxylated metabolites (3-7) of the ent-trachylobane and ent-kaurene type and compound 8, with a rearranged pentacyclic carbon framework that was named rhizopene. Compounds 3-8 were noncytotoxic to the two cancer cell lines, and compounds 3 and 5 exhibited only weak binding affinity for Bcl-xL.

  6. [Interaction of opioid analgesics at the level of biotransformation].

    PubMed

    Petri, H; Grandt, D

    2016-12-01

    Opioids are an important component of the drug treatment of patients with acute and chronic pain. They differ in effectiveness, side effect profile and the risk of interactions. In this article the pharmacokinetic mechanisms of drug-drug interactions at the level of biotransformation are described and the clinical consequences which can arise are discussed. The relation of the active components to the two isoenzymes CYP2D6 and CYP3A4 is of major importance for assessing the potential drug-drug interactions of opioid analgesics at the level of the cytochrome P450 enzyme.

  7. Investigation of biotransformation of selenium in plants using spectrometric methods

    NASA Astrophysics Data System (ADS)

    Ruszczyńska, Anna; Konopka, Anna; Kurek, Eliza; Torres Elguera, Julio Cesar; Bulska, Ewa

    2017-04-01

    The aim of this research was to study the processes of biotransformation of selenium in plants such as garlic, radish sprouts and sunflower sprouts via identification of selenium-containing compounds as metabolites of inorganic selenium using mass spectrometry. Speciation analysis of selenium in extracts from plant samples was performed with the use of hyphenated high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method. Matching the retention times of sample compounds with standards allowed identification of Se-methyl-selenocysteine, selenomethionine, γ-glutamyl-Se-methylselenocysteine and inorganic SeO32 -. However, registered chromatograms included additional 82Se signals which couldn't be identified due to the lack of standards. Qualitative analysis of unknown compounds was achieved using high-resolution mass spectrometer equipped with mass analyzer Orbitrap coupled to high performance liquid chromatography. Since selenium has six stable isotopes of different abundance in nature, mass spectra of have a very characteristic isotopic pattern. In order to elucidate the structure of unknown Se compounds, selected ions were subjected to the fragmentation. Following selenocompounds were identified an inorganic selenium metabolites in garlic, sunflower sprouts and/or radish sprouts: selenohomolanthionine, Se-methyl-selenocysteine, selenomethionine, selenomethionine oxide, deaminohydroxy-selenohomolanthionine, N-acetylcysteine-selenomethionine, γ-glutamyl-Se-methyl-selenocysteine, methylseleno-Se-pentose-hexose, Se-methyl-selenoglutathione, 2,3-dihydroxy-propionyl-selenocysteine-cysteine, methyltio-selenoglutathione, 2,3-dihydroxypropionyl-selenolanthionine and two Se-containing compounds with proposed molecular formula C10H18N2O6Se and C10H13N5O3Se. Moreover, the structure was proposed for one selenocompound found in sunflower sprouts which has not been reported so far.

  8. In ovo transformation of two emerging flame retardants in Japanese quail (Coturnix japonica).

    PubMed

    Briels, Nathalie; Løseth, Mari E; Ciesielski, Tomasz M; Malarvannan, Govindan; Poma, Giulia; Kjærvik, Sara A; Léon, Alexis; Cariou, Ronan; Covaci, Adrian; Jaspers, Veerle L B

    2018-03-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and Dechlorane Plus (DP) are two chlorinated, alternative flame retardants that have been found in wild birds and bird eggs. Little is known about the fate and effect of these compounds in birds, especially during the vulnerable stages of embryonic development. To investigate the ability of birds to biotransform these compounds, an in ovo exposure experiment with Japanese quail eggs was performed. Quail eggs were injected in the yolk sac with 1000ng/g egg of TDCIPP (2.3 nmol/g ww), DP (1.5 nmol/g ww) or a mixture of both and were then incubated at 37.5°C for 17 days. To get a time-integrated understanding of the in ovo transformation of the compounds, one egg per treatment was removed from the incubator every day and analyzed for TDCIPP and its metabolite bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and/or for DP. By the end of the incubation period, TDCIPP was completely metabolized, while simultaneously BDCIPP was formed. The conversion of the parent compound into the metabolite did not occur proportionally and the concentration of BDCIPP showed a tendency to decrease when TDCIPP became depleted, both indicating that BDCIPP was further transformed into compounds not targeted for analysis. Further untargeted investigations did not show the presence of other metabolites, possibly due to the volatility of the metabolites. On the other hand, the DP concentration did not decrease during egg incubation. This study indicates that within the incubation period, avian embryos are able to biotransform TDCIPP, but not DP. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Protein and Lipid Binding Parameters in Rainbow Trout (Oncorhynchus mykiss) Blood and Liver Fractions to Extrapolate from an in Vitro metabolic Degradation Assay to in Vivo Bioaccumulation Potential of Hydrophobic Organic Chemicals

    EPA Science Inventory

    Biotransformation reduces the extent to which environmental contaminants accumulate in fish and other aquatic biota. Unfortunately, the tendency for compounds to be metabolized is not easily predicted from physico-chemical properties (e.g., octanol:water partitioning) or an exam...

  10. Uptake, biotransformation, and elimination of benzo[a]pyrene by the gammarid amphipod, Leptocheirus plumulosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickbut, R.M.; Huszai, C.M.; Lay, P.W.

    1995-12-31

    The uptake, biotransformation, and elimination of {sup 3}H-benzo[a]pyrene (B[a]P) by the gammarid amphipod Leptocheirus plumulosus was evaluated in laboratory exposures. Rapid uptake (i.e. within 2.5 h) of sediment-associated B[a]P was observed, and during the exposures organism body burdens were dominated by organic extractable (e.g. parent compound) components, with aqueous soluble and bound metabolites constituting a much smaller fraction of the total body burden. However, upon discontinuation of exposure of the organisms to B[a]P, organic extractable compounds were more rapidly eliminated by L. plumulosus than the aqueous extractable and bound contaminant pools. Uptake and elimination of B[a]P were adequately modeled assumingmore » first order kinetics, with the exception of the early stages of exposure. The rapid uptake during the first few hours of exposure of Leptocheirus to sediment-associated B[a]P may be due to sorption of B[a]P to the exoskeleton of the organism. This hypothesis is under further investigation. Uptake and elimination of B[a]P metabolite pools by L. plumulosus was best modeled assuming a fraction of the metabolite pool was irreversibly bound or slowly eliminated.« less

  11. Dispersibility and biotransformation of oils with different properties in seawater.

    PubMed

    Brakstad, Odd G; Farooq, Umer; Ribicic, Deni; Netzer, Roman

    2018-01-01

    Dispersants are used to remove oils slicks from sea surfaces and to generate small oil-droplet dispersions, which may result in enhanced biodegradation of the oil. In this study, dispersibility and biodegradation of chemically dispersed oils with different physical-chemical properties (paraffinic, naphthenic and asphaltenic oils) were compared in natural temperate SW at 13 °C. All selected oils were chemically dispersible when well-known commercial dispersants were used. However, interfacial tension (IFT) studies of the dispersed oils showed different IFT properties of the oils at 13 °C, and also different leaching of the dispersants from oil droplet surfaces. Biodegradation studies of the chemically dispersed oils were performed in a carousel system, with initial median droplet sizes <30 μm and oil concentrations of 2.5-2.8 mg/L. During biodegradation, oil droplet concentrations were rapidly reduced, in association with the emergence of macroscopic 'flocs'. Biotransformation results showed that half-lives of semivolatile total extractable organic carbon (TEOC), single target 2- to 4-ring PAH, and 22 oil compound groups used as input data in the oil spill contingency model OSCAR, did not differ significantly between the oils (P > 0.05), while n-alkanes half-lives differed significantly (P < 0.05). Biotransformation was associated with rapid microbial growth in all oil dispersions, in association with n-alkane and PAH biotransformation. These results have implications for the predictions of biodegradation of oil slicks treated with dispersants in temperate SW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biotransformation of trans-1-chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.

    2013-05-01

    trans-1-Chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd) is a novel foam blowing and precision cleaning agent with a very low impact for global warming and ozone depletion. trans-HCFO-1233zd also has a low potential for toxicity in rodents and is negative in genotoxicity testing. The biotransformation of trans-HCFO-1233zd and kinetics of metabolite excretion with urine were assessed in vitro and in animals after inhalation exposures. For in vitro characterization, liver microsomes from rats, rabbits and humans were incubated with trans-HCFO-1233zd. Male Sprague Dawley rats and female New Zealand White rabbits were exposed to 2,000, 5,000 and 10,000 ppm for 6 h and urine was collected formore » 48 h after the end of the exposure. Study specimens were analyzed for metabolites using {sup 19}F NMR, LC-MS/MS and GC/MS. S-(3,3,3-trifluoro-trans-propenyl)-glutathione was identified as predominant metabolite of trans-HCFO-1233zd in all microsomal incubation experiments in the presence of glutathione. Products of the oxidative biotransformation of trans-HCFO-1233zd were only minor metabolites when glutathione was present. In rats, both 3,3,3-trifluorolactic acid and N-acetyl-(3,3,3-trifluoro-trans-propenyl)-L-cysteine were observed as major urinary metabolites. 3,3,3-Trifluorolactic acid was not detected in the urine of rabbits. Quantitation showed rapid excretion of both metabolites in both species (t{sub 1/2} < 6 h) and the extent of biotransformation of trans-HCFO-1233zd was determined as approximately 0.01% of received dose in rabbits and approximately 0.002% in rats. trans-HCFO-1233zd undergoes both oxidative biotransformation and glutathione conjugation at very low rates. The low extent of biotransformation and the rapid excretion of metabolites formed are consistent with the very low potential for toxicity of trans-HCFO-1233zd in mammals. - Highlights: ► No lethality and clinical signs were observed. ► Glutathione S-transferase and cytochrome P-450 dependent biotransformation in vivo. ► Low biotransformation (< 0.01%) and fast metabolite excretion (t{sub 1/2} < 6 h). ► Glutathione adduct as predominant in vitro metabolite in all tested species. ► Toxic metabolites could not be detected in any great extent.« less

  13. Functional Characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 Involved in Biotransformation of β-Myrcene and Related Plant-Derived Volatiles

    PubMed Central

    Soares-Castro, Pedro; Montenegro-Silva, Pedro; Heipieper, Hermann J.

    2017-01-01

    ABSTRACT Pseudomonas sp. strain M1 is able to mineralize highly hydrophobic and recalcitrant compounds, such as benzene, phenol, and their methylated/halogenated derivatives, as well as the backbone of several monoterpenes. The ability to use such a spectrum of compounds as the sole carbon source is, most probably, associated with a genetic background evolved under different environmental constraints. The outstanding performance of strain M1 regarding β-myrcene catabolism was elucidated in this work, with a focus on the biocatalytical potential of the β-myrcene-associated core code, comprised in a 28-kb genomic island (GI), predicted to be organized in 8 transcriptional units. Functional characterization of this locus with promoter probes and analytical approaches validated the genetic organization predicted in silico and associated the β-myrcene-induced promoter activity to the production of β-myrcene derivatives. Notably, by using a whole-genome mutagenesis strategy, different genotypes of the 28-kb GI were generated, resulting in the identification of a novel putative β-myrcene hydroxylase, responsible for the initial oxidation of β-myrcene into myrcen-8-ol, and a sensor-like regulatory protein, whose inactivation abolished the myr+ trait of M1 cells. Moreover, it was demonstrated that the range of monoterpene substrates of the M1 enzymatic repertoire, besides β-myrcene, also includes other acyclic (e.g., β-linalool) and cyclic [e.g., R-(+)-limonene and (−)-β-pinene] molecules. Our findings are the cornerstone for following metabolic engineering approaches and hint at a major role of the 28-kb GI in the biotransformation of a broad monoterpene backbone spectrum for its future biotechnological applications. IMPORTANCE Information regarding microbial systems able to biotransform monoterpenes, especially β-myrcene, is limited and focused mainly on nonsystematic metabolite identification. Complete and detailed knowledge at the genetic, protein, metabolite, and regulatory levels is essential in order to set a model organism or a catabolic system as a biotechnology tool. Moreover, molecular characterization of reported systems is scarce, almost nonexistent, limiting advances in the development of optimized cell factories with strategies based on the new generation of metabolic engineering platforms. This study provides new insights into the intricate molecular functionalities associated with β-myrcene catabolism in Pseudomonas, envisaging the production of a molecular knowledge base about the underlying catalytic and regulatory mechanisms of plant-derived volatile catabolic pathways. PMID:28213543

  14. Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate: Identification and monitoring of transformation products of benzotriazoles.

    PubMed

    Llorca, Marta; Badia-Fabregat, Marina; Rodríguez-Mozaz, Sara; Caminal, Glòria; Vicent, Teresa; Barceló, Damià

    2017-10-01

    The removal of 27 endocrine-disrupting compounds and related compounds (suspect effect) from a reverse osmosis concentrate using an alternative decontamination method based on a fungal treatment involving Trametes versicolor was assessed. In addition to chemical analysis, the toxicity of the treated water during the treatment was monitored using a bioluminescence inhibition test and estrogenic and anti-estrogenic tests. The compounds 1H-benzotriazole (BTZ) and two tolyltriazoles (TTZs), 4-methyl-1H-benzotriazole (4-MBTZ) and 5-methyl-1H-benzotriazole (5-MBTZ), were present in the reverse osmosis concentrate at the highest concentrations (7.4 and 12.8 μg L -1 , respectively) and were partially removed by the fungal treatment under sterile conditions (58% for BTZ and 92% for TTZs) and non-sterile conditions, although to lesser extents (32% for BTZ and 50% for TTZs). Individual biotransformation studies of BTZ and the TTZs by T. versicolor in a synthetic medium and further analysis via on-line turbulent flow chromatography coupled to an HRMS-Orbitrap allowed the tentative identification of the transformation products (TPs). Six TPs were postulated for BTZ, two TPs were postulated for 4-MBTZ, and four TPs were postulated for 5-MBTZ. Most of these TPs are suggested to have been generated by conjugation with some sugars and via the methylation of the triazole group. Only TP 148 A, postulated to be derived from the biotransformation of BTZ, was observed in the effluent of the bioreactor treating the reverse osmosis concentrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leoni, Claudia; Buratti, Franca M.; Testai, Emanuela

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxidemore » back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO{sub 3} and FMO{sub 5} was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO{sub 1} showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO{sub 1}-catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation.« less

  16. Benefits from dietary polyphenols for brain aging and Alzheimer's disease.

    PubMed

    Rossi, L; Mazzitelli, S; Arciello, M; Capo, C R; Rotilio, G

    2008-12-01

    Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.

  17. A New Acetylcholinesterase Inhibitor from Green Glycosylation of Trachyloban-19-oic Acid by Mucor plumbeus.

    PubMed

    Santos, Gabriel F Dos; Takahashi, Jacqueline A

    2017-01-01

    The in vitro metabolism of a widespread natural product, trachyloban-19-oic acid (1), by the fungal species Mucor plumbeus was studied in a sucrose-yeast liquid medium. Two products were isolated, and their structures were determined by spectroscopic means as 7β-hydroxytrachyloban-19-oic acid (5) and trachyloban-19-O-β-D-glucopyranosyl ester (6). To the best of our knowledge, compound 6 is herein reported by the first time in the literature. These compounds were assayed for acetylcholinesterase inhibition along with some related compounds. Compound 6 showed the highest acetylcholinesterase inhibitory activity at 10000 µg/mL among the tested compounds, a result (92.89%) comparable to the activity of the positive control, galanthamine (94.21%). Therefore, biotransformation of the natural product 1 by M. plumbeus produced a novel compound with potential as a new lead to develop anti-Alzheimer medicines.

  18. Biotransformation of Flavokawains A, B, and C, Chalcones from Kava (Piper methysticum), by Human Liver Microsomes.

    PubMed

    Zenger, Katharina; Agnolet, Sara; Schneider, Bernd; Kraus, Birgit

    2015-07-22

    The in vitro metabolism of flavokawains A, B, and C (FKA, FKB, FKC), methoxylated chalcones from Piper methysticum, was examined using human liver microsomes. Phase I metabolism and phase II metabolism (glucuronidation) as well as combined phase I+II metabolism were studied. For identification and structure elucidation of microsomal metabolites, LC-HRESIMS and NMR techniques were applied. Major phase I metabolites were generated by demethylation in position C-4 or C-4' and hydroxylation predominantly in position C-4, yielding FKC as phase I metabolite of FKA and FKB, helichrysetin as metabolite of FKA and FKC, and cardamonin as metabolite of FKC. To an even greater extent, flavokawains were metabolized in the presence of uridine diphosphate (UDP) glucuronic acid by microsomal UDP-glucuronosyl transferases. For all flavokawains, monoglucuronides (FKA-2'-O-glucuronide, FKB-2'-O-glucuronide, FKC-2'-O-glucuronide, FKC-4-O-glucuronide) were found as major phase II metabolites. The dominance of generated glucuronides suggests a role of conjugated chalcones as potential active compounds in vivo.

  19. Identification of new metabolic pathways in the enantioselective fungicide tebuconazole biodegradation by Bacillus sp. 3B6.

    PubMed

    Youness, Mohamed; Sancelme, Martine; Combourieu, Bruno; Besse-Hoggan, Pascale

    2018-06-05

    The use of triazole fungicides in various fields ranging from agriculture to therapy, can cause long-term undesirable effects on different organisms from various environmental compartments and lead to resistance phenomena (even in humans) due to their extensive use and persistence. Their occurrence in various water bodies has increased and tebuconazole, in particular, is often detected, sometimes in high concentration. Only a few bacterial and fungal strains have been isolated and found to biotransform this fungicide, described as not easily biodegradable. Nevertheless, the knowledge of efficient degrading-strains and metabolites potentially formed could improve bioremediation process and global overview of risk assessment. Therefore, a broad screening of microorganisms, isolated from various environmental compartments or from commercially-available strain collections, allowed us to find six bacterial strains able to biotransform tebuconazole. The most efficient one was studied further: this environmental strain Bacillus sp. 3B6 biotransforms the fungicide enantioselectively (ee = 18%) into two hydroxylated metabolites, one of them being transformed in its turn to alkene by a biotic dehydration reaction. This original enantioselective pathway shows that racemic pesticides should be treated by the environmental risk assessment authorities as a mixture of two compounds because persistence, biodegradation, bioaccumulation and toxicity often show chiral dependence. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Biotransformation and tissue distribution of protopine and allocryptopine and effects of Plume Poppy Total Alkaloid on liver drug-metabolizing enzymes.

    PubMed

    Huang, Ya-Jun; Cheng, Pi; Zhang, Zhuo-Yi; Tian, Shi-Jie; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Zhao-Ying

    2018-01-11

    In this study, the biotransformation in the plasma, urine and feces of rats following oral administration of protopine (PRO) and allocryptopine (ALL)were explored using HPLC-QqTOF MS. An HPLC-MS/MS method for the determination of tissues was developed and applied to the tissue distribution study in rats following intragastric administration of Plume Poppy Total Alkaloid for 3 weeks. A total of ten PRO metabolites and ten ALL metabolites were characterized in rats in vivo. Among these metabolites, six PRO metabolites and five ALL metabolites were reported for the first time. The predicated metabolic pathways including ring cleavage, demethylation following ring cleavage, and glucuronidation were proposed. The low-concentration residue of PRO and ALL in various tissues was detected at 24 h and 48 h after dosing, which indicated that both compounds could be widely distributed in tissues and exist as low levels of residue. The activities of erythromycin N-demethylase, aminopyrine N-demethylase and NAD (P)H quinone oxidoreductase in female rats can be induced post-dose, but these activities were inhibited in male rats. The proposed biotransformation and residues of PRO and ALL and their effects on enzymes may provide a basis for clarifying the metabolism and interpreting pharmacokinetics.

  1. Chiral Polychlorinated Biphenyl Transport, Metabolism and Distribution - A Review

    PubMed Central

    Lehmler, Hans-Joachim; Harrad, Stuart J.; Hühnerfuss, Heinrich; Kania-Korwel, Izabela; Lee, Cindy M.; Lu, Zhe; Wong, Charles S.

    2009-01-01

    Chirality can be exploited to gain insight into enantioselective fate processes that may otherwise remain undetected because only biological, but not physical and chemical transport and transformation processes in an achiral environment will change enantiomer compositions. This review provides an in-depth overview of the application of chirality to the study of chiral polychlorinated biphenyls (PCBs), an important group of legacy pollutants. Like other chiral compounds, individual PCB enantiomers may interact enantioselectively (or enantiospecifically) with chiral macromolecules, such as cytochrome P-450 enzymes or ryanodine receptors, leading to differences in their toxicological effects and the enantioselective formation of chiral biotransformation products. Species and congener-specific enantiomer enrichment has been demonstrated in environmental compartments, wildlife and mammals, including humans, typically due to a complex combination of biotransformation processes and uptake via the diet by passive diffusion. Changes in the enantiomer composition of chiral PCBs in the environment have been used to understand complex aerobic and anaerobic microbial transformation pathways, to delineate and quantify PCB sources and transport in the environment, to gain insight into the biotransformation of PCBs in aquatic food webs, and to investigate the enantioselective disposition of PCBs and their methylsulfonyl PCBs metabolites in rodents. Overall, changes in chiral signatures are powerful, but currently underutilized tools for studies of environmental and biological processes of PCBs. PMID:20384371

  2. [The biotransformation of fenetylline].

    PubMed

    Rücker, G; Neugebauer, M; Heiden, P G

    1988-04-01

    After oral administration of 3,7-dihydro-1,3-dimethyl-7-2 [(1-methyl-2-phenylethyl)-amino-ethyl]-1H-purine-2,6-dione (fenetylline, Captagon), 7 new metabolites could be detected in urine besides 4 known substances. The metabolites were identified by gas chromatography (GC) and by comparison of the mass spectra (MS) of metabolites with those of authentic reference compounds using a combined GC/MS method.

  3. Behavior of metalaxyl and its pure R-enantiomer in sunflower plants (Helianthus annus).

    PubMed

    Zadra, C; Marucchini, C; Zazzerini, A

    2002-09-11

    A possible stereospecific and/or stereoselective mechanism of biodegradation for metalaxyl and metalaxyl-M was studied to elucidate their behavior in sunflower plants and to compare their biodegradation. Greenhouse experiments were carried out to confirm the same efficacy of the two fungicides against infections by Plasmopara helianthi in sunflower plants. The two fungicides appear to have the same behavior regarding both the protection against plant infections and the mode of translocation and the rate and pathway of biotransformation, but we have evidence that this biotransformation process is enantioselective. Furthermore, we propose procedures for a chromatographic separation of enantiomers and acid metabolites of the fungicides and for the determination of the R:S ratio by HPLC chiral analyses. This study emphasizes the importance of examining the fate of both stereoisomers of a chiral agrochemical in an environmental system for the correct use of enantiomerically pure agrochemical compounds.

  4. Efficient Reduction of Antibacterial Activity and Cytotoxicity of Fluoroquinolones by Fungal-Mediated N-Oxidation.

    PubMed

    Rusch, Marina; Spielmeyer, Astrid; Meißner, Jessica; Kietzmann, Manfred; Zorn, Holger; Hamscher, Gerd

    2017-04-19

    Extensive usage of fluoroquinolone antibiotics in livestock results in their occurrence in manure and subsequently in the environment. Fluoroquinolone residues may promote bacterial resistance and are toxic to plants and aquatic organisms. Moreover, fluoroquinolones may enter the food chain through plant uptake, if manure is applied as fertilizer. Thus, the presence of fluoroquinolones in the environment may pose a threat to human and ecological health. In this study, the biotransformation of enrofloxacin, marbofloxacin, and difloxacin by the fungus X. longipes (Xylaria) was investigated. The main metabolites were unequivocally identified as the respective N-oxides by mass spectrometry and nuclear magnetic resonance spectroscopy. Fungal-mediated N-oxidation of fluoroquinolones led to a 77-90% reduction of the initial antibacterial activity. In contrast to their respective parent compounds, N-oxides showed low cytotoxic potential and had a reduced impact on cell proliferation. Thus, biotransformation by X. longipes may represent an effective method for inactivating fluoroquinolones.

  5. Bench-scale evaluation of in situ bioremediation strategies for soil at a former manufactured gas plant site.

    PubMed

    Li, Jun; Pignatello, Joseph J; Smets, Barth F; Grasso, Domenico; Monserrate, Esteban

    2005-03-01

    We examined the biodegradation and desorption of a set of 15 polycyclic aromatic hydrocarbon (PAH) compounds in coal tar-contaminated soil at a former manufactured gas plant site to evaluate the feasibility of in situ bioremediation. Experiments were conducted in well-mixed aerobic soil suspensions containing various additives over a 93- to 106-d period. In general, both biotransformation and desorption decreased with PAH ring size, becoming negligible for the six-ring PAH compounds. Biodegradation by indigenous microorganisms was strongly accelerated by addition of inorganic nutrients (N, P, K, and trace metals). The rates of biotransformation of PAH compounds by indigenous microorganisms in nutrient-amended flasks outpaced their maximum (i.e., chelate-enhanced) rates of desorption to an infinite sink (Tenax) in sterilized systems run in parallel, suggesting that indigenous organisms facilitated desorption. Biodegradation by indigenous organisms in nutrient-amended flasks appeared to be unaffected by the addition of a site-derived bacterial enrichment culture, resulting in approximately 100-fold higher aromatic dioxygenase levels, and by the addition of 0.01 M chelating agent (citrate or pyrophosphate), although such chelating agents greatly enhanced desorption in microbially inactivated flasks. The strong ability of nutrients to enhance degradation of the bioavailable PAHs indicates that their persistence for many decades at this site likely results from nutrient-limited natural biodegradation, and it also suggests that an effective strategy for their bioremediation could consist simply of adding inorganic nutrients.

  6. An in vitro study on metabolism of 17beta-boldenone and boldione using cattle liver and kidney subcellular fractions.

    PubMed

    Merlanti, R; Gallina, G; Capolongo, F; Contiero, L; Biancotto, G; Dacasto, M; Montesissa, C

    2007-03-14

    17Beta-boldenone (17beta-BOLD) and Boldione (ADD) are steroid compounds with androgenic activity, likely to be used as growth promoters in cattle. Different studies still on-going aiming to distinguish between "natural" occurrence or illegal BOLD source had already indicated that their metabolism in cattle is of relevant significance. To identify metabolites as in vivo markers to support the thesis of exogenous administration, a further approach to the in vitro biotransformation of 17beta-BOLD and ADD was performed using different subcellular fractions obtained from both liver and kidney of untreated cattle. Polar and non-polar metabolites obtained from incubated parent compounds were formerly separated by high performance liquid chromatography (HPLC) elution and successively identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. The bovine liver was the target tissue of the main metabolic reaction transforming 17beta-BOLD to ADD and vice versa. The presence of 6beta-hydroxy-17beta-BOLD, produced from both compounds when NADPH was added as cofactors to liver post mitochondrial and microsomal fractions suggests that cytochrome P450-dependent enzymes could be involved in the biotransformation, as it occurs for 6beta-hydroxylation of 17beta-testosterone. The results indicated that the urinary excretion profile in vivo of 6beta-hydroxy-17beta-BOLD and 16alpha-hydroxy-17beta-BOLD could be studied together with 17alpha- and 17beta-BOLD as putative markers of BOLD treatment in cattle.

  7. Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry.

    PubMed

    Hsieh, Yunsheng; Chen, Jiwen; Korfmacher, Walter A

    2007-01-01

    During drug discovery and development stage, often the question is raised as to whether the drug can reach the site of action which helps researchers better assess the potential value of that compound as a pharmaceutical product and toxicological outcomes. High performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) has totally replaced HPLC methods that use UV or other detectors for most drug analysis applications. However, HPLC-MS/MS approaches are not able to provide the answer to certain questions regarding the distribution of a drug in various organs or tissues from laboratory animal experiments. Whole body radioautography (WBA) normally provides a standard means to answer this question on the time course of the drug candidates. However, the major disadvantage in this radioautographic technique is to allow for visualization of total drug-related materials but to image the distribution of the administrated drugs and their metabolites in all tissues. In addition, the availability of radiolabeled compounds at drug discovery stage is another concern. To overcome these issues, matrix-assisted laser desorption/ionization-mass spectrometric method (MALDI-MS) has been developed to directly determine the distribution of pharmaceuticals in tissue sections which might unravel their disposition or biotransformation pathway for new drug development.

  8. Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine.

    PubMed

    Ding, Wei-Jun; Deng, Yun; Feng, Hao; Liu, Wei-Wei; Hu, Rong; Li, Xiang; Gu, Zhe-Ming; Dong, Xiao-Ping

    2009-03-28

    To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine. Representative human gut bacteria were collected from 20 healthy volunteers, and then utilized in vitro to biotransform aesculin under anaerobic conditions. At 0, 2, 4, 8, 12, 16, 24, 48 and 72 h post-incubation, 10 mL of culture medium was collected. Metabolites of aesculin were extracted 3 x from rat urine with methanol and analyzed by HPLC. For in vivo metabolite analysis, aesculetin (100 mg/kg) was administered to rats via stomach gavage, rat urine was collected from 6 to 48 h post-administration, and metabolite analysis was performed by LC/ESI-MS and MS/MS in the positive and negative modes. Human gut bacteria could completely convert aesculin into aesculetin in vitro. The biotransformation process occurred from 8 to 24 h post-incubation, with its highest activity was seen from 8 to 12 h. The in vitro process was much slower than the in vivo process. In contrast to the in vitro model, six aesculetin metabolites were identified in rat urine, including 6-hydroxy-7-gluco-coumarin (M1), 6-hydroxy-7-sulf-coumarin (M2), 6, 7-di-gluco-coumarin (M3), 6-glc-7-gluco-coumarin (M4), 6-O-methyl-7-gluco-coumarin (M5) and 6-O-methyl-7-sulf-coumarin (M6). Of which, M2 and M6 were novel metabolites. Aesculin can be transferred into aesculetin by human gut bacteria and is further modified by the host in vivo. The diverse metabolites of aesculin may explain its pleiotropic pharmaceutical effects.

  9. Investigation of biotransformation, sorption, and desorption of multiple chemical contaminants in pilot-scale drinking water biofilters.

    PubMed

    Greenstein, Katherine E; Lew, Julia; Dickenson, Eric R V; Wert, Eric C

    2018-06-01

    The evolving demands of drinking water treatment necessitate processes capable of removing a diverse suite of contaminants. Biofiltration can employ biotransformation and sorption to remove various classes of chemicals from water. Here, pilot-scale virgin anthracite-sand and previously used biological activated carbon (BAC)-sand dual media filters were operated for ∼250 days to assess removals of 0.4 mg/L ammonia as nitrogen, 50-140 μg/L manganese, and ∼100 ng/L each of trace organic compounds (TOrCs) spiked into pre-ozonated Colorado River water. Anthracite achieved complete nitrification within 200 days and started removing ibuprofen at 85 days. Limited manganese (10%) removal occurred. In contrast, BAC completely nitrified ammonia within 113 days, removed all manganese at 43 days, and exhibited steady state removal of most TOrCs by 140 days. However, during the first 140 days, removal of caffeine, DEET, gemfibrozil, naproxen, and trimethoprim decreased, suggesting a shift from sorption to biotransformation. Acetaminophen and sulfamethoxazole were removed at consistent levels, with complete removal of acetaminophen achieved throughout the study; ibuprofen removal increased with time. When subjected to elevated (1 μg/L) concentrations of TOrCs, BAC removed larger masses of chemicals; with a subsequent decrease and ultimate cease in the TOrCs spike, caffeine, DEET, gemfibrozil, and trimethoprim notably desorbed. By the end of operation, anthracite and BAC exhibited equivalent quantities of biomass measured as adenosine triphosphate, but BAC harbored greater microbial diversity (examined with 16S rRNA sequencing). Improved insight was gained regarding concurrent biotransformation, sorption, and desorption of multiple organic and inorganic contaminants in pilot-scale drinking water biofilters. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Tissue-specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures.

    PubMed

    Bonansea, Rocío Inés; Marino, Damián J G; Bertrand, Lidwina; Wunderlin, Daniel A; Amé, María Valeria

    2017-07-01

    The aim of the present study was to evaluate the accumulation of cypermethrin and chlorpyrifos when the fish Jenynsia multidentata was exposed to these pesticides singly and in technical and commercial mixtures. Adult female fish were exposed over 96 h to 0.04 μg/L of cypermethrin; 0.4 μg/L of chlorpyrifos; 0.04 μg/L of cypermethrin + 0.4 μg/L of chlorpyrifos in a technical mixture; and 0.04 μg/L of cypermethrin + 0.4 μg/L of chlorpyrifos in a mixture of commercial products. Fish exposed to cypermethrin accumulated this compound only in muscle, probably because of the low biotransformation capacity of this organ and the induction of cytochrome P4501A1 (CYP1A1) expression in the liver. The accumulation of chlorpyrifos occurred in fish exposed to the insecticide (intestine > liver > gills) even when these fish had higher gluthatione-S-transferase (GST) activity in gills and P-glycoprotein (P-gp) expression in the liver, compared with the control. Fish exposed to the technical mixture showed cypermethrin accumulation (liver > intestine > gills) with higher levels than those measured in fish after only cypermethrin exposure. Higher expression levels of CYP1A1 in the liver were also observed compared with the Control. Fish exposed to the commercial mixture accumulated both insecticides (cypermethrin: intestine > gills and chlorpyrifos: liver > intestine > gills > muscle). In the organs where accumulation occurred, biotransformation enzymes were inhibited. Consequently, the commercial formulation exposure provoked the highest accumulation of cypermethrin and chlorpyrifos in J. multidentata, possibly associated with the biotransformation system inhibition. Environ Toxicol Chem 2017;36:1764-1774. © 2016 SETAC. © 2016 SETAC.

  11. Biotransformation of the platinum drug JM216 following oral administration to cancer patients.

    PubMed

    Raynaud, F I; Mistry, P; Donaghue, A; Poon, G K; Kelland, L R; Barnard, C F; Murrer, B A; Harrap, K R

    1996-01-01

    This study evaluates the metabolic profile of JM216 [bis(acetato)ammine-dichloro(cyclohexylamine) platinum(IV)], the first orally administrable platinum complex, in plasma ultrafiltrates of 12 patients (n = 2-4 time points per patient) following different doses of drug (120, 200, 340, 420, 560 mg/m2). The biotransformation profile was evaluated by high-performance liquid chromatography (HPLC) followed by atomic absorption spectrophotometry (AA). The AA profiles were compared with those previously identified by HPLC on line with mass spectrometry (HPLC-MS) in plasma incubated with JM216. A total of six platinum peaks (Rt = 5.5, 7.2, 10.6, 12.4, 15.6, and 21.6 min, respectively) were observed in patients' plasma ultrafiltrate samples, of which only four appeared during the first 6 h post-treatment. Four of these coeluted with those observed and identified previously in plasma incubation medium. No parent JM216 was detected. The major metabolite seen in patients was the Pt II complex JM118 [cis-amminedichloro-(cyclohexylamine)platinum(II)] and was observed in all the patients. Interestingly, the second metabolite was shown to coelute with the Pt IV species JM383 [bis-acetatoammine(cyclohexylamine)dihydroxoplatinum (IV)]. Both JM118 and JM383 were identified by HPLC-MS in a clinical sample. Peak C, which was a minor product (less than 5% of the free platinum), coeluted with JM559 [bis-acetatoammine-chloro(cyclohexylalamine)hydroxoplatin um(IV)]. The cytotoxicity profile of all three metabolites in a panel of cisplatin-sensitive and -resistant human ovarian carcinoma cell lines was very close to that of the parent drug. In addition, the concentrations of JM118 reached in patients' plasma ultrafiltrate were comparable with the cytotoxic levels of the compound determined in the ovarian carcinoma panel of cell lines. Two metabolites were seen in patients but not in the in vitro incubation medium, suggesting the involvement of a possible enzymatic reaction. Thus, the biotransformation profile following oral administration of JM216 shows a variety of Pt(IV) and Pt(Il) metabolites in plasma that differ significantly from other systemically applied platinum drugs.

  12. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant.

    PubMed

    Schlueter, Rabea; Röder, Anja; Czekalski, Nadine; Gliesche, Daniel; Mikolasch, Annett; Schauer, Frieder

    2014-01-01

    The compound p-tert-amylphenol (p-(1,1-dimethylpropyl)phenol) is a widely used disinfectant belonging to the group of short branched-chain alkylphenols. It is produced in or imported into the USA with more than one million pounds per year and can be found in the environment in surface water, sediments, and soil. We have investigated for the first time the biotransformation of this disinfectant and the accumulation of metabolites by five bacterial strains, three yeast strains, and three filamentous fungi, selected because of their ability to transform either aromatic or branched-chain compounds. Of the 11 microorganisms tested, one yeast strain and three bacteria could not transform the disinfectant despite of a very low concentration applied (0.005%). None of the other seven organisms was able to degrade the short branched alkyl chain of p-tert-amylphenol. However, two yeast strains, two filamentous fungi, and two bacterial strains attacked the aromatic ring system of the disinfectant via the hydroxylated intermediate 4-(1,1-dimethyl-propyl)-benzene-1,2-diol resulting in two hitherto unknown ring fission products with pyran and furan structures, 4-(1,1-dimethyl-propyl)-6-oxo-6-H-pyran-2-carboxylic acid and 2-[3-(1,1-dimethyl-propyl)-5-oxo-2H-furan-2-yl]acetic acid. While the disinfectant was toxic to the organisms applied, one of the ring cleavage products was not. Thus, a detoxification of the disinfectant was achieved by ring cleavage. Furthermore, one filamentous fungus formed sugar conjugates with p-tert-amylphenol as another mechanism of detoxification of toxic environmental pollutants. With this work, we can also contribute to the allocation of unknown chemical compounds within environmental samples to their parent compounds.

  14. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a {sup 14}C haloxyfop-methyl (methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate) concentration averaging 0.29 {mu}g/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was <17, based upon the detection limit for the ester in fish (0.005 {mu}g/g) and the averagemore » concentration of haloxyfop-methyl in exposure water (0.29 {mu}g/L). The principal component of the {sup 14}C residue within whole fish was haloxyfop acid (2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid) which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds.« less

  15. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.

    PubMed

    Lo, Justin C; Letinski, Daniel J; Parkerton, Thomas F; Campbell, Dave A; Gobas, Frank A P C

    2016-12-20

    In vivo dietary bioaccumulation experiments for 85 hydrophobic organic substances were conducted to derive the in vivo gastrointestinal biotransformation rates, somatic biotransformation rates, bioconcentration factors (BCF), and biomagnification factors (BMF) for improving methods for bioaccumulation assessment and to develop an in vivo biotransformation rate database for QSAR development and in vitro to in vivo biotransformation rate extrapolation. The capacity of chemicals to be biotransformed in fish was found to be highly dependent on the route of exposure. Somatic biotransformation was the dominant pathway for most chemicals absorbed via the respiratory route. Intestinal biotransformation was the dominant metabolic pathway for most chemicals absorbed via the diet. For substances not biotransformed or transformed exclusively in the body of the fish, the BCF and BMF appeared to be closely correlated. For substances subject to intestinal biotransformation, the same correlation did not apply. We conclude that intestinal biotransformation and bioavailability in water can modulate the relationship between the BCF and BMF. This study also supports a fairly simple rule of thumb that may be useful in the interpretation of dietary bioaccumulation tests; i.e., chemicals with a BMF L of <1 tend to exhibit BCFs based on either the freely dissolved (BCF WW,fd ) or the total concentration (BCF WW,t ) of the chemical in the water that is less than 5000.

  16. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations.

    PubMed

    Biswas, Tanya; Mathur, A K; Mathur, Archana

    2017-05-01

    Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.

  17. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development.

    PubMed

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A; Pype, Casper; Van Peer, Els M; Casteleyn, Christophe R; Van Ginneken, Chris J; Wilson, Joanna; Van Cruchten, Steven J

    2017-01-22

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.

  18. Biotransformation of geosmin by terpene-degrading bacteria.

    USDA-ARS?s Scientific Manuscript database

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  19. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  20. Biotransformation of ent-kaur-16-en-19-oic acid by Psilocybe cubensis.

    PubMed

    Pechwang, Jaraslak; Sihanonth, Prakitsin; Pornpakakul, Surachai; Muangsin, Nongnuj; Piapukiew, Jittra; Vangnai, Alisa; Chaichit, Narongsak; Chuchawankul, Siriporn; Petsom, Amorn

    2010-06-01

    Biotranformation of ent-kaur-16-en-19-oic acid (1) using Psilocybe cubensis resulted in hydroxylated products. After two days of incubation, ent-16beta,17-dihydroxy-kauran-19-oic acid (2) was isolated. After further incubation for nine days, two novel metabolites, ent-12alpha,16beta,17-trihydroxy-kauran-19-oic acid (3) and ent-11alpha,16beta,17-trihydroxy-kauran-19-oic acid (4), were obtained. The metabolites were identified by spectroscopic methods and X-ray crystallography. Compounds 1-4 were evaluated for their cytotoxic properties against the human leukaemia K562 cell line; only compound 1 showed moderate activity.

  1. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.

    PubMed

    Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G

    2014-07-15

    Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.

  2. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1.

    PubMed

    Chequer, Farah Maria Drumond; Lizier, Thiago Mescoloto; de Felício, Rafael; Zanoni, Maria Valnice Boldrin; Debonsi, Hosana Maria; Lopes, Norberto Peporine; Marcos, Ricard; de Oliveira, Danielle Palma

    2011-12-01

    Azo dyes constitute the largest class of synthetic dyes. Following oral exposure, these dyes can be reduced to aromatic amines by the intestinal microflora or liver enzymes. This work identified the products formed after oxidation and reduction of the dye Disperse Red 1, simulating hepatic biotransformation and evaluated the mutagenic potential of the resultant solution. Controlled potential electrolysis was carried out on dye solution using a Potentiostat/Galvanostat. HPLC-DAD and GC/MS were used to determine the products generated after the oxidation/reduction process. The Salmonella/microsome assay with the strains TA98 and YG1041 without S9, and the mouse lymphoma assay (MLA) using the thymidine kinase (Tk) gene, were used to evaluate the mutagenicity of the products formed. Sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, nitrobenzene, 4-nitro-benzamine and 2-(ethylphenylamino)-ethanol were detected. This dye has already being assigned as mutagenic in different cell system. In addition, after the oxidation/reduction process the dye still had mutagenic activity for the Salmonella/microsome assay. Nevertheless, both the original dye Disperse Red 1 and its treated solutions showed negative results in the MLA. The present results suggest that the ingestion of water and food contaminated with this dye may represent human and environmental health problem, due to the generation of harmful compounds after biotransformation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture.

    PubMed

    Bashir, Safdar; Kuntze, Kevin; Vogt, Carsten; Nijenhuis, Ivonne

    2018-06-18

    The biotransformation of hexachlorocyclohexane isomers (HCH) by two Dehalococcoides mccartyi strains (195 and BTF08) and an enrichment culture was investigated and compared to conversion by the obligate anaerobic strain Clostridium pasteurianum strain DSMZ 525. The D. mccartyi strains preferentially transformed γ-HCH over α-HCH and δ-HCH isomers while β-HCH biotransformation was not significant. In case of the enrichment culture, γ-HCH was preferentially transformed over the δ-HCH, β-HCH and α-HCH isomers. Major observed metabolites in both cases were tetrachlorocyclohexene and as end products monochlorobenzene (MCB) and benzene. Dechlorination of the γ-HCH isomer was linked to an increase in cell numbers for strain 195. γ-HCH transformation was linked to considerable carbon stable isotope fractionation with the enrichment factor ε c  = - 5.5 ± 0.8‰ for D. mccartyi strain 195, ε c  = - 3.1 ± 0.4‰ for the enrichment culture and ε c  = - 4.1 ± 0.6‰ for co-metabolic transformation by C. pasteurianum.

  4. Microbial Biotransformation to Obtain New Antifungals

    PubMed Central

    Bianchini, Luiz F.; Arruda, Maria F. C.; Vieira, Sergio R.; Campelo, Patrícia M. S.; Grégio, Ana M. T.; Rosa, Edvaldo A. R.

    2015-01-01

    Antifungal drugs belong to few chemical groups and such low diversity limits the therapeutic choices. The urgent need of innovative options has pushed researchers to search new bioactive molecules. Literature regarding the last 15 years reveals that different research groups have used different approaches to achieve such goal. However, the discovery of molecules with different mechanisms of action still demands considerable time and efforts. This review was conceived to present how Pharmaceutical Biotechnology might contribute to the discovery of molecules with antifungal properties by microbial biotransformation procedures. Authors present some aspects of (1) microbial biotransformation of herbal medicines and food; (2) possibility of major and minor molecular amendments in existing molecules by biocatalysis; (3) methodological improvements in processes involving whole cells and immobilized enzymes; (4) potential of endophytic fungi to produce antimicrobials by bioconversions; and (5) in silico research driving to the improvement of molecules. All these issues belong to a new conception of transformation procedures, so-called “green chemistry,” which aims the highest possible efficiency with reduced production of waste and the smallest environmental impact. PMID:26733974

  5. Humans seem to produce arsenobetaine and dimethylarsinate after a bolus dose of seafood.

    PubMed

    Molin, M; Ulven, S M; Dahl, L; Telle-Hansen, V H; Holck, M; Skjegstad, G; Ledsaak, O; Sloth, J J; Goessler, W; Oshaug, A; Alexander, J; Fliegel, D; Ydersbond, T A; Meltzer, H M

    2012-01-01

    Seafood is the predominant food source of several organoarsenic compounds. Some seafood species, like crustaceans and seaweed, also contain inorganic arsenic (iAs), a well-known toxicant. It is unclear whether human biotransformation of ingested organoarsenicals from seafood result in formation of arsenicals of health concern. The present controlled dietary study examined the urinary excretion of arsenic compounds (total arsenic (tAs), iAs, AB (arsenobetaine), dimethylarsinate (DMA) and methylarsonate (MA)) following ingestion of a single test meal of seafood (cod, 780 μg tAs, farmed salmon, 290 μg tAs or blue mussel, 690 μg tAs or potato (control, 110 μg tAs)) in 38 volunteers. The amount of ingested tAs excreted via the urine within 0-72 h varied significantly among the groups: Cod, 74% (52-92%), salmon 56% (46-82%), blue mussel 49% (37-78%), control 45% (30-60%). The estimated total urinary excretion of AB was higher than the amount of ingested AB in the blue mussel group (112%) and also ingestion of cod seemed to result in more AB, indicating possible endogenous formation of AB from other organoarsenicals. Excretion of iAs was lower than ingested (13-22% of the ingested iAs was excreted in the different groups). Although the ingested amount of iAs+DMA+MA was low for all seafood groups (1.2-4.5% of tAs ingested), the urinary DMA excretion was high in the blue mussel and salmon groups, counting for 25% and 11% of the excreted tAs respectively. In conclusion our data indicate a possible formation of AB as a result of biotransformation of other organic arsenicals. The considerable amount of DMA excreted is probably not only due to methylation of ingested iAs, but due to biotransformation of organoarsenicals making it an inappropriate biomarker of iAs exposure in populations with a high seafood intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Sulfotransferase-catalyzed biotransformation of liguzinediol and comparison of its metabolism in different species using UFLC-QTOF-MS.

    PubMed

    Shen, Fei; Wen, Hong-Mei; Shan, Chen-Xiao; Kang, An; Dong, Bang; Chai, Chuan; Zhang, Ji-Yun; Zhang, Qi; Li, Wei

    2018-07-01

    Liguzinediol (2,5-dihydroxymethyl-3,6-dimethylpyrazine, LZDO) is a potential agent for the low-risk treatment of heart failure. 2-N-acetylcysteine-LZDO (2-NAC-LZDO) and 2-cysteine-LZDO (2-Cys-LZDO) are major LZDO metabolites found in the pharmacokinetic studies of rats and beagle dogs. To elucidate the biotransformation pathway and related enzymes, an incubation system with 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as a cofactor and N-acetylcysteine (NAC) as a trapping agent was established using liver cytosol. An ultra-flow liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UFLC-QTOF-MS) method was used to identify the major metabolites. 2-NAC-LZDO could be detected among four species (humans, monkeys, dogs, and rats) and is the dominant metabolite in human liver cytosol (HLC). The sulfotransferase (SULT) inhibitors 2,6-dichloro-4-nitrophenol (DCNP) and quercetin at a concentration of 1 μM, suppressed 2-NAC-LZDO formation in HLC by 87 and 46%, respectively. This result suggested that sulfotransferase was involved in 2-NAC-LZDO formation. The metabolism of LZDO in different species indicated that SULT activity in dogs, rats, and monkeys was higher than that in humans. Further SULT phenotyping revealed that SULT1A1 is the predominant enzyme involved in the sulfation of LZDO. The underlying mechanism for the biotransformation of LZDO was demonstrated. The potential pathway is via the sulfation of LZDO to form sulfate, and the spontaneous cleavage of the sulfate group to generate highly reactive electrophilic cations, which can bind to NAC to form the major metabolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of the In Vivo Biotransformation of Two Emerging Estrogenic Contaminants, BP2 and BPS, in Zebrafish Embryos and Adults

    PubMed Central

    Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel

    2017-01-01

    Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using 3H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances. PMID:28346357

  8. Comparison of the In Vivo Biotransformation of Two Emerging Estrogenic Contaminants, BP2 and BPS, in Zebrafish Embryos and Adults.

    PubMed

    Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel

    2017-03-25

    Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using ³H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances.

  9. [10]-Gingerdiols as the major metabolites of [10]-gingerol in zebrafish embryos and in humans and their hematopoietic effects in zebrafish embryos

    PubMed Central

    Chen, Huadong; Soroka, Dominique N.; Haider, Jamil; Ferri-Lagneau, Karine F.; Leung, TinChung; Sang, Shengmin

    2013-01-01

    Gingerols are a series of major constituents in fresh ginger with the most abundant being [6]-, [8]-, and [10]-gingerols (6G, 8G, and 10G). We previously found that ginger extract and its purified components, especially 10G, potentially stimulate both the primitive and definitive waves of hematopoiesis (blood cell formation) in zebrafish embryos. However, it is still unclear if the metabolites of 10G retain the efficacy of the parent compound towards pathological anemia treatment. In the present study, we first investigated the metabolism of 10G in zebrafish embryos, and then explored the biotransformation of 10G in humans. Our results show that 10G was extensively metabolized in both zebrafish embryos and in humans, in which two major metabolites, (3S,5S)-[10]-gingerdiol and (3R,5S)-[10]-gingerdiol, were identified by analysis of the MSn spectra and comparison to authentic standards that we synthesized. After 24 hours of treatment of zebrafish embryos, 10G was mostly converted to its metabolites. Our results clearly indicate the reductive pathway is a major metabolic route for 10G in both zebrafish embryos and in humans. Furthermore, we investigated the hematopoietic effect of 10G and its two metabolites, which show similar hematopoietic effects as 10G in zebrafish embryos. PMID:23701129

  10. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  11. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Dolinoy, Dana C.

    2013-01-01

    Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of bio-transformation enzymes specific for BPA metabolism in 50 first- and second-trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender-matched adult liver controls, UDP-glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β-glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. PMID:23208979

  12. Honokiol trimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: novel and potent α-glucosidase inhibitors.

    PubMed

    He, Ye; Wang, Xiao-Bing; Fan, Bo-Yi; Kong, Ling-Yi

    2014-01-15

    Ten honokiol oligomers (1-10), including four novel trimers (1-4) and four novel dimers (5-8), were obtained by means of biotransformation of honokiol catalyzed by Momordica charantia peroxidase (MCP) for the first time. Their structures were established on the basis of spectroscopic methods. The biological results demonstrated that most of the oligomers were capable of inhibiting α-glucosidase with significant abilities, which were one to two orders of magnitude more potent than the substrate, honokiol. In particular, compound 2, the honokiol trimer, displayed the greatest inhibitory activity against α-glucosidase with an IC50 value of 1.38μM. Kinetic and CD studies indicated that 2 inhibited α-glucosidase in a reversible, mixed-type manner and caused conformational changes in the secondary structure of the enzyme protein. These findings suggested that 2 might be exploited as a promising drug candidate for the treatment of diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Plant organ cultures as masked mycotoxin biofactories: Deciphering the fate of zearalenone in micropropagated durum wheat roots and leaves

    PubMed Central

    Righetti, Laura; Rolli, Enrico; Galaverna, Gianni; Suman, Michele; Bruni, Renato

    2017-01-01

    “Masked mycotoxins” senso strictu are conjugates of mycotoxins resulting from metabolic pathways activated by the interplay between pathogenic fungi and infected plants. Zearalenone, an estrogenic mycotoxin produced by Fusarium spp, was the first masked mycotoxin ever described in the literature, but its biotransformation has been studied to a lesser extent if compared to other compounds such as deoxynivalenol. We presented herein the first application of organ and tissue culture techniques to study the metabolic fate of zearalenone in durum wheat, using an untargeted HR-LCMS approach. A complete, quick absorption of zearalenone by uninfected plant organs was noticed, and its biotransformation into a large spectrum of phase I and phase II metabolites has been depicted. Therefore, wheat organ tissue cultures can be effectively used as a biocatalytic tool for the production of masked mycotoxins, as well as a replicable model for the investigation of the interplay between mycotoxins and wheat physiology. PMID:29145415

  14. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533.

    PubMed

    Bel-Rhlid, Rachid; Thapa, Dinesh; Kraehenbuehl, Karin; Hansen, Carl Erik; Fischer, Lutz

    2013-01-01

    The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 μmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols.

  15. Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds

    PubMed Central

    Xu, Feng; Kulys, Juozas J.; Duke, Kyle; Li, Kaichang; Krikstopaitis, Kastis; Deussen, Heinz-Josef W.; Abbate, Eric; Galinyte, Vilija; Schneider, Palle

    2000-01-01

    1-Hydroxybenzotriazole, violuric acid, and N-hydroxyacetanilide are three N-OH compounds capable of mediating a range of laccase-catalyzed biotransformations, such as paper pulp delignification and degradation of polycyclic hydrocarbons. The mechanism of their enzymatic oxidation was studied with seven fungal laccases. The oxidation had a bell-shaped pH-activity profile with an optimal pH ranging from 4 to 7. The oxidation rate was found to be dependent on the redox potential difference between the N-OH substrate and laccase. A laccase with a higher redox potential or an N-OH compound with a lower redox potential tended to have a higher oxidation rate. Similar to the enzymatic oxidation of phenols, phenoxazines, phenothiazines, and other redox-active compounds, an “outer-sphere” type of single-electron transfer from the substrate to laccase and proton release are speculated to be involved in the rate-limiting step for N-OH oxidation. PMID:10788380

  16. Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi

    PubMed Central

    Li, Hui

    2017-01-01

    Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092

  17. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives.

    PubMed

    Mejia Avendaño, Sandra; Liu, Jinxia

    2015-01-01

    The continuous production and use in certain parts of the world of perfluoroalkyl sulfonamide derivatives that can degrade to perfluorooctane sulfonic acid (PFOS) has called for better understanding of the environmental fate of these PFOS precursors. Aerobic soil biotransformation of N-ethyl perfluorooctane sulfonamide (EtFOSA, also known as Sulfluramid) was quantitatively investigated in semi-closed soil microcosms over 182 d for the first time. The apparent soil half-life of EtFOSA was 13.9±2.1 d and the yield to PFOS by the end of incubation was 4.0 mol%. A positive identification of a previously suspected degradation product, EtFOSA alcohol, provided strong evidence to determine degradation pathways. The lower mass balance in sterile soil than live soil suggested likely strong irreversible sorption of EtFOSA to the test soil. The aerobic soil biotransformation of a technical grade N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was semi-quantitatively examined, and the degradation pathways largely followed those in activated sludge and marine sediments. Aside from PFOS, major degradation products included N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamide acetic acid (FOSAA). This study confirms that aerobic soil biotransformation of EtFOSE and EtFOSA contributes significantly to the PFOS observed in soil environment, as well as to several highly persistent sulfonamide derivatives frequently detected in biosolid-amended soils and landfill leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Biotransformation and ToxCast™

    EPA Science Inventory

    A major focus in toxicology research is the development of in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 ToxCast Phase I...

  19. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  20. Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients.

    PubMed

    Vitaglione, Paola; Barone Lumaga, Roberta; Ferracane, Rosalia; Radetsky, Irena; Mennella, Ilario; Schettino, Rita; Koder, Saul; Shimoni, Eyal; Fogliano, Vincenzo

    2012-04-04

    Human bioavailability of curcumin from breads enriched with 1 g/portion of free curcumin (FCB), encapsulated curcumin (ECB), or encapsulated curcumin plus other polyphenols (ECBB) was evaluated. Parental and metabolized curcuminoids and phenolic acids were quantified by HPLC/MS/MS in blood, urine, and feces collected over 24 h. The concentrations of serum curcuminoids were always below 4 nmol/L and those of glucuronides 10-fold less. Encapsulation delayed and increased curcuminoid absorption as compared to the free ingredient. Serum and urinary concentrations of ferulic and vanillic acid were between 2- and 1000-fold higher than those of curcuminoids, with ECBB eliciting the highest amounts. Fecal curcuminoids were 6-fold more abundant after ECB than FCB, while phenolic acids after ECBB quadruplicated those after ECB. Curcuminoid encapsulation increased their bioavailability from enriched bread, probably preventing their biotransformation, with combined compounds slightly reducing this effect. Phenolic acids are the major metabolites of curcuminoids and may contribute to their biological properties.

  1. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea.

    PubMed

    Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi

    2017-09-27

    Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  2. Determination and isolation of a thioesterase from passion fruit (Passiflora edulis Sims) that hydrolyzes volatile thioesters.

    PubMed

    Tapp, Edward J; Cummins, Ian; Brassington, David; Edwards, Robert

    2008-08-13

    Volatile organosulfur compounds (VOSCs) are high impact aroma chemicals characteristic of tropical fruits which are active as both free thiols and the respective thioesters. Using a simple and sensitive colorimetric enzyme assay, a thioesterase activity toward VOSCs has been identified in ripening purple passion fruit ( Passiflora edulis Sims). The assay was based on determining the release of free thiols from 2-methyl-3-furanthiol acetate using Ellman's reagent. The major thioesterase in the fruit was found to be a wall-bound protein in the mesocarp. The extracted enzyme activity was purified 150-fold and shown to be associated with a 43 kDa monomeric serine hydrolase which was selectively labeled with a fluorophosphonate suicide probe. MS-MS sequencing identified the thioesterase as a class 13 glycoside hydrolase, most similar to pectin acetylesterase, an enzyme involved in cell wall modifications in the peel of a number of fruit. Our results suggest that cell wall hydrolases in tropical fruit may have additional useful roles in biotransforming VOSCs.

  3. Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Wei, Guor-Jien; Sheen, Jenn-Feng; Lu, Wen-Chien; Hwang, Lucy Sun; Ho, Chi-Tang; Lin, Ching-I

    2013-05-29

    Sinensetin (SIN), one of the major polymethoxyflavones (PMFs) contained mainly in the citrus peels, has been reported to possess various bioactivities, including antifungal, antimutagenic, anticancer, and anti-inflammatory activities. Although the biotransformation of SIN in fungi and insects has been reported, the information about the metabolism of SIN in mammals is still unclear. In this study, formation of SIN metabolites in rats was investigated. Four isotope-labeled SINs ([4'-D3]SIN, [3'-D3]SIN, [5-D3]SIN, and [6-D3]SIN) were synthesized and administered to rat. The urine samples were collected and main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. The administered compound and four SIN metabolites were detected in rat urine. These metabolites were identified as 4'-hydroxy-5,6,7,3'-tetramethoxyflavone, 5-hydroxy-6,7,3',4'-tetramethoxyflavone, 6-hydroxy-5,7,3',4'-tetramethoxyflavone, and 7-hydroxy-5,6,3',4'-tetramethoxyflavone sulfate.

  4. Biotransformation of N-Nitrosodimethylamine by Pseudomonas mendocina KR1▿

    PubMed Central

    Fournier, Diane; Hawari, Jalal; Streger, Sheryl H.; McClay, Kevin; Hatzinger, Paul B.

    2006-01-01

    N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H218O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial α-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic. PMID:16950909

  5. Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives

    PubMed Central

    Raschke, Henning; Meier, Michael; Burken, Joel G.; Hany, Roland; Müller, Markus D.; Van Der Meer, Jan Roelof; Kohler, Hans-Peter E.

    2001-01-01

    The biotransformation of four different classes of aromatic compounds by the Escherichia coli strain DH5α(pTCB 144), which contained the chlorobenzene dioxygenase (CDO) from Pseudomonas sp. strain P51, was examined. CDO oxidized biphenyl as well as monochlorobiphenyls to the corresponding cis-2,3-dihydro-2,3-dihydroxy derivatives, whereby oxidation occurred on the unsubstituted ring. No higher substituted biphenyls were oxidized. The absolute configurations of several monosubstituted cis-benzene dihydrodiols formed by CDO were determined. All had an S configuration at the carbon atom in meta position to the substituent on the benzene nucleus. With one exception, the enantiomeric excess of several 1,4-disubstituted cis-benzene dihydrodiols formed by CDO was higher than that of the products formed by two toluene dioxygenases. Naphthalene was oxidized to enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. All absolute configurations were identical to those of the products formed by toluene dioxygenases of Pseudomonas putida UV4 and P. putida F39/D. The formation rate of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene was significantly higher (about 45 to 200%) than those of several monosubstituted cis-benzene dihydrodiols and more than four times higher than the formation rate of cis-benzene dihydrodiol. A new gas chromatographic method was developed to determine the enantiomeric excess of the oxidation products. PMID:11472901

  6. Biotransformation at 10 C of di-n-butyl phthalate in subsurface microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauret, C.; Inniss, W.E.; Mayfield, C.I.

    1996-09-01

    Di-n-butyl phthalate (DBP) was found to be transformed by microorganisms under aerobic and anaerobic conditions at 10 C in microcosms simulating the Canadian Forces Base (CFB) Borden subsurface environment. Biotransformation of DBP was observed under aerobic, nitrate-reducing, Fe(III)-reducing, and sulfate-reducing conditions. The biotransformation of DBP in the microcosms was significantly decrease3d as the redox potential was lowered, especially under sulfate-reducing conditions. However, other factors such as nutrient depletion and buildup of toxic intermediates could have affected the biotransformation rates. The highest DBP biotransformation rate (0.57 {micro}g DBP{center_dot}g sediment{sup {minus}1}{center_dot}day{sup {minus}1}) was under sulfate-reducing conditions. Biotransformation of DBP at 10 Cmore » was significantly enhanced by the addition of 10 mM NaNO{sub 3} suggesting that both the addition of nitrate and high redox conditions favor its biotransformation in subsurface environments.« less

  7. Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies.

    PubMed

    Mazzarino, Monica; Biava, Mariangela; de la Torre, Xavier; Fiacco, Ilaria; Botrè, Francesco

    2013-06-01

    The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.

  8. Biotransformation in Double-Phase Systems: Physiological Responses of Pseudomonas putida DOT-T1E to a Double Phase Made of Aliphatic Alcohols and Biosynthesis of Substituted Catechols

    PubMed Central

    Rojas, Antonia; Duque, Estrella; Schmid, Andreas; Hurtado, Ana; Ramos, Juan-Luis; Segura, Ana

    2004-01-01

    Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logPow (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of ≥2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logPow value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logPow around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logPow of aliphatic alcohols correlates with their toxic effects, as octanol (logPow = 2.9) has more negative effects in P. putida cells than 1-nonanol (logPow = 3.4) or 1-decanol (logPow = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logPow = 3.2) into 3-methylcatechol (logPow = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation. PMID:15184168

  9. The biodiversity of microbial cytochromes P450.

    PubMed

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  10. Microbial transformation of nandrolone with Cunninghamella echinulata and Cunninghamella blakesleeana and evaluation of leishmaniacidal activity of transformed products.

    PubMed

    Baydoun, Elias; Karam, Martin; Atia-tul-Wahab; Khan, Mahwish Shafi Ahmed; Ahmad, Malik Shoaib; Samreen; Smith, Colin; Abdel-Massih, Roula; Choudhary, M Iqbal

    2014-10-01

    Therapeutic potential of nandrolone and its derivatives against leishmaniasis has been studied. A number of derivatives of nandrolone (1) were synthesized through biotransformation. Microbial transformation of nandrolone (1) with Cunninghamella echinulata and Cunninghamella blakesleeana yielded three new metabolites, 10β,12β,17β-trihydroxy-19-nor-4-androsten-3-one (2), 10β,16α,17β-trihydroxy-19-nor-4-androsten-3-one (3), and 6β,10β,17β-trihydroxy-19-nor-4-androsten-3-one (4), along with four known metabolites, 10β,17β-dihydroxy-19-nor-4-androsten-3-one (5), 6β,17β-dihydroxy-19-nor-4-androsten-3-one (6) 10β-hydroxy-19-nor-4-androsten-3,17-dione (7) and 16β,17β-dihydroxy-19-nor-4-androsten-3-one (8). Compounds 1-8 were evaluated for their anti-leishmanial activity. Compounds 1 and 8 showed a significant activity in vitro against Leishmania major. The leishmanicidal potential of compounds 1-8 (IC50=32.0±0.5, >100, 77.39±5.52, 70.90±1.16, 54.94±1.01, 80.23±3.39, 61.12±1.39 and 29.55±1.14 μM, respectively) can form the basis for the development of effective therapies against the protozoal tropical disease leishmaniasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Submitochondrial particle response to linear alkylbenzene sulfonates, nonylphenol polyethoxylates and their biodegradation derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argese, E.; Marcomini, A.; Bettiol, C.

    1994-05-01

    The effects on mitochondrial respiratory parameters of linear alkylbenzene sulfonates (LAS), nonylphenol polyethoxylates (NPEO), and some of their biotransformation products, namely sulfophenyl carboxylates (SPCs), nonylphenol (NP), and nonylphenoxy acetic acid (NP1EC), were recorded by using the in vitro response of submitochondrial particles (SMP) from beef heart. The toxicity of these compounds was estimated by determining their effects on the energy-coupled reverse electron transfer (RET), which is induced by ATP and succinate at the first site level of the respiratory chain and reduces exogenous NAD[sup +] to NADH. The toxicity of the substances, expressed as the toxicant concentration decreasing the reductionmore » rate of NAD[sup +] to an extent of 50% (EC50), ranged from 0.61 mg/L for a commercial LAS mixture to 18,000 mg/L for individual SPCs; from 1.3 mg/L for NPEO, with an average of 10 ethoxy units, to 8.2 and 1.8 mg/L for NP1EC and NP, respectively. These results were related to the molecular structure of each compound class and compared with the toxicity values obtained by a variety of biological systems currently used for toxicity testing. The acute toxicity data have demonstrated that (a) the SMP bioassay is suitable for reproducing the toxicological response of whole organisms, such as fishes and invertebrates, to the tested chemicals; and (b) the hydrophobic moiety of these compounds plays a significant role in eliciting their toxic effects. From a toxicological standpoint, attention must be paid to the occurrence in natural waters of residual LAS, whereas in the case of NPEO both unaltered surfactant and all biotransformation products need to be identified and quantified.« less

  12. Transport of hop aroma compounds across Caco-2 monolayers.

    PubMed

    Heinlein, A; Metzger, M; Walles, H; Buettner, A

    2014-11-01

    Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying Caco-2 transport experiments as well as investigations on potential biotransformation processes. Selective and sensitive identification and quantification were thereby achieved by application of two-dimensional high resolution gas chromatography-mass spectrometry in conjunction with stable isotope dilution analysis, leading to the determination of apparent permeability values by different mathematical approaches considering sink and non-sink conditions. Overall, calculated permeability values ranged from 2.6 × 10(-6) to 1.8 × 10(-4) cm s(-1) with all mathematical approaches, indicating high absorption potential and almost complete bioavailability for all tested compounds with hydroxyl-functionalities. Considering this high permeability together with the high lipophilicity of these substances, a passive transcellular uptake route can be speculated. Investigated sesquiterpenes and β-myrcene showed flat absorption profiles while the investigated esters showed decreasing profiles. In view of the lipophilic and volatile nature of the investigated substances, special attention was paid to recovery and mass balance determination. Furthermore, in the course of the transport experiments of 1-octen-3-ol and 3-methyl-2-buten-1-ol, additional biotransformation products were observed, namely 3-octanone and 3-methyl-2-butenal, respectively. The absence of these additional substances in control experiments strongly indicates an intestinal first-pass metabolism of the α,β-unsaturated alcohols 1-octen-3-ol and 3-methyl-2-buten-1-ol in Caco-2 cells.

  13. Interaction of Microbial and Abiotic Processes in Soil Leading to the (Bio)Conversion and Ultimate Attenuation of New Insensitive Munitions Compounds

    DTIC Science & Technology

    2016-12-30

    Toxicity is expressed as percentage of toxicant- free activity 125 Figure 4.12-1. Panel A: (Bio)transformation pathways of DNAN in anaerobic incubations...O-demethylation of the methoxy group was confirmed by formation of formaldehye. Cell free extracts of the Bacillus culture yielded formation of 2...periodically until the production of methane became constant in the toxicant- free controls. The maximum specific methanogenic activity of the

  14. Characterization of the Fate and Biotransformation of Fluorochemicals in AFFF-Contaminated Groundwater at Fire/Crash Testing Military Sites

    DTIC Science & Technology

    2017-04-10

    L that remain above health advisory 56 levels of 1 µg/L 11. These areas also may serve as reservoirs for fluorinated compounds because 57 partially...in direct contrast to anionic pesticide sorption experiments, which found an increase in Kd with increasing AEC.37,79 The sorption of the...are less frequently studied, but zwitterionic pesticide sorption experiments found either an increase80 or no change81 in sorption with increasing

  15. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.

    PubMed

    Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi

    2017-03-01

    Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.

  16. Association of Biodiversity with the Rates of Micropollutant Biotransformations among Full-Scale Wastewater Treatment Plant Communities

    PubMed Central

    Helbling, Damian E.; Lee, Tae Kwon; Park, Joonhong; Fenner, Kathrin; Kohler, Hans-Peter E.; Ackermann, Martin

    2014-01-01

    Biodiversities can differ substantially among different wastewater treatment plant (WWTP) communities. Whether differences in biodiversity translate into differences in the provision of particular ecosystem services, however, is under active debate. Theoretical considerations predict that WWTP communities with more biodiversity are more likely to contain strains that have positive effects on the rates of particular ecosystem functions, thus resulting in positive associations between those two variables. However, if WWTP communities were sufficiently biodiverse to nearly saturate the set of possible positive effects, then positive associations would not occur between biodiversity and the rates of particular ecosystem functions. To test these expectations, we measured the taxonomic biodiversity, functional biodiversity, and rates of 10 different micropollutant biotransformations for 10 full-scale WWTP communities. We have demonstrated that biodiversity is positively associated with the rates of specific, but not all, micropollutant biotransformations. Thus, one cannot assume whether or how biodiversity will associate with the rate of any particular micropollutant biotransformation. We have further demonstrated that the strongest positive association is between biodiversity and the collective rate of multiple micropollutant biotransformations. Thus, more biodiversity is likely required to maximize the collective rates of multiple micropollutant biotransformations than is required to maximize the rate of any individual micropollutant biotransformation. We finally provide evidence that the positive associations are stronger for rare micropollutant biotransformations than for common micropollutant biotransformations. Together, our results are consistent with the hypothesis that differences in biodiversity can indeed translate into differences in the provision of particular ecosystem services by full-scale WWTP communities. PMID:25398862

  17. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Jinsheng; Purcell, Wendy M.

    2006-10-15

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect themore » status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity.« less

  18. Allometric scaling of hepatic biotransformation in rainbow trout

    EPA Science Inventory

    Biotransformation can markedly reduce the extent to which hydrophobic organic chemicals accumulate in fish. However, predicting the impacts of biotransformation on chemical accumulation is complicated by a number of factors, including the possible influence of differences in fis...

  19. Biotransformation of OH-PBDEs by pig liver microsomes: Investigating kinetics, identifying metabolites, and examining the role of different CYP isoforms.

    PubMed

    Li, Jianhua; Zhang, Ya; Du, Zhongkun; Peng, Jianbiao; Mao, Liang; Gao, Shixiang

    2016-04-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of great concern due to their potential risk to animal and human health. The biotransformation potential of OH-PBDEs in organisms is important for the understanding of their health risk. In the present study, the biotransformation of 3'-OH-2,4-di-BDE (3'-OH-BDE-7), 4'-OH-2,2',4-tri-BDE (4'-OH-BDE-17) and 3-OH-2,2',4,4'-tetra-BDE (3-OH-BDE-47) by pig liver microsomes was studied. Compared with their precursor PBDEs, the three OH-PBDEs were more readily biotransformed by pig liver microsomes, and the biotransformation rate followed the order: 3'-OH-BDE-7 > 4'-OH-BDE-17 > 3-OH-BDE-47. These results revealed that the biotransformation rate of OH-PBDEs was decreased with an increase in the number of bromine substituents. Cleavage of the diphenyl ether bond was the dominant pathway for biotransformation of the three OH-PBDEs by pig liver microsomes, while debromination and hydroxylation were found to be of less importance. CYP3A4 was suggested to be the specific enzyme responsible for the biotransformation of OH-PBDEs via associated inhibition assay. These findings may enrich our understanding of health risk associated with OH-PBDEs in mammals and human beings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial metabolites in nutrition, healthcare and agriculture.

    PubMed

    Singh, Rajendra; Kumar, Manoj; Mittal, Anshumali; Mehta, Praveen Kumar

    2017-05-01

    Microorganisms are a promising source of an enormous number of natural products, which have made significant contribution to almost each sphere of human, plant and veterinary life. Natural compounds obtained from microorganisms have proved their value in nutrition, agriculture and healthcare. Primary metabolites, such as amino acids, enzymes, vitamins, organic acids and alcohol are used as nutritional supplements as well as in the production of industrial commodities through biotransformation. Whereas, secondary metabolites are organic compounds that are largely obtained by extraction from plants or tissues. They are primarily used in the biopharmaceutical industry due to their capability to reduce infectious diseases in human beings and animals and thus increase the life expectancy. Additionally, microorganisms and their products inevitably play a significant role in sustainable agriculture development.

  1. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  2. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness.

    PubMed

    Żyszka, Beata; Anioł, Mirosław; Lipok, Jacek

    2017-08-04

    Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable "enzymatic apparatus" to carry out their biotransformation. Therefore, determination of the ability of whole cells of selected cyanobacteria to carry out biocatalytic transformations of chalcone, the biogenetic precursor of all known flavonoids, was the aim of our study. Chalcone was found to be converted to dihydrochalcone by all examined cyanobacterial strains; however, the effectiveness of this process depends on the strain with biotransformation yields ranging from 3% to >99%. The most effective biocatalysts are Anabaena laxa, Aphanizomenon klebahnii, Nodularia moravica, Synechocystis aquatilis (>99% yield) and Merismopedia glauca (92% yield). The strains Anabaena sp. and Chroococcus minutus transformed chalcone in more than one way, forming a few products; however, dihydrochalcone was the dominant product. The course of biotransformation shed light on the pathway of chalcone conversion, indicating that the process proceeds through the intermediate cis-chalcone. The scaled-up process, conducted on a preparative scale and by using a mini-pilot photobioreactor, fully confirmed the high effectiveness of this bioconversion. Moreover, in the case of the mini-pilot photobioreactor batch cultures, the optimization of culturing conditions allowed the shortening of the process conducted by A. klebahnii by 50% (from 8 to 4 days), maintaining its >99% yield. This is the first report related to the use of whole cells of halophilic and freshwater cyanobacteria strains in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone. The total bioconversion of chalcone in analytical, preparative, and mini-pilot scales of this process creates the possibility of its use in the food industry for the production of natural sweeteners.

  3. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration.

    PubMed

    Chandrasekhar, K; Venkata Mohan, S

    2012-04-01

    Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Shin, Myung Kyo; Kim, Sung-Koo

    2013-07-01

    The seaweed, Gelidium amansii, was fermented to produce bioethanol. Optimal pretreatment condition was determined as 94 mM H2SO4 and 10% (w/v) seaweed slurry at 121°C for 60 min. The mono sugars of 43.5 g/L with 57.4% of conversion from total carbohydrate of 75.8 g/L with G. amansii slurry 100g dcw/L were obtained by thermal acid hydrolysis pretreatment and enzymatic saccharification. G. amansii hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). The ethanol concentration of 20.5 g/L was produced by Scheffersomyces stipitis KCTC 7228. The effect of HMF on ethanol production by S. stipitis KCTC 7228 was evaluated and 5-hydroxymethylfurfural (HMF) was converted to 2,5-bis-hydroxymethylfuran. The accumulated 2,5-bis-hydroxymethylfuran in the medium did not affect galactose and glucose uptakes and ethanol production. Biotransformation of HMF to less inhibitory compounds by S. stipitis KCTC 7228 could enhance overall fermentation yields of seaweed hydrolysates to ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biodegradation of clofibric acid and identification of its metabolites.

    PubMed

    Salgado, R; Oehmen, A; Carvalho, G; Noronha, J P; Reis, M A M

    2012-11-30

    Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration=2 mg L(-1)), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including α-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. α-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Unexpected Biotransformation of the HDAC Inhibitor Vorinostat Yields Aniline-Containing Fungal Metabolites.

    PubMed

    Adpressa, Donovon A; Stalheim, Kayla J; Proteau, Philip J; Loesgen, Sandra

    2017-07-21

    The diversity of genetically encoded small molecules produced by filamentous fungi remains largely unexplored, which makes these fungi an attractive source for the discovery of new compounds. However, accessing their full chemical repertoire under common laboratory culture conditions is a challenge. Epigenetic manipulation of gene expression has become a well-established tool for overcoming this obstacle. Here, we report that perturbation of the endophytic ascomycete Chalara sp. 6661, producer of the isofusidienol class of antibiotics, with the HDAC inhibitor vorinostat resulted in the production of four new modified xanthones. The structures of chalanilines A (1) and B (2) and adenosine-coupled xanthones A (3) and B (4) were determined by extensive NMR spectroscopic analyses, and the bioactivities of 1-4 were tested in antibiotic and cytotoxicity assays. Incorporation studies with deuterium-labeled vorinostat indicate that the aniline moiety in chalalanine A is derived from vorinostat itself. Our study shows that Chalara sp. is able to metabolize the HDAC inhibitor vorinostat to release aniline. This is a rare report of fungal biotransformation of the popular epigenetic modifier vorinostat into aniline-containing polyketides.

  7. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

    PubMed

    Zhang, Yan; Han, Bei; Ezeji, Thaddeus Chukwuemeka

    2012-02-15

    The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Identification of Three Novel Ring Expansion Metabolites of KAE609, a New Spiroindolone Agent for the Treatment of Malaria, in Rats, Dogs, and Humans.

    PubMed

    Huskey, Su-Er W; Zhu, Chun-qi; Lin, Melissa M; Forseth, Ry R; Gu, Helen; Simon, Oliver; Eggimann, Fabian K; Kittelmann, Matthias; Luneau, Alexandre; Vargas, Alexandra; Li, Hongmei; Wang, Lai; Einolf, Heidi J; Zhang, Jin; Favara, Sarah; He, Handan; Mangold, James B

    2016-05-01

    KAE609 [(1'R,3'S)-5,7'-dichloro-6'-fluoro-3'-methyl-2',3',4',9'-tetrahydrospiro[indoline-3,1'-pyridol[3,4-b]indol]-2-one] is a potent, fast-acting, schizonticidal agent being developed for the treatment of malaria. After oral dosing of KAE609 to rats and dogs, the major radioactive component in plasma was KAE609. An oxidative metabolite, M18, was the prominent metabolite in rat and dog plasma. KAE609 was well absorbed and extensively metabolized such that low levels of parent compound (≤11% of the dose) were detected in feces. The elimination of KAE609 and metabolites was primarily mediated via biliary pathways (≥93% of the dose) in the feces of rats and dogs. M37 and M23 were the major metabolites in rat and dog feces, respectively. Among the prominent metabolites of KAE609, the isobaric chemical species, M37, was observed, suggesting the involvement of an isomerization or rearrangement during biotransformation. Subsequent structural elucidation of M37 revealed that KAE609, a spiroindolone, undergoes an unusual C-C bond cleavage, followed by a 1,2-acyl shift to form a ring expansion metabolite M37. The in vitro metabolism of KAE609 in hepatocytes was investigated to understand this novel biotransformation. The metabolism of KAE609 was qualitatively similar across the species studied; thus, further investigation was conducted using human recombinant cytochrome P450 enzymes. The ring expansion reaction was found to be primarily catalyzed by cytochrome P450 (CYP) 3A4 yielding M37. M37 was subsequently oxidized to M18 by CYP3A4 and hydroxylated to M23 primarily by CYP1A2. Interestingly, M37 was colorless, whereas M18 and M23 showed orange yellow color. The source of the color of M18 and M23 was attributed to their extended conjugated system of double bonds in the structures. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Biotransformation of Hydroxylaminobenzene and Aminophenol by Pseudomonas putida 2NP8 Cells Grown in the Presence of 3-Nitrophenol

    PubMed Central

    Zhao, Jian-Shen; Singh, Ajay; Huang, Xiao-Dong; Ward, Owen P.

    2000-01-01

    Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated. PMID:10831408

  10. Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol.

    PubMed

    Zhao, J S; Singh, A; Huang, X D; Ward, O P

    2000-06-01

    Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated.

  11. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).

    PubMed

    Krieger, Lisa K; Szeitz, András; Bandiera, Stelvio M

    2016-03-01

    Polar bears are at the top of the Arctic marine food chain and are subject to exposure and bioaccumulation of environmental chemicals of concern such as polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants. The aim of the present study was to evaluate the in vitro oxidative metabolism of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) by polar bear liver microsomes. The identification and quantification of the hydroxy-brominated diphenyl ethers formed were assessed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with archived individual liver microsomes, prepared from fifteen polar bears from northern Canada, produced a total of eleven hydroxylated metabolites, eight of which were identified using authentic standards. The major metabolites were 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 5'-hydroxy-2,2',4,4'-tetrabromodiphenyl ether. Incubation of BDE-99 with polar bear liver microsomes produced a total of eleven hydroxylated metabolites, seven of which were identified using authentic standards. The major metabolites were 2,4,5-tribromophenol and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. Among the CYP specific antibodies tested, anti-rat CYP2B was found to be the most active in inhibiting the formation of hydroxylated metabolites of both BDE-47 and BDE-99, indicating that CYP2B was the major CYP enzyme involved in the oxidative biotransformation of these two congeners. Our study shows that polar bears are capable of forming multiple hydroxylated metabolites of BDE-47 and BDE-99 in vitro and demonstrates the role of CYP2B in the biotransformation and possibly in the toxicity of BDE-47 and BDE-99 in polar bears. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In vitro biotransformation rates in fish liver S9: effect of dosing techniques.

    PubMed

    Lee, Yung-Shan; Lee, Danny H Y; Delafoulhouze, Maximilien; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2014-08-01

    In vitro biotransformation assays are currently being explored to improve estimates of bioconcentration factors of potentially bioaccumulative organic chemicals in fish. The present study compares thin-film and solvent-delivery dosing techniques as well as single versus multiple chemical dosing for measuring biotransformation rates of selected polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) liver S9. The findings show that biotransformation rates of very hydrophobic substances can be accurately measured in thin-film sorbent-dosing assays from concentration-time profiles in the incubation medium but not from those in the sorbent phase because of low chemical film-to-incubation-medium mass-transfer rates at the incubation temperature of 13.5 °C required for trout liver assays. Biotransformation rates determined by thin-film dosing were greater than those determined by solvent-delivery dosing for chrysene (octanol-water partition coefficient [KOW ] =10(5.60) ) and benzo[a]pyrene (KOW  =10(6.04) ), whereas there were no statistical differences in pyrene (KOW  =10(5.18) ) biotransformation rates between the 2 methods. In sorbent delivery-based assays, simultaneous multiple-chemical dosing produced biotransformation rates that were not statistically different from those measured in single-chemical dosing experiments for pyrene and benzo[a]pyrene but not for chrysene. In solvent-delivery experiments, multiple-chemical dosing produced biotransformation rates that were much smaller than those in single-chemical dosing experiments for all test chemicals. While thin-film sorbent-phase and solvent delivery-based dosing methods are both suitable methods for measuring biotransformation rates of substances of intermediate hydrophobicity, thin-film sorbent-phase dosing may be more suitable for superhydrophobic chemicals. © 2014 SETAC.

  13. BIOACCUMULATION, BIOTRANSFORMATION, AND METABOLITE FORMATION OF FIPRONIL AND CHIRAL LEGACY PESTICIDES IN RAINBOW TROUT

    EPA Science Inventory

    To assess the fate of current-use pesticides it is important to understand their bioaccumulation and biotransformation by aquatic biota. We examined the dietary accumulation and enantioselective biotransformation of the chiral current-use pesticide fipronil, along with a mixture ...

  14. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.).

    PubMed

    Wan, Weining; Huang, Honglin; Lv, Jitao; Han, Ruixia; Zhang, Shuzhen

    2017-12-05

    The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.

  15. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    PubMed

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.

  16. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    PubMed Central

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  18. Characterization of urinary metabolites of testosterone, methyltestosterone, mibolerone and boldebone in greyhound dogs.

    PubMed

    Williams, T M; Kind, A J; Hyde, W G; Hill, D W

    2000-06-01

    Androgenic steroids are used in female greyhound dogs to prevent the onset of estrus; moreover, these steroids also have potent anabolic activity. As anabolic steroids increase muscle mass and aggression in animals, the excessive use of these agents in racing greyhounds gives an unfair performance advantage to treated dogs. The biotransformation of most anabolic steroids has not been determined in greyhound dogs. The objective of the present study was to identify the urinary metabolites of testosterone, methyltestosterone, mibolerone, and boldenone in greyhound dogs. These steroids were administered orally (1 mg/kg) to either male or female greyhound dogs and urine samples were collected pre-administration and at 2, 4, 8, 12, 24, 72, and 96 h post-administration. Urine extracts were analyzed by high-performance liquid chromatography/mass spectrometry (HPLC/MS) to identify major metabolites and to determine their urinary excretion profiles. Major urinary metabolites, primarily glucuronide, conjugated and free, were detected for the selected steroids. Sulfate conjugation did not appear to be a major pathway for steroid metabolism and excretion in the greyhound dog. Phase I biotransformation was also evaluated using greyhound dog liver microsomes from untreated dogs. The identification of several in vivo steroid metabolites generated in this study will be useful in detecting these steroids in urine samples submitted for drug screening.

  19. Disposition and biotransformation of the acetylenic retinoid tazarotene in humans.

    PubMed

    Attar, Mayssa; Yu, Dale; Ni, Jinsong; Yu, Zhiling; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2005-10-01

    Oral tazarotene, an acetylenic retinoid, is in clinical development for the treatment of psoriasis. The disposition and biotransformation of tazarotene were investigated in six healthy male volunteers, following a single oral administration of a 6 mg (100 microCi) dose of [14C]tazarotene, in a gelatin capsule. Blood levels of radioactivity peaked 2 h postdose and then rapidly declined. Total recovery of radioactivity was 89.2+/-8.0% of the administered dose, with 26.1+/-4.2% in urine and 63.0+/-7.0% in feces, within 7 days of dosing. Only tazarotenic acid, the principle active metabolite formed via esterase hydrolysis of tazarotene, was detected in blood. One major urinary oxidative metabolite, tazarotenic acid sulfoxide, accounted for 19.2+/-3.0% of the dose. The majority of radioactivity recovered in the feces was attributed to tazarotenic acid representing 46.9+/-9.9% of the dose and only 5.82+/-3.84% of dose was excreted as unchanged tazarotene. Thus following oral administration, tazarotene was rapidly absorbed and underwent extensive hydrolysis to tazarotenic acid, the major circulating species in the blood that was then excreted unchanged in feces. A smaller fraction of tazarotenic acid was further metabolized to an inactive sulfoxide that was excreted in the urine. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    PubMed Central

    Roger, Lille-Langøy; V, Goldstone Jared; Marte, Rusten; R, Milnes Matthew; Rune, Male; J, Stegeman John; Bruce, Blumberg; Anders, Goksøyr

    2015-01-01

    BACKGROUND Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. OBJECTIVES In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. RESULTS We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. CONCLUSIONS Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modelling studies suggests that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. PMID:25680588

  1. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

    PubMed

    Lille-Langøy, Roger; Goldstone, Jared V; Rusten, Marte; Milnes, Matthew R; Male, Rune; Stegeman, John J; Blumberg, Bruce; Goksøyr, Anders

    2015-04-01

    Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. Copyright © 2015. Published by Elsevier Inc.

  2. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.

    PubMed

    Baker, M T; Vasquez, M T; Bates, J N; Chiang, C K

    1990-01-01

    The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome P-450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induce cytochrome P-450 forms in its metabolism. Upon incubation of [14C]CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome P-450.

  3. Biotransformation of indole derivatives by mycelial cultures.

    PubMed

    Alarcón, Julio; Cid, Eliseo; Lillo, Luis; Céspedesa, Carlos; Aguila, Sergio; Alderete, Joel B

    2008-01-01

    Biotransformation of tryptophan to tryptamine and 3-methyl-indole by Psilocybe coprophila was performed. On the other hand, Aspergillus niger was able to transform tryptophan to 5-hydroxy-tryptophan. P. coprophila biotransformed 5-hydroxy-tryptophan to 5-hydroxytryptamine. These results prove once more that fungi are good tools to establish hydroxyindole derivatives.

  4. Modeling Biotransformation Using In Vitro Data on Parent-Metabolite Pairs within the ToxCast Phase I Chemical Set

    EPA Science Inventory

    A major focus in toxicology research is the development of new in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 Phase I che...

  5. Hepatic biotransformation of alkylresorcinols is mediated via cytochrome P450 and beta-oxidation: a proof of concept study

    USDA-ARS?s Scientific Manuscript database

    Alkylresorcinols (AR) are phenolic lipids present in the bran of some cereals. AR may serve as a biomarker for whole grain wheat and rye intake. While AR pharmacokinetics and two major metabolites have been reported, the metabolic pathways contributing to their relatively rapid elimination from the ...

  6. Biotransformation and toxicity of aniline and aniline derivatives of cyanobacteria.

    PubMed

    Cerniglia, C E; Freeman, J P; Van Baalen, C

    1981-12-01

    Agmenellum quadruplicatum strain PR-6 and Oscillatoria sp. strain JCM grown photoautotrophically in the presence of aniline metabolized the aromatic amine to formanilide, acetanilide and p-aminophenol. The metabolites were isolated by either thin-layer, gas-liquid or high pressure liquid chromatography and identified by comparison of their chromatographic, ultraviolet absorbance and mass spectral properties with those of authentic compounds. The toxicity of aniline derivatives towards Agmenellum quadruplicatum strain PR-6 indicated that the cyanobacterium was extremely sensitive to o-, m- and p-aminophenols, and phenylhydroxylamine.

  7. Disposition and metabolism of safinamide, a novel drug for Parkinson's disease, in healthy male volunteers.

    PubMed

    Leuratti, Chiara; Sardina, Marco; Ventura, Paolo; Assandri, Alessandro; Müller, Markus; Brunner, Martin

    2013-01-01

    Absorption, biotransformation and elimination of safinamide, an enantiomeric α-aminoamide derivative developed as an add-on therapy for Parkinson's disease patients, were studied in healthy volunteers administered a single oral dose of 400 mg (14)C safinamide methanesulphonate, labelled in metabolically stable positions. Pharmacokinetics of the parent compound were investigated up to 96 h, of (14)C radioactivity up to 192/200 h post-dose. Maximum concentration was achieved at 1 h (plasma, median Tmax) for parent drug and at 7 and 1.5 h for plasma and whole blood (14)C radioactivity, respectively. Terminal half-lives were about 22 h for unchanged safinamide and 80 h for radioactivity. Safinamide deaminated acid and the N-dealkylated acid were identified as major metabolites in urine and plasma. In urine, the β-glucuronide of the N-dealkylated acid and the monohydroxy safinamide were also characterized. In addition, the glycine conjugate of the N-dealkylated acid and 2-[4-hydroxybenzylamino]propanamide were tentatively identified as minor urinary metabolites. © 2013 S. Karger AG, Basel.

  8. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  9. Role of L-alanine for redox self-sufficient amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily responsible for pyruvate catabolism during redox self-sufficient amination of alcohols using this whole cell biocatalyst. The replacement of the transaminase TaVf by TaCv, which showed higher activity at 42°C, in the artificial operon ald-adh-ta improved amination of alcohols in whole cell biotransformation. The addition of L-alanine, which was consumed by E. coli via pyruvate catabolism, was required for 100% product formation possibly by providing maintenance energy. Metabolic engineering revealed that pyruvate catabolism occurred primarily via oxidative decarboxylation to acetate by PoxB under the chosen biotranformation conditions.

  10. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-02

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.

  11. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids.

    PubMed

    Wang, Xiaojun; Feng, Jinhui; Zhang, Dalong; Wu, Qiaqing; Zhu, Dunming; Ma, Yanhe

    2017-08-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ 1 -dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, we cloned 12 putative KstD-encoding (kstd) genes from both fungal and Gram-positive microorganisms and attempted to overproduce the recombinant proteins in E. coli BL21(DE3). Five successful recombinant enzymes catalyzed the Δ 1 -desaturation of a variety of steroidal compounds such as 4-androstene-3,17-dione (AD), 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), hydrocortisone, cortisone, and cortexolone. However, the substrate specificity and catalytic efficiency of the enzymes differ depending on their sources. The purified KstD from Mycobacterium smegmatis mc 2 155 (MsKstD1) displayed high catalytic efficiency toward hydrocortisone, progesterone, and 9-OH-AD, where it had the highest affinity (K m 36.9 ± 4.6 μM) toward 9-OH-AD. On the other hand, the KstD from Rhodococcus erythropolis WY 1406 (ReKstD) exhibited high catalytic efficiency toward androst-4,9(11)-diene-3,17-dione (Diene), 21-acetoxy-pregna-4,9(11),16-triene-3,20-dione (Triene), and cortexolone, where in all three cases the K m values (12.3 to 17.8 μM) were 2.5-4-fold lower than that toward hydrocortisone (46.3 μM). For both enzymes, AD was a good substrate although ReKstD had a 3-fold higher affinity than MsKstD1. Reaction conditions were optimized for the biotransformation of AD or hydrocortisone in terms of pH, temperature, and effects of hydrogen peroxide, solvent, and electron acceptor. For the biotransformation of hydrocortisone with 20 g/L wet resting E. coli cells harboring MsKstD1 enzyme, the yield of prednisolone was about 90% within 3 h at the substrate concentration of 6 g/L, demonstrating the application potential of the newly cloned KstDs.

  12. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation.

    PubMed

    Schreiber-Brynzak, Ekaterina; Pichler, Verena; Heffeter, Petra; Hanson, Buck; Theiner, Sarah; Lichtscheidl-Schultz, Irene; Kornauth, Christoph; Bamonti, Luca; Dhery, Vineet; Groza, Diana; Berry, David; Berger, Walter; Galanski, Markus; Jakupec, Michael A; Keppler, Bernhard K

    2016-04-01

    Hypoxia in solid tumors remains a challenge for conventional cancer therapeutics. As a source for resistance, metastasis development and drug bioprocessing, it influences treatment results and disease outcome. Bioreductive platinum(iv) prodrugs might be advantageous over conventional metal-based therapeutics, as biotransformation in a reductive milieu, such as under hypoxia, is required for drug activation. This study deals with a two-step screening of experimental platinum(iv) prodrugs with different rates of reduction and lipophilicity with the aim of identifying the most appropriate compounds for further investigations. In the first step, the cytotoxicity of all compounds was compared in hypoxic multicellular spheroids and monolayer culture using a set of cancer cell lines with different sensitivities to platinum(ii) compounds. Secondly, two selected compounds were tested in hypoxic xenografts in SCID mouse models in comparison to satraplatin, and, additionally, (LA)-ICP-MS-based accumulation and distribution studies were performed for these compounds in hypoxic spheroids and xenografts. Our findings suggest that, while cellular uptake and cytotoxicity strongly correlate with lipophilicity, cytotoxicity under hypoxia compared to non-hypoxic conditions and antitumor activity of platinum(iv) prodrugs are dependent on their rate of reduction.

  13. The impact of different proportions of a treated effluent on the biotransformation of selected micro-contaminants in river water microcosms.

    PubMed

    Nödler, Karsten; Tsakiri, Maria; Licha, Tobias

    2014-10-10

    Attenuation of micro-contaminants is a very complex field in environmental science and evidence suggests that biodegradation rates of micro-contaminants in the aqueous environment depend on the water matrix. The focus of the study presented here is the systematic comparison of biotransformation rates of caffeine, carbamazepine, metoprolol, paracetamol and valsartan in river water microcosms spiked with different proportions of treated effluent (0%, 0.1%, 1%, and 10%). Biotransformation was identified as the dominating attenuation process by the evolution of biotransformation products such as atenolol acid and valsartan acid. Significantly decreasing biotransformation rates of metoprolol were observed at treated effluent proportions ≥ 0.1% whereas significantly increasing biotransformation rates of caffeine and valsartan were observed in the presence of 10% treated effluent. Potential reasons for the observations are discussed and the addition of adapted microorganisms via the treated effluent was suggested as the most probable reason. The impact of additional phosphorus on the biodegradation rates was tested and the experiments revealed that phosphorus-limitation was not responsible.

  14. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.

  15. Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.

    PubMed

    Bhushan, Bharat; Paquet, Louise; Halasz, Annamaria; Spain, Jim C; Hawari, Jalal

    2003-06-27

    Enzyme catalyzed biotransformation of the energetic chemical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is not known. The present study describes a xanthine oxidase (XO) catalyzed biotransformation of HMX to provide insight into the biodegradation pathway of this energetic chemical. The rates of biotransformation under aerobic and anaerobic conditions were 1.6+/-0.2 and 10.5+/-0.9 nmolh(-1)mgprotein(-1), respectively, indicating that anaerobic conditions favored the reaction. The biotransformation rate was about 6-fold higher using NADH as an electron-donor compared to xanthine. During the course of reaction, the products obtained were nitrite (NO(2)(-)), methylenedinitramine (MDNA), 4-nitro-2,4-diazabutanal (NDAB), formaldehyde (HCHO), nitrous oxide (N(2)O), formic acid (HCOOH), and ammonium (NH(4)(+)). The product distribution gave carbon and nitrogen mass-balances of 91% and 88%, respectively. A comparative study with native-, deflavo-, and desulfo-XO and the site-specific inhibition studies showed that HMX biotransformation occurred at the FAD-site of XO. Nitrite stoichiometry revealed that an initial single N-denitration step was sufficient for the spontaneous decomposition of HMX.

  16. HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples.

    PubMed

    Gremmel, Christoph; Frömel, Tobias; Knepper, Thomas P

    2017-02-01

    Two quantitative methods using high-performance liquid chromatography (HPLC) combined with triple quadrupole tandem mass spectrometry (MS/MS) were developed to determine perfluoroalkyl and polyfluoroalkyl substances (PFASs) in aqueous samples. The first HPLC-MS/MS method was applied to 47 PFASs of 12 different substance classes with acidic characteristics such as perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), as well as precursor substances and biotransformation intermediates (e.g., unsaturated fluorotelomer carboxylic acids). In addition, 25 13 C-, 18 O-, and 2 H-labeled PFASs were used as internal standards in this method. The second HPLC-MS/MS method was applied to fluorotelomer alcohols (FTOHs) and perfluorooctane sulfonamidoethanols as these compounds have physicochemical properties different from those of the previous ones. Accuracy between 82% and 110% and a standard deviation in the range from 2% to 22% depending on the substances were determined during the evaluation of repeatability and precision. The method quantification limit after solid-phase extraction ranged from 0.3 to 199 ng/L depending on the analyte and matrix. The HPLC-MS/MS methods developed were suitable for the determination of PFASs in aqueous samples (e.g., wastewater treatment plant effluents or influents after solid-phase extraction). These methods will be helpful in monitoring campaigns to evaluate the relevance of precursor substances as indirect sources of perfluorinated substances in the environment. In one exemplary application in an industrial wastewater treatment plant, FTOHs were found to be the major substance class in the influent; in particular, 6:2-FTOH was the predominant compound in the industrial samples and accounted for 74% of the total PFAS concentration. The increase in the concentration of the transformation products of FTOHs in the corresponding effluent, such as fluorotelomer carboxylic acids, unsaturated fluorotelomer carboxylic acids, n:3 polyfluorinated saturated carboxylic acids (n indicates the number of nonfluorinated carbon atoms), and PFCAs, indicated biotransformation of FTOHs or their derivatives during wastewater treatment. However, only 33 mol% of the total amount of PFASs present in the influent was quantified in the corresponding effluent. Graphical abstract Method development of an HPLC-MS/MS multi-method for the determination of PFASs in aqueos samples.

  17. Biotransformation of 20(R)-panaxatriol by Mucor racemosus and the anti-hepatic fibrosis activity of some products.

    PubMed

    Chen, Guangtong; Li, Jie; Yan, Sensen; Lin, Haijun; Wu, Juanjuan; Zhai, Xuguang; Song, Yan; Li, Jianlin

    2017-08-01

    Biocatalysis of 20(R)-panaxatriol (PT) was performed by the fungus Mucor racemosus. Six metabolites (1-6) including five new compounds were obtained, and their structures were elucidated as 20(R),25-epoxy-12β,24β-dihydroxydammaran-3,6-dione (2), 20(R),25-epoxy-12β,22β-dihydroxydammaran-3,6-dione (3), 20(R),25-epoxy-23β-hydroxydammaran-3,6,12-trione (4), 20(R),25-epoxy-12β,23α- dihydroxydammaran-3,6-dione (5), and 20(R),25-epoxy-12β-hydroxydammaran-3,6,23-trione (6) by spectroscopic analysis. Pharmacological studies revealed that compounds 2, 3 and 5 exhibited significant antihepatic fibrosis activity, while 4 and 6 showed cytotoxicity against HSC-T6 cells.

  18. Reactive Metabolites in the Biotransformation of Molecules Containing a Furan Ring

    PubMed Central

    Peterson, Lisa A.

    2012-01-01

    Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases. PMID:23061605

  19. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific micropollutants. This work is an important step towards developing tools to predict biotransformation rates in WWTPs based on taxonomic composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Consequences of bile salt biotransformations by intestinal bacteria

    PubMed Central

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  1. Regio- and stereoselectivities in plant cell biotransformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  2. ANAEROBIC BIOTRANSFORMATION OF 2,4-DINITROTOLUENE WITH ETHANOL AS PRIMARY SUBSTRATE: MUTUAL EFFECT OF THE SUBSTRATES ON THEIR BIOTRANSFORMATION

    EPA Science Inventory

    The effect of the initial concentration of 2,4-dinitrotoluene (DNT) on its biotransformation and on the microbial utilization of ethanol was investigated. The culture used in this study was acclimated in a continuous flow laboratory fermentor with 2,4-DNT and ethanol as substrat...

  3. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry

    PubMed Central

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-01-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265

  4. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry.

    PubMed

    Brox, Stephan; Seiwert, Bettina; Haase, Nora; Küster, Eberhard; Reemtsma, Thorsten

    2016-01-01

    The zebrafish embryo (ZFE) is increasingly used in ecotoxicology research but detailed knowledge of its metabolic potential is still limited. This study focuses on the xenobiotic metabolism of ZFE at different life-stages using the pharmaceutical compound clofibric acid as study compound. Liquid chromatography with quadrupole-time-of-flight mass spectrometry (LC-QToF-MS) is used to detect and to identify the transformation products (TPs). In screening experiments, a total of 18 TPs was detected and structure proposals were elaborated for 17 TPs, formed by phase I and phase II metabolism. Biotransformation of clofibric acid by the ZFE involves conjugation with sulfate or glucuronic acid, and, reported here for the first time, with carnitine, taurine, and aminomethanesulfonic acid. Further yet unknown cyclization products were identified using non-target screening that may represent a new detoxification pathway. Sulfate containing TPs occurred already after 3h of exposure (7hpf), and from 48h of exposure (52hpf) onwards, all TPs were detected. The detection of these TPs indicates the activity of phase I and phase II enzymes already at early life-stages. Additionally, the excretion of one TP into the exposure medium was observed. The results of this study outline the high metabolic potential of the ZFE with respect to the transformation of xenobiotics. Similarities but also differences to other test systems were observed. Biotransformation of test chemicals in toxicity testing with ZFE may therefore need further consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  7. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions.

    PubMed

    Fernandez-Fontaina, E; Gomes, I B; Aga, D S; Omil, F; Lema, J M; Carballa, M

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    PubMed Central

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  10. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.

  11. Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott.

    PubMed

    Kwiecień, Inga; Szopa, Agnieszka; Madej, Kornelia; Ekiert, Halina

    2013-01-01

    Arbutin (hydroquinone β-D-glucoside) is a compound of plant origin possessing valuable therapeutic (urinary tract disinfection) and cosmetic (skin whitening) properties, which can be obtained from in vitro cultures of plants belonging to different taxa via biotransformation of exogenously supplemented hydroquinone. Agitating cultures of Aronia melanocarpa were maintained on the Murashige and Skoog medium containing growth regulators: the cytokinin - BAP (6-benzylaminopurine), 2 mg/l and the auxin NAA (α-naphthaleneacetic acid), 2 mg/l. The biomass was cultured for 2 weeks and then hydroquinone was supplemented at the following doses: 96, 144, 192, 288 and 384 mg/l either undivided or divided into two or three portions added at 24-hour intervals. The content of the reaction product - arbutin, was determined using an HPLC method in methanolic extracts from biomass and lyophilized medium samples collected 24 hours after the addition of the last precursor dose. The total amounts of arbutin were very diverse, from 2.71 to 8.27 g/100g d.w. The production of arbutin rose with increasing hydroquinone concentration. The maximum content of the product was observed after hydroquinone addition at 384 mg/l divided into two portions. Biotransformation efficiency also varied widely, ranging from 37.04% do 73.80%. The identity of the product - arbutin, after its isolation and purification was confirmed by spectral analysis ((1)H-NMR spectrum). The maximum amount of arbutin obtained was higher than that required by the latest 9(th) Edition of the Polish Pharmacopoeia and by the newest 8th Edithion of European Pharmacopoeia for Uvae ursi folium (7.0 g/100g d.w.), and is interesting from practical point of view.

  12. Application of in Vitro Biotransformation Data and ...

    EPA Pesticide Factsheets

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha

  13. Background Nutrients Affect the Biotransformation of Tetracycline by Stenotrophomonas maltophilia as Revealed by Genomics and Proteomics.

    PubMed

    Leng, Yifei; Bao, Jianguo; Song, Dandan; Li, Jing; Ye, Mao; Li, Xu

    2017-09-19

    Certain bacteria are resistant to antibiotics and can even transform antibiotics in the environment. It is unclear how the molecular mechanisms underlying the resistance and biotransformation processes vary under different environmental conditions. The objective of this study is to investigate the molecular mechanisms of tetracycline resistance and biotransformation by Stenotrophomonas maltophilia strain DT1 under various background nutrient conditions. Strain DT1 was exposed to tetracycline for 7 days with four background nutrient conditions: no background (NB), peptone (P), peptone plus citrate (PC), and peptone plus glucose (PG). The biotransformation rate follows the order of PC > P > PG > NB ≈ 0. Genomic analysis showed that strain DT1 contained tet(X1), a gene encoding an FAD-binding monooxygenase, and eight peroxidase genes that could be relevant to tetracycline biotransformation. Quantitative proteomic analyses revealed that nodulation protein transported tetracycline outside of cells; hypoxanthine-guanine phosphoribosyltransferase facilitated the activation of the ribosomal protection proteins to prevent the binding of tetracycline to the ribosome and superoxide dismutase and peroxiredoxin-modified tetracycline molecules. Comparing different nutrient conditions showed that the biotransformation rates of tetracycline were positively correlated with the expression levels of superoxide dismutase.

  14. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    PubMed Central

    Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T.-S.; Lin, I-Ting; Ismail, Wael A.; Chiang, Yin-Ru

    2017-01-01

    Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions. PMID:28848528

  15. Variation of drug kinetics in pregnancy.

    PubMed

    Pavek, Petr; Ceckova, Martina; Staud, Frantisek

    2009-06-01

    Significant changes in the physiological and biotransformation processes that govern pharmacokinetics occur during pregnancy. Consequently, the disposition of many medications is altered in gestation and the efficacy and toxicity of drugs used by pregnant women can be difficult to predict or can lead to serious side effects. Gastrointestinal absorption and bioavailability of drugs vary due to changes in gastric secretion and small intestine motility. Various pregnancy-related hemodynamic changes such as an increase in cardiac output, blood volume, the volume of distribution (Vd), renal perfusion and glomerular filtration may affect drug disposition and elimination, and can cause increase or decrease in the terminal elimination half-life of drugs. Changes in maternal drug biotransformation activity also contribute to alterations in pharmacokinetics of drugs taken in pregnancy. Therefore, pregnant women may require different dosing regimens or their adjustment than both men and non-pregnant women. In addition, the prenatal pharmacotherapy is unique due to the presence of feto-placental unit. Considerations regarding transplacental pharmacokinetics and safety for the developing fetus are thus essential aspects of medication in pregnancy. The aim of this review is to summarize major physiological and biotransformation changes associated with pregnancy that affect pharmacokinetics in pregnant women. In addition, we point out the most important examples of altered kinetics of drugs administered in pregnancy with mechanistic explanation of the phenomena based on maternal adaptation in pregnancy.

  16. Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Updegraff, D.M.; Bennett, J.L.

    1987-01-01

    Infiltration of wastes containing creosote and pentachlorophenol from surface impoundments at an abandoned wood-treatment facility near Pensacola, Florida, resulted in contamination of the underlying sand and gravel aquifer. Pond sludges and sediments near the source were contaminated with 2- to 5-ring azaarenes having log Kow values of from 2.0 to 5.6. However, the ground water contained only azaarenes and their oxygenated and methylated derivatives having log Kow values of less than 3.5. These compounds also were present in coal tar-contaminated ground water at a site near St. Louis Park, Minnesota. Laboratory anaerobic degradation studies and on-site observations indicated that oxygenated azaarenes probably were biotransformation products of reactions mediated by indigenous microbial populations. Microbial N-methylation, C-methylation and O-methylation reactions are reported here for the first time. In the presence of nutrients and carbon sources such as acetate and propionate, all azaarenes studied were either partially or completely degraded. Evidence for the microbial degradation of azaarenes in ground water from anaerobic zones is presented. Oxygenated azaarenes were relatively more water-soluble, mobile and persistent in hydrogeologic environments. ?? 1987.

  17. Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals.

    PubMed

    Bechtold, Matthias; Makart, Stefan; Heinemann, Matthias; Panke, Sven

    2006-06-25

    The rapid progress in biocatalysis in the identification and development of enzymes over the last decade has enormously enlarged the chemical reaction space that can be addressed not only in research applications, but also on industrial scale. This enables us to consider even those groups of reactions that are very promising from a synthetic point of view, but suffer from drawbacks on process level, such as an unfavourable position of the reaction equilibrium. Prominent examples stem from the aldolase-catalyzed enantioselective carbon-carbon bond forming reactions, reactions catalyzed by isomerising enzymes, and reactions that are kinetically controlled. On the other hand, continuous chromatography concepts such as the simulating moving bed technology have matured and are increasingly realized on industrial scale for the efficient separation of difficult compound mixtures - including enantiomers - with unprecedented efficiency. We propose that coupling of enzyme reactor and continuous chromatography is a very suitable and potentially generic process concept to address the thermodynamic limitations of a host of promising biotransformations. This way, it should be possible to establish novel in situ product recovery processes of unprecedented efficiency and selectivity that represent a feasible way to recruit novel biocatalysts to the industrial portfolio.

  18. Seasonal patterns of polycyclic aromatic hydrocarbons in digestive gland and arm of octopus (Octopus vulgaris) from the Northwest Atlantic.

    PubMed

    Semedo, Miguel; Oliveira, Marta; Gomes, Filipa; Reis-Henriques, Maria Armanda; Delerue-Matos, Cristina; Morais, Simone; Ferreira, Marta

    2014-05-15

    Among organic pollutants existing in coastal areas, polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their ubiquity and carcinogenic potential. The aim of this study was to evaluate the seasonal patterns of PAHs in the digestive gland and arm of the common octopus (Octopus vulgaris) from the Northwest Atlantic Portuguese coast. In the different seasons, 18 PAHs were determined and the detoxification capacity of the species was evaluated. Ethoxyresorufin O-deethylase (EROD) and ethoxycoumarin O-deethylase (ECOD) activities were measured to assess phase I biotransformation capacity. Individual PAH ratios were used for major source (pyrolytic/petrogenic) analysis. Risks for human consumption were determined by the total toxicity equivalence approach. Generally, low levels of PAHs were detected in the digestive gland and in the arm of octopus, with a predominance of low molecular over high molecular weight compounds. PAHs exhibited seasonality in the concentrations detected and in their main emission sources. In the digestive gland, the highest total PAH levels were observed in autumn possibly related to fat availability in the ecosystem and food intake. The lack of PAH elimination observed in the digestive gland after captivity could be possibly associated to a low biotransformation capacity, consistent with the negligible/undetected levels of EROD and ECOD activity in the different seasons. The emission sources of PAHs found in the digestive gland varied from a petrogenic profile observed in winter to a pyrolytic pattern in spring. In the arm, the highest PAH contents were observed in June; nevertheless, levels were always below the regulatory limits established for food consumption. The carcinogenic potential calculated for all the sampling periods in the arm were markedly lower than the ones found in various aquatic species from different marine environments. The results presented in this study give relevant baseline data for environmental monitoring of organic pollution in coastal areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.

  20. Measuring in vitro biotransformation rates of super hydrophobic chemicals in rat liver s9 fractions using thin-film sorbent-phase dosing.

    PubMed

    Lee, Yung-Shan; Otton, S Victoria; Campbell, David A; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2012-01-03

    Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.

  1. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    PubMed

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

  2. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives.

    PubMed

    Xu, Cang-Cang; Deng, Ting; Fan, Meng-Lin; Lv, Wen-Bo; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    To explore novel high efficiency and low toxicity antitumor agents, a series of dihydroartemisinin-cinnamic acid ester derivatives modified on C-12 and/or C-9 position (s) were synthesized and the in vitro antitumor activities against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines were assessed. The hybrids (3-36) were prepared by esterification of 9α-hydroxyl-dihydroartemisinin (9α-OH DHA), the biotransformation product of dihydroartemisinin (DHA), and cinnamic acid derivatives. Compound 17 (IC50 = 0.20 μM) was the most potent anti-proliferative agent against the human lung carcinoma A549 cells, although it displayed low cytotoxicity on normal hepatic L-02 cells. The mechanism of action of compound 17 was further investigated by analysis of cell apoptosis and intracellular ROS generation. The results indicated that both ROS and ferrous ion contributed to the compound 17-induced cell death. Meanwhile, high intracellular ferrous ion and endogenous oxidative stress in A549 cells made them easier to suffer to compound 17-induced apoptosis. Our promising findings indicated the compound 17 could stand as drug candidate against lung cancer for further investigation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. The biodegradation vs. biotransformation of fluorosubstituted aromatics.

    PubMed

    Kiel, Martina; Engesser, Karl-Heinrich

    2015-09-01

    Fluoroaromatics are widely and--in recent years--increasingly used as agrochemicals, starting materials for chemical syntheses and especially pharmaceuticals. This originates from the special properties the carbon-fluorine bond is imposing on organic molecules. Hence, fluoro-substituted compounds more and more are considered to be important potential environmental contaminants. On the other hand, the microbial potentials for their transformation and mineralization have received less attention in comparison to other haloaromatics. Due to the high electronegativity of the fluorine atom, its small size, and the extraordinary strength of the C-F bond, enzymes and mechanisms known to facilitate the degradation of chloro- or bromoarenes are not necessarily equally active with fluoroaromatics. Here, we review the literature on the microbial degradation of ring and side-chain fluorinated aromatic compounds under aerobic and anaerobic conditions, with particular emphasis being placed on the mechanisms of defluorination reactions.

  4. Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase.

    PubMed

    Chang, Te-Sheng; Lin, Meng-Yi; Lin, Hsuan-Jung

    2010-01-01

    A biotransformed metabolite of naringenin was isolated from the fermentation broth of Aspergillus oryzae, fed with naringenin, and identified as 8-hydroxynaringenin based on the mass and (1)H- and (13)C-NMR spectral data. The compound showed characteristics of both an irreversible inhibitor and a substrate of mushroom tyrosinase in preincubation and HPLC analysis. These results demonstrate that 8-hydroxynaringenin belongs to a suicide substrate of mushroom tyrosinase. The partition ratio between the compound's molecules in the formation of product and in the inactivation of the enzyme was determined to be 283 +/- 21. The present study's results, together with our previous findings, which proved that both 8-hydroxydaidzein and 8-hydroxygenistein are suicide substrates of mushroom tyrosinase, show that 7,8,4'-trihydroxyl functional groups on flavonoids' skeletons play important roles in producing suicide substrate properties toward mushroom tyrosinase.

  5. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications.

    PubMed

    Capece, Bettencourt P S; Virkel, Guillermo L; Lanusse, Carlos E

    2009-09-01

    Albendazole and fenbendazole are methylcarbamate benzimidazole anthelmintics extensively used to control gastrointestinal parasites in domestic animals. These parent compounds are metabolised to albendazole sulfoxide and fenbendazole sulfoxide (oxfendazole), respectively. Both sulfoxide derivatives are anthelmintically active and are manufactured for use in animals. They metabolites have an asymmetric centre on their chemical structures and two enantiomeric forms of each sulfoxide have been identified in plasma, tissues of parasite location and within target helminths. Both the flavin-monooxygenase and cytochrome P450 systems are involved in the enantioselective biotransformation of these anthelmintic compounds in ruminant species. A relevant progress on the understanding of the relationship among enantioselective metabolism and systemic availability of each enantiomeric form has been achieved. This article reviews the current knowledge on the pharmacological implications of the enantiomeric behaviour of albendazole sulfoxide and oxfendazole in domestic animals.

  6. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  7. Physicochemical properties of an insensitive munitions compound, N-methyl-4-nitroaniline (MNA).

    PubMed

    Boddu, Veera M; Abburi, Krishnaiah; Maloney, Stephen W; Damavarapu, Reddy

    2008-06-30

    Accurate information on physicochemical properties of an organic contaminant is essential for predicting its environmental impact and fate. These properties also provide invaluable information for the overall understanding of environmental distribution, biotransformation, and potential treatment processes. In this study the aqueous solubility (Sw), octanol-water partition coefficient (Kow), and Henry's law constant (K(H)) were determined for an insensitive munitions (IM) compound, N-methyl-4-nitroaniline (MNA), at 298.15, 308.15, and 318.15 K. Effect of ionic strength on solubility, using electrolytes such as NaCl and CaCl2, was also studied. The data on the physicochemical parameters were correlated using the standard Van't Hoff equation. All three properties exhibited a linear relationship with reciprocal temperature. The enthalpy and entropy of phase transfer were derived from the experimental data.

  8. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  9. A microbial model of mammalian metabolism: biotransformation of 4,5-dimethoxyl-canthin-6-one using Cunninghamella blakesleeana CGMCC 3.970.

    PubMed

    Fan, Hong-Xia; Zhou, Zheng-Qun; Peng, Jun; Wu, Bao-Jian; Chen, He-Ru; Bao, Xue-Feng; Mu, Zhen-Qiang; Jiao, Wei-Hua; Yao, Xin-Sheng; Gao, Hao

    2017-04-01

    1. A filamentous fungus, Cunninghamella blakesleeana CGMCC 3.970, was applied as a microbial system to mimic mammalian metabolism of 4,5-dimethoxyl-canthin-6-one (1). Compound 1 belongs to canthin-6-one type alkaloids, which is a major bioactive constituent of a traditional Chinese medicine (the stems of Picrasma quassioides). 2. After 72 h of incubation in potato dextrose broth, 1 was metabolized to seven metabolites as follows: 4-methoxyl-5-hydroxyl-canthin-6-one (M1), 4-hydroxyl-5-methoxyl-canthin-6-one (M2), canthin-6-one (M3), canthin-6-one N-oxide (M4), 10-hydroxyl-4,5-dimethoxyl-canthin-6-one (M5), 1-methoxycarbonl-β-carboline (M6), and 4-methoxyl-5-O-β-D-glucopyranosyl-canthin-6-one (M7). 3. The structures of metabolites were determined using spectroscopic analyses, chemical methods, and comparison of NMR data with those of known compounds. Among them, M7 was a new compound. 4. The metabolic pathways of 1 were proposed, and the metabolic processes involved phase I (O-demethylation, dehydroxylation, demethoxylation, N-oxidation, hydroxylation, and oxidative ring cleavage) and phase II (glycosylation) reactions. 5. This was the first research on microbial transformation of canthin-6-one alkaloid, which could be a useful microbial model for producing the mammalian phase I and phase II metabolites of canthin-6-one alkaloids. 6. 1, M1-M5, and M7 are canthin-6-one alkaloids, whereas M6 belongs to β-carboline type alkaloids. The strain of Cunninghamella blakesleeana can supply an approach to transform canthin-6-one type alkaloids into β-carboline type alkaloids.

  10. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors

    PubMed Central

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin. PMID:27708366

  11. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions.

    PubMed

    Toral-Sánchez, Eduardo; Rangel-Mendez, J Rene; Ascacio Valdés, Juan A; Aguilar, Cristóbal N; Cervantes, Francisco J

    2017-01-01

    This work reports the first successful application of graphene oxide (GO) and partially reduced GO (rGO) as redox mediator (RM) to increase the biotransformation of the recalcitrant iodinated contrast medium, iopromide (IOP). Results showed that GO-based materials promoted up to 5.5 and 2.8-fold faster biotransformation of IOP by anaerobic sludge under methanogenic and sulfate-reducing conditions, respectively. Correlation between the extent of reduction of GO and its redox-mediating capacity was demonstrated, which was reflected in faster removal and greater extent of biotransformation of IOP. Further analysis indicated that the biotransformation pathway of IOP involved multiple reactions including deiodination, decarboxylation, demethylation, dehydration and N-dealkylation. GO-based materials could be strategically tailored and integrated in biological treatment systems to effectively enhance the redox conversion of recalcitrant pollutants commonly found in wastewater treatment systems and industrial effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparison of biotransformation and efficacy of aminoacetonitrile anthelmintics in vitro.

    PubMed

    Stuchlíková, Lucie; Lecová, Lenka; Jirásko, Robert; Lamka, Jiří; Vokřál, Ivan; Szotáková, Barbora; Holčapek, Michal; Skálová, Lenka

    2016-02-01

    The present in vitro study was designed to test and compare anthelmintic activity, hepatotoxicity, and biotransformation of four selected aminoacetonitrile derivatives (AADs): monepantel (MOP, anthelmintic approved for the treatment), AAD-970, AAD-1154, and AAD-1336. Micro-agar larval development test, MTT test of cytotoxicity, and biotransformation study coupled with Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) technique were used for this purpose. Larvae of two Haemonchus contortus strains (drug susceptible and multi-drug resistant) and primary cultures of rat and ovine hepatocytes served as model systems. All AADs (including MOP) exhibited significant larvicidal effect in H. contortus susceptible as well as multi-resistant strains, much higher than those of reference anthelmintics thiabendazole and flubendazole. AAD-1154 provides the best results for most tested parameters among all AADs in this study. The cytotoxicity test showed that all AADs can be considered as nontoxic for hepatocytes. In the biotransformation study, Phase I and Phase II metabolites of AADs were identified and schemes of possible metabolic pathways in ovine hepatocytes were proposed. Biotransformation of MOP was much more extensive than biotransformation of other AADs. Based on obtained results, AAD-1154 and AAD-1336 can be considered as promising candidates for further in vivo testing. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, W.; Kleunen, A. van; Immerzeel, J.

    The purpose of this study was to assess the suitability of applying equilibrium partitioning (EqP) theory to predict the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by earthworms when these are exposed to contaminated soils in the field. Studies carried out in situ in various contaminated floodplain sites showed the presence of linear relationships with intercept zero between the lipid-normalized concentration of different PAHs in the earthworm, Lumbricus rubellus and the organic-matter-normalized concentration of the compounds in soil. The demonstration of such an isometric relationship is in agreement with the prediction of EqP theory that the biota-soil accumulation factor (BSAF) shouldmore » be independent of the octanol/water partition coefficient, log K{sub ow}. The average BSAF of PAH compounds in the sampled 20-cm top layer of soil was 0.10. The present study also investigated the route of uptake of PAHs for earthworms in soil. The bioconcentration factor of low-molecular-weight PAHs, such as phenanthrene, fluoranthene, and pyrene, was derived from bioconcentration kinetic modeling of water-only experiments and found to be of the same order of magnitude as the bioaccumulation factor in the field when the latter was normalized to calculated concentrations in soil pore water. The results indicated that the exposure of earthworms to PAHs in soil is mediated through direct contact of the worms with the dissolved interstitial soil-water phase, further supporting the applicability of EqP theory to PAHs. The experimental data on the biotransformation of PAHs suggest that earthworms possess some capacity of metabolization, although this does not seem to be a major factor in the total elimination of these compounds. Even though the EqP approach was found to be applicable to low-molecular-weight PAHs with respect to the prediction of bioaccumulation by earthworms in the field, the results were less conclusive for high-molecular-weight compounds, such as benzo[a]pyrene.« less

  15. Biotransformation of pesticides in saturated-zone materials

    NASA Astrophysics Data System (ADS)

    Hoyle, Blythe L.; Arthur, Ellen L.

    Many studies have been conducted to evaluate pesticide contamination of groundwater in the United States, but investigations of pesticide biotransformation in saturated zones are much less numerous than in surface soils. Because results of studies using soils are not directly applicable to the subsurface, the purpose of this paper is to illustrate examples of pesticide biotransformation in saturated-zone materials. Although it must be considered with caution, the US Environmental Protection Agency's (EPA) "Pesticides in Ground Water Database" was used to focus the discussion on the biotransformation potential of dibromoethane (EDB), atrazine, acetanilide herbicides, and aldicarb, all of which have been detected in groundwater in the United States. Results of more than two dozen studies indicate that a biotransformation potential for these pesticides exists in saturated-zone materials, although for any given pesticide substantial differences in biotransformation occurred. These variations were due both to differences in experimental methods and to heterogeneities in the subsurface materials under investigation. However, because biotransformation mechanisms were not well investigated, it is generally not possible to extrapolate predictions of biotransformation potential beyond the specific sites investigated. These results highlight the need to better understand microbial genetic regulation of biotransformation processes so that genetic information may be effectively incorporated into future investigations of biotransformation potential in the subsurface. Résumé De nombreuses études ont été réalisées pour évaluer le degré de pollution des aquifères par les pesticides aux États-Unis, mais les recherches concernant la biotransformation des pesticides dans les eaux souterraines sont beaucoup moins nombreuses que dans les sols. Du fait que les résultats des études concernant les sols ne sont pas directement applicables au milieu souterrain, le propos de cet article est d'illustrer par des exemples la biotransformation des pesticides dans les nappes. Bien qu'il faille la considérer avec précaution, la base de données sur les pesticides dans les eaux souterraines de l'Agence américaine pour la protection de l'environnement a été utilisée pour centrer la discussion sur le potentiel de biotransformation du dibromoéthane (EDB), de l'atrazine, des désherbants acétanildés et de l'aldicarb, qui tous ont été détectés dans les nappes des États-Unis. Les résultats de plus de deux douzaines d'études indiquent qu'il existe un potentiel de biotransformation de ces pesticides dans les nappes, bien qu'entre chacun de ces pesticides il existe des différences très nettes dans la biotransformation. Ces variations sont en fait dues à la fois à des différences dans les méthodes expérimentales et dans les hétérogénéités dans les matériaux étudiés. Cependant, parce que les mécanismes de la biotransformation ne sont pas bien étudiés, il est en général impossible d'extrapoler les prédictions du potentiel de biotransformation à des sites d'étude spécifiques. Ces résultats soulignent la nécessité de mieux comprendre la régulation génétique microbienne des processus de biotransformation, pour que l'information génétique puisse être efficacement prise en compte dans les futures recherches sur le potentiel de biotransformation dans le sous-sol. Resumen Se han llevado a cabo un gran número de estudios para evaluar la contaminación por pesticidas en los acuíferos de los Estados Unidos de América. Sin embargo, las investigaciones sobre biotransformación de pesticidas en la zona saturada son mucho menos numerosas que en suelos. Como los resultados obtenidos en suelos no son directamente transladables a la zona saturada, el objetivo de este artículo es mostrar ejemplos de biotransformación de pesticidas en la zona saturada. Aunque debe tomarse con cautela, la base de datos "Pesticides in Ground Water Database (Base de Datos de Pesticidas en Aguas Subterráneas)" perteneciente a la US EPA (Agencia de Protección Ambiental de los EEUU) se usó para centrar la discusión en la biotransformación potencial de diversos compuestos orgánicos detectados en diversos acuíferos de los EEUU. Los resultados de más de dos docenas de estudios indican que la biotransformación potencial de estos pesticidas en la zona saturada es posible, aunque para un pesticida dado pueden presentarse grandes diferencias, debidas tanto a diferencias en los métodos experimentales como a la heterogeneidad de los materiales. Sin embargo, no es posible en general extrapolar las predicciones de biotransformación potencial más allá de las zonas específicas estudiadas, al no haberse investigado en detalle sus mecanismos. Los resultados del estudio indican la necesidad de entender mejor la regulación genética de los procesos de biotransformación, para que la información genética pueda incorporarse de manera efectiva en las investigaciones futuras de biotransformación potencial en acuíferos.

  16. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase.

    PubMed

    Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.

  18. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review.

    PubMed

    Jobby, Renitta; Jha, Pamela; Yadav, Anoop Kumar; Desai, Nitin

    2018-05-09

    Chromium (VI) is one of the most common environmental contaminant due to its tremendous industrial applications. It is non-biodegradable as it is a heavy metal, and hence, of major concern. Therefore, it is pertinent that the remediation method should be such that brings chromium within permissible limits before the effluent is discharged. Several different strategies are adopted by microorganisms for Cr (VI) removal mostly involving biosorption and biotransformation or both. These mechanisms are based on the surface nature of the biosorbent and the availability of reductants. This review article focuses on chromium pollution problem, its chemistry, sources, effects, remediation strategies by biological agents and detailed chromium detoxification mechanism in microbial cell. A summary of applied in situ and ex situ chromium bioremediation technologies is also listed. This can be helpful for developing technologies to be more efficient for Cr (VI) removal thereby bridging the gap between laboratory findings and industrial application for chromium remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.

    PubMed

    Maier, Manfred; Radtke, Carsten P; Hubbuch, Jürgen; Niemeyer, Christof M; Rabe, Kersten S

    2018-05-04

    The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng.

    PubMed

    Fu, Y; Yin, Z-H; Wu, L-P; Yin, C-R

    2016-09-01

    This research aimed to isolate β-glycosidase-producing endophytic fungus in Panax ginseng to achieve biotransformation of ginsenoside Rb1 to ginsenoside C-K. Of these 15 β-glucosidase-producing endophytic fungus isolated from ginseng roots, a β-glucosidase-producing endophytic fungi GE 17-18 could hydrolyse major ginsenosides Rb1 to minor ginsenoside C-K with metabolic pathways: ginsenoside Rb1→ginsenoside Rd→ginsenoside F2→ginsenoside C-K. Phylogenetic analysis of ITS gene sequences indicated that the strain GE 17-18 belongs to the genus Arthrinium and is most closely related to Arthrinium sp. HQ832803.1. This is the first study to provide information of cultivable β-glycosidase-producing Endophytic fungus in Panax ginseng. The strain GE 17-18 has potential to be applied on the preparation for minor ginsenoside C-K in pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  1. [THE SYSTEM OF XENOBIOTICS BIOTRANSFORMATION OF HELMINTHS. RESEMBLANCE AND DIFFERENSES FROM SIMILAR HOST SYSTEMS (REWEW)].

    PubMed

    Smirnov, L P; Borvinskaya, E V; Suhovskaya, I V

    2016-01-01

    The three phases system xenobiotic biotransformation in cells as prokaryotes as eukaryotes was formed during the process of evolution. Clear and managed function of all three links of this system guarantee the survival of living organisms at alteration of chemical component of environment. Oxidation, reduction or hydrolysis of xenobiotics realize in phase I by insertion or opening reactive and hydrophilic groups in structure of drug molecule. In phase II xenobiotics or their metabolites from phase I conjugate with endogenic compounds, main of there are glutathione, glucuronic acid, amino acids and sulphates. Active transport of substrata, metabolites and conjugates through cell lipid membranes special transport proteins carry out (phase III). The system of xenobiotics biotransformation of helminths has essential differences from the same of vertebrate hosts. In particular, parasites do not reveal the activity of prime oxidases of phase I, such as CYP or FMO, in spite of the genes of these enzymes in DNA. As this phenomenon displays mainly in adult helminths, living in guts of vertebrates, then the hypothesis was formulated that this effect is related with adaptation to conditions of strong deficiency of oxygen, arise in a process of evolution (Kotze et al., 2006). Literature data testify the existence in helminths of unique forms of enzymes of phase II, the investigation of which present doubtless interest in relation with possible role in adaptation to parasitic mode of life. Notwithstanding that many of helminths GST in greater or lesser degree similar with enzymes of M, P, S and О classes of other organisms, nevertheless they have essential structural differences as compared with enzymes of hosts that makes perspective the search of specific anthelminthics vaccines. Transport of xenobiotics is now considered phase III of biotransformation. It was shown that proteins of this phase (ATP binding cassette transporters (ABC ) of parasites) play a key role in efflux of lipophilic xenobiotics, hydrophilic metabolites and conjugates and take part in forming of anthelminthics resistance. Some of these transporters, such as P-glycoprotein (Pgp), are important for drug resistance of helminths. In particular, a correlation between the level of expression of Pgp and resistance of S. mansoni and F. hepatica to widely used anthelminthics as praziquantel and triclabendazol exist.

  2. Biotransformation of Hg(II) by cyanobacteria.

    PubMed

    Lefebvre, Daniel D; Kelly, David; Budd, Kenneth

    2007-01-01

    The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl(2) in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl(2). Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (beta-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of beta-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into beta-HgS. In addition, increasing the temperature enhanced the amount of beta-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into beta-HgS. Furthermore, the efficiency of conversion into beta-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury.

  3. Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals.

    PubMed

    McKinney, Melissa A; Dietz, Rune; Sonne, Christian; De Guise, Sylvain; Skirnisson, Karl; Karlsson, Karl; Steingrímsson, Egill; Letcher, Robert J

    2011-07-01

    The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30 pmol) and DBDPE (44-74% of 90 pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99, 100, and 154; 0-3% of 30 pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209. Copyright © 2011 SETAC.

  4. Persistent or not persistent? Polychlorinated biphenyls are readily depurated by grizzly bears (Ursus arctos horribilis).

    PubMed

    Christensen, Jennie R; Letcher, Robert J; Ross, Peter S

    2009-10-01

    Major pharmacokinetic processes influencing polychlorinated biphenyl (PCB) accumulation in mammals include uptake, biotransformation, respiration, and excretion. We characterized some of the factors underlying PCB accumulation/loss by evaluating PCB concentrations and patterns in pre- and posthibernation grizzly bears (Ursus arctos horribilis) and their prey. The PCB congeners with vicinal meta- and para-chlorine unsubstituted hydrogen positions consistently showed loss both before and during hibernation, supporting the idea of a dominant role for biotransformation. Retention of all other studied congeners relative to that of PCB 194 varied widely (from <1 to 100%) and was highly correlated with log octanol-water partition coefficient (p < 0.0001). A lack of loss for most of these other congeners during hibernation supports the notion that excretion (e.g., fecal or urinary) or lack of uptake during the feeding season underlies their lack of accumulation, because hibernating bears do not eat or excrete. We estimate that grizzly bears retain less than 10% of total PCBs taken up from their diet. Our results suggest that for grizzly bears, depuration of PCBs via biotransformation is important (explaining approximately 40% of loss), but that nonbiotransformation processes, such as excretion, may be more important (explaining approximately 60% of loss). These findings, together with the approximately 91% loss of the persistent PCB 153 congener relative to PCB 194 in grizzly bears, raise important questions about how one defines persistence of PCBs in wildlife and may have bearing on the interpretation of food-web biomagnification studies.

  5. Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible Near Isogenic Wheat Lines

    PubMed Central

    Kluger, Bernhard; Bueschl, Christoph; Lemmens, Marc; Michlmayr, Herbert; Malachova, Alexandra; Koutnik, Andrea; Maloku, Imer; Berthiller, Franz; Adam, Gerhard; Krska, Rudolf; Schuhmacher, Rainer

    2015-01-01

    In this study, a total of nine different biotransformation products of the Fusarium mycotoxin deoxynivalenol (DON) formed in wheat during detoxification of the toxin are characterized by liquid chromatography—high resolution mass spectrometry (LC-HRMS). The detected metabolites suggest that DON is conjugated to endogenous metabolites via two major metabolism routes, namely 1) glucosylation (DON-3-glucoside, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-malonylglucoside) and 2) glutathione conjugation (DON-S-glutathione, “DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine). Furthermore, conjugation of DON to a putative sugar alcohol (hexitol) was found. A molar mass balance for the cultivar ‘Remus’ treated with 1 mg DON revealed that under the test conditions approximately 15% of the added DON were transformed into DON-3-glucoside and another 19% were transformed to the remaining eight biotransformation products or irreversibly bound to the plant matrix. Additionally, metabolite abundance was monitored as a function of time for each DON derivative and was established for six DON treated wheat lines (1 mg/ear) differing in resistance quantitative trait loci (QTL) Fhb1 and/or Qfhs.ifa-5A. All cultivars carrying QTL Fhb1 showed similar metabolism kinetics: Formation of DON-Glc was faster, while DON-GSH production was less efficient compared to cultivars which lacked the resistance QTL Fhb1. Moreover, all wheat lines harboring Fhb1 showed significantly elevated D3G/DON abundance ratios. PMID:25775425

  6. Metabolic Profile of Skimmianine in Rats Determined by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Huang, Aihua; Xu, Hui; Zhan, Ruoting; Chen, Weiwen; Liu, Jiawei; Chi, Yuguang; Chen, Daidi; Ji, Xiaoyu; Luo, Chaoquan

    2017-03-23

    Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family. It has been reported to have analgesic, antispastic, sedative, anti-inflammatory, and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. In this study, the in vivo metabolite profiling of skimmianine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilot TM software. These predicted metabolites were further analyzed by MS² spectra, and compared with the detailed fragmentation pathway of the skimmianine standard and literature data. A total of 16 metabolites were identified for the first time in rat plasma, urine, and feces samples after oral administration of skimmianine. Skimmianine underwent extensive Phase I and Phase II metabolism in rats. The Phase I biotransformations of skimmianine consist of epoxidation of olefin on its furan ring (M1) followed by the hydrolysis of the epoxide ring (M4), hydroxylation (M2, M3), O -demethylation (M5-M7), didemethylation (M14-M16). The Phase II biotransformations include glucuronide conjugation (M8-M10) and sulfate conjugation (M11-M13). The epoxidation of 2,3-olefinic bond followed by the hydrolysis of the epoxide ring and O -demethylation were the major metabolic pathways of skimmianine. The results provide key information for understanding the biotransformation processes of skimmianine and the related furoquinoline alkaloids.

  7. Steroid toxicity and detoxification in ascomycetous fungi.

    PubMed

    Cvelbar, Damjana; Zist, Vanja; Kobal, Katja; Zigon, Dušan; Zakelj-Mavrič, Marija

    2013-02-25

    In the last couple of decades fungal infections have become a significant clinical problem. A major interest into fungal steroid action has been provoked since research has proven that steroid hormones are toxic to fungi and affect the host/fungus relationship. Steroid hormones were found to differ in their antifungal activity in ascomycetous fungi Hortaea werneckii, Saccharomyces cerevisiae and Aspergillus oryzae. Dehydroepiandrosterone was shown to be the strongest inhibitor of growth in all three varieties of fungi followed by androstenedione and testosterone. For their protection, fungi use several mechanisms to lower the toxic effects of steroids. The efficiency of biotransformation in detoxification depended on the microorganism and steroid substrate used. Biotransformation was a relatively slow process as it also depended on the growth phase of the fungus. In addition to biotransformation, steroid extrusion out of the cells contributed to the lowering of the active intracellular steroid concentration. Plasma membrane Pdr5 transporter was found to be the most effective, followed by Snq2 transporter and vacuolar transporters Ybt1 and Ycf1. Proteins Aus1 and Dan1 were not found to be involved in steroid import. The research of possible targets of steroid hormone action in fungi suggests that steroid hormones inhibit ergosterol biosynthesis in S. cerevisiae and H. werneckii. Results of this inhibition caused changes in the sterol content of the cellular membrane. The presence of steroid hormones most probably causes the degradation of the Tat2 permease and impairment of tryptophan import. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. The contribution of hepatic inactivation of testosterone to the lowering of serum testosterone levels by ketoconazole.

    PubMed

    Wilson, V S; LeBlanc, G A

    2000-03-01

    Hepatic biotransformation processes can be modulated by chemical exposure and these alterations can impact the biotransformation of endogenous substrates. Furthermore, chemically mediated alterations in the biotransformation of endogenous steroid hormones have been implicated as a mechanism by which steroid hormone homeostasis can be disrupted. The fungicide ketoconazole has been shown to lower serum testosterone levels and alter both gonadal synthesis and hepatic inactivation of testosterone. The present study examined whether the effects of ketoconazole on the hepatic biotransformation of testosterone contribute to its lowering of serum testosterone levels. Results also were used to validate further the use of the androgen-regulated hepatic testosterone 6alpha/15alpha-hydroxylase ratio as an indicator of androgen status. Male CD-1 mice were fed from 0 to 160 mg/kg ketoconazole in honey. Four h after the initial treatment, serum testosterone levels, gonadal testosterone secretion, and hepatic testosterone hydroxylase activity decreased, and the hepatic testosterone 6alpha/15alpha-hydroxylase ratio increased in a dose-dependent manner. Immunoblot analysis indicated that the transient decline in hepatic biotransformation was not due to reduced P450 protein levels. Rather, hepatic testosterone biotransformation activities were found to be differentially susceptible to direct inhibition by ketoconazole. Differential inhibition was also responsible for the increase seen in the 6alpha/15alpha-hydroxylase ratio. The changes in serum testosterone levels could be explained by decreased gonadal synthesis of testosterone and were not impacted by decreased hepatic biotransformation of testosterone. These results demonstrate that changes in the hepatic hydroxylation of testosterone by ketoconazole, and perhaps other chemicals, have little or no influence serum testosterone levels.

  9. Exploring Indirect Sources of Human Exposure to Perfluoroalkyl Carboxylates (PFCAs): Evaluating Uptake, Elimination, and Biotransformation of Polyfluoroalkyl Phosphate Esters (PAPs) in the Rat

    PubMed Central

    D’eon, Jessica C.; Mabury, Scott A.

    2011-01-01

    Background Perfluorinated carboxylic acids (PFCAs) are ubiquitous in human sera worldwide. Biotransformation of the polyfluoroalkyl phosphate esters (PAPs) is a possible source of PFCA exposure, because PAPs are used in food-contact paper packaging and have been observed in human sera. Objectives We determined pharmacokinetic parameters for the PAP monoesters (monoPAPs) and PAP diesters (diPAPs), as well as biotransformation yields to the PFCAs, using a rat model. Methods The animals were dosed intravenously or by oral gavage with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain lengths. Concentrations of the PAPs and PFCAs, as well as metabolic intermediates and phase II metabolites, were monitored over time in blood, urine, and feces. Results The diPAPs were bioavailable, with bioavailability decreasing as the chain length increased from 4 to 10 perfluorinated carbons. The monoPAPs were not absorbed from the gut; however, we found evidence to suggest phosphate-ester cleavage within the gut contents. We observed biotransformation to the PFCAs for both monoPAP and diPAP congeners. Conclusions Using experimentally derived biotransformation yields, perfluorooctanoic acid (PFOA) sera concentrations were predicted from the biotransformation of 8:2 diPAP at concentrations observed in human serum. Because of the long human serum half-life of PFOA, biotransformation of diPAP even with low-level exposure could over time result in significant exposure to PFOA. Although humans are exposed directly to PFCAs in food and dust, the pharmacokinetic parameters determined here suggest that PAP exposure should be considered a significant indirect source of human PFCA contamination. PMID:21059488

  10. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Liu, Huaxue; Zhang, Li

    2015-01-01

    Arsenic (As) exists as the toxic inorganic forms in marine water and sediment, while marine oysters usually accumulate high As contents mostly as the less toxic organic forms. It has not yet been clear that how As is biotransformed in marine oysters. This study therefore investigated the biotransformation and detoxification of two inorganic As forms (As(III) and As(V)) in Bombay oyster Saccostrea cucullata after waterborne exposures for 30 days. Seven treatments of dissolved As exposure (clean seawater, 1, 5, 20 mg/L As(III), and 1, 5, 20 mg/L As(V)) were performed. Body As concentration increased significantly after all As exposure treatments except 1mg/L As(V). Total As, As(III), and As(V) concentration were positive correlated with glutathione-S-transferases (GST) activities, suggesting GST might play an important role in the As biotransformation and detoxification process. Organic As species were predominant in control and the low As exposed oysters, whereas a large fraction of As was remained as the inorganic forms in the high As exposed oysters, suggesting As could be biotransformed efficiently in the oysters in clean or light contaminated environment. The results of As speciation demonstrated the As biotransformation in the oysters included As(V) reduction, methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to arsenobetaine (AsB). More As was distributed in the subcellular metallothionein-like proteins fraction (MTLP) functioning sequestration and detoxification in the inorganic As exposed oysters, suggesting it was also a strategy for oysters against As stress. In summary, this study elucidated that marine oysters had high ability to accumulate, biotransform, and detoxify inorganic As. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Kazakhstan In situ BioTransformation of Mercury ...

    EPA Pesticide Factsheets

    Our final international work on the biological decontamination of the mercury contamination of soils in the Northern outskirts of Pavlodar as a result of activity at the former PO “Khimprom” chemical plant is reported here. The plant produced chlorine and alkali from the 1970s into the 1990s using the electrolytic amalgam method entailing the use of massive amounts of mercury. Ground water became contaminated with Hg resulting in a plume 470 m wide, 1.9 km long, estimated to contain 2 million cubic meters of water. This plume could reach the River Irtysh, a source of drinking water for large cities in Kazakhstan and Russia. Significant amounts of mercuric compounds are deposited in the sediments of Lake Balkyldak, 1.5 km north of the factory. This lake occasionally received wastewater from the factory. Phase I of the PO “Kimprom” clean-up that isolated the major sources of mercury at the site was completed in 2004. However, significant amounts of mercury remain underground including groundwater contaminated with Hg in the form of HgCl2 with little to no elemental or methyl mercury (MeHg). Develop biotechnology strategies to mitigate mercury contamination in groundwater

  12. Optimisation of α-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840.

    PubMed

    Tai, Ya-Nan; Xu, Min; Ren, Jing-Nan; Dong, Man; Yang, Zi-Yu; Pan, Si-Yi; Fan, Gang

    2016-02-01

    In this study, (R)-(+)-limonene biotransformation using three fungal strains was compared. Penicillium digitatum DSM 62840 was distinguished for its capacity to transform limonene into α-terpineol with high regioselectivity. Growth kinetics in submerged liquid culture and the effects of growth phase and contact time on biotransformation were studied using this strain. Substrate concentration, co-solvent selection, and cultivation conditions were subsequently optimised. The maximum concentration of α-terpineol (833.93 mg L(-1)) was obtained when the pre-culture medium was in medium log-phase by adding 840 mg L(-1) substrate dissolved in ethanol and cultivation was performed at 24 °C, 150 rpm, and pH 6.0 for 12 h. Addition of small amounts of (R)-(+)-limonene (84 mg L(-1)) at the start of fungal log-phase growth yielded a 1.5-fold yield of α-terpineol, indicating that the enzyme was inducible. Among these three strains tested, P. digitatum DSM 62840 was proved to be an efficient biocatalyst to transform (R)-(+)-limonene to α-terpineol. Further studies revealed that the optimal growth phase for biotransformation was in the medium log phase of this strain. The biotransformation represented a wide tolerance of temperature; α-terpineol concentration underwent no significant change at 8-32 °C. The biotransformation could also be performed using resting cells. © 2015 Society of Chemical Industry.

  13. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1

    PubMed Central

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-01-01

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose–response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity. PMID:28208799

  14. Microbial Detoxification of Deoxynivalenol (DON), Assessed via a Lemna minor L. Bioassay, through Biotransformation to 3-epi-DON and 3-epi-DOM-1.

    PubMed

    Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris

    2017-02-13

    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.

  15. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  16. Direct Biotransformation of Dioscin into Diosgenin in Rhizome of Dioscorea zingiberensis by Penicillium dioscin.

    PubMed

    Dong, Jingzhou; Lei, Can; Lu, Dayan; Wang, Ying

    2015-06-01

    Diosgenin is an important precursor for synthesis of more than 200 steroidal hormone medicines. Rhizome of Dioscorea zingiberensis C. H. Wright (RDZ) contained the highest content of diosgenin in Dioscorea plant species. Diosgenin is traditionally extracted by acid hydrolysis from RDZ. However, the acid hydrolysis process produces massive wastewater which caused serious environment pollution. In this study, diosgenin extraction by direct biotransformation with Penicillium dioscin was investigated. The spawn cultivation conditions were optimized as: Czapeks liquid culture medium without sugar and agar (1,000 ml) + 6.0 g dioscin/6.0 g DL, 30 °C, 36 h; solid fermentation of RDZ: mycelia/RDZ of 0.05 g/kg, 30 °C, 50 h; the yield of diosgenin was over 90 %. Spawn cultivation was crucial for the direct biotransformation. In the spawn cultivation, amount and ratio of dioscin/DL were the key factors to promote biotransformation activity of P. dioscin. This biotransformation method was environment-friendly, simple and energy saving, and might be a potential substitute for acid hydrolysis in diosgenin extraction industry.

  17. A biotransformation process for the production of cucurbitacin B from its glycoside using a selected Streptomyces sp.

    PubMed

    Mei, Jianfeng; Li, Sha; Jin, Hang; Tang, Lan; Yi, Yu; Wang, Hong; Ying, Guoqing

    2016-09-01

    Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-D-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.

  18. Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razo-Flores, E.; Lettinga, G.; Field, J.A.

    The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less

  19. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature.

  20. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    PubMed

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  1. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nelson L.S.; Wang Huan; Wang Yun

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effectivemore » in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.« less

  2. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential.

    PubMed

    Mazlan, Farhaneen Afzal; Annuar, M Suffian M; Sharifuddin, Yusrizam

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice.

  3. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride.

    PubMed

    Bos, Peter Martinus Jozef; Zeilmaker, Marco Jacob; van Eijkeren, Jan Cornelis Henri

    2006-06-01

    Acute exposure guideline levels (AEGLs) are derived to protect the human population from adverse health effects in case of single exposure due to an accidental release of chemicals into the atmosphere. AEGLs are set at three different levels of increasing toxicity for exposure durations ranging from 10 min to 8 h. In the AEGL setting for methylene chloride, specific additional topics had to be addressed. This included a change of relevant toxicity endpoint within the 10-min to 8-h exposure time range from central nervous system depression caused by the parent compound to formation of carboxyhemoglobin (COHb) via biotransformation to carbon monoxide. Additionally, the biotransformation of methylene chloride includes both a saturable step as well as genetic polymorphism of the glutathione transferase involved. Physiologically based pharmacokinetic modeling was considered to be the appropriate tool to address all these topics in an adequate way. Two available PBPK models were combined and extended with additional algorithms for the estimation of the maximum COHb levels. The model was validated and verified with data obtained from volunteer studies. It was concluded that all the mentioned topics could be adequately accounted for by the PBPK model. The AEGL values as calculated with the model were substantiated by experimental data with volunteers and are concluded to be practically applicable.

  4. Biotransformation of labdane and halimane diterpenoids by two filamentous fungi strains

    PubMed Central

    Seidl, Cláudia; Severino, Vanessa G. P.; Cardoso, Carmen Lúcia; Castro-Gamboa, Ian

    2017-01-01

    Biotransformation of natural products by filamentous fungi is a powerful and effective approach to achieve derivatives with valuable new chemical and biological properties. Although diterpenoid substrates usually exhibit good susceptibility towards fungi enzymes, there have been no studies concerning the microbiological transformation of halimane-type diterpenoids up to now. In this work, we investigated the capability of Fusarium oxysporum (a fungus isolated from the rhizosphere of Senna spectabilis) and Myrothecium verrucaria (an endophyte) to transform halimane (1) and labdane (2) acids isolated from Hymenaea stigonocarpa (Fabaceae). Feeding experiments resulted in the production of six derivatives, including hydroxy, oxo, formyl and carboxy analogues. Incubation of 1 with F. oxysporum afforded 2-oxo-derivative (3), while bioconversion with M. verrucaria provided 18,19-dihydroxy (4), 18-formyl (5) and 18-carboxy (6) bioproducts. Transformation of substrate 2 mediated by F. oxysporum produced a 7α-hydroxy (7) derivative, while M. verrucaria yielded 7α- (7) and 3β-hydroxy (8) metabolites. Unlike F. oxysporum, which showed a preference to transform ring B, M. verrucaria exhibited the ability to hydroxylate both rings A and B from substrate 2. Additionally, compounds 1–8 were evaluated for inhibitory activity against Hr-AChE and Hu-BChE enzymes through ICER-IT-MS/MS assay. PMID:29291077

  5. Biotransformation of labdane and halimane diterpenoids by two filamentous fungi strains.

    PubMed

    Monteiro, Afif F; Seidl, Cláudia; Severino, Vanessa G P; Cardoso, Carmen Lúcia; Castro-Gamboa, Ian

    2017-11-01

    Biotransformation of natural products by filamentous fungi is a powerful and effective approach to achieve derivatives with valuable new chemical and biological properties. Although diterpenoid substrates usually exhibit good susceptibility towards fungi enzymes, there have been no studies concerning the microbiological transformation of halimane-type diterpenoids up to now. In this work, we investigated the capability of Fusarium oxysporum (a fungus isolated from the rhizosphere of Senna spectabilis ) and Myrothecium verrucaria (an endophyte) to transform halimane ( 1 ) and labdane ( 2 ) acids isolated from Hymenaea stigonocarpa (Fabaceae). Feeding experiments resulted in the production of six derivatives, including hydroxy, oxo, formyl and carboxy analogues. Incubation of 1 with F. oxysporum afforded 2-oxo-derivative ( 3 ), while bioconversion with M. verrucaria provided 18,19-dihydroxy ( 4 ), 18-formyl ( 5 ) and 18-carboxy ( 6 ) bioproducts. Transformation of substrate 2 mediated by F. oxysporum produced a 7 α -hydroxy ( 7 ) derivative, while M. verrucaria yielded 7 α - ( 7 ) and 3 β -hydroxy ( 8 ) metabolites. Unlike F. oxysporum , which showed a preference to transform ring B, M. verrucaria exhibited the ability to hydroxylate both rings A and B from substrate 2 . Additionally, compounds 1 - 8 were evaluated for inhibitory activity against Hr-AChE and Hu-BChE enzymes through ICER-IT-MS/MS assay.

  6. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs.

    PubMed

    Di Paolo, Carolina; Gandhi, Nilima; Bhavsar, Satyendra P; Van den Heuvel-Greve, Martine; Koelmans, Albert A

    2010-10-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems.

  7. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells.

    PubMed

    Chan, Nelson L S; Wang, Huan; Wang, Yun; Leung, Hau Yi; Leung, Lai K

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 microM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.

  8. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential

    PubMed Central

    Mazlan, Farhaneen Afzal; Annuar, M. Suffian M.

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice. PMID:26539336

  9. Tracking Down Biotransformation to the Genetic Level: Identification of a Highly Flexible Glycosyltransferase from Saccharothrix espanaensis

    PubMed Central

    Strobel, Tina; Schmidt, Yvonne; Linnenbrink, Anton; Luzhetskyy, Andriy; Luzhetska, Marta; Taguchi, Takaaki; Brötz, Elke; Paululat, Thomas; Stasevych, Maryna; Stanko, Oleg; Novikov, Volodymyr

    2013-01-01

    Saccharothrix espanaensis is a member of the order Actinomycetales. The genome of the strain has been sequenced recently, revealing 106 glycosyltransferase genes. In this paper, we report the detection of a glycosyltransferase from Saccharothrix espanaensis which is able to rhamnosylate different phenolic compounds targeting different positions of the molecules. The gene encoding the flexible glycosyltransferase is not located close to a natural product biosynthetic gene cluster. Therefore, the native function of this enzyme might be not the biosynthesis of a secondary metabolite but the glycosylation of internal and external natural products as part of a defense mechanism. PMID:23793643

  10. Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system.

    PubMed

    Grabarczyk, Małgorzata

    2012-08-14

    Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria). Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (-)-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  11. TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning

    PubMed Central

    Cuypers, Eva; Yanagihara, Angel; Rainier, Jon D.; Tytgat, Jan

    2007-01-01

    Ciguatera fish poisoning and neurotoxic shellfish poisoning are distinct clinical entities characterized by gastrointestinal and neurological disturbances, following the consumption of certain reef fish and shellfish containing toxic polyether compounds sporadically present in certain toxic marine dinoflagellates. The biotransformation and bioaccumulation of gambierol and brevetoxin, and their congeners, are believed to be involved in the pathogenesis of these “food-chain diseases”, for which no effective treatments are available. Here, we describe for the first time the potent effect of gambierol and brevetoxin on TRPV1 channels, a key player in thermal and pain sensation. Our findings may lead to promising new therapeutic interventions. PMID:17659256

  12. [Perfluoroalkyl substances: emerging environmental contaminants involving potential health risk].

    PubMed

    Li, Jingguang

    2015-06-01

    Perfluoroalkyl substances (PFASs) have been distributed in environment and human body worldwide. Due to their bioaccumulative and multiple organ toxic, these compounds have raised more and more attention in recent years. The precursors of PFASs can be metabolized to PFASs both in environment and human body, which makes an important contribution to human body burdens. Apart from transformation into PFASs, some of these precursors themselves or their metabolic intermediates also have toxicity effects, such as estrogen-like properties, protein binding, cytotoxicity and so on, and there might be a potential harmful impact on human health. In this paper, the toxicity and biotransformation of PFASs and their precursors were introduced briefly.

  13. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    PubMed

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  14. Metabolism of [6]-shogaol in mice and in cancer cells.

    PubMed

    Chen, Huadong; Lv, Lishuang; Soroka, Dominique; Warin, Renaud F; Parks, Tiffany A; Hu, Yuhui; Zhu, Yingdong; Chen, Xiaoxin; Sang, Shengmin

    2012-04-01

    Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M7), 3',4'-dihydroxyphenyl-decan-3-one (M8), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M10), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their (1)H, (13)C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MS(n) (n = 1-3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6]-shogaol.

  15. Metabolism of [6]-Shogaol in Mice and in Cancer Cells

    PubMed Central

    Chen, Huadong; Lv, Lishuang; Soroka, Dominique; Warin, Renaud F.; Parks, Tiffany A.; Hu, Yuhui; Zhu, Yingdong; Chen, Xiaoxin

    2012-01-01

    Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4′-hydroxy-3′-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M7), 3′,4′-dihydroxyphenyl-decan-3-one (M8), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M10), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their 1H, 13C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MSn (n = 1–3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6]-shogaol. PMID:22246389

  16. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC-MS/MS.

    PubMed

    Zhang, Lu-Lu; Zhang, Yan; Ren, Jing-Nan; Liu, Yan-Long; Li, Jia-Jia; Tai, Ya-Nan; Yang, Shu-Zhen; Pan, Si-Yi; Fan, Gang

    2016-10-01

    This study focused on the differences in protein expression at various periods during limonene biotransformation by Penicillium digitatum DSM 62840. A total of 3644 protein-species were quantified by iTRAQ during limonene biotransformation (0 and 12 h). A total of 643 proteins were differentially expressed, 316 proteins were significantly up-regulated and 327 proteins were markedly down-regulated. GO, COG, and pathway enrichment analysis showed that the differentially expressed proteins possessed catalytic and binding functions and were involved in a variety of cellular and metabolic process. Furthermore, the enzymes involved in limonene transformation might be related to cytochrome P-450. This study provided a powerful platform for further exploration of biotransformation, and the identified proteins provided insight into the mechanism of limonene transformation.

  17. Selection of filamentous fungi of the Beauveria genus able to metabolize quercetin like mammalian cells

    PubMed Central

    de M. B. Costa, Eula Maria; Pimenta, Fabiana Cristina; Luz, Wolf Christian; de Oliveira, Valéria

    2008-01-01

    Microbial biotransformations constitute an important alternative as models for drug metabolism study in mammalians and have been used for the industrial synthesis of chemicals with pharmaceutical purposes. Several microorganisms with unique biotransformation ability have been found by intensive screening and put in commercial applications. Ten isolates of Beauveria sp genus filamentous fungi, isolated from soil in the central Brazil, and Beauveria bassiana ATCC 7159 were evaluated for their capability of quercetin biotransformation. Biotransformation processes were carried out for 24 up to 96 hours and monitored by mass spectrometry analyses of the culture broth. All strains were able to metabolize quercetin, forming mammalian metabolites. The results were different from those presented by other microorganisms previously utilized, attrackting attention because of the great diversity of reactions. Methylated, sulphated, monoglucuronidated, and glucuronidated conjugated metabolites were simultaneously detected. PMID:24031237

  18. Interaction of biogenic amines with ethanol.

    PubMed

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response to ethanol can be pharmacologically separated from other major narcotic classes such as opioids and barbiturates by respiratory depression effects. The specific requirement for serotonin mediation exhibited by ethanol and several other alcohols opens the door for a rational therapeutic approach to the treatment of alcohol abuse. At the same time, this finding tends to lessen the probability that alcoholism is in some way connected with the formation of addictive alkaloids.

  19. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations.

    PubMed

    Gunderson, M P; Kohno, S; Blumberg, B; Iguchi, T; Guillette, L J

    2006-06-30

    In this study we describe an alligator hepatic CYP3A gene, CYP3A77, which is inducible by dexamethasone and toxaphene. CYP3A plays a broad role in biotransforming both exogenous compounds and endogenous hormones such as testosterone and estradiol. Alligators collected from sites in Florida that are contaminated with organochlorine compounds exhibit differences in sex steroid concentrations. Many organochlorine compounds induce CYP3A expression in other vertebrates; hence, CYP3A induction by organochlorine contaminants could increase biotransformation and clearance of sex steroids by CYP3A and provide a plausible mechanism for the lowering of endogenous sex steroid concentrations in alligator plasma. We used real time PCR to examine whether known and suspected CYP3A inducers (dexamethasone, metyrapone, rifampicin, and toxaphene) up-regulate steady state levels of hepatic CYP3A77 transcript to determine if induction patterns in female juvenile alligators are similar to those reported in other vertebrates and whether toxaphene, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), and steroid-xenobiotic receptor (SXR) transcripts were also measured to determine whether any of these nuclear receptors are also regulated by these compounds in alligators. Dexamethasone (4.2-fold) and toxaphene (3.5-fold) significantly induced CYP3A77 gene transcript, whereas rifampicin (2.8-fold) and metyrapone (2.1-fold) up-regulated ERbeta after 24h. None of the compounds significantly up-regulated AR, ERalpha, GR, PR, or SXR over this time period. Plasma testosterone (T) did not change significantly after 24h in alligators from any of the treatment groups. Dexamethasone treated animals exhibited a strong relationship between the 24h plasma T concentrations and CYP3A77 (R(2)=0.9, positive) and SXR (R(2)=0.77, negative) transcripts, which suggests that the expression of these genes is related to plasma T in alligators. In light of our findings, we hypothesized that higher steady state CYP3A77 (and possibly SXR) gene expression would be observed in alligators collected from Lake Apopka, a polluted lake containing organochlorine compounds known to induce CYP3A isoforms in other taxa. Therefore, we measured basal levels of CYP3A77 and SXR gene transcripts in wild juvenile alligators collected from Orange Lake (reference lake), Lake Woodruff (reference lake), and Lake Apopka (contaminated lake). We found that no differences existed in CYP3A77 or SXR gene expression among animals from the lakes sampled suggesting that exposure to organochlorine compounds at concentrations present in Lake Apopka does not lead to variation in the expression of these genes, although capture stress could be interfering with these results since the glucocorticoid dexamethasone induces CYP3A77 transcript in alligators.

  20. Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release

    USGS Publications Warehouse

    Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.

    2004-01-01

    The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations decreased faster [half-life (t1/2) = 28 d] in the organic-rich sediments (21.5%) that characterized the beaver pond as compared to the slower (t1/2 = 78 d) degradation rate in the sandy, organic-poor, sediments (0.43%) of Crystal Lake. Moreover, the concentration of inorganic tin increased in microcosms containing bed sediments from both locations. These field and laboratory results suggest that biotransformation of the released organotins, in particular the ecologically detrimental TBT, does occur in this fresh surface-water system impacted with high concentrations of neat organotin compounds.

  1. Silica ecosystem for synergistic biotransformation

    NASA Astrophysics Data System (ADS)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  2. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; Xie, Tao; Li, Gu-Cai; Tuo, Yi; Xiang, Yu-Ting

    2015-06-01

    To biotransform rutin into isoquercitrin. A α-L-rhamnosidase from Bifidobacterium breve was produced by using Escherichia coli BL21 for biotransformation of rutin to isoquercitrin. The enzyme was purified by Ni(2+)-NTA chromatography to yield a soluble protein with a specific activity of 56 U protein mg(-1). The maximum enzyme activities were at pH 6.5, 55 °C, 20 mM rutin, and 1.2 U enzyme ml(-1). Under optimal conditions, the half-life of the enzyme was 96 h. The K m and V max values were 2.2 mM, 56.4 μmol mg(-1) min(-1) and 2.1 mM, 57.5 μmol mg(-1) min(-1) using pNP-Rha and rutin as substrates, respectively. The kinetic behavior indicated that the recombinant α-L-rhamnosidase has good catalytic performance for producing isoquercitrin. 20 mM rutin was biotransformed into 18.25 and 19.87 mM isoquercitrin after 60 and 240 min. The specific biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from B. breve is a feasible method for use in industrial processes.

  3. Silica ecosystem for synergistic biotransformation

    PubMed Central

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-01-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system. PMID:27264916

  4. Congener specific biotransformation and bioaccumulation of PCDDs and PCDFs from fly ash in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sijm, D.T.H.M.; Opperhuizen, A.; Wever, H.

    1993-10-01

    Biotransformation may be responsible for the lack of bioaccumulation of a number of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Goldfish (Carassius auratus) that were exposed to PCDDs and PCDFs, and piperonylbutoxide (PBO) in water bioconcentrated significantly more congeners than goldfish exposed to PCDDs and PCDFs only. Monooxygenase activity, which is responsible for the oxidation of specific PCDD and PCDF congeners in untreated fish, was inhibited by fish treated with PBO. In the PBO-treated group and in the control group, congeners with all lateral positions substituted were found. Congeners that lack chlorine substitution on one or more of the lateral positionsmore » substituted were found. Congeners that lack chlorine substitution on one or more of the lateral (2,3,7,8) positions and congeners that have all lateral positions chlorinated were found only in PBO-treated fish. Congeners that have at least one free lateral position were therefore assumed to be biotransformed. There was no relationship between the octanol/water partition coefficient and biotransformed. There was no relationship between the octanol/water partition coefficient and biotransformation of the PCDDs and PCDFs. No limitation of uptake for higher chlorinated PCDD and PCDF congeners was found.« less

  5. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    PubMed

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  6. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide

    PubMed Central

    Bidstrup, Tanja Busk; Bjørnsdottir, Inga; Sidelmann, Ulla Grove; Thomsen, Mikael Søndergård; Hansen, Kristian Tage

    2003-01-01

    Aims To identify the principal human cytochrome P450 (CYP) enzyme(s) responsible for the human in vitro biotransformation of repaglinide. Previous experiments have identified CYP3A4 as being mainly responsible for the in vitro metabolism of repaglinide, but the results of clinical investigations have suggested that more than one enzyme may be involved in repaglinide biotransformation. Methods [14C]-Repaglinide was incubated with recombinant CYP and with human liver microsomes (HLM) from individual donors in the presence of inhibitory antibodies specific for individual CYP enzymes. Metabolites, measured by high-performance liquid chromatography (HPLC) with on-line radiochemical detection, were identified by liquid chromatography-mass spectrophotometry (LC-MS) and LC-MS coupled on-line to a nuclear magnetic resonance spectrometer (LC-MS-NMR). Results CYP3A4 and CYP2C8 were found to be responsible for the conversion of repaglinide into its two primary metabolites, M4 (resulting from hydroxylation on the piperidine ring system) and M1 (an aromatic amine). Specific inhibitory monoclonal antibodies against CYP3A4 and CYP2C8 significantly inhibited (> 71%) formation of M4 and M1 in HLM. In a panel of HLM from 12 individual donors formation of M4 and M1 varied from approximately 160–880 pmol min−1 mg−1 protein and from 100–1110 pmol min−1 mg−1 protein, respectively. The major metabolite generated by CYP2C8 was found to be M4. The rate of formation of this metabolite in HLM correlated significantly with paclitaxel 6α-hydroxylation (rs = 0.80; P = 0.0029). Two other minor metabolites were also detected. One of them was M1 and the other was repaglinide hydroxylated on the isopropyl moiety (M0-OH). The rate of formation of M4 in CYP2C8 Supersomes™ was 2.5 pmol min−1 pmol−1 CYP enzyme and only about 0.1 pmol min−1 pmol−1 CYP enzyme in CYP3A4 Supersomes™. The major metabolite generated by CYP3A4 was M1. The rate of formation of this metabolite in HLM correlated significantly with testosterone 6β-hydroxylation (rs = 0.90; P = 0.0002). Three other metabolites were identified, namely, M0-OH, M2 (a dicarboxylic acid formed by oxidative opening of the piperidine ring) and M5. The rate of M1 formation in CYP3A4 Supersomes™ was 1.6 pmol min−1 pmol−1 CYP enzyme but in CYP2C8 Super-somes™ it was only approximately 0.4 pmol min−1 pmol−1 CYP enzyme. Conclusions The results confirm an important role for both CYP3A4 and CYP2C8 in the human in vitro biotransformation of repaglinide. This dual CYP biotransformation may have consequences for the clinical pharmacokinetics and drug-drug interactions involving repaglinide if one CYP pathway has sufficient capacity to compensate if the other is inhibited. PMID:12919179

  7. Biotransformation of 2,4,6-Trinitrotoluene with Phanerochaete chrysosporium in Agitated Cultures at pH 4.5†

    PubMed Central

    Hawari, Jalal; Halasz, Annamaria; Beaudet, Sylvie; Paquet, Louise; Ampleman, Guy; Thiboutot, Sonia

    1999-01-01

    The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation. PMID:10388692

  8. Effects of dietary crude oil exposure on molecular and physiological parameters related to lipid homeostasis in polar cod (Boreogadus saida).

    PubMed

    Vieweg, Ireen; Bilbao, Eider; Meador, James P; Cancio, Ibon; Bender, Morgan Lizabeth; Cajaraville, Miren P; Nahrgang, Jasmine

    2018-04-01

    Polar cod is an abundant Arctic key species, inhabiting an ecosystem that is subjected to rapid climate change and increased petroleum related activities. Few studies have investigated biological effects of crude oil on lipid metabolism in this species, despite lipids being a crucial compound for Arctic species to adapt to the high seasonality in food abundance in their habitat. This study examines the effects of dietary crude oil exposure on transcription levels of genes related to lipid metabolism (peroxisome proliferator-activated receptors [ppar-α, ppar-γ], retinoic X receptor [rxr-β], palmitoyl-CoA oxidase [aox1], cytochrome P4507A1 [cyp7α1]), reproduction (vitellogenin [vtg-β], gonad aromatase [cyp19a1]) and biotransformation (cytochrome P4501A1 [cyp1a1], aryl hydrocarbon receptor [ahr2]). Exposure effects were also examined through plasma chemistry parameters. Additional fish were exposed to a PPAR-α agonist (WY-14,643) to investigate the role of PPAR-α in their lipid metabolism. The dose-dependent up-regulation of cyp1a1 reflected the activation of genes related to PAH biotransformation upon crude oil exposure. The crude oil exposure did not significantly alter the mRNA expression of genes involved in lipid homeostasis except for cyp7α1 transcription levels. Plasma levels of cholesterol and alanine transaminase showed significant alterations in fish exposed to crude oil at the end of the experiment. WY exposure induced a down-regulation of ppar-α, an effect contrary to studies performed on other fish species. In conclusion, this study showed clear effects of dietary crude oil exposure at environmentally relevant concentrations on xenobiotic biotransformation but revealed only weak alterations in the lipid metabolism of polar cod. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Identification and functional analysis of cytochrome P450 complement in Streptomyces virginiae IBL14

    PubMed Central

    2013-01-01

    Background As well known, both natural and synthetic steroidal compounds are powerful endocrine disrupting compounds (EDCs) which can cause reproductive toxicity and affect cellular development in mammals and thus are generally regarded as serious contributors to water pollution. Streptomyces virginiae IBL14 is an effective degradative strain for many steroidal compounds and can also catalyze the C25 hydroxylation of diosgenin, the first-ever biotransformation found on the F-ring of diosgenin. Results To completely elucidate the hydroxylation function of cytochrome P450 genes (CYPs) found during biotransformation of steroids by S. virginiae IBL14, the whole genome sequencing of this strain was carried out via 454 Sequencing Systems. The analytical results of BLASTP showed that the strain IBL14 contains 33 CYPs, 7 ferredoxins and 3 ferredoxin reductases in its 8.0 Mb linear chromosome. CYPs from S. virginiae IBL14 are phylogenetically closed to those of Streptomyces sp. Mg1 and Streptomyces sp. C. One new subfamily was found as per the fact that the CYP Svu001 in S. virginiae IBL14 shares 66% identity only to that (ZP_05001937, protein identifer) from Streptomyces sp. Mg1. Further analysis showed that among all of the 33 CYPs in S. virginiae IBL14, three CYPs are clustered with ferredoxins, one with ferredoxin and ferredoxin reductase and three CYPs with ATP/GTP binding proteins, four CYPs arranged with transcriptional regulatory genes and one CYP located on the upstream of an ATP-binding protein and transcriptional regulators as well as four CYPs associated with other functional genes involved in secondary metabolism and degradation. Conclusions These characteristics found in CYPs from S. virginiae IBL14 show that the EXXR motif in the K-helix is not absolutely conserved in CYP157 family and I-helix not absolutely essential for the CYP structure, too. Experimental results showed that both CYP Svh01 and CYP Svu022 are two hydroxylases, capable of bioconverting diosgenone into isonuatigenone and β-estradiol into estriol, respectively. PMID:23442312

  10. Studies on the microbial biotransformation of the novel psychoactive substance methylenedioxypyrovalerone (MDPV) in wastewater by means of liquid chromatography-high resolution mass spectrometry/mass spectrometry.

    PubMed

    Mardal, Marie; Meyer, Markus R

    2014-09-15

    Sewage profiling as a mean to estimate consumption of drugs of abuse is gaining increasing attention. However, only scarce data are available so far on the impact of microbial biotransformation on the presence and hence detectability of drugs of abuse and their metabolites in wastewater (WW) samples. The aim of this work was therefore to study the biotransformation pathways of the novel psychoactive substance 3,4-methylenedioxypyrovalerone (MPDV) in WW by incubating it, based on the OECD guideline 314 A. MDPV was incubated (100 μg/L) for 10d at 22 °C in WW from a local WW treatment plant. Furthermore, urine and feces collected from rats administered 20mg MDPV/kg BW were incubated correspondingly. Samples were worked-up either by centrifugation/filtration and solid-phase (HCX) extraction or QuEChERS. High resolution (HR) mass spectra (MS) were recorded using an Orbitrap mass spectrometer. All products were identified via their HR-MS(2) spectra and chromatographic properties. The observed biotransformations in WW were: demethylenation and subsequent O-methylation, hydroxylation at the phenyl part, hydroxylation at the pyrrolidine part with subsequent methylation or oxidation, N-demethylation, and hydroxylation at the alkyl part as well as combination of them. In total, 12 biotransformation products were identified after 10 days of incubation. Three of these biotransformation products were previously reported to be also rat and human metabolites. No additional MDPV biotransformation products could be found after incubating the rat urine and feces samples. Instead, the urinary phase II glucuronides were nearly completely cleaved after one day of WW incubation. The presented study indicates that demethylenyl-methyl MDPV, the most abundant metabolite in human urine, should be the best indicator in WW to estimate its use. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biotransformation of glyceryl trinitrate (GTN) in isolated bovine pulmonary artery (BPA) and bovine pulmonary vein (BPV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-03-01

    A proposed mechanism of GTN-induced vasodilation requires biotransformation of GTN to glyceryl dinitrate (GDN). They have previously shown that GTN is metabolized to GDN during relaxation of isolated rabbit aorta. The authors have extended this study to include BPA and BPV and to determine if their sensitivity to GTN correlates with their ability to metabolize GTN. Strips of BPA and BPV were contracted submaximally with KCl and then incubated with 0.5 ..mu..M /sup 14/C-GTN for 2 min. GTN-induced relaxation of these vessels was monitored and tissue GTN and metabolite concentrations were measured. Data are presented which support the above hypothesismore » that GTN biotransformation and relaxation occur together in vascular smooth muscle; however, there appear to be factors other than extent of GTN biotransformation that account for the difference in sensitivity to GTN of the artery and vein.« less

  12. Roles of uptake, biotransformation, and target site sensitivity in determining the differential toxicity of chlorpyrifos to second to fourth instar Chironomous riparius (Meigen)

    USGS Publications Warehouse

    Buchwalter, D.B.; Sandahl, J.F.; Jenkins, J.J.; Curtis, L.R.

    2004-01-01

    Early life stages of aquatic organisms tend to be more sensitive to various chemical contaminants than later life stages. This research attempted to identify the key biological factors that determined sensitivity differences among life stages of the aquatic insect Chironomous riparius. Specifically, second to fourth instar larvae were exposed in vivo to both low and high waterborne concentrations of chlorpyrifos to examine differences in accumulation rates, chlorpyrifos biotransformation, and overall sensitivity among instars. In vitro acetylcholinesterase (AChE) assays were performed with chlorpyrifos and the metabolite, chlorpyrifos-oxon, to investigate potential target site sensitivity differences among instars. Earlier instars accumulated chlorpyrifos more rapidly than later instars. There were no major differences among instars in the biotransformation rates of chlorpyrifos to the more polar metabolites, chlorpyrifos-oxon, and chlorpyridinol (TCP). Homogenate AChE activities from second to fourth instar larvae were refractory to chlorpyrifos, even at high concentrations. In contrast, homogenate AChE activities were responsive in a dose-dependent manner to chlorpyrifos-oxon. In general, it appeared that chlorpyrifos sensitivity differences among second to fourth instar C. riparius were largely determined by differences in uptake rates. In terms of AChE depression, fourth instar homogenates were more sensitive to chlorpyrifos and chlorpyrifos-oxon than earlier instars. However, basal AChE activity in fourth instar larvae was significantly higher than basal AChE activity in second to third instar larvae, which could potentially offset the apparent increased sensitivity to the oxon. ?? 2003 Elsevier B.V. All rights reserved.

  13. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    PubMed

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2017-07-01

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.

  14. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons’ biotransformation and atherosclerosis

    PubMed Central

    Marinković, Natalija; Pašalić, Daria; Potočki, Slavica

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment. PMID:24266295

  15. Degradation of picric acid and 2,6-DNT in marine sediments and waters: The role of microbial activity and ultra-violet exposure

    USGS Publications Warehouse

    Nipper, Marion; Qian, Yaorong; Carr, R. Scott; Miller, Karen

    2004-01-01

    Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 °C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 °C > fine-grain at 10 °C > sand at 20 °C > sand at 10 °C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200–500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.

    2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnantmore » women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite excretion in all groups. ► Very low amount of biotransformation in all groups (< 0.1%).« less

  17. Transformation of diclofenac in hybrid biofilm-activated sludge processes.

    PubMed

    Jewell, Kevin S; Falås, Per; Wick, Arne; Joss, Adriano; Ternes, Thomas A

    2016-11-15

    The biotransformation of diclofenac during wastewater treatment was investigated. Attached growth biomass from a carrier-filled compartment of a hybrid-MBBR at the wastewater treatment plant (WWTP) in Bad Ragaz, Switzerland was used to test the biotransformation. Laboratory-scale incubation experiments were performed with diclofenac and carriers and high-resolution LC-QTof-MS was implemented to monitor the biotransformation. Up to 20 diclofenac transformation products (TPs) were detected. Tentative structures were proposed for 16 of the TPs after characterization by MS 2 fragmentation and/or inferring the structure from the transformation pathway and the molecular formula given by the high resolution ionic mass. The remaining four TPs were unambiguously identified via analytical reference standards. The postulated reactions forming the TPs were: hydroxylation, decarboxylation, oxidation, amide formation, ring-opening and reductive dechlorination. Incubation experiments of individual TPs, those which were available as reference standards, provided a deeper look into the transformation pathways. It was found that the transformation consists of four main pathways but no pathway accounted for a clear majority of the transformation. A 10-day monitoring campaign of the full-scale plant confirmed an 88% removal of diclofenac (from approximately 1.6 μg/L in WWTP influent) and the formation of TPs as found in the laboratory was observed. One of the TPs, N-(2,6-dichlorophenyl)-2-indolinone detected at concentrations of around 0.25 μg/L in WWTP effluent, accounting for 16% of the influent diclofenac concentration. The biotransformation of carriers was compared to a second WWTP not utilising carriers. It was found that in contact with activated sludge, similar hydroxylation and decarboxylation reactions occurred but at much slower rates, whereas some reactions, e.g. reductive dechlorination, were not detected at all. Finally, incubation experiments were performed with attached growth biomass from a third WWTP with a similar process configuration to Bad Ragaz WWTP. A similarly effective removal of diclofenac was found with a similar presence of TPs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure.

    PubMed

    Nipper, Marion; Qian, Yaorong; Carr, R Scott; Miller, Karen

    2004-08-01

    Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 degrees C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 degrees C > fine-grain at 10 degrees C > sand at 20 degrees C > sand at 10 degrees C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200-500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.

  19. Incremental improvements to the trout S9 biotransformation assay

    EPA Science Inventory

    In vitro substrate depletion methods have been used in conjunction with computational models to predict biotransformation impacts on chemical accumulation by fish. There is a consistent trend, however, toward overestimation of measured chemical residues resulting from controlled...

  20. Biotransformation of vinclozolin in rat precision-cut liver slices: comparison with in vivo metabolic pattern.

    PubMed

    Bursztyka, Julian; Debrauwer, Laurent; Perdu, Elisabeth; Jouanin, Isabelle; Jaeg, Jean-Philippe; Cravedi, Jean-Pierre

    2008-06-25

    Vinclozolin is a dicarboxymide fungicide that presents antiandrogenic properties through its two hydrolysis products M1 and M2, which bind to the androgen receptor. Because of the lack of data on the biotransformation of vinclozolin, its metabolism was investigated in vitro in precision-cut rat liver slices and in vivo in male rat using [ (14)C]-vinclozolin. Incubations were performed using different concentrations of substrate, and the kinetics of formation of the major metabolites were studied. Three male Wistar rats were fed by gavage with [ (14)C]-VZ. Urine was collected for 24 h and analyzed by radio-HPLC for metabolic profiling. Metabolite identification was carried out on a LCQ ion trap mass spectrometer. In rat liver slices and in vivo, the major primary metabolite has been identified as 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutyranilide (M5) and was mainly present as glucuronoconjugates. M5 is produced by dihydroxylation of the vinyl group of M2. Other metabolites have been identified as 3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione (M4), a dihydroxylated metabolite of vinclozolin, which undergoes further conjugation to glucuronic acid, and 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3,4-dihydroxy-butanoic acid (M6), a dihydroxylated metabolite of M1.

  1. Bio-transformation of Graphene Oxide in Lung Fluids Significantly Enhances Its Photothermal Efficacy.

    PubMed

    Liu, Yun; Qi, Yu; Yin, Chunyang; Wang, Shunhao; Zhang, Shuping; Xu, An; Chen, Wei; Liu, Sijin

    2018-01-01

    Rationale: Graphene oxide (GO) has shown great promises in biomedical applications, such as drug delivery and thermotherapeutics, owing to its extraordinary physicochemical properties. Nonetheless, current biomedical applications of GO materials are premised on the basis of predesigned functions, and little consideration has been given to the influence of bio-transformation in the physiological environment on the physicochemical properties and predesigned functionalities of these materials. Hence, it is crucial to uncover the possible influence on GO's physicochemical properties and predesigned functionalities for better applications. Methods: Bio-transformed GOs were characterized by X-ray diffraction (XRD) spectra, Raman spectra, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared transmission (FT-IR) spectra. The morphologies of various GO materials were assessed via transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. The photothermal (PTT) performance of different GO materials in vitro and in vivo were measured using 808 nm laser at a power density of 2 W/cm 2 . The PTT efficacy was determined using transplanted 4T1 cells-derived breast tumors in mice. Results: Bio-transformation of GO in the lung (a main target organ for GO to localize in vivo ) can induce dramatic changes to its physicochemical properties and morphology, and consequently, its performances in biomedical applications. Specifically, GO underwent significant reduction in two simulated lung fluids, Gamble's solution and artificial lysosomal fluid (ALF), as evidenced by the increase of C/O ratio (the ratio of C content to O content) relative to pristine GO. Bio-transformation also altered GO's morphology, characterized by sheet folding and wrinkle formation. Intriguingly, bio-transformation elevated the PTT performance of GO in vitro , and this elevation further facilitated PTT-based tumor-killing efficacy in tumor cells in vitro and in a mouse model with transplanted tumors. Bio-transformation also compromised the interaction between drug with GO, leading to reduced drug adsorption, as tested using doxorubicin (DOX). Conclusions: Transformation in Gamble's solution and ALF resulted in varied degrees of improved performances of GO, due to the differential effects on GO's physicochemical properties. Our findings unveiled an overlooked impact of GO bio-transformation, and unearthed a favorable trait of GO materials in thermotherapeutics and drug delivery in the lung microenvironment.

  2. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.

    PubMed

    Bi, Lei; Guan, Chun-jie; Yang, Guan-e; Yang, Fei; Yan, Hong-yu; Li, Qing-shan

    2016-04-01

    The purple photosynthetic bacterium Rhodopseudomonas palustris has been widely applied to enhance the therapeutic effects of traditional Chinese medicine using novel biotransformation technology. However, comprehensive studies of the R. palustris biotransformation mechanism are rare. Therefore, investigation of the expression patterns of genes involved in metabolic pathways that are active during the biotransformation process is essential to elucidate this complicated mechanism. To promote further study of the biotransformation of R. palustris, we assembled all R. palustris transcripts using Trinity software and performed differential expression analysis of the resulting unigenes. A total of 9725, 7341 and 10,963 unigenes were obtained by assembling the alpha-rhamnetin-3-rhamnoside-treated R. palustris (RPB) reads, control R. palustris (RPS) reads and combined RPB&RPS reads, respectively. A total of 9971 unigenes assembled from the RPB&RPS reads were mapped to the nr, nt, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <0.00001) databases using BLAST software. A total of 3360 unique differentially expressed genes (DEGs) in RPB versus RPS were identified, among which 922 unigenes were up-regulated and 2438 were down-regulated. The unigenes were mapped to the KEGG database, resulting in the identification of 7676 pathways among all annotated unigenes and 2586 pathways among the DEGs. Some sets of functional unigenes annotated to important metabolic pathways and environmental information processing were differentially expressed between the RPS and RPB samples, including those involved in energy metabolism (18.4% of total DEGs), carbohydrate metabolism (36.0% of total DEGs), ABC transport (6.0% of total DEGs), the two-component system (8.6% of total DEGs), cell motility (4.3% of total DEGs) and the cell cycle (1.5% of total DEGs). We also identified 19 transcripts annotated as hydrolytic enzymes and other enzymes involved in ARR catabolism in R. palustris. We present the first comparative transcriptome profiles of RPB and RPS samples to facilitate elucidation of the molecular mechanism of biotransformation in R. palustris. Furthermore, we propose two putative ARR biotransformation mechanisms in R. palustris. These analytical results represent a useful genomic resource for in-depth research into the molecular basis of biotransformation and genetic modification in R. palustris. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    NASA Astrophysics Data System (ADS)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  4. Species-related difference between limonin and obacunone among five liver microsomes and zebrafish using ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass spectrometer.

    PubMed

    Ren, Wei; Li, Yan; Zuo, Ran; Wang, Hong-Jie; Si, Nan; Zhao, Hai-Yu; Han, Ling-Yu; Yang, Jian; Bian, Bao-Lin

    2014-11-15

    Limonin and obacunone are two major limonoids distributed in the Rutaceae and Meliaceae families. Their defined anti-tumor activity is closely connected with the furan ring and the multi-carbonyls in their structures. In vivo and in vitro biotransformations may influence their structures and further change their effects. The metabolic profiles of limonin and obacunone have not been studied previously. In order to clarify their in vivo and in vitro metabolism, a comparative investigation of their metabolic pathways in five different species of liver microsomes and zebrafish was carried out. In the present study, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC/HRMS) and related electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation of limonin and obacunone were applied for the analysis. Each metabolite was identified by its accurate mass data. Human liver microsomes (HLMs), monkey liver microsomes (MLMs), dog liver microsomes (DLMs), rat liver microsomes (RLMs), mice liver microsomes (XLMs) and zebrafish were included in the biotransformations. One phase I metabolite of limonin (M1-1) and two phase I metabolites of obacunone (M2-1, M2-2) were identified by accurate mass measurement and MS/MS fragmentation behaviors. A reduction reaction was regarded as the major metabolic pathway of limonoids in liver microsomes. The reduction reaction site of M1-1 and M2-1 was at the C-16 carbonyl, while for M2-2 it was at C-7. M1-1 was the major and unique metabolite of limonin and the metabolic rate of limonin varied from 11.5% to 17.8% in liver microsomes (LMs). M2-2 was the main metabolite of obacunone in LMs and zebrafish. M1-1 and M2-1 were only detected in LMs while M2-2 was found in both LMs and zebrafish incubation systems. The metabolic rate of obacunone varied from 2.5% to 19.1% and the content of M2-2 was about five times higher than that of M2-1. The ESI-HR-MS/MS fragmentation behaviors of limonin and obacunone were investigated for the first time. A qualitative and semi-quantitative method was developed for the in vivo and in vitro metabolic analysis of limonin and obacunone. The results demonstrated that the metabolic processes of limonin and obacunone were different between LMs and zebrafish. However, both of these two parent compounds presented similar metabolic processes in five species of LMs. This was caused by the metabolic difference between mammals and fish or because limonin probably cannot be absorbed in zebrafish. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Oxidation of Secondary Alcohols by Duckweed: A Biotransformation Experiment for Undergraduate Students.

    ERIC Educational Resources Information Center

    Karfarski, Pawel; And Others

    1988-01-01

    Describes an experiment designed to use the ability of duckweed to convert the secondary hydroxyl moieties into ketone groups. Discusses the preparation of plant material, materials, procedures, and results for this biotransformation experiment for undergraduate students. (CW)

  6. Biotransformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Catalyzed by a NAD(P)H: Nitrate Oxidoreductase from Aspergillus niger

    DTIC Science & Technology

    2002-01-01

    Biotransformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Catalyzed by a NAD(P)H: Nitrate Oxidoreductase from Aspergillus niger B H A R A T B H U...reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 °C under anaerobic conditions using NADPH as...nitroreductase. We selected a nitrate reductase (EC 1.6.6.2) from a fungus Aspergillus niger to transform RDX under anaerobic condi- tions because nitrate

  7. Methyl jasmonate elicits the biotransformation of geraniol stored as its glucose conjugate into methyl geranate in Achyranthes bidentata plant.

    PubMed

    Tamogami, Shigeru; Agrawal, Ganesh K; Rakwal, Randeep

    2016-12-01

    To investigate the biotransformation pathway of airborne geraniol by Achyranthes bidentata (A. bidentata), deuterium labeled geraniol was applied with or without methyl jasmonate (MeJA), and the biosynthesized metabolites were analyzed. In A. bidentata leaves, geraniol was conjugated with glucose. The conjugate was then metabolized to afford methyl geranate only under MeJA elicitation. MeJA elicits the biotransformation of geraniol into methyl geranate by inducing the conversion of the intermediate, glucose conjugate of geraniol. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Development of a multichemical food web model: application to PBDEs in Lake Ellasjoen, Bear Island, Norway.

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Diamond, Miriam L; Evenset, Anita; Christensen, Guttorm N; Gregor, Dennis

    2006-08-01

    A multichemical food web model has been developed to estimate the biomagnification of interconverting chemicals in aquatic food webs. We extended a fugacity-based food web model for single chemicals to account for reversible and irreversible biotransformation among a parent chemical and transformation products, by simultaneously solving mass balance equations of the chemicals using a matrix solution. The model can be applied to any number of chemicals and organisms or taxonomic groups in a food web. The model was illustratively applied to four PBDE congeners, BDE-47, -99, -100, and -153, in the food web of Lake Ellasjøen, Bear Island, Norway. In Ellasjøen arctic char (Salvelinus alpinus), the multichemical model estimated PBDE biotransformation from higher to lower brominated congeners and improved the correspondence between estimated and measured concentrations in comparison to estimates from the single-chemical food web model. The underestimation of BDE-47, even after considering bioformation due to biotransformation of the otherthree congeners, suggests its formation from additional biotransformation pathways not considered in this application. The model estimates approximate values for congener-specific biotransformation half-lives of 5.7,0.8,1.14, and 0.45 years for BDE-47, -99, -100, and -153, respectively, in large arctic char (S. alpinus) of Lake Ellasjøen.

  9. Environmental Fate of 14C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms.

    PubMed

    Olivares, Christopher I; Madeira, Camila L; Sierra-Alvarez, Reyes; Kadoya, Warren; Abrell, Leif; Chorover, Jon; Field, Jim A

    2017-11-21

    2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14 C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14 C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14 C-DNAN into the humin fraction. 14 C-DNAN incorporation to the humin fraction was strongly correlated (R 2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.

  10. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger.

    PubMed

    Esmaeili, Akbar; Moazami, Nasrin; Rustaiyan, Abdolhossein

    2012-01-01

    Terpenes are present in the essential oils obtained from herbs and spices. They are produced by these plant species as a chemical defense mechanism against phytopathogenic microorganisms. Therefore, terpenes have attracted great attention in the food industry, e.g., they have been used in foods such as cheese as natural preservatives to prevent fungal growth. Herein, we describe the microbial transformation of onopordopicrin (1) by Aspergillus niger. Four product 11α H-dihydroonopordopicrin (2), 11β H-dihydroonopordopicrin (3), 3β-hydroxy-11β H-dihydroonopordopicrin (4), and 14-hydroxy-11β H-dihydroonopordopicrin (5) were obtained. Their structures were identified on the basis of chemical and spectroscopic data. All the four compounds were novel.

  11. Studies on distribution of para-methoxymethamphetamine (PMMA) designer drug in rats using gas chromatography-mass spectrometry.

    PubMed

    Rohanova, Miroslava; Balikova, Marie

    2009-04-01

    para-Methoxymethamphetamine (PMMA) is an abused psychedelic compound with reports of several intoxications and deaths after ingestion. However, its pharmacokinetics based on a controlled study is unknown and only partial information on its biotransformation is available. Our experimental study was designed for the time disposition profile of PMMA and its metabolites para-methoxyamphetamine (PMA), para-hydroxymethamphetamine (OH-MAM) and para-hydroxyamphetamine (OH-AM) in blood and biological tissues in rats after the bolus subcutaneous dose 40 mg/kg using a validated GC-MS method. The experimental results ascertained could be useful for subsequent evaluation of PMMA psychotropic or neurotoxic effects and the diagnostic concern of intoxication.

  12. Insecticides biomarker responses on a freshwater fish Corydoras paleatus (Pisces: Callichthyidae).

    PubMed

    Guiloski, Izonete Cristina; Rossi, Stéfani Cibele; da Silva, Cesar Aparecido; de Assis, Helena Cristina Silva

    2013-01-01

    This study was undertaken to investigate the effects of sublethal concentration of three different classes of insecticides (carbamate, organophosphate, and pyrethroid compounds) on the freshwater fish Corydoras paleatus. For this purpose, fish were exposed for 96 hours to commercial pesticides. Different biomarkers were analyzed as levels of lipid peroxidation (LPO), piscine micronucleus test, and enzymatic activities of catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE). The brain AChE was inhibited with carbaryl and methyl parathion, but no inhibition was observed with deltamethrin. The insecticides did not cause oxidative stress or genotoxic effects at the tested concentrations. Further studies are needed to elucidate the biotransformation of Corydoras paleatus insecticides and a possible resistance mechanism.

  13. Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides.

    PubMed

    Overwin, Heike; Wray, Victor; Hofer, Bernd

    2015-10-10

    Glycosylation is one of the most important tailoring reactions for natural products. It typically exerts profound direct or indirect effects on their biological activity. The dihydrochalcone phloretin and its known sugar derivatives, particularly phlori(d)zin, have been shown to influence various cellular processes. We found that a non-Leloir glycosyltransferase, amylosucrase from Neisseria polysaccharea, is an excellent catalyst for the stereospecific glucosylation of phloretin at the 4' position. Three novel phloretin derivatives were obtained, the first ones in which the sugar-aglycone bond possesses the configuration. A first biological characterization in a cell viability assay showed that each sugar attachment reduced the compound toxicity approximately two-fold. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  15. REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS

    EPA Science Inventory

    Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

  16. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  17. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.

    PubMed

    Gallemann, Dieter; Wimmer, Elmar; Höfer, Constance C; Freisleben, Achim; Fluck, Markus; Ladstetter, Bernhard; Dolgos, Hugues

    2010-06-01

    In vitro biotransformation studies of sarizotan using human liver microsomes (HLM) showed aromatic and aliphatic monohydroxylation and dealkylation. Recombinant cytochromes P450 (P450) together with P450-selective inhibitors in HLM/hepatocyte cultures were used to evaluate the relative contribution of different P450s and revealed major involvement of CYP3A4, CYP2C9, CYP2C8, and CYP1A2 in sarizotan metabolism. The apparent K(m, u) and V(max) of sarizotan clearance, as investigated in HLM, were 9 microM and 3280 pmol/mg/min, predicting in vivo hepatic clearance of 0.94 l/h, which indicates that sarizotan is a low-clearance compound in humans and suggests nonsaturable metabolism at the targeted plasma concentration (< or =1 microM). This finding is confirmed by the reported human clearance (CL/F of 3.6-4.4 l/h) and by the dose-linear area under the curve increase observed with doses up to 25 mg. The inhibitory effect of sarizotan toward six major P450s was evaluated using P450-specific marker reactions in pooled HLM. K(i, u) values of sarizotan against CYP2C8, CYP2C19, and CYP3A4 were >10 microM, whereas those against CYP2D6 and CYP1A2 were 0.43 and 8.7 microM, respectively. Based on the estimates of sarizotan concentrations at the enzyme active sites, no clinically significant drug-drug interactions (DDIs) due to P450 inhibition are expected. This result has been confirmed in human DDI studies in which no inhibition of five major P450s was observed in terms of marker metabolite formation.

  18. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components.

    PubMed

    Zhang, Yan; Shi, Junling; Gao, Zhenhong; Yangwu, Ruiming; Jiang, Huanshi; Che, Jinxin; Liu, Yanlin

    2015-06-01

    Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.

  19. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  20. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors.

    PubMed

    Stadler, Lauren B; Love, Nancy G

    2016-11-01

    Operation at low dissolved oxygen (DO) concentrations (<1 mg/L) in wastewater treatment could save utilities significantly by reducing aeration energy costs. However, few studies have evaluated the impact of low DO on pharmaceutical biotransformations during treatment. DO concentration can impact pharmaceutical biotransformation rates during wastewater treatment both directly and indirectly: directly by acting as a limiting substrate that slows the activity of the microorganisms involved in biotransformation; and indirectly by shaping the microbial community and selecting for a community that performs pharmaceutical biotransformation faster (or slower). In this study, nitrifying bioreactors were operated at low (∼0.3 mg/L) and high (>4 mg/L) DO concentrations to understand how DO growth conditions impacted microbial community structure. Short-term batch experiments using the biomass from the parent reactors were performed under low and high DO conditions to understand how DO concentration impacts microbial physiology. Although the low DO parent biomass had a lower specific activity with respect to ammonia oxidation than the high DO parent reactor biomass, it had faster biotransformation rates of ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, acetaminophen, and atenolol in high DO batch conditions. This was likely because the low DO reactor had a 2x higher biomass concentration, was enriched for ammonia oxidizers (4x higher concentration), and harbored a more diverse microbial community (3x more unique taxa) as compared to the high DO parent reactor. Overall, the results show that there can be indirect benefits from low DO operation over high DO operation that support pharmaceutical biotransformation during wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Single step biotransformation of corn oil phytosterols to boldenone by a newly isolated Pseudomonas aeruginosa.

    PubMed

    Eisa, Mohamed; El-Refai, Heba; Amin, Magdy

    2016-09-01

    A new potent Pseudomonas aeruginosa isolate capable for biotransformation of corn oil phytosterol (PS) to 4-androstene-3, 17-dione (AD), testosterone (T) and boldenone (BOL) was identified by phenotypic analysis and 16S rRNA gene sequencing. Sequential statistical strategy was used to optimize the biotransformation process mainly concerning BOL using Factorial design and response surface methodology (RSM). The production of BOL in single step microbial biotransformation from corn oil phytosterols by P. aeruginosa was not previously reported. Results showed that the pH concentration of the medium, (NH 4 ) 2 SO 4 and KH 2 PO 4 were the most significant factors affecting BOL production. By analyzing the statistical model of three-dimensional surface plot, BOL production increased from 36.8% to 42.4% after the first step of optimization, and the overall biotransformation increased to 51.9%. After applying the second step of the sequential statistical strategy BOL production increased to 53.6%, and the overall biotransformation increased to 91.9% using the following optimized medium composition (g/l distilled water) (NH 4 ) 2 SO 4 , 2; KH 2 PO 4 , 4; Na 2 HPO 4 . 1; MgSO 4 ·7H 2 O, 0.3; NaCl, 0.1; CaCl 2 ·2H 2 O, 0.1; FeSO 4 ·7H 2 O, 0.001; ammonium acetate 0.001; Tween 80, 0.05%; corn oil 0.5%; 8-hydroxyquinoline 0.016; pH 8; 200 rpm agitation speed and incubation time 36 h at 30 °C. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values.

  2. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure.

    PubMed

    Zhang, Wei; Chen, Lizhao; Zhou, Yanyan; Wu, Yun; Zhang, Li

    2016-03-01

    Arsenic (As) is well known to be biodiminished along marine food chains. The marine herbivorous fish at a lower trophic level are expected to accumulate more As. However, little is known about how marine herbivorous fish biotransform the potential high As bioaccumulation. Therefore, the present study quantified the biotransformation of two inorganic As species (As(III) and As(V)) in a marine herbivorous fish Siganus fuscescens following dietborne exposure. The fish were fed on As contaminated artificial diets at nominal concentrations of 400 and 1500 μg As(III) or As(V) g(-1) (dry weight) for 21 d and 42 d. After exposure, As concentrations in intestine, liver, and muscle tissues of rabbitfish increased significantly and were proportional to the inorganic As exposure concentrations. The present study demonstrated that both inorganic As(III) and As(V) in the dietborne phases were able to be biotransformed to the less toxic arsenobetaine (AsB) (63.3-91.3% in liver; 79.0%-95.2% in muscle). The processes of As biotransformation in rabbitfish could include oxidation of As(III) to As(V), reduction of As(V) to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to AsB. These results also demonstrated that AsB synthesis processes were diverse facing different inorganic As species in different tissues. In summary, the present study elucidated that marine herbivorous fish had high ability to biotransform inorganic As to the organic forms (mainly AsB), resulting in high As bioaccumulation. Therefore, marine herbivorous fish could detoxify inorganic As in the natural environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biotransformation of lignan glycoside to its aglycone by Woodfordia fruticosa flowers: quantification of compounds using a validated HPTLC method.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2017-12-01

    Saraca asoca Linn. (Caesalpiniaceae) is an important traditional remedy for gynaecological disorders and it contains lyoniside, an aryl tetralin lignan glycoside. The aglycone of lyoniside, lyoniresinol possesses structural similarity to enterolignan precursors which are established phytoestrogens. This work illustrates biotransformation of lyoniside to lyoniresinol using Woodfordia fruticosa Kurz. (Lythraceae) flowers and simultaneous quantification of lyoniside and lyoniresinol using a validated HPTLC method. The aqueous extract prepared from S. asoca bark was fermented using W. fruticosa flowers. The substrate and fermented product both were simultaneously analyzed using solvent system:toluene:ethyl acetate:formic acid (4:3:0.4) at 254 nm. The method was validated for specificity, accuracy, precision, linearity, sensitivity and robustness as per ICH guidelines. The substrate showed the presence of lyoniside, however, it decreased as the fermentation proceeded. On 3rd day, lyoniresinol starts appearing in the medium. In 8 days duration most of the lyoniside converted to lyoniresinol. The developed method was specific for lyoniside and lyoniresinol. Lyoniside and lyoniresinol showed linearity in the range of 250-3000 and 500-2500 ng. The method was accurate as resulted in 99.84% and 99.83% recovery, respectively, for lyoniside and lyoniresinol. Aryl tetralin lignan glycoside, lyoniside was successfully transformed into lyoniresinol using W. fruticosa flowers and their contents were simultaneously analyzed using developed validated HPTLC method.

  4. Biotransformation of an africanane sesquiterpene by the fungus Mucor plumbeus.

    PubMed

    Fraga, Braulio M; Díaz, Carmen E; Amador, Leonardo J; Reina, Matías; López-Rodriguez, Matías; González-Coloma, Azucena

    2017-03-01

    Biotransformation of 8β-hydroxy-african-4(5)-en-3-one angelate by the fungus Mucor plumbeus afforded as main products 6α,8β-dihydroxy-african-4(5)-en-3-one 8β-angelate and 1α,8β-dihydroxy-african-4(5)-en-3-one 8β-angelate, which had been obtained, together with the substrate, from transformed root cultures of Bethencourtia hermosae. This fact shows that the enzyme system involved in these hydroxylations in both organisms, the fungus and the plant, acts with the same regio- and stereospecificity. In addition another twelve derivatives were isolated in the incubation of the substrate, which were identified as the (2'R,3'R)- and (2'S,3'S)-epoxy derivatives of the substrate and of the 6α- and 1α-hydroxy alcohols, the 8β-(2'R,3'R)- and 8β-(2'S,3'S)-epoxyangelate of 8β,15-dihydroxy-african-4(5)-en-3-one, the hydrolysis product of the substrate, and three isomers of 8β-hydroxy-african-4(5)-en-3-one 2ξ,3ξ-dihydroxy-2-methylbutanoate. The insect antifeedant effects of the pure compounds were tested against chewing and sucking insect species along with their selective cytotoxicity against insect (Sf9) and mammalian (CHO) cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii.

    PubMed

    Cruz-Uribe, Octavio; Rorrer, Gregory L

    2006-02-20

    Microplantlets of the marine red macroalga Portieria hornemannii efficiently removed the explosive compound 2,4,6-trinitrotoluene (TNT) from seawater. Photosynthetic, axenic microplantlets (1.2 g FW/L) were challenged with enriched seawater medium containing dissolved TNT at concentrations of 1.0, 10, and 50 mg/L. At 22 degrees C and initial TNT concentrations of 10 mg/L or less, TNT removal from seawater was 100% within 72 h, and the first-order rate constant for TNT removal ranged from 0.025 to 0.037 L/gFW h under both illuminated conditions (153 microE/m(2)s, 14:10 LD photoperiod) and dark conditions. Two immediate products of TNT biotransformation, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dintrotoluene, were identified in the liquid culture medium, with a maximum material balance recovery of 29 mole%. Only trace levels of these products and residual TNT were found within the fresh cell biomass. Removal of TNT by P. hornemannii microplantlets at initial concentrations of 1.0 or 10 mg/L did not affect the respiration rate. At an initial TNT concentration of 10 mg/L, net photosynthesis decreased towards zero, commensurate with the removal of dissolved TNT from seawater, whereas at an initial TNT concentration of 1.0 mg/L, the net photosynthesis rate was not affected. Copyright 2005 Wiley Periodicals, Inc.

  6. Acrylamide: a common food toxin related to physiological functions and health.

    PubMed

    Semla, M; Goc, Z; Martiniaková, M; Omelka, R; Formicki, G

    2017-05-04

    Acrylamide (AA) is a highly reactive organic compound capable of polymerization to form polyacrylamide, which is commonly used throughout a variety of industries. Given its toxic effect on humans and animals, the last 20 years have seen an increased interest in research devoted to the AA. One of the main sources of AA is food. AA appears in heated food following the reaction between amino acids and reduced sugars. Large concentrations of AA can be found in popular staples such as coffee, bread or potato products. An average daily consumption of AA is between 0.3-2.0 microg/kg b.w. Inhalation of acrylamide is related with occupational exposure. AA delivered with food is metabolized in the liver by cytochrome P450. AA biotransformation and elimination result in formation of toxic glycidamide (GA). Both, AA and GA can be involved in the coupling reaction with the reduced glutathione (GSH) forming glutathione conjugates which are excreted with urine. Biotransformation of AA leads to the disturbance in the redox balance. Numerous research proved that AA and GA have significant influence on physiological functions including signal propagation in peripheral nerves, enzymatic and hormonal regulation, functions of muscles, reproduction etc. In addition AA and GA show neurotoxic, genotoxic and cancerogenic properties. In 1994, International Agency for Research on Cancer (IARC) classified acrylamide as a potentially carcinogenic substance to human.

  7. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    PubMed

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  8. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout.

    PubMed

    Lahti, Marja; Brozinski, Jenny-Maria; Jylhä, Antti; Kronberg, Leif; Oikari, Aimo

    2011-06-01

    An urgent need exists to assess the exposure of fish to pharmaceuticals. The aim of the present study was to assess the uptake and metabolism of waterborne pharmaceuticals in rainbow trout (Oncorhynchus mykiss). A further objective was to determine the possibility of monitoring exposure to low levels of pharmaceuticals by bile assays. Rainbow trout were exposed for 10 d under flow-through conditions to mixtures of five pharmaceuticals (diclofenac, naproxen, ibuprofen, bisoprolol, and carbamazepine) at high and low concentrations. The low concentration was used to mimic the conditions prevailing in the vicinity of the discharge points of wastewater treatment plants. The uptake and the bioconcentration were determined by blood plasma and bile analyses. The average bioconcentration factor in plasma ranged from below 0.1 for bisoprolol to 4.9 for diclofenac, the values being approximately similar at low and high ambient concentrations. The biotransformation of diclofenac, naproxen, and ibuprofen was considered efficient, because several metabolites could be detected in concentrations clearly exceeding those of the unmetabolized compounds. The glucuronides were the dominant metabolites for all three pharmaceuticals. The total bioconcentration in the bile was two to four orders of magnitude higher than in the plasma. The results of this work show that the exposure of fish to pharmaceuticals in environmentally relevant concentrations may be monitored by blood plasma and bile analyses, the latter allowing detection at markedly lower ambient concentration. Copyright © 2011 SETAC.

  9. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3

    PubMed Central

    Devi, Prabha; Wahidullah, Solimabi; Sheikh, Farhan; Pereira, Rochelle; Narkhede, Niteen; Amonkar, Divya; Tilvi, Supriya; Meena, Ram Murthy

    2017-01-01

    Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo)-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC). Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a) reduction of its azo group by azoreductase enzyme (b) dimerization of the hydrazo compound followed by (c) degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water. PMID:28208715

  10. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  11. Pharmacokinetic interaction of diosmetin and silibinin with other drugs: Inhibition of CYP2C9-mediated biotransformation and displacement from serum albumin.

    PubMed

    Poór, Miklós; Boda, Gabriella; Mohos, Violetta; Kuzma, Mónika; Bálint, Mónika; Hetényi, Csaba; Bencsik, Tímea

    2018-06-01

    Diosmin and silibinin (SIL) are polyphenolic compounds which are the active components of several drugs and dietary supplements. After the oral administration of diosmin (flavonoid glycoside), only its aglycone diosmetin (DIO) reaches the systemic circulation. Both DIO and SIL form complexes with serum albumin and are able to inhibit several cytochrome P450 enzymes. Therefore, it is reasonable to hypothesize that these polyphenols may displace some drugs from serum albumin and inhibit their biotransformation, potentially leading to the disruption of drug therapy. In this study, the inhibitory action of DIO and SIL on CYP2C9-catalyzed metabolism of diclofenac to 4'-hydroxydiclofenac was examined, using warfarin as a positive control. Furthermore, interaction of DIO and SIL with human and bovine serum albumins as well as the displacement of warfarin from albumin by DIO and SIL were tested, employing steady-state fluorescence spectroscopy, fluorescence anisotropy, ultrafiltration, and molecular modeling. It is demonstrated that DIO and SIL are potent inhibitors of CYP2C9 enzyme and are able to displace the Site I ligand warfarin from human serum albumin. Because DIO and SIL may interfere with the pharmacokinetics of several drugs through both ways, we need to consider the potentially hazardous consequences of the consumption of diosmin or SIL together with other drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. A Mechanism-based 3D-QSAR Approach for Classification ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86

  13. Inter-laboratory comparison of xenobiotic clearance rates determined using cryopreserved trout hepatocytes for improving bioaccumulation predictions

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, bioaccumulation models can be improved using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have been used to measure the clearance rates of so...

  14. EFFECTS OF ANESTHESIA (MS222) ON LIVER BIOTRANSFORMATION IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    Tricaine methanesulfonate (3-aminobenzoic acid ethyl ester methanesulfonate; MS222) is a widely used fish anaesthetic. While there have been several studies addressing the impact of its use on subsequently measured biotransformation rates, the measured influence on normal functio...

  15. Inter-laboratory comparison of clearance rates of xenobiotics by cryopreserved trout hepatocytes for the prediction of bioaccumulation potential

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, improvements to bioaccumulation models can be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure ...

  16. Addressing species diversity in biotransformation: variability in expressed transcripts of hepatic biotransformation enzymes among fishes

    EPA Science Inventory

    There is increasing evidence that diverse xenobiotic metabolizing enzymes exist among fishes, potentially resulting in different chemical sensitivities and accumulation, but this has never been systematically evaluated. One concern is that model test species such as rainbow trou...

  17. Physiologically based modeling of hepatic and gastrointestinal biotransformation in fish

    EPA Science Inventory

    In fish, as in mammals, the liver generally viewed as the principal site of chemical biotransformation. For waterborne exposures, such as those conducted in support of standardized BCF testing, the effects of hepatic metabolism on chemical accumulation can be simulated using rela...

  18. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  19. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    PubMed

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A bibliometric analysis of research updates and tendencies on steroid biotransformation

    NASA Astrophysics Data System (ADS)

    Song, Zhaoyu

    2018-03-01

    Steroid biotransformation, as a powerful tool for generation of steroid active pharmaceutical ingredients and key intermediates, has received widespread attention with increasing market demand for steroid-based drugs. In our study, a bibliometric analysis of steroid biotransformation was performed to trace the research updates and tendencies from 1993 to 2016, based on the Science Citation Index Expanded (SCIE) database. Results showed a notable growth trend in publication outputs. Although the USA was the most productive country between 1993 and 2016, developing nations, including China and India, contributed the prominent growth in recent years (2005–2016). Steroids was the leading journal in this field, and the research outputs had notably increased in the field of ‘Chemistry’, ‘Pharmacology and Pharmacy’ and ‘Biotechnology and Applied Microbiology’. Finally, research focused mainly on the efficient production of novel steroid active pharmaceutical ingredients and key intermediates through steroid biotransformation. Furthermore, cytochrome P450 involved in the side-chain oxidation of sterols has gradually become a hotspot issue in recent years.

  1. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    PubMed

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  2. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes.

    PubMed

    Brakstad, Odd G; Nordtug, Trond; Throne-Holst, Mimmi

    2015-04-15

    During the Deepwater Horizon (DWH) accident in 2010 a dispersant (Corexit 9500) was applied at the wellhead to disperse the Macondo oil and reduce the formation of surface slicks. A subsurface plume of small oil droplets was generated near the leaking well at 900-1300 m depth. A novel laboratory system was established to investigate biodegradation of small droplet oil dispersions (10 μm or 30 μm droplet sizes) of the Macondo oil premixed with Corexit 9500, using coastal Norwegian seawater at a temperature similar to the DWH plume (4-5°C). Biotransformation of volatile and semivolatile hydrocarbons and oil compound groups was generally faster in the 10 μm than in the 30 μm dispersions, showing the importance of oil droplet size for biodegradation. These data therefore indicated that dispersant treatment to reduce the oil droplet size may increase the biodegradation rates of oil compounds in the deepwater oil droplets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Natural attenuation of chlorinated hydrocarbons in a freshwater wetland

    USGS Publications Warehouse

    Lora, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Alleman, Bruce C.; Leeson, Andrea

    1997-01-01

    Natural attenuation of chlorinated volatile organic compounds (VOC's) occurs as ground water discharges from a sand aquifer to a freshwater wetland at Aberdeen Proving Ground, Md. Field and laboratory results indicate that biotransformation in the anaerobic wetland sediments is an important attenuation process. Relatively high concentrations of the parent compounds trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA) and low or undetectable concentrations of daughter products were measured in the aquifer. In contrast, relatively high concentrations of the daughter products cis- and trans-1,2-dichloroethylene (12DCE); vinyl chloride (VC); 1,1,2-trichloroethane (112TCA); and 1,2-dichloroethane (12DCA) were measured in ground water in the wetland sediments, although total VOC concentrations decreased upward from about 1 mu mol/L (micromoles per liter) at the base of the wetland sediments to less than 0.2 near the surface. Microcosm experiments showed that 12DCE and VC are produced from anaerobic degradation of both TCE and PCA; PCA degradation also produced 112TCA and 12DCA.

  4. Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions.

    PubMed

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2016-10-01

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cleavage of beta,beta-carotene to flavor compounds by fungi.

    PubMed

    Zorn, H; Langhoff, S; Scheibner, M; Berger, R G

    2003-09-01

    More than 50 filamentous fungi and yeasts, known for de novo synthesis or biotransformation of mono-, sesqui-, tri-, or tetraterpenes, were screened for their ability to cleave beta,beta-carotene to flavor compounds. Ten strains discolored a beta,beta-carotene-containing growth agar, indicating efficient degradation of beta,beta-carotene. Dihydroactinidiolide was formed as the sole conversion product of beta,beta-carotene in submerged cultures of Ganoderma applanatum, Hypomyces odoratus, Kuehneromyces mutabilis, and Trametes suaveolens. When mycelium-free culture supernatants from five species were applied for the conversions, nearly complete degradation of beta,beta-carotene was observed after 12 h. Carotenoid-derived volatile products were detected in the media of Ischnoderma benzoinum, Marasmius scorodonius, and Trametes versicolor. beta-Ionone proved to be the main metabolite in each case, whereas beta-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone were formed in minor quantities. Using a photometric bleaching test, the beta,beta-carotene cleaving enzyme activities of M. scorodonius were partially characterized.

  6. Uptake and metabolism of cisplatin by rat kidney.

    PubMed

    Safirstein, R; Miller, P; Guttenplan, J B

    1984-05-01

    Cisplatin, an effective antineoplastic agent, is toxic to the kidney. Since the kidney's vulnerability to cisplatin may originate in its ability to accumulate and retain platinum to a greater degree than other organs, we studied the characteristics of the renal accumulation of platinum and investigated the nature of intracellular platinum. Cisplatin and ethylenediamminedichloroplatinum, nephrotoxic and antineoplastic liganded platinum compounds, were concentrated in rat renal cortical slices fivefold above medium concentration. Platinum uptake was energy- and temperature-dependent and could be inhibited by drugs which inhibit base transport. The organic anions para-aminohippurate and pyrazinoate did not reduce renal slice platinum uptake. Unbound platinum in the blood and urine was predominantly cisplatin but unbound platinum in kidney cytosol was not. This latter compound, in contrast to cisplatin, was not active as a mutagen. These studies suggest that the kidney accumulates platinum in part by transport or specific binding to the base transport system in the kidney and biotransforms it intracellularly. Unbound platinum in the cell is not cisplatin and may no longer be toxic.

  7. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH.

    PubMed

    Nielsen, Line Marie; Holm, Niels Bjerre; Leth-Petersen, Sebastian; Kristensen, Jesper Langgaard; Olsen, Lars; Linnet, Kristian

    2017-05-01

    The dimethoxyphenyl-N-((2-methoxyphenyl)methyl)ethanamine (NBOMe) compounds are potent serotonin 5-HT2A receptor agonists and have recently been subject to recreational use due to their hallucinogenic effects. Use of NBOMe compounds has been known since 2011, and several non-fatal and fatal intoxication cases have been reported in the scientific literature. The aim of this study was to determine the importance of the different cytochrome P450 enzymes (CYP) involved in the metabolism of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2methoxybenzyl)ethanamine (25I-NBOMe) and 2-[[2-(4-iodo-2,5dimethoxyphenyl)ethylamino]methyl]phenol (25I-NBOH) and to characterize the metabolites. The following approaches were used to identify the main enzymes involved in primary metabolism: incubation with a panel of CYP and monoamine oxidase (MAO) enzymes and incubation in pooled human liver microsomes (HLM) with and without specific CYP chemical inhibitors. The study was further substantiated by an evaluation of 25I-NBOMe and 25I-NBOH metabolism in single donor HLM. The metabolism pathways of 25I-NBOMe and 25I-NBOH were NADPHdependent with intrinsic clearance values of (CLint) of 70.1 and 118.7 mL/min/kg, respectively. The biotransformations included hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, and combinations thereof. The most abundant metabolites were all identified by retention time and spectrum matching with synthesized reference standards. The major CYP enzymes involved in the metabolism of 25I-NBOMe and 25INBOH were identified as CYP3A4 and CYP2D6, respectively. The compound 25I-NBOH was also liable to direct glucuronidation, which may diminish the impact of CYP2D6 genetic polymorphism. Users of 25I-NBOMe may be subject to drug-drug interactions (DDI) if 25I-NBOMe is taken with a strong CYP3A4 inhibitor. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    USGS Publications Warehouse

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine sites.

  9. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead.

    PubMed

    Blunt, Susanna M; Sackett, Joshua D; Rosen, Michael R; Benotti, Mark J; Trenholm, Rebecca A; Vanderford, Brett J; Hedlund, Brian P; Moser, Duane P

    2018-05-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine sites. Copyright © 2017. Published by Elsevier B.V.

  10. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.

    PubMed

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2010-05-01

    The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (k(biol)) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their k(biol) into very highly (k(biol)>5Lg(SS)(-1)d(-1)), highly (175%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation. Solids Retention Time (SRT(aerobic) >50d and <50d; SRT(anoxic) >20d and <20d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340d. Temperature (16-26 degrees C) only had a slight effect on the removal of CTL which increased in 4%.

  11. Critical Evaluation of a Human In Vitro Biotransformation Rate Database

    EPA Science Inventory

    Chemical biotransformation is critical information in the understanding of how a chemical may elicit health effects in humans or in the environment. Despite the fundamental value of these data, very relatively few measured in vivo data are available for humans compared to the tho...

  12. Engineering Issue Paper: Biotransformation Pathways of Dimethylarsinic (Cacodylic) Acid in the Environment

    EPA Science Inventory

    This EIP summarizes the state of the science regarding the biotransformation of DMA(V) and was developed from peer-reviewed literature, scientific documents, EPA reports, internet sources, input from experts in the field, and other pertinent sources. This EIP includes a review o...

  13. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  14. ANAEROBIC DDT BIOTRANSFORMATION: ENHANCEMENT BY APPLICATION OF SURFACTANTS AND LOW OXIDATION REDUCTION POTENTIAL

    EPA Science Inventory

    Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...

  15. In vitro to in vivo extrapolation of hepatic metabolism in fish: An inter-laboratory comparison of in vitro methods - presentation

    EPA Science Inventory

    Chemical biotransformation represents the largest source of uncertainty in chemical bioaccumulation assessments. Model-based estimates of chemical bioconcentration in fish may be greatly improved by including biotransformation rates, as measured in vitro. Substrate depletion assa...

  16. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  17. Mitochondrial biotransformation of ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids: A prodrug strategy for targeting cytoprotective antioxidants to mitochondria

    PubMed Central

    Roser, Kurt S.; Brookes, Paul S.; Wojtovich, Andrew P.; Olson, Leif P.; Shojaie, Jalil; Parton, Richard L.; Anders, M. W.

    2010-01-01

    Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial β-oxidation pathway could be exploited to deliver and biotransform the prodrugs ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3 -and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with ω-(2,6-dimethylphenoxy)alkanoic acids. 3- and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial β-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria. PMID:20129794

  18. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterization of Metabolites in the Biotransformation of 2,4,6-Trinitrotoluene with Anaerobic Sludge: Role of Triaminotoluene†

    PubMed Central

    Hawari, Jalal; Halasz, A.; Paquet, L.; Zhou, E.; Spencer, B.; Ampleman, G.; Thiboutot, S.

    1998-01-01

    The present study describes the biotransformation of 2,4,6-trinitrotoluene (TNT) (220 μM) by using anaerobic sludge (10%, vol/vol) supplemented with molasses (3.3 g/liter). Despite the disappearance of TNT in less than 15 h, roughly 0.1% of TNT was attributed to mineralization (14CO2). A combination of solid-phase microextraction–gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry identified two distinctive cycles in the degradation of TNT. One cycle was responsible for the stepwise reduction of TNT to eventually produce triaminotoluene (TAT) in relatively high yield (160 μM). The other cycle involved TAT and was responsible for the production of azo derivatives, e.g., 2,2′,4,4′-tetraamino-6,6′-azotoluene (2,2′,4,4′-TA-6,6′-azoT) and 2,2′,6,6′-tetraamino-4,4′-azotoluene (2,2′,6,6′-TA-4,4′-azoT) at pH 7.2. These azo compounds were also detected when TAT was treated with the anaerobic sludge but not with an autoclaved sludge, suggesting the biotic nature of their formation. When the anaerobic conditions in the TAT-containing culture medium were removed by aeration and/or acidification (pH 3), the corresponding phenolic compounds, e.g., hydroxy-diaminotoluenes and dihydroxy-aminotoluenes, were observed at room temperature. Trihydroxytoluene was detected only after heating TAT in water at 100°C. When 13CH3-labeled TNT was used as the N source in the above microcosms, we were unable to detect 13C-labeled p-cresol or [13CH3]toluene, indicating the absence of denitration or deamination in the biodegradation process. The formation and disappearance of TAT were not accompanied by mineralization, suggesting that TAT acted as a dead-end metabolite. PMID:9603835

  20. Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers.

    PubMed

    Qiang, Zhiyi; Ye, Zhong; Hauck, Cathy; Murphy, Patricia A; McCoy, Joe-Ann; Widrlechner, Mark P; Reddy, Manju B; Hendrich, Suzanne

    2011-10-11

    Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. To investigate the permeabilities of RA and UA as pure compounds and in Prunella vulgaris and Salvia officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. The permeabilities and phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. The apparent permeability coefficient (P(app)) for RA and RA in Prunella vulgaris extracts was 0.2 ± 0.05 × 10(-6)cm/s, significantly increased to 0.9 ± 0.2 × 10(-6)cm/s after β-glucuronidase/sulfatase treatment. P(app) for UA and UA in Salvia officinalis extract was 2.7 ± 0.3 × 10(-6)cm/s and 2.3 ± 0.5 × 10(-6)cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

Top