Qian, Peng; Zheng, Xiang-min; Zhou, Li-min
2013-05-01
Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.
Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui
2013-09-01
To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.
Modern dust aerosol availability in northwestern China.
Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng
2017-08-18
The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.
NASA Astrophysics Data System (ADS)
Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.
2015-12-01
Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.
NASA Technical Reports Server (NTRS)
Ginoux, Paul; Chin, M.; Torres, O.; Prospero, J.; Dubovik, O.; Holben, B.; Einaudi, Franco (Technical Monitor)
2000-01-01
It has long been recognized that Saharan desert is the major source for long range transport of mineral dust over the Atlantic. The contribution from other natural sources to the dust load over the Atlantic has generally been ignored in previous model studies or been replaced by anthropogenically disturbed soil emissions. Recently, Prospero et.at. have identified the major dust sources over the Earth using TOMS aerosol index. They showed that these sources correspond to dry lakes with layers of sediment deposed in the late Holocene or Pleistocene. One of the most active of these sources seem to be the Bodele depression. Chiapello et al. have analyzed the mineralogical composition of dust on the West coast of Africa. They found that Sahelian dust events are the most intense but are less frequent than Saharan plumes. This suggests that the Bodele depression could contribute significantly to the dust load over the Atlantic. The relative contribution of the Sahel and Sahara dust sources is of importance for marine biogeochemistry or atmospheric radiation, because each source has a distinct mineralogical composition. We present here a model study of the relative contributions of Sahara and Sahel sources to the atmospheric dust aerosols over the North Atlantic. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate dust distribution in 1996-1997. Dust particles are labeled depending on their sources. In this presentation, we will present the comparison between the model results and observations from ground based measurements (dust concentration, optical thickness and size distribution) and satellite data (TOMS aerosol index). The relative contribution of each source will then be analyzed spatially and temporally.
NASA Astrophysics Data System (ADS)
Schepanski, Kerstin; Heinold, Bernd; Tegen, Ina
2017-09-01
The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes.This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly activated during the second half of the day, when downdrafts associated with deep moist convection are the major atmospheric driver. Complementary to the satellite-based analysis on dust source activations and implications from their diurnal cycle, simulations on atmosphere and dust life cycle were performed using the mesoscale atmosphere-dust model system COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Fields from this simulation were analysed regarding the variability of the harmattan, the Saharan heat low, and the monsoon circulation as well as their impact on the variability of the Saharan dust outflow towards the North Atlantic. This study illustrates the complexity of the interaction among the three major circulation regimes and their modulation of the North African dust outflow. Enhanced westward dust fluxes frequently appear following a phase characterized by a deep SHL. Ultimately, findings from this study contribute to the quantification of the interannual variability of the atmospheric dust burden.
Constant Chinese Loess Plateau dust source since the Late Miocene
NASA Astrophysics Data System (ADS)
Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu
2017-04-01
The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.
Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun
2008-06-01
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.
NASA Astrophysics Data System (ADS)
Ogundele, Lasun T.; Olasinde, Roseline T.; Owoade, Oyediran K.; Olise, Felix S.
2018-05-01
This study presents the elemental compositions and concentrations of indoor dust and identifies the major sources in some selected indoor environments in Ile-Ife, Nigeria. The dust samples were collected from 16 indoor environments comprising offices, churches, residential and staff quarters using a cyclonic high power vacuum cleaner. The dust samples were analyzed for elemental concentrations using x-ray fluorescences. The data sets were analyzed for the possible sources and their contributions using Principal Component Factor Analysis (PCFA). The result showed that dust samples contained several elements: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Se, Zr, V, and Sc. The PCFA identified three factors with the percentage variance of 92, 77, 71 and 68%, for the office, church, residential, and staff quarters, respectively, for the combined elemental data of each of the site classes. The identified sources were track-in-soil, road and windblown soil dust, paint debris, household dust from personal care materials, cooking, and cleaning activities. The unintentional track-in-soil due to mobility of the occupants, structural materials, and outdoor air was the major sources contributing to the indoor dust.
Mineral dust transport in the Arctic modelled with FLEXPART
NASA Astrophysics Data System (ADS)
Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas
2016-04-01
Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the Arctic atmosphere is dominated by dust from Africa and Asia. However, in the lower atmosphere, local sources also contribute strongly to dust concentrations. Especially from Iceland, significant amounts of dust are mobilized. These local sources with relatively shallow transport of dust also affect the spatial distribution of dust deposition. For instance, model estimates show that in autumn and winter most of the deposited dust in Greenland originates from sources north of 60 degrees latitude.
Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Ginoux, P. A.
2015-12-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.
Bhattachan, Abinash; D'Odorico, Paolo
2014-01-01
The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts. PMID:25109703
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.
Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.
Dust loading of the normal atmosphere
NASA Astrophysics Data System (ADS)
Hall, F. F., Jr.
1983-01-01
Soil dust can contribute to atmospheric turbidity over most of the globe. The major sources of this dust are in the world's arid regions, where loadings of over 1000 micrograms/cu m can occur during strong winds. Saharan dust transported across the Atlantic can produce loadings up to 100 micrograms/cu m in the Western Hemisphere. Asian sources yield springtime loadings of 5-10 micrograms/cu m at Midway Island. Other important sources of dust are agricultural plowing and vehicular traffic on graded roads. The U.S. air quality standard of 75 micrograms/cu m is often exceeded in rural areas.
NASA Astrophysics Data System (ADS)
Reheis, Marith C.; Kihl, Rolf
1995-05-01
Dust samples collected annually for 5 years from 55 sites in southern Nevada and California provide the first regional source of information on modern rates of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of deposition) in southern Nevada and southeastern California ranges from 4.3 to 15.7 g/m2/yr, but in southwestern California the average silt and clay flux is as high as 30 g/m2/yr. The climatic factors that affect dust flux interact with each other and with the factors of source type (playas versus alluvium), source lithology, geographic area, and human disturbance. Average dust flux increases with mean annual temperature but is not correlated to decreases in mean annual precipitation because the regional winds bring dust to relatively wet areas. In contrast, annual dust flux mostly reflects changes in annual precipitation (relative drought) rather than temperature. Although playa and alluvial sources produce about the same amount of dust per unit area, the total volume of dust from the more extensive alluvial sources is much larger. In addition, playa and alluvial sources respond differently to annual changes in precipitation. Most playas produce dust that is richer in soluble salts and carbonate than that from alluvial sources (except carbonate-rich alluvium). Gypsum dust may be produced by the interaction of carbonate dust and anthropogenic or marine sulfates. The dust flux in an arid urbanizing area may be as much as twice that before disturbance but decreases when construction stops. The mineralogic and major-oxide composition of the dust samples indicates that sand and some silt is locally derived and deposited, whereas clay and some silt from different sources can be far-traveled. Dust deposited in the Transverse Ranges of California by the Santa Ana winds appears to be mainly derived from sources to the north and east.
Identifying sources of aeolian mineral dust: Present and past
Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E
2014-01-01
Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in glacial periods are likely due to greater production of glaciogenic dust particles from expanded ice sheets and mountain glaciers, but could also include dust inputs from exposed continental and insular shelves now submerged. Future dust sources are difficult to assess, but will likely differ from those of the present because of global warming. Global warming could bring about shifts in dust sources by changes in degree or type of vegetation cover, changes in wind strength, and increases or decreases in the size of water bodies. A major uncertainty in assessing dust sources of the future is related to changes inhuman land use, which could affect land surface cover, particularly due to increased agricultural endeavors and water usage.
Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos
NASA Astrophysics Data System (ADS)
Jin, C.; Ponti, G.; Haberl, F.; Smith, R.
2017-10-01
Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.
BIOAVAILABILITY OF PBDES IN MALE RATS FROM ORALLY ADMINISTERED HOUSEHOLD DUST
Recently, household dust has been implicated as a major source of polybrominated diphenyl ether (PBDE) exposure in humans. This finding has very important implications especially for young children, who are thought to ingest more dust than adults, and may be more susceptible t...
Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust.
Murakami, Michio; Nakajima, Fumiyuki; Furumai, Hiroaki
2005-11-01
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.
Geochemical characterization of critical dust source regions in the American West
NASA Astrophysics Data System (ADS)
Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles
2017-10-01
The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased dust generation and deposition caused by higher drought frequency and human activity.
Estimation of Dust Emission from the Western Coastal Plains of Arabian Peninsula
NASA Astrophysics Data System (ADS)
Anisimov, Anatolii; Stenchikov, Georgiy
2016-04-01
This study is aimed at quantifying local-scale dust emission from the coastal areas of western Arabian Peninsula. The dust emitted from these areas is frequently deposited directly to the Red Sea, acting as an important component of the nutrient balance of marine ecosystems. Most chemicals including iron, phosphorus, and nitrogen are introduced to the Red Sea with airborne dust. This process is especially significant for the oligotrophic northern Red Sea, where nutrients from the Indian Ocean cannot reach and the nutrient supply from land river discharge is negligible. The dust deposition to the Red Sea associated with major dust storms was recently estimated to be about 6 Tg/yr, but this estimate does not account for local, small-scale dust outbreaks occurring during fair weather conditions or moderate winds. The seasonality and the magnitude of this nutrient supply are largely unknown. In the present study, we quantify dust emissions using the fine-scale off-line version-4 of the Community Land Model (CLM4) with the high-resolution datasets as input parameters. We examine the model sensitivity to the spatial resolution of input land cover and vegetation data, and compare the results with weather station observations and reanalysis to choose the best model configuration. The model results are shown to be in reasonable agreement with station visibility measurements and the frequency of dust event reports. To improve the spatial characteristics of dust emission, we apply two state-of-the-art dust source functions. We found that the source function based on measurements from SEVIRI satellite substantially improves the simulation results, being in good agreement with both reanalysis data and station measurements. We identify the major dust source hot-spot areas over the coastal plain and analyze the seasonal and diurnal variability of dust emissions. The annual dust generation from the 145000 km2 coastal area reaches 6 Tg/yr. Roughly half of emitted dust could be deposited to the Red Sea, which is comparable to the deposition from major dust events. A substantial part of this dust is generated in the northern coastal plain and is predominantly deposited to the northern Red Sea, providing essentially the sole supply of nutrients to the oceanic ecosystems.
Recently, household dust has been implicated as a major source of polybrominated diphenyl ether (PBDE) exposure in humans. This finding may have important implications for young children, who are thought to ingest more dust than adults and may be more susceptible to some of the ...
Improving the simulation of convective dust storms in regional-to-global models
Convective dust storms have significant impacts on atmospheric conditions and air quality and are a major source of dust uplift in summertime. However, regional-to-global models generally do not accurately simulate these storms, a limitation that can be attributed to (1) using a ...
Mining cosmic dust from the blue ice lakes of Greenland
NASA Technical Reports Server (NTRS)
Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.
1985-01-01
Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.
Impact of Asian Dust on Climate and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin
2010-01-01
Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.
Household dust has been implicated as a major source of polybrominated diphenyl ether (PBDE) exposure in humans. This finding has important implications for young children, who tend to ingest more dust than adults and may be more susceptible to some of the putative developmental...
NASA Astrophysics Data System (ADS)
Gelado-Caballero, MaríA. D.; López-GarcíA, Patricia; Prieto, Sandra; Patey, Matthew D.; Collado, Cayetano; HéRnáNdez-Brito, José J.
2012-02-01
There are very few sets of long-term measurements of aerosol concentrations over the North Atlantic Ocean, yet such data is invaluable in quantifying atmospheric dust inputs to this ocean region. We present an 8-year record of total suspended particles (TSP) collected at three stations on Gran Canaria Island, Spain (Taliarte at sea level, Tafira 269 m above sea level (a.s.l.) and Pico de la Gorra 1930 m a.s.l.). Using wet and dry deposition measurements, the mean dust flux was calculated at 42.3 mg m-2 d-1. Air mass back trajectories (HYSPLIT, NOAA) suggested that the Sahara desert is the major source of African dust (dominant during 32-50% of days), while the Sahel desert was the major source only 2-10% of the time (maximum in summer). Elemental composition ratios of African samples indicate that, despite the homogeneity of the dust in collected samples, some signatures of the bedrocks can still be detected. Differences were found for the Sahel, Central Sahara and North of Sahara regions in Ti/Al, Mg/Al and Ca/Al ratios, respectively. Elements often associated with pollution (Pb, Cd, Ni, Zn) appeared to share a common origin, while Cu may have a predominantly local source, as suggested by a decrease in the enrichment factor (EF) of Cu during dust events. The inter-annual variability of dust concentrations is investigated in this work. During winter, African dust concentration measurements at the Pico de la Gorra station were found to correlate with the North Atlantic Oscillation (NAO) index.
Coupled European and Greenland last glacial dust activity driven by North Atlantic climate
Stevens, Thomas; Molnár, Mihály; Demény, Attila; Lambert, Fabrice; Varga, György; Páll-Gergely, Barna; Buylaert, Jan-Pieter; Kovács, János
2017-01-01
Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust−climate interaction. Here, we present the most detailed and precise age model for European loess dust deposits to date, based on 125 accelerator mass spectrometry 14C ages from Dunaszekcső, Hungary. The record shows that variations in glacial dust deposition variability on centennial–millennial timescales in east central Europe and Greenland were synchronous within uncertainty. We suggest that precipitation and atmospheric circulation changes were likely the major influences on European glacial dust activity and propose that European dust emissions were modulated by dominant phases of the North Atlantic Oscillation, which had a major influence on vegetation and local climate of European dust source regions. PMID:29180406
Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.
Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P
2016-03-01
The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites.
NASA Astrophysics Data System (ADS)
Orhan, Hükmü
1992-04-01
The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.
Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Siyu; Zhao, Chun; Qian, Yun
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust massmore » balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.« less
Characterizing Mineral Dust from the Arabian Coast of the Red Sea
NASA Astrophysics Data System (ADS)
Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.
2014-12-01
The Arabian Peninsula is one of the Earth's major sources of atmospheric dust. Along with profound negative effects on human activity and natural processes in this region, dust is an important nutrient source for the oligothrophic northern Red Sea. From preliminary observations it is estimated that some 18-20 major dust storms per year deposit about 6 Mt of mineral dust into the Red Sea. To better understand the optical properties, health, and ecological impacts of dust, we study the mineralogical, chemical and morphological properties of surface soil samples collected at prevbiously identified potential dust sources along the Arabian coast of the Red Sea. Many of these dust sources lie within a narrow coastal region and because of their proximity to the Red Sea, are important contributors to the dust/nutrient balance, during both dusty and fair weather conditions. Bulk samples were collected from the top 10 mm of soils from three sites along the Arabian coast of the Red Sea. The soil samples were sieved to separate the < 38μm particle fractions for chemical and mineralogical analysis. X-ray diffractometry (XRD) was applied to measure the mineral content of the dust. The chemical composition of individual particles was analyzed using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). From the XRD analysis of the sieved samples from An Masayat (23.3322 N, 38.9481 E), Buthna (23.2960 N, 38.9384 E) and Rabugh pipeline Road (23.292 N, 38.91 E), it was found that the dust was composed largely of hematite, goethite, calcite, dolomite, quartz, chlorite, muscovite, amphibole, epidote and plagioclase. Our results are being compared to, and show similarities to those of Engelbrecht et al. , collected at 15 Middle East sites. Both the mineralogical content and chemical composition of samples bear the signatures of the regional geology. Engelbrecht, J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 2: Grab samples and re-suspensions: Inhalation Toxicology, v. 21, p. 327-336.
Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin
Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard L.; Goldstein, Harland L.; Lin, J.
2015-01-01
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP.
Composition and source apportionment of dust fall around a natural lake.
Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris
2015-07-01
The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). Copyright © 2015. Published by Elsevier B.V.
Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh
2012-08-15
50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.
Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.
NASA Astrophysics Data System (ADS)
Hahnenberger, Maura; Nicoll, Kathleen
2014-01-01
This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern Great Basin negatively impact air quality and transportation in the populated regions of Utah; this study details an improved forecasting protocol for dust storm events that will benefit transportation planning and improve public health.
NASA Astrophysics Data System (ADS)
Aarons, Sarah M.; Aciego, Sarah M.; Arendt, Carli A.; Blakowski, Molly A.; Steigmeyer, August; Gabrielli, Paolo; Sierra-Hernández, M. Roxana; Beaudon, Emilie; Delmonte, Barbara; Baccolo, Giovanni; May, Nathaniel W.; Pratt, Kerri A.
2017-04-01
Mineral dust is transported in the atmosphere and deposited in oceans, ice sheets and the terrestrial biosphere. Temporal changes in locations of dust source areas and transport pathways have implications for global climate and biogeochemical cycles. The chemical and physical characterization of the dust record preserved in ice cores is useful for identifying of dust source regions, dust transport, dominant wind direction and storm trajectories. Here, we present a 50,000-year geochemical characterization of mineral dust entrapped in a horizontal ice core from the Taylor Glacier in East Antarctica. Strontium (Sr) and neodymium (Nd) isotopes, grain size distribution, trace and rare earth element (REE) concentrations, and inorganic ion (Cl- and Na+) concentrations were measured in 38 samples, corresponding to a time interval from 46 kyr before present (BP) to present. The Sr and Nd isotope compositions of insoluble dust in the Taylor Glacier ice shows distinct changes between the Last Glacial Period (LGP in this study ranging from ∼46.7-15.3 kyr BP) the early Holocene (in this study ranging from ∼14.5-8.7 kyr BP), and zero-age samples. The 87Sr/86Sr isotopic composition of dust in the Taylor Glacier ice ranged from 0.708 to 0.711 during the LGP, while the variability during the early Holocene is higher ranging from 0.707 to 0.714. The εNd composition ranges from 0.1 to -3.9 during the LGP, and is more variable from 1.9 to -8.2 during the early Holocene. The increased isotopic variability during the early Holocene suggests a shift in dust provenance coinciding with the major climate transition from the LGP to the Holocene. The isotopic composition and multiple physical and chemical constraints support previous work attributing Southern South America (SSA) as the main dust source to East Antarctica during the LGP, and a combination of both local Ross Sea Sector dust sources and SSA after the transition into the Holocene. This study provides the first high time resolution data showing variations in dust provenance to East Antarctic ice during a major climate regime shift, and we provide evidence of changes in the atmospheric transport pathways of dust following the last deglaciation.
Low latitude ice core evidence for dust deposition on high altitude glaciers
NASA Astrophysics Data System (ADS)
Gabrielli, P.; Thompson, L. G.
2017-12-01
Polar ice cores from Antarctica and Greenland have provided a wealth of information on dust emission, transport and deposition over glacial to interglacial timescales. These ice cores mainly entrap dust transported long distances from source areas such as Asia for Greenland and South America for Antarctica. Thus, these dust records provide paleo-information about the environmental conditions at the source and the strength/pathways of atmospheric circulation at continental scales. Ice cores have also been extracted from high altitude glaciers in the mid- and low-latitudes and provide dust records generally extending back several centuries and in a few cases back to the last glacial period. For these glaciers the potential sources of dust emission include areas that are close or adjacent to the drilling site which facilitates the potential for a strong imprinting of local dust in the records. In addition, only a few high altitude glaciers allow the reconstruction of past snow accumulation and hence the expression of the dust records in terms of fluxes. Due to their extreme elevation, a few of these high altitude ice cores offer dust histories with the potential to record environmental conditions at remote sources. Dust records (in terms of dust concentration/size, crustal trace elements and terrigenous cations) from Africa, the European Alps, South America and the Himalayas are examined over the last millennium. The interplay of the seasonal atmospheric circulation (e.g. westerlies, monsoons and vertical convection) is shown to play a major role in determining the intensity and origin of dust fallout to the high altitude glaciers around the world.
Trans boundary transport of pollutants by atmospheric mineral dust.
Erel, Yigal; Dayan, Uri; Rabi, Reut; Rudich, Yinon; Stein, Mordechai
2006-05-01
The transport of anthropogenic pollution by desert dust in the Eastern Mediterranean region was studied by analyzing major and trace element composition, organic species, and Pb isotope ratios in suspended dust samples collected in Jerusalem, Israel. Dust storms in this region are associated with four distinct synoptic conditions (Red Sea Trough (RS), Eastern High (EH), Sharav Cyclone (SC), and Cold Depression (Cyprus low, CD)) that carry dust mostly from North African (SC, CD, EH) and Arabian and Syrian (RS, EH) deserts. Substantial contamination of dust particles by Pb, Cu, Zn, and Ni is observed, while other elements (Na, Ca, Mg, Mn, Sr, Rb, REE, U, and Th) display natural concentrations. Sequential extraction of the abovementioned elements from the dust samples shows that the carbonate and sorbed fractions contain most of the pollution, yet the Al-silicate fraction is also contaminated, implying that soils and sediments in the source terrains of the dust are already polluted. We identified the pollutant sources by using Pb isotopes. It appears that before the beginning of the dust storm, the pollutants in the collected samples are dominated by local sources but with the arrival of dust from North Africa, the proportion of foreign pollutants increases. Organic pollutants exhibit behavior similar and complementary to that of the inorganic tracers, attesting to the importance of anthropogenic-pollutant addition en route of the dust from its remote sources. Pollution of suspended dust is observed under all synoptic conditions, yet it appears that easterly winds carry higher proportions of local pollution and westerly winds carry pollution emitted in the Cairo basin. Therefore, pollution transport by mineral dust should be accounted for in environmental models and in assessing the health-related effects of mineral dust.
NASA Astrophysics Data System (ADS)
Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.
2013-12-01
This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher frequency of dust deposition events on Mt. Elbrus was registered in 2007-2010 due to the prolonged drought in the Middle East resulting in a more frequent activation of dust sources, including agricultural fields abandoned because of the draught.
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal
2017-08-01
Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust loads originate from central and west Sahara and to a lesser extent from north Sahara. Low dust loads characterize the summer with limited compositional variability relative to winter-spring months. Summer dust is generally characterized by high K/Al (L1) ratios relative to late winter and spring. It is also relatively high in anthropogenic trace elements in the L0 and L1 fractions (e.g., Zn/Al, Pb/Al, Cr/Al, Ni/Al and V/Al), whereby back trajectories indicate the source of these components is primarily from south and east Europe. The total load (ng m-3) of anthropogenic trace elements however, remains higher during winter and spring, stemming from the overall significantly higher dust loads characterizing this time window. The temporal load patterns of important micronutrients such as Fe, Cd, Zn, Cu, Ni and others in the bio-available phases (L0, L1) are not correlated with major nutrients or Chlorophyll-a sea surface concentrations, suggesting that the atmospheric dust plays a limited role in driving primary productivity in the oligotrophic surface waters of the Gulf of Aqaba. On a wider scale, the results provide unique chemical fingerprinting of Sahara-Arabian dust that can be applied to reconstruct past trends in dust loads recorded in deep-sea cores and other geological archives from this and other regions.
NASA Technical Reports Server (NTRS)
Lee, Y. C.; Wenig, Mark; Zhang, Zhenxi; Sugimoto, Nobuo; Larko, Dave; Diehl, Thomas
2012-01-01
The study presented in this paper analyses two dust episodes in Hong Kong, one occurring in March 2006 and the other on 22 March 2010. The latter is the worst dust episode on Hong Kong record. The focus is on the relationship between the dust episodes and the Sharav/Mongolian cyclones and jet streams. The 16 March 2006 episode is traceable to a continental-scale Saharan dust outbreak of 5-9 March 2006 caused by the cold front of an East Mediterranean Sharav cyclone arriving at north-west Africa on 5 March 2006. The eastward movement of the cyclone along the North African coast is clearly illustrated in the geopotential height contours. Simulations by the chemistry transport model GOCART provide a visible evidence of the transport as well as an estimate of contributions from the Sahara to the aerosol concentration levels in Hong Kong. The transport simulations suggest that the dust is injected to the polar jet north of the Caspian Sea, while it is transported eastward simultaneously by the more southerly subtropical jet. The major source of dust for Hong Kong is usually the Gobi desert. Despite the effect of remote sources, the 16 March 2006 dust episode was still mainly under the influence of the Mongolian cyclone cold fronts. In the recent episode of 22 March 2010, the influence of the Mongolian cyclone predominated as well. It appears that the concurrent influence of the Sharav and Mongolian cyclones on Hong Kong and East Asia is not a common occurrence. Besides transporting dusts from non-East Asian sources to Hong Kong and East Asia, the strong subtropical jet on 21 March 2010 (i.e. 1 day prior to the major dust episode) is believed to have strengthened an easterly monsoon surge to South China causing the transport of voluminous dusts to Taiwan and Hong Kong the following day.
NASA Astrophysics Data System (ADS)
Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.
2017-12-01
Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
NASA Astrophysics Data System (ADS)
Qian, J.; He, Q.
2014-12-01
This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang, Meishan and Ziyang, industry sources had a relatively high contribution ratio to the PM2.5 pollution, accounting for about 35%, 33%, 38% and 24% respectively.
NASA Astrophysics Data System (ADS)
Vilain, J.
Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.
NASA Astrophysics Data System (ADS)
Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc
2016-04-01
Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow from Sahara.
NASA Astrophysics Data System (ADS)
Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.
2015-11-01
Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.
General Circulation Model Simulations of the Annual Cycle of Martian Climate
NASA Astrophysics Data System (ADS)
Wilson, R.; Richardson, M.; Rodin, A.
Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.
Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India.
Gupta, Indrani; Salunkhe, Abhaysinh; Kumar, Rakesh
2012-01-01
Particulate Matter (PM(10)) has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF), PCA-APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM(10) contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%), traffic (20%), coal fired boiler (17%), nitrate (15%). Residential area of Khar showed sources such as residual oil combustion and construction (25%), motor vehicles (23%), marine aerosol and nitrate (19%), paved road dust (18%) compared to construction and natural dust (27%), motor vehicles and smelting work (25%), nitrate (16%) and biomass burning and paved road dust (15%) in Dharavi, a low income slum residential area. The major contributors of PM(10) at Colaba were marine aerosol, wood burning and ammonium sulphate (24%), motor vehicles and smelting work (22%), Natural soil (19%), nitrate and oil burning (18%).
NASA Astrophysics Data System (ADS)
Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja
2017-09-01
The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.
Dust Storm over the Middle East: Retrieval Approach, Source Identification, and Trend Analysis
NASA Astrophysics Data System (ADS)
Moridnejad, A.; Karimi, N.; Ariya, P. A.
2014-12-01
The Middle East region has been considered to be responsible for approximately 25% of the Earth's global emissions of dust particles. By developing Middle East Dust Index (MEDI) and applying to 70 dust storms characterized on MODIS images and occurred during the period between 2001 and 2012, we herein present a new high resolution mapping of major atmospheric dust source points participating in this region. To assist environmental managers and decision maker in taking proper and prioritized measures, we then categorize identified sources in terms of intensity based on extracted indices for Deep Blue algorithm and also utilize frequency of occurrence approach to find the sensitive sources. In next step, by implementing the spectral mixture analysis on the Landsat TM images (1984 and 2012), a novel desertification map will be presented. The aim is to understand how human perturbations and land-use change have influenced the dust storm points in the region. Preliminary results of this study indicate for the first time that c.a., 39 % of all detected source points are located in this newly anthropogenically desertified area. A large number of low frequency sources are located within or close to the newly desertified areas. These severely desertified regions require immediate concern at a global scale. During next 6 months, further research will be performed to confirm these preliminary results.
Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J
2014-01-01
Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.
Interactions Between Mineral Dust, Climate, and Ocean Ecosystems
NASA Technical Reports Server (NTRS)
Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.
2010-01-01
Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.
NASA Astrophysics Data System (ADS)
Sheel, Varun; Haider, S. A.
2016-08-01
Dust optical depths (τ) for nine Martian years (MY24-MY32) in the subtropical region (25-35°S) have been used to classify distinct dust scenarios. These data are based on observations at 9.3 µm from the Mars Global Surveyor and Mars Odyssey missions and encompass the regional dust storms which occur every year around solar longitude (Ls) ~ 220° and the two major dust storms of MY25 and MY28. Constrained by these observations and the Mars Climate Sounder observations of detached dust layers, we estimate altitude profiles of dust concentrations. We discuss the characteristics of dust aerosol particles of different size between 0.2 and 3.0 µm by assuming a modified gamma distribution. We then use a comprehensive ion-dust model to calculate ion densities and conductivities in the lower ionosphere of Mars in the absence of dust storm at τ = 0.1 and Ls = 150° and for three dust storm periods viz., (1) major dust storm at τ = 1.7 and Ls = 210°, (2) major dust storm at τ = 1.2 and Ls = 280°, and (3) regional dust storm at τ = 0.5 and Ls = 220°. The model with 12 neutral species considers galactic cosmic rays as a source of ionization. Results show that the density of the dominant hydrated cluster ions and the electrical conductivity are reduced by an order of magnitude near the surface for a few months until the dust storm settles down to its normal condition.
Zha, Yan; Zhang, Yin L; Tang, Jie; Sun, Kai
2018-05-12
The present study was carried out to assess and understand the potential health risk, level of contamination, composition pattern, and sources of urban foliar dust in Nanjing City with respect to polycyclic aromatic hydrocarbons (PAHs). Five urban functional areas of foliar dust were analysed and the contents of 16 priority PAHs were determined. Total PAH concentrations in foliar dust ranged from 1.77 to 19.02 μg·g -1 , with an average value of 6.98 μg·g -1 . The PAH pattern was dominated by four and five-ring PAHs (contributing > 38% of total PAHs) in all of the five functional areas. The results indicated that the combustion of fossil fuel, coal, and biomass, as well as vehicle traffic emissions were the major sources of PAHs. The estimated incremental lifetime cancer risk due to PAHs in foliar dust were 8.19 × 10 -6 , 6.63 × 10 -6 , and 9.65 × 10 -6 for childhood, adolescence and adulthood, respectively, indicating a high risk of cancer from exposure to foliar dust in Nanjing. Our results indicated that foliar dust might be a useful indicator of atmospheric PAH pollution.
COMPARATIVE ORAL BIOAVAILABILITY OF PBDES FROM DUST AND OIL IN MALE RATS
Recently, indoor dust has been implicated as a major source of polybrominated diphenyl ether (PBDE) exposure in humans and may account for an estimated 60% of the daily intake on average (Jones-Otazo et al. 2005). For children an even larger percentage of daily exposure is estim...
MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications
NASA Technical Reports Server (NTRS)
Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail
2012-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.
NASA Astrophysics Data System (ADS)
de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander
2008-12-01
During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.
NASA Astrophysics Data System (ADS)
Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman
2018-01-01
Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.
NASA Astrophysics Data System (ADS)
Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan
2017-04-01
Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants sources, and using a soil properties database is able to model Dust emissions (Laurent B. et al., JGR, 2005). Satellite products are available to evaluate and improve our simulations, as for example the AOD and Angstrom coefficient from the MODIS instrument. Mineral dust pollution represents one of the most important sources of atmospheric pollutant over Chinese territories, but dust emissions and transport present important seasonal variabilities. To evaluate impacts of dust pollutants on inhabited areas' pollutions, we compute dust emissions (Marticorena and Bergametti, JGR, 1995) and transport. Using MODIS instrument information over dust source regions, we control that AOD amplitudes and temporal variations simulated with CHIMERE correspond. We attempt to quantify the impact of mineral dust pollution each month over several urbanized areas using multi-annual simulations (2011, 2013, and 2015). We also investigate the impact of heavy dust events within inhabited areas' pollution. This work is also part of the French funded project "Pollution in Eastern Asia: towards better air quality prevision and impacts' evaluation".
NASA Astrophysics Data System (ADS)
Duvall, R. M.; Norris, G. A.; Willis, R. D.; Turner, J. R.; Kaleel, R.; Sweitzer, T.; Preston, B.; Hays, M. D.
2009-04-01
St. Louis is currently in nonattainment of the annual PM2.5 National Ambient Air Quality Standard (NAAQS). Granite City Steel Works (GSCW), located in Granite City, IL is considered to be a significant source impacting the St. Louis area and the largest PM2.5 point source contributor. Twelve grab samples were collected in and around the steel facility including the basic oxygen furnace, steel and iron slag crushing, coal pulverizing, baghouse dust, paved road dust, and unpaved road dust. The bulk samples were resuspended in a resuspension chamber using a PM2.5 cutpoint and collected on Teflon, quartz and polycarbonate filters. Fine particulate matter (PM) samples (12-hr and 24-hr) were collected upwind and downwind of GSCW from October 13 to December 13, 2007 to identify sources contributing to nonattainment in St. Louis. The samples were analyzed for trace metals (X-Ray Fluorescence), ions (Ion Chromatography), elemental and organic carbon (thermal optical analysis), and organic species (solvent extraction Gas Chromatography/Mass Spectrometry). Source apportionment was conducted using the EPA Chemical Mass Balance (CMB) Model (v 8.2). Major sources impacting the 12-hr samples included the blast oxygen furnace, secondary sulfate, and road dust. Higher excess steel and coke works contributions were associated with higher wind speeds (greater than 5 mph) and more variability in source impacts was observed. Major sources impacting the 24-hr samples included secondary sulfate and motor vehicles (diesel and gasoline). Contributions were similar between the coke and steel works sources. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
NASA Astrophysics Data System (ADS)
Goodman, M.; Carling, G. T.; Fernandez, D. P.; Rey, K.; Hale, C. A.; Nelson, S.; Hahnenberger, M.
2017-12-01
Desert playas are important dust sources globally, with potential harmful health impacts for nearby urban areas. The Wasatch Front (population >2 million) in western Utah, USA, is located directly downwind of several playas that contribute to poor air quality on dust event days. Additionally, the exposed lakebed of nearby Great Salt Lake is a growing dust source as water levels drop in response to drought and river diversions. To investigate contributions of playa dust to the Wasatch Front, we sampled dust emissions from the exposed lakebed of Great Salt Lake and seven playas in western Utah, including Sevier Dry Lake, and dust deposition at four locations stretching 160 km from south to north along the Wasatch Front, including Provo, Salt Lake City, Ogden, and Logan. The samples were analyzed for mineralogy, bulk chemistry, and 87Sr/86Sr ratios for source apportionment. The mineralogy of playa dust and Wasatch Front dust samples was dominated by quartz, feldspar, chlorite and calcite. Bulk geochemical composition was similar for all playa dust sources, with higher anthropogenic metal concentrations in the Wasatch Front. Strontium isotope (87Sr/86Sr) ratios in the carbonate fraction of the dust samples were variable in the playa dust sources, ranging from 0.7105 in Sevier Dry Lake to 0.7150 in Great Salt Lake, providing a powerful tool for apportioning dust. Based on 87Sr/86Sr mixing models, Great Salt Lake contributed 0% of the dust flux at Provo, 20% of the dust flux at Salt Lake City, and 40% of the dust flux at Ogden and Logan during Fall 2015. Contrastingly, Great Salt Lake dust was less important in Spring of 2016, contributing 0% of the dust flux at Provo and <10% of the dust flux to Salt Lake City and Logan. Two major dust events that occurred on 3 November 2015 and 23 April 2016 had similar wind and climate conditions as understood by HYSPLIT backward trajectories, meaning that seasonal variability in dust emissions is due to playa surface conditions rather than meteorologic conditions. Further sampling and analysis are needed to understand and quantify patterns in seasonal changes in dust emissions and deposition. These findings suggest that 87Sr/86Sr ratios of the carbonate fraction in dust may be useful for evaluating dust emissions from carbonate-rich playas around the world.
Emerging ecological datasets with application for modeling North American dust emissions
NASA Astrophysics Data System (ADS)
McCord, S.; Stauffer, N. G.; Garman, S.; Webb, N.
2017-12-01
In 2011 the US Bureau of Land Management (BLM) established the Assessment, Inventory and Monitoring (AIM) program to monitor the condition of BLM land and to provide data to support evidence-based management of multi-use public lands. The monitoring program shares core data collection methods with the Natural Resources Conservation Service's (NRCS) National Resources Inventory (NRI), implemented on private lands nationally. Combined, the two programs have sampled >30,000 locations since 2003 to provide vegetation composition, vegetation canopy height, the size distribution of inter-canopy gaps, soil texture and crusting information on rangelands and pasture lands across North America. The BLM implements AIM on more than 247.3 million acres of land across the western US, encompassing major dust source regions of the Chihuahuan, Sonoran, Mojave and Great Basin deserts, the Colorado Plateau, and potential high-latitude dust sources in Alaska. The AIM data are publicly available and can be used to support modeling of land surface and boundary-layer processes, including dust emission. While understanding US dust source regions and emission processes has been of national interest since the 1930s Dust Bowl, most attention has been directed to the croplands of the Great Plains and emission hot spots like Owens Lake, California. The magnitude, spatial extent and temporal dynamics of dust emissions from western dust source areas remain highly uncertain. Here, we use ensemble modeling with empirical and physically-based dust emission schemes applied to AIM monitoring data to assess regional-scale patterns of aeolian sediment mass fluxes and dust emissions. The analysis enables connections to be made between dust emission rates at source and other indicators of ecosystem function at the landscape scale. Emerging ecological datasets like AIM provide new opportunities to evaluate aeolian sediment transport responses to land surface conditions, potential interactions with disturbances (e.g., fire) and ecological change (e.g., invasive species), and the impacts of anthropogenic land use and land cover change.
Muhs, D.R.; Budahn, J.; Skipp, G.; Prospero, J.M.; Patterson, D.; Bettis, E. Arthur
2010-01-01
Africa is the most important source of dust in the world today, and dust storms are frequent on the nearby Canary Islands. Previous workers have inferred that the Sahara is the most important source of dust to Canary Islands soils, with little contribution from the Sahel region. Soils overlying a late Quaternary basalt flow on Lanzarote, Canary Islands, contain, in addition to volcanic minerals, quartz and mica, exotic to the island's bedrock. Kaolinite in the soils also likely has an exotic origin. Trace-element geochemistry shows that the soils are derived from varying proportions of locally derived basalt and African dust. Major-element geochemistry, clay mineralogy and interpretation of satellite imagery suggest that dust additions to the Canary Islands come not only from the Sahara Desert, but also from the Sahel region. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.
Aeolian transport of Icelandic dust: a look from Space
NASA Astrophysics Data System (ADS)
Smejda, Ladislav; Dagsson Waldhauserova, Pavla; Hejcman, Michal
2017-04-01
Iceland represents a unique type of Arctic environment where glaciers capture the precipitation, consequently forming large deserts on the leeward side. Deserts are subject to strong winds and dust is reported to be suspended at least 135 days a year. Icelandic dust has seven major dust sources in extensive deserts, consisting mainly of volcanic glass. In this paper, we address a new approach to the question of the island's contribution to atmospheric dust transport in the North Atlantic and Arctic Oceans. We explore the strengths and limitations of satellite imagery for the study of high altitude dust storm phenomenon, and more specifically the potential of freely available set of tools for remote sensing and spatial data analysis, the Earth Engine provided by Google. This cloud-based geospatial processing platform requires only a web browser on the side of a user, and it allows writing powerful and versatile algorithms for scientific analysis of spatial data. We demonstrate how this approach can be applied to mapping of Icelandic dust sources and studying the wind erosion and transport of particles in the atmosphere in high latitudes.
NASA Astrophysics Data System (ADS)
Hennen, M.; Shahgedanova, M.; White, K.
2015-12-01
Using the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on-board Meteosat's second generation satellite (MSG), mineral dust emissions from the Middle East were observed at a high temporal and spatial resolution between the years 2006 and 2013. This research provides a subjective derivation of mineral dust source locations in the Middle East using the thermal infrared Dust RGB product. Focusing on the brightness temperature difference around 10.8 µm channel and their spectral contrast with clear sky conditions, the Dust RGB product has been recognised as a major asset in detecting dust. While the product has already been used to map dust emissions in Sahara and south Africa, this research is the first to map dust emissions in the Middle East using SEVIRI, one of the dustiest regions in the world second only to the Sahara Desert. For every dust storm activation within the Middle East, the point of first emission is derived from visual inspection of each 15 minute image, these points were then recorded in a dust source climatology (DSC) database, along with time and direction of dust movement. To take account of potential errors inherent in this subjective detection method, a degree of confidence is associated with each data point with relevance to time of day (which has a strong effect on ability to detect dust in these products) and weather conditions, in particular presence of clouds. These results are compared with an automated retrieval using Aerosol Optical Depth (AOD) measurements form the Moderate Resolution Image Spectrometer (MODIS); which, due to its sun-synchronous orbit allows a measurement of dust in the atmosphere once a day. Differences in the spatial distribution of SEVIRI dust sources and MODIS inferred dust source regions can be explained by inherent transport bias in the latter's low sampling rate and prevailing wind conditions. This database will provide an important tool in further understanding dust emission processes in the region, laying the foundations for future studies relating to climatic conditions, especially droughts, and changes in land cover.
NASA Astrophysics Data System (ADS)
Baccolo, Giovanni; Delmonte, Barbara; Clemenza, Massimiliano; Previtali, Ezio; Maggi, Valter
2015-04-01
Assessing the elemental composition of atmospheric dust entrapped in polar ice cores is important for the identification of the potential dust sources and thus for the reconstruction of past atmospheric circulation, at local, regional and global scale. Accurate determination of major and trace elements in the insoluble fraction of dust extracted from ice cores is also useful to better understand some geochemical and biogeochemical mechanisms which are linked with the climate system. The extremely reduced concentration of dust in polar ice (typical Antarctic concentrations during interglacials are in the range of 10 ppb), the limited availability of such samples and the high risk of contamination make these analyses a challenge. A new method based on low background Instrumental Neutron Activation Analysis (INAA) was specifically developed for this kind of samples. The method allows the determination of the concentration of up to 35 elements in extremely reduced dust samples (20-30 μg). These elements span from major to trace and ultra-trace elements. Preliminary results from TALDICE (TALos Dome Ice CorE, East Antarctica, Pacific-Ross Sea Sector) ice core are presented along with results from potential source areas in Victoria Land. A set of 5 samples from Talos Dome, corresponding to the last termination, MIS3, MIS4 and MIS6 were prepared and analyzed by INAA.
NASA Astrophysics Data System (ADS)
Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.
2015-12-01
Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.
Northern hemisphere dust storms on Mars
NASA Technical Reports Server (NTRS)
James, P. B.
1993-01-01
Dust storms in the northern hemisphere of Mars appear to be less common than the more familiar southern hemisphere storms, and essentially, no activity north of about 30 latittude has been documented. The data are, however, subject to an observational bias because Mars is near aphelion during oppositions, which occur during the most likely seasons for dust activity in the north. The amount of dust activity in the northern hemisphere is clearly very relevant to the role of atmospheric transport in the dust cycle. The classic global storms that occur during spring in the southern hemisphere are observed to transport dust from sources in the southern hemisphere to sinks or temporary depositories in the north. The question of whether atmospheric transport can close the dust cycle, i.e., return the dust to the southern hemisphere sources on some timescale, is clearly relevant to the solution of the puzzle of how the dust storm cycle is modulated, i.e., why storms occur in some years but not in others. There are data that suggest that the spring/early summer season in the northern hemisphere of Mars during the year following the major 1977 storms observed by Viking was very dusty. A number of observations of the vicinity of the receding north polar cap showed clear evidence of substantial dust activity in the sub-Arctic region.
NASA Astrophysics Data System (ADS)
Gasso, S.; Gaiero, D. M.; Villoslada, B.; Liske, E.
2005-12-01
The largest continental landmass south of the 40-degree parallel and potentially one of the largest sources of dust into the Southern Ocean (SO) is the Patagonia desert. Most of the estimates of dust outflow and deposition from this region into the South Atlantic Ocean are based on model simulations. However, there are very few measurements available that can corroborate these estimates. Satellite assessments of dust activity offer conflicting views. For example, monthly time series of satellite-derived (e.g. AVHRR and MODIS) aerosol optical depth (AOD) indicate that dust activity is minimal. However, a study with the TOMS Aerosol Index (Prospero et al., 2002) showed that the frequency of dust events is in the range of 7-14 days/month during the years 1978 through 1993. In addition, surface visibility observations along the Patagonian coast confirm that ocean-going dust events do occur during the summer and spring months. These discrepancies indicate fundamental uncertainties regarding the frequency and extent of dust activity in Patagonia. Given that the SO is the largest high-chlorophyll, low-nutrient area in the world and that the flux of nutrient-rich dust has the potential to modify biological activity with possible climatic consequences, it is of interest to have a better understanding of how often and intense are dust events in the Patagonia region. We surveyed the reports of dust activity from surface weather stations in the Patagonia region during the period June, 2004 to April, 2005. These observations were compared with simultaneous MODIS true color pictures and the corresponding aerosol retrievals. In addition, measurements of vertical and horizontal dust flux were collected by dust samplers at four sites along the coast. The horizontal flux measurements were compared with the same estimates derived from MODIS. According to the true color pictures and confirmed by the surface visibility observations, we recorded at least 16 ocean-going dust events. The scale of the events varied from small (single dust plumes along the coast) to large (dust front extending ~600 km). Most of the large events occurred during the late summer. Due to the presence of sun glint, cloud obstruction, or coastal sediments, the MODIS automatic aerosol algorithm did not derive AODs in many instances and, as result, many events were not recorded in the MODIS monthly database. Dust sources are numerous and dust plumes outflow at any place along the coastline (> 1000 km) including some very active sources as far south as in the Tierra del Fuego Island (54S). The main sources identified are coastal saltbeds, inland deflation hollows and receding shores of large lakes. Although some of major emitting points have been included as sources in dust models, there are some notable exceptions, for example most of the coastal sources. We note, in addition, that the scale and diversity of the different sources pose significant challenges with respect to parameterization in global models of dust dispersion.
Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W
2016-02-16
Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.
NASA Astrophysics Data System (ADS)
Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.
2015-12-01
An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.
Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran
NASA Astrophysics Data System (ADS)
Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.
2017-03-01
Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.
THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, David; Gibb, Erika; Rettig, Terrence W.
2012-07-20
We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less
Hinkley, T.K.
1994-01-01
Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely to dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and trace rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study (??? 10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples. ?? 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkley, T.K.
1994-08-01
Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar to those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely tomore » dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and track rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also-large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study ([approximately]10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples.« less
NASA Astrophysics Data System (ADS)
Gili, Stefania; Gaiero, Diego M.; Goldstein, Steven L.; Chemale, Farid; Jweda, Jason; Kaplan, Michael R.; Becchio, Raúl A.; Koester, Edinei
2017-07-01
The latitudinal displacement of the southern westerlies and associated climate systems is a key parameter for understanding the variations of Southern Hemisphere atmospheric circulation during the Late Quaternary Period. To increase understanding of past atmospheric circulation and of the paleo-environmental conditions associated with continental dust sources, we dig deeper into dust provenance in paleo-archives of the Southern Hemisphere. We present here a Sr-Nd isotopic and rare earth element study of surface sediments collected along a ∼4000 km latitudinal band from arid and semi-arid terrains in southern South America. Findings from terrains that served as paleo-dust suppliers are compared with modern dust collected from monitoring stations along the same latitudinal band, which affords a test on how actual present-day aeolian compositions compare to those of the past potential source areas. Moreover, the comparison between past and present-day datasets is useful for understanding present-day atmospheric circulation. Armed with a new comprehensive dataset, we revise previous interpretations of the provenance of dust trapped in the Antarctic ice and sediments deposited in the South Atlantic sector of the Southern Ocean. These comparisons support multiple source regions in southern South America that changed with climates. The findings reveal that, although Patagonia plays an important role in contributing dust to the higher latitudes, central Western Argentina and (to a lesser extent) the southern Puna region also emerge as potentially important dust sources during glacial times. The southern Altiplano appears to be a major contributor during interglacial periods as well. We rely in part on an understanding of modern wind-dust activities to conclude that the possible presence of southern South America source regions - other than Patagonia - in East Antarctic ice is consistent with an overall equatorward displacement during glacial times of both the mid-latitude westerlies and the subtropical jet stream.
Images of the 10-micron source in the Cygnus 'Egg'
NASA Technical Reports Server (NTRS)
Jaye, D.; Fienberg, R. Tresch; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.
1989-01-01
Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening.
Monitoring An Intensive Dust Event over Northern China Using Multi-satellite Observation
NASA Astrophysics Data System (ADS)
She, L.; Xue, Y.; Guang, J.; Mei, L.; Che, Y.; Fan, C.; Xie, Y.
2017-12-01
The deserts in western/northern China are one of the major mineral dust source regions of the world. Large amount of dust are emitted and blown east and southeast, especially in spring. An intensive dust event occurred over Northern China during May 3 - 8, 2017. The dust storms came from deserts in China and Mongolia. Due to the long-distance transport, more than ten provinces were affected by this dust event, several provinces occurred strong dust storm. In this study, multi-satellite data were employed to analyse the spatial-temporal evolution and dynamic transport behaviour of the dust plume, especially the geostationary satellite data - Himawari8 Advanced Himawari Imager (AHI) data. AHI data was used to estimate hourly Aerosol Optical Depth (AOD) to monitoring the aerosol distribution as well as the dust plume movements, as the dust storms often characterized by high AOD. A simple dust index was also calculated based on AHI VIS and TIR data to estimate the dust intensity. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data and the Ozone Monitoring Instrument (OMI) Aerosol Index were used as additional data sources to monitor the dust vertical distribution and provide independent information of dust presence. MODIS aerosol product and AERONET aerosol measurements were compared with the AHI retrieved AODs, the comparisons show a good agreement. The dust index was compared with the ground measurements as well as the corresponding RGB image. Simulations from HYSPLIT back-trajectory analysis shows similar temporal variation with the calculated AOD and dust index of the dust plume. Those comparisons with other satellite products and ground measurements suggested both the calculated AOD and dust index well depicted the dust events compared.
Hoh, Eunha; Hunt, Richard N; Quintana, Penelope J E; Zakarian, Joy M; Chatfield, Dale A; Wittry, Beth C; Rodriguez, Edgar; Matt, Georg E
2012-04-03
Environmental tobacco smoke is a major contributor to indoor air pollution. Dust and surfaces may remain contaminated long after active smoking has ceased (called 'thirdhand' smoke). Polycyclic aromatic hydrocarbons (PAHs) are known carcinogenic components of tobacco smoke found in settled house dust (SHD). We investigated whether tobacco smoke is a source of PAHs in SHD. House dust was collected from 132 homes in urban areas of Southern California. Total PAHs were significantly higher in smoker homes than nonsmoker homes (by concentration: 990 ng/g vs 756 ng/g, p = 0.025; by loading: 1650 ng/m(2) vs 796 ng/m(2), p = 0.012). We also found significant linear correlations between nicotine and total PAH levels in SHD (concentration, R(2) = 0.105; loading, R(2) = 0.385). Dust collected per square meter (g/m(2)) was significantly greater in smoker homes and might dilute PAH concentration in SHD inconsistently. Therefore, dust PAH loading (ng PAH/m(2)) is a better indicator of PAH content in SHD. House dust PAH loadings in the bedroom and living room in the same home were significantly correlated (R(2) = 0.468, p < 0.001) suggesting PAHs are distributed by tobacco smoke throughout a home. In conclusion, tobacco smoke is a source of PAHs in SHD, and tobacco smoke generated PAHs are a component of thirdhand smoke.
Dust in Supernovae and Supernova Remnants I: Formation Scenarios
NASA Astrophysics Data System (ADS)
Sarangi, A.; Matsuura, M.; Micelotta, E. R.
2018-04-01
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.
New directions: Mineral dust and ozone - Heterogeneous chemistry
NASA Astrophysics Data System (ADS)
Ramachandran, S.
2015-04-01
Aerosols, the tiny solid or liquid particles suspended in air and produced from natural sources and anthropogenic activities, continue to contribute the largest uncertainty to radiative forcing (IPCC, 2013). Aerosol particles give rise to radiative forcing directly through scattering and absorption of solar and infrared radiation in the atmosphere. Aerosols also give rise to indirect radiative forcing by modifying the cloud optical properties and lifetimes. Among the aerosol species mineral dust and black carbon cause a warming (positive forcing) while sulphate and sea salt cause a cooling (negative forcing) of the Earth-atmosphere system. In tropics and sub-tropics mineral dust is a major contributor to aerosol loading and optical thickness. The global source strength of dust aerosol varies significantly on spatial and temporal scales. The source regions of dust are mainly deserts, dry lake beds, and semi-arid regions, in addition to drier regions where vegetation has been reduced or soil surfaces that are disturbed by man made activities. Anthropogenic activities mainly related to agriculture such as harvesting, ploughing, overgrazing, and cement production and transport also produce mineral dust. An estimated 2500 terragram (Tg, 1012 g) of mineral dust is emitted into the atmosphere per year, and dominates the aerosol mass over continental regions in south Asia and China accounting for ∼35% of the total aerosol mass (IPCC, 2013). In India, dust is prevalent throughout the north and western India during the year and peaks during premonsoon season.
Understanding the dust cycle at high latitudes: integrating models and observations
NASA Astrophysics Data System (ADS)
Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.
2017-12-01
Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.
Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.
Sanghi, Achint; Ambrose, R P Kingsly
2016-07-27
Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1977-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
The Three Sources of Gas in the Comae of Comets
NASA Technical Reports Server (NTRS)
Huebner, W. F.
1995-01-01
Surface water ice on a comet nucleus is the major source of coma gas. Dust, entrained by coma gas, fragments and vaporizes, forming a second, distributed source of coma gas constituents. Ice species more volatile than water ice below the surface of the nucleus are a third source of coma gas. Vapors from these ices, produced by heat penetrating into the nucleus, diffuse through pores outward into the coma. The second and third sources provide minor, but sometimes easily detectible, gaseous species in the coma. We present mixing ratios of observed minor coma constituents relative to water vapor as a function of heliocentric and cometocentric distances and compare these ratios with model predictions, assuming the sources of the minor species are either coma dust or volatile ices in the nucleus.
NASA Astrophysics Data System (ADS)
Yu, Y.; Kalashnikova, O. V.; Garay, M. J.; Notaro, M.
2017-12-01
Global arid and semi-arid regions supply 1100 to 5000 Tg of Aeolian dust to the atmosphere each year, primarily from North Africa and secondarily from the Middle East. Previous dust source identification methods, based on either remotely-sensed aerosol optical depth (AOD) or dust activity, yield distinct dust source maps, largely due to the limitations in each method and remote-sensing product. Here we apply a novel motion-based method for dust source identification. Dust plume thickness and motion vectors from Multi-angle Imaging SpectroRadiometer (MISR) Cloud Motion Vector Product (CMVP) are examined to identify the regions with high frequency of fast moving-dust plumes, by season. According to MISR CMVP, Bodele depression is the most important dust source across North Africa, consistent with previous studies. Seasonal variability of dust emission across the North Africa is largely driven by climatology of wind and precipitation, featuring the influence of Sharav Cyclone and western African monsoon. In the Middle East, Iraq, Kuwait, and eastern Saudi Arabia are identified as dust source regions, especially during summer months, when the Middle Eastern Shamal wind is active. Furthermore, dust emission trend at each dust source are diagnosed from the motion-based dust source dataset. Increase in dust emission from the Fertile Crescent, Sahel, and eastern African dust sources are identified from MISR CMVP, implying potential contribution from these dust sources to the upward trend in AOD and dust AOD over the Middle East in the 21st century. By comparing with various dust source identification studies, we conclude that the motion-based identification of dust sources is an encouraging alternative and compliment to the AOD-only source identification method.
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
NASA Technical Reports Server (NTRS)
Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.
1990-01-01
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.
Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source
NASA Astrophysics Data System (ADS)
Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.
2015-12-01
In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity conditions.
NASA Astrophysics Data System (ADS)
Ladonin, D. V.
2018-03-01
The contents of five platinum-group metals (Ru, Rh, Pd, Ir, and Pt) in soils and street dust of the Southeastern administrative district (SEAD) of Moscow have been determined. The contents of these elements in soils may considerably exceed their natural abundances in the lithosphere and are characterized by considerable variability and asymmetric frequency distribution. A close correlation between Rh, Pd, and Pt contents in soils and street dust has been shown. The data on the contents of the elements and the ratios between them suggest that motor vehicles are the major source of pollution of soils and street dust in the studied district.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall
2017-07-01
AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.
NASA Astrophysics Data System (ADS)
Dansie, Andrew; Wiggs, Giles; Thomas, David
2016-04-01
Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind-erodible valley sediments. MODIS data for dust plume identification and chlorophyll concentration in the southern Atlantic is utilised to investigate associations between recorded dust emission events and phytoplankton growth in the ocean surface waters.
Analysis of the Impact of Major Dust Events on the Aerosols Characteristics over Saudi Arabia
NASA Astrophysics Data System (ADS)
Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Hariri, Mustafa M.
2015-04-01
The Kingdom of Saudi Arabia is a major source of atmospheric dust. Frequent dust storms blow up and significantly affect human activities, airports and citizens' health. Aerosols optical and physical characteristics are influenced by major dust storms outbreaks. In this, paper, ground based AERONET measurements are integrated with space-borne sensors, namely MODIS and CALIPSO to analyze aerosols' characteristics during March - May of 2009 where a massive dust storm blew up and caused a widespread heavy atmospheric dust load over Saudi Arabia and the same period during 2010, where less dust activities were reported. The MODIS Deep Blue AOD analysis showed similar aerosols pattern over the land, however a substantial variance in aerosol loading during March - May 2009 compared with the same period in 2010 was observed. The angstrom exponent analysis showed that the majority of aerosol measurements in 2009 and 2010 are dominated by coarse-mode particles with angstrom exponent < 0.5. Detailed analysis of aerosol optical properties shows significant influence of coarse mode particles in the enhanced aerosol loading in 2009. The volume depolarization rations (VDR) derived from CALIPSO backscattering measurements is used to find latitudinal profile of mean aerosol optical depth to indicate the type of particles and to discriminate spherical aerosols with non-spherical particles. Acknowledgement The authors would like to acknowledge the support provided by the King Abdel Aziz City for Science & Technology (KACST) for funding this work under grant No. (MT-32-76). The support provided by the Deanship of Research at King Fahd University of Petroleum & Minerals (KFUPM) is gratefully acknowledged.
STS-65 Earth observation of Bahama Islands with dust pall, taken from OV-102
NASA Technical Reports Server (NTRS)
1994-01-01
During STS-65 a significant dust pall that originated in western Africa was recorded by a series of low oblique color photographs as it continued its westward trek across the Atlantic Ocean and then the Caribbean Sea and the Gulf of Mexico area. This particular view captures the northern edge of the dust, positioned just slightly north of the Bahama Islands. This major transport of African dust to the western hemisphere has been recorded periodically by other Shuttle astronauts and earlier Shuttle missions. Scientifically, there is evidence that some of this African dust even reaches the Amazon rainforest and serves as a source of airborne nutrients for rainforest vegetation. This photograph was taken aboard Columbia, Orbiter Vehicle (OV) 102.
NASA Astrophysics Data System (ADS)
Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.
2013-12-01
We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed low concentrations consistent with the low ammonium loads in the source region. . The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-PEOPLE-2010-IIF under grant agreement PIIF-GA-2010-275071 Russian Foundation for Basic Research (grants 11-05-00304 and 13-05-10069).
NC, Deziel; Nuckols; JS, Colt; AJ, De Roos; A, Pronk; C, Gourley; RK, Severson; W, Cozen; Cerhan; P, Hartge; MH, Ward
2012-01-01
Determinants of levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in dust in U.S. homes are not well characterized. We conducted a pilot study to evaluate the relationship between concentrations of PCDD/F in house dust and residential proximity to known sources, including industrial facilities and traffic. Samples from vacuum bag dust from homes of 40 residents of Detroit, Los Angeles, Seattle, or Iowa who participated in a population-based case-control study of non-Hodgkin lymphoma conducted in 1998–2000 were analyzed using high resolution gas chromatography/high resolution mass spectrometry for 7 PCDD and 10 PCDF congeners considered toxic by the U.S. Environmental Protection Agency (EPA). Locations of 10 types of PCDD/F-emitting facilities were obtained from the EPA; however only 4 types were located near study homes (non-hazardous waste cement kilns, coal-fired power plants, sewage sludge incinerators, and medical waste incinerators). Relationships between concentrations of each PCDD/F and proximity to industrial facilities, freight routes, and major roads were evaluated using separate multivariate regression models for each congener. The median (inter-quartile range [IQR]) toxic equivalence (TEQ) concentration of these congeners in the house dust was 20.3 pg/g (IQR=14.3, 32.7). Homes within 3 or 5 km of a cement kiln had 2 to 9-fold higher concentrations of 5 PCDD and 5 PCDF (p<0.1 in each model). Proximity to freight routes and major roads was associated with elevated concentrations of 1 PCDD and 8 PCDF. Higher concentrations of certain PCDD/F in homes near cement kilns, freight routes, and major roads suggest these outdoor sources are contributing to indoor environmental exposures. Further study of the contribution of these sources and other facility types to total PCDD/F exposure in a larger number of homes is warranted. PMID:22832089
An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica
NASA Astrophysics Data System (ADS)
Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.
2014-12-01
The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas
2010-01-01
This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.
Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.
2013-01-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.
2013-04-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.
2016-06-01
Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.
Nageotte, S M; Day, J P
1998-01-01
A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.
East Asian origin of central Greenland last glacial dust: just one possible scenario?
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs Stephan; Manning, Christina; Németh, Tibor; Kovács, János
2016-04-01
Dust in Greenland ice cores is used to reconstruct the activity of dust emitting regions and atmospheric circulation for the last glacial period. However, the source dust material to Greenland over this period is the subject of considerable uncertainty. Here we use new clay mineral and Sr-Nd isotopic data from eleven loess samples collected around the Northern Hemisphere and compare the 87Sr/86Sr and 143Nd/144Nd isotopic signatures of fine (<10 μm) separates to existing Greenland ice core dust data (GISP2, GRIP; [1]; [2]). Smectite contents and kaolinite/chlorite (K/C) ratios allow exclusion of continental US dust emitting regions as potential sources, because of the very high (>3.6) K/C ratios and extremely high (>~70%) smectite contents. At the same time, Sr-Nd isotopic compositions demonstrate that ice core dust isotopic compositions can be explained by East Asian (Chinese loess) and/or Central/East Central European dust contributions. Central/East Central European loess Sr-Nd isotopic compositions overlap most with ice core dust, while the Sr isotopic signature of Chinese loess is slightly more radiogenic. Nevertheless, an admixture of 90‒10 % from Chinese loess and circum-Pacific volcanic material would also account for the Sr‒Nd isotopic ratios of central Greenland LGM dust. At the same time, sourcing of ice core dust from Alaska, continental US and NE Siberia seems less likely based on Sr and Nd isotopic signatures. The data demonstrate that currently no unique source discrimination for Greenland dust is possible using both published and our new data [3]. Thus, there is a need to identify more diagnostic tracers. Based on initial Hf isotope analyses of fine separates of three loess samples (continental US, Central Europe, China), an apparent dependence of Hf isotopic signatures on the relative proportions of radiogenic clay minerals (primarily illite) was found, as these fine dust fractions are apparently zircon-free. The observed difference between major potential source regions in 176Hf/177Hf that reach several ɛHf units and the first order clay mineralogy dependence of Hf isotopic signatures means there is strong potential for distinguishing between the two hypothesized Greenland dust sources using Hf isotopes [3]. [1] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G. (1997). Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765-26781. [2] Svensson A., Biscaye P.E., Grousset F.E. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research 105, 4637-4656. [3] Újvári G., Stevens T., Svensson A., Klötzli U.S., Manning, C., Németh T., Kovács J., Sweeney M.R., Gocke M., Wiesenberg G.L.B., Markovic S.B., Zech M. (in press). Two possible source regions for Central Greenland last glacial dust. Geophysical Research Letters, doi: 10.1002/2015GL066153.
The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.
NASA Astrophysics Data System (ADS)
Wegner, Anna; Fischer, Hubertus; Delmonte, Barbara; Petit, Jean-Robert; Erhardt, Tobias; Ruth, Urs; Svensson, Anders; Vinther, Bo; Miller, Heinrich
2015-10-01
We present a record of particulate dust concentration and size distribution in subannual resolution measured on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice core drilled in the Atlantic sector of the East Antarctic plateau. The record reaches from present day back to the penultimate glacial until 145,000 years B.P. with subannual resolution from 60,000 years B.P. to the present. Mean dust concentrations are a factor of 46 higher during the glacial (~850-4600 ng/mL) compared to the Holocene (~16-112 ng/mL) with slightly smaller dust particles during the glacial compared to the Holocene and with an absolute minimum in the dust size at 16,000 years B.P. The changes in dust concentration are mainly attributed to changes in source conditions in southern South America. An increase in the modal value of the dust size suggests that at 16,000 years B.P. a major change in atmospheric circulation apparently allowed more direct transport of dust particles to the EDML drill site. We find a clear in-phase relation of the seasonal variation in dust mass concentration and dust size during the glacial (r(conc,size) = 0.8) but no clear phase relationship during the Holocene (0 < r(conc,size) < 0.4). With a simple conceptual 1-D model describing the transport of the dust to the ice sheet using the size as an indicator for transport intensity, we find that the effect of the changes in the seasonality of the source emission strength and the transport intensity on the dust decrease over Transition 1 can significantly contribute to the large decrease of dust concentration from the glacial to the Holocene.
Properties of transported African mineral dust aerosols in the Mediterranean region
NASA Astrophysics Data System (ADS)
Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola
2015-04-01
The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport from known but differing origins (source regions in Tunisia, Algeria, and Mauritania) and at different times after transport, will be presented. Results will be compared to equivalent measurements over source regions interpreted in terms of the evolution of the particle size distribution, chemical composition and optical properties.
Rapid formation of large dust grains in the luminous supernova 2010jl.
Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C
2014-07-17
The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.
Changing sources of strontium to soils and ecosystems across the Hawaiian Islands
Chadwick, O.A.; Derry, L.A.; Bern, C.R.; Vitousek, P.M.
2009-01-01
Strontium isotope ratios assist ecosystem scientists in constraining the sources of alkaline earth elements, but their interpretation can be difficult because of complexities in mineral weathering and in the geographical and environmental controls on elemental additions and losses. Hawaii is a "natural laboratory" where a number of important biogeochemical variables have either limited ranges or vary in systematic ways, providing a unique opportunity to understand the impact of time, climate, and atmospheric inputs on the evolution of base cation sources to ecosystems. There are three major sources of strontium (Sr) to these ecosystems, each with distinct isotopic compositions: basalt lava, Asian dust, and rainfall. We present Sr isotope and concentration data on both bulk soil digests and NH4Ac extracts from soil profiles covering a wide range of environments and substrate ages. Bulk soil material from dry climates and/or young substrate ages with > 80????g g- 1 Sr retain basalt-like Sr isotopic signatures, whereas those with Sr concentrations < 80????g g- 1 can have isotope signatures that range from basalt-like values to the more radiogenic values associated with continental dust. Although both dust accumulation and lava weathering are time- and rainfall-dependent, the overall concentration of Sr drops with increasing leaching even as quartz and mica derived from continental dust sources increase to > 40% by mass. At elevated dust levels, lava-derived Sr is low and dust-derived Sr is the dominant control of 87Sr/86Sr in bulk soils; however, 87Sr/86Sr of NH4Ac-extractable Sr largely reflects atmospheric deposition of marine aerosol in these situations. Overall, whole-soil Sr isotope values are controlled by complex interactions between Sr provided by lava weathering but partially lost by leaching, and Sr provided by dust but held in more resistant minerals. The isotopic composition of NH4Ac-extractable Sr and of the biota is controlled by lava weathering and rainfall contribution of Sr with only minor contributions from radiogenic dust sources. ?? 2009 Elsevier B.V.
Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph
2008-01-01
Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.
NASA Astrophysics Data System (ADS)
Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.
2008-12-01
The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the materials in simulated body fluids (SBFs), physiologically based extraction tests (PBETs) are an inexpensive, acellular in vitro test. Bioaccessibility, defined as the fraction of a potential toxicant that becomes soluble in the SBF (e.g. gastric, intestinal, lung or lysosomal fluid), is an indication of the amounts of a potential toxicant that may be available for absorption through ingestion or inhalation. PBETs were conducted on artificially generated dust samples from playas in the Mojave Desert and soil and ash samples from recent California wildfires. Speciation, an important factor in assessing toxicity, was evaluated using high performance liquid chromatography (HPLC) separation with ICP-MS detection for arsenic and chromium.
Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Conselice, Christopher J.; Chapman, Scott C.; Windhorst, Rogier A.
2003-10-01
Submillimeter-detected galaxies located at redshifts z>1 host a major fraction of the bolometric luminosity at high redshifts due to thermal emission from heated dust grains, yet the nature of these objects remains a mystery. The major problem in understanding their origin is whether the dust-heating mechanism is predominantly caused by star formation or active galactic nuclei and what triggered this activity. We address this issue by examining the structures of 11 submillimeter galaxies imaged with STIS on the Hubble Space Telescope. We argue that ~61%+/-21% of these submillimeter sources are undergoing an active major merger using the CAS (concentration, asymmetry, clumpiness) quantitative morphological system. We rule out at ~5 σ confidence that these submillimeter galaxies are normal Hubble types at high redshift. This merger fraction appears to be higher than for Lyman break galaxies undergoing mergers at similar redshifts. Using reasonable constraints on the stellar masses of Lyman break galaxies and these submillimeter sources, we further argue that at redshifts z~2-3, systems with high stellar masses are more likely than lower mass galaxies to be involved in major mergers.
Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India
NASA Astrophysics Data System (ADS)
Roy, Arindam; Chatterjee, Abhijit; Tiwari, Suresh; Sarkar, Chirantan; Das, Sanat Kumar; Ghosh, Sanjay Kumar; Raha, Sibaji
2016-11-01
A study of precipitation (rainwater) chemistry during the two consecutive summer monsoon seasons of 2013 and 2014 at a high altitude station (2200 m asl) at eastern Himalaya region (Darjeeling); a typical metropolitan urban location (Kolkata), and a rural environment near the Bay of Bengal (Falta) was conducted. The volume-weighted mean (VWM) concentration shows that total ionic composition was maximum over Kolkata (391 μeq l- 1) followed by Falta (204 μeq l- 1) and Darjeeling (64 μeq l- 1). 85% rain samples were alkaline over Kolkata, whereas, 55 and 65% samples were acidic over Falta and Darjeeling respectively. Ca2 + was the most potential species to completely neutralize the acidity over Kolkata, whereas, NH4+ was the potential species to partially neutralize the acidity over Falta and Darjeeling. The deposition fluxes of anthropogenic and dust species over Kolkata was remarkably higher than Falta and Darjeeling. Anthropogenic and dust chemical species in rainwater were found to be dominant over Kolkata and Falta when the air masses passes from the polluted continental region. Rainwater acidity over Darjeeling was highest when air masses arrived from the Arabian Sea compared to air masses from the Bay of Bengal. Positive matrix factorization model was used for the source apportionment of the ionic species scavenged by rain. Comparable contributions of marine, dust, and anthropogenic sources were identified as major source over Kolkata. The major contributions were identified from marine and fossil fuel burning over Falta, whereas, marine, biomass/coal burning, ammonia from agricultural activities and domestic wastes were identified as the major sources over Darjeeling.
Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China.
Qi, Hong; Li, Wen-Long; Zhu, Ning-Zheng; Ma, Wan-Li; Liu, Li-Yan; Zhang, Feng; Li, Yi-Fan
2014-09-01
Indoor dust samples were collected across China in the winter of 2010 from 45 private domiciles and 36 public buildings. 16 polycyclic aromatic hydrocarbons (PAHs) were determined by GC-MS. Total concentrations of PAHs ranged from 1.00 μg/g to 470 μg/g with a mean value of 30.9 μg/g. High-molecular weight (HMW) PAHs (4 to 6 rings) are the predominant PAHs found in indoor dust, accounting for 68% of the total PAH concentration in private domiciles, and 84.6% in public buildings. Traffic conditions and cooking methods were the two key factors controlling PAH levels, especially for coal combustion and vehicular traffic emission sources. A significant positive correlation was observed between PAH concentrations in indoor dust and based on location (latitude and longitude). The latitudinal distribution indicated a higher usage of coal for heating in Northern China than in Southern China. The longitudinal distribution indicated that the usage of oil and mineral fuels as well as economic development and population density increased from West China to East China. In addition, diagnostic ratios and principal component analysis (PCA) were used to explore source apportion, as indicated in both the pyrogenic and petrogenic sources of PAHs in indoor dust in China. Furthermore, the BaP equivalent was applied to assess the carcinogenic risk of PAHs, which also indicated that traffic emissions and coal combustion were the two major contributions to carcinogenic risk of PAHs in indoor dust in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Identifying Dust Sources by Positive Matrix Factorization (PMF)
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.
2010-05-01
This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type. Examples of time series plots of PMF factor contributions for each of six sampling sites (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad) will be discussed. Engelbrecht , J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 1: Ambient sampling: Inhalation Toxicology, v. 21, p. 297-326.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
Tang, Zhenwu; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao
2016-01-01
Road dusts were collected from an area where intense mechanical recycling of plastic wastes occurs in Wen'an, north China. These dusts were investigated for polybrominated diphenyl ethers (PBDEs) and heavy metals contamination to assess the health risk related to these components. Decabromodiphenyl ether (BDE-209) and Σ21PBDE concentrations in these dusts ranged from 2.67 to 10,424 ng g(-1) and from 3.23 to 10,640 ng g(-1), respectively. These PBDE concentrations were comparable to those observed in road dust from e-waste recycling areas but were 1-2 orders of magnitude higher than concentrations in outdoor or road dusts from other areas. This indicates that road dusts in the study area have high levels of PBDE pollution. BDE-209 was the predominant congener, accounting for 86.3% of the total PBDE content in dusts. Thus, commercial deca-BDE products were the dominant source. The average concentrations of As, Cd, Cr, Cu, Hg, Pb, Sb, and Zn in these same dust samples were 10.1, 0.495, 112, 54.7, 0.150, 71.8, 10.6, and 186 mg kg(-1), respectively. The geoaccumulation index suggests that road dusts in this area are moderately to heavily polluted with Cd, Hg, and Sb. This study shows that plastic waste processing is a major source of toxic pollutants in road dusts in this area. Although the health risk from exposure to dust PBDEs was low, levels of some heavy metals in this dust exceeded acceptable risk levels for children and are of great concern.
NASA Astrophysics Data System (ADS)
Rai, Pragati; Chakraborty, Abhishek; Mandariya, Anil Kumar; Gupta, Tarun
2016-09-01
This study addresses the three major questions: (1) what are the emission sources of PM1 which are affecting the study area; (2) where do these emission sources come from; and (3) is there any temporal variation in the emission sources. To address these issues, two advanced statistical methods are described in this paper. Identification of emission sources was performed by EPA PMF (v 5.0) and to understand the temporal variability, sampling was done for three winter seasons 2008-09, 2009-10 and 2011-12 within Kanpur city. To identify the possible source directions, Conditional Bivariate Probability function (CBPF) was used. The average PM1 concentration was higher in 2008-09 followed by 2011-12 and 2009-10 winter seasons. 2008-09 winter showed sources such as secondary sources mixed with power plant emission (42.8%), industrial emission (32.3%), coal combustion, brick kilns and vehicular emission (13.2%) and residual oil combustion and road dust (11.7%). The major contributors during winter season 2009-10 were secondary sources (33.1%), biomass burning (23.3%), heavy oil combustion (13%), vehicular emission mixed with crustal dust (11.3%), leather tanning industries (10.3%), industrial emission (4%), coal combustion and brick kilns (3.4%) and solid waste burning and incineration (1.5%) compared to secondary sources mixed with biomass burning (42.3%), industrial emission and crustal dust (35.1%) and vehicular emission and brick kilns (22.6%) during 2011-12 winter season. PMF model revealed that secondary sources were the main contributors for all the three winter seasons followed by biomass burning and power plant emission. The results of CBPF analysis agreed well with the locations of known local point sources., e.g. in the case of industrial emissions, the maximum probability was in the direction between NES direction where almost all the major industries are located in and around Kanpur while in the opposite direction the probability of biomass burning was high due to a rural area in NWS direction.
Major tire fragment contributions to PM{sub 10} non-attainment in Anchorage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draftz, R.G.; Cowherd, C. Jr.; Grelinger, M.A.
1999-07-01
Anchorage exceeded the 24-hour National Ambient Air Quality Standard for PM{sub 10} a total of thirty-one times in the period from 1987 to 1997. About half of these exceedances were due to natural events. The remaining exceedances could not be linked to natural events. Moreover, these exceedances occurred predominantly at one PM{sub 10} site near one of the major thoroughfares in Anchorage. The apportionment of sources producing these unexplained violations was one of the major goals of a 1996--98 study sponsored and directed by the Air Quality Program of the Municipality of Anchorage. Two suites of PM{sub 10} samples weremore » utilized for source apportionment of exceedances. The first consisted of historical samples selected from sampling periods unaffected by natural events. These samples were carefully selected to avoid the high values during and following volcanic eruptions when there were likely to be considerable accumulations of volcanic ejecta on roads. Dust storms were excluded by simple inspection of data for days that showed that all sites in the Anchorage basin had high PM{sub 10} loadings. The second group of samples were selected from a special springtime road dust tagging experiment used to measure emission and depletion rates of the taggant and accumulated road dust particles, mainly road aggregate wear and anti-skid minerals. Quantitative microscopical analysis of the first suite of historical samples showed that rubber tire concentrations contributed from approximately 12 to 42{micro}g/m{sup 3} of the PM{sub 10} for samples near or exceeding the 24 hour limit. Road dust samples from the road tagging experiment showed that the PM{sub 10}-sized tire fragments were not present in the road dust and therefore, had to have become immediately airborne rather than re-entrained from road dust deposits. Rubber tire fragments are one of the three dominant components that collectively account for more than 95% of the PM{sub 10} non-attainment in Anchorage.« less
NASA Astrophysics Data System (ADS)
Kylander, Malin E.; Martínez-Cortizas, Antonio; Bindler, Richard; Greenwood, Sarah L.; Mörth, Carl-Magnus; Rauch, Sebastien
2016-10-01
Mineral dust deposition is a process often overlooked in northern mid-latitudes, despite its potential effects on ecosystems. These areas are often peat-rich, providing ample material for the reconstruction of past changes in atmospheric deposition. The highly organic (up to 99% in some cases) matrix of atmospherically fed mires, however, makes studying the actual dust particles (grain size, mineralogy) challenging. Here we explore some of the potentials and problems of using geochemical data from conservative, lithogenic elements (Al, Ga, Rb, Sc, Y, Zr, Th, Ti and REE) to build detailed dust records by using an example from the 8900-yr peat sequence from Store Mosse (the ;Great Bog;), which is the largest mire complex in the boreo-nemoral region of southern Sweden. The four dust events recorded at this site were elementally distinct, suggesting different dominant mineral hosts. The oldest and longest event (6385-5300 cal yr BP) sees a clear signal of clay input but with increasing contributions of mica, feldspar and middle-REE-rich phosphate minerals over time. These clays are likely transported from a long-distance source (<100 km). While dust deposition was reduced during the second event (5300-4370 cal yr BP), this is the most distinct in terms of its source character with [Eu/Eu∗]UCC revealing the input of plagioclase feldspar from a local source, possibly active during this stormier period. The third (2380-2200 cal yr BP) and fourth (1275-1080 cal yr BP) events are much shorter in duration and the presence of clays and heavy minerals is inferred. Elemental mass accumulation rates reflect these changes in mineralogy where the relative importance of the four dust events varies by element. The broad changes in major mineral hosts, grain size, source location and approximated net dust deposition rates observed in the earlier dust events of longer duration agree well with paleoclimatic changes observed in northern Europe. The two most recent dust events are much shorter in duration, which in combination with evidence of their local and regional character, may explain why they have not been seen elsewhere.
High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.
2015-12-01
Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in Asia.
NASA Astrophysics Data System (ADS)
Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.
2017-12-01
A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter <63 micrometers) were emitted across the study area. Much higher rates (about 7 Tg yr-1) were estimated for a subset period from Jan. 2011 through May 2013 following a major Mojave River flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global dust emissions may also be underestimated.
Derivation of an observation-based map of North African dust emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun
Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visiblemore » and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.« less
Löw, F; Navratil, P; Kotte, K; Schöler, H F; Bubenzer, O
2013-10-01
With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.
Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)
NASA Astrophysics Data System (ADS)
Alonso, M. Victoria; Minniti, Dante
1997-04-01
We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing carbon stars. From color-magnitude diagrams we do not find evidence of very young clusters in this region. Such clusters might be fainter than our detection limit in JHK'. We measure metallicities for 42 globular clusters, confirming the presence of a metallicity gradient with Δ[Fe/H]/ΔR = -0.06 dex kpc-1. Based on observations collected at La Silla Observatory and on archival data of the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2017-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2018-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432
Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul
2017-06-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C
2013-10-01
Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.
Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van Hateren, Johannes A.; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W.
2017-08-01
Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.
NASA Astrophysics Data System (ADS)
Grigholm, B.; Mayewski, P. A.; Kang, S.; Zhang, Y.; Kaspari, S.; Sneed, S. B.; Zhang, Q.
2009-10-01
In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33°34'37.8″N, 91°10'35.3″E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes (δ18O), major soluble ions (Na+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-), and radionuclide (β-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.
NASA Astrophysics Data System (ADS)
Wiggs, G. F.; O'Hara, S.; Wegerdt, J.; van der Meer, J.; Small, I.; Hubbard, R.
2003-12-01
Over the last 40 years over 36,000 km2 of the former Aral Sea bed have been exposed creating a potentially significant aeolian dust source. It is widely believed, but little researched, that increased dust storm activity in the region has had a major impact on human health. In this paper we report the findings of a study into the link between dust exposure and respiratory health amongst children in the Autonomous Republic of Karakalpakstan, located on the southern shore of the Aral Sea. Data were collected over a 12 month period at 16 sites located within a broad transect running north to south through Karakalpakstan. At each site monthly measurements of dust deposition were undertaken linked with daily meteorological data at 6 stations. At 3 sites weekly measurements of PM10 were also carried out. Approximately 100 children (aged 7-10 years) were randomly selected within 5 km of each dust trap site and data were collected on their respiratory health and environmental exposures. Lung function data were also collected using a handheld spirometer. A linear regression model was used to predict lung function for the children incorporating variables for Forced Expiratory Volume in one second (FEV1), age, gender, height and weight and we estimated the impact of dust deposition rates on the odds of having abnormal lung function using logistic regression. The findings indicate that dust deposition rates across the region are high with sites located near the former shore of the sea being the worst affected. For these northerly regions the former Aral Sea bed is the most likely source of dust. The situation for the rest of the country seems to be far more complex. In these regions it appears that local sources (agricultural fields, abandoned irrigation grounds, overgrazed dunes, and unpaved roads) and more distant sources to the south and south-west represent significant sediment providers, particularly in the early summer when agricultural fields are ploughed. We found some evidence of a dose-related impact of dust levels on lung function. These associations were statistically significant for all measures of dust exposure but were most marked for levels of winter dust exposure and level of PM2.5 exposure. The results from this study suggest that aeolian dust dynamics in the region are spatially and temporally highly variable and, counter to local and regional perceptions, the former bed of the Aral Sea does not appear to be the only significant source. Nevertheless, there is also evidence of a dose-related impact of airborne dust on the risk of having abnormally low lung function in children living in the Aral Sea Area.
NASA Astrophysics Data System (ADS)
Chen, D.; Luo, M.; Algeo, T. J.; Chen, L.
2017-12-01
The strontium (Sr) and neodymium (Nd) isotope compositions and clay-mineral assemblages of the detrital fraction of sediments in the southern Mariana Trench together with major- and trace-elements concentrations of bulk sediments have been determined to trace the sediment provenance and investigate the relationship between Asian dust input and blooms of the giant diatom Ethmodiscus rex. Enrichment of barium (Ba) in relative to upper continental crust (UCC) and low average Rb/K ratios in all study cores point to both hydrothermal and volcaniclastic inputs to the sediments. Both the Sr-Nd isotope compositions and the clay-mineral assemblages of the detrital fraction reflect a two-component mixing system consisting of Mariana arc volcaniclastics and eolian Asian dust. A decrease in smectite content and an increase in illite content just before formation of laminated diatom mats (LDMs) suggest a change in the source of the eolian dust from eastern Asian deserts (EADs) to central Asian deserts (CADs) at the onset of the Last Glacial Maximum (LGM). This observation suggests a causal linkage between atmospheric circulation patterns, the sources of eolian Asian dust, and marine productivity in the western Pacific region. We postulate that the shift to CAD-sourced dust may have played a greater role in promoting biological productivity in the oligotrophic western Pacific Ocean during the LGM than previously realized.
NASA Astrophysics Data System (ADS)
Nield, Joanna; Bryant, Robert; Wiggs, Giles; King, James; Thomas, David; Eckardt, Frank; Washington, Richard
2015-04-01
Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development on part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant dust), based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. Ridge development can change surface topography as much as 30 mm/week on fresh pan areas that have recently been reset by flooding. The corresponding change aerodynamic roughness can be as much as 3 mm/week. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.
NASA Astrophysics Data System (ADS)
Chan, Yiu-Chung; Cohen, David D.; Hawas, Olga; Stelcer, Eduard; Simpson, Rod; Denison, Lyn; Wong, Neil; Hodge, Mary; Comino, Eva; Carswell, Stewart
In this study, 437 days of 6-daily, 24-h samples of PM 2.5, PM 2.5-10 and PM 10 were collected over a 12-month period during 2003-2004 in Melbourne, Sydney, Brisbane and Adelaide. The elemental, ionic and polycyclic aromatic hydrocarbon composition of the particles were determined. Source apportionment was carried out by using the positive matrix factorisation software (PMF2). Eight factors were identified for the fine particle samples including 'motor vehicles', 'industry', 'other combustion sources', 'ammonium sulphates', 'nitrates', 'marine aerosols', 'chloride depleted marine aerosols' and 'crustal/soil dust'. On average combustion sources, secondary nitrates/sulphates and natural origin dust contributed about 46%, 25% and 26% of the mass of the fine particle samples, respectively. 'Crustal/soil dust', 'marine aerosols', 'nitrates' and 'road side dust' were the four factors identified for the coarse particle samples. On average natural origin dust contributed about 76% of the mass of the coarse particle samples. The contributions of the sources to the sample mass basically reflect the emission source characteristics of the sites. Secondary sulphates and nitrates were found to spread out evenly within each city. The average contribution of secondary nitrates to fine particles was found to be rather uniform in different seasons, rather than higher in winter as found in other studies. This could be due to the low humidity conditions in winter in most of the Australian cities which made the partitioning of the particle phase less favourable in the NH 4NO 3 equilibrium system. A linear relationship was found between the average contribution of marine aerosols and the distance of the site from the bay side. Wind erosion was found associated with higher contribution of crustal dust on average and episodes of elevated concentration of coarse particles in spring and summer.
Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning
2006-01-01
A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.
NASA Astrophysics Data System (ADS)
Huang, K.; Zhuang, G.; Fu, J. S.; Dong, X.
2017-12-01
Multi-year monitoring of dust aerosol from the Taklimakan Desert has been conducted at one site in the hinterland of the desert, Tazhong and another site at the southern edge of the desert, Hotan. Compared to the other two important desert source regions of China, i.e. Gobi and Loess Plateau, the Taklimakan Desert is characterized of high calcium with a Ca/Al elemental ratio of around 1.50. The unique feature of the Taklimakan dust aerosol is its abundant sulfate. For instance, the mean concentration of sulfate over Tazhong reached as high as 34.7 and 48.8 ug/m3 during the spring of 2007 and 2008, respectively. During the dust storm events, the daily concentration of sulfate frequently exceeded 100 ug/m3. Sulfate showed strong correlations with the primary aerosol species such as Ca2+, Mg2+, Na+, Cl-, Al, Fe, Ti, etc. but weakly correlated with the secondary aerosol species such as NO3- and NH4+. The mass ratio of sulfate in the total suspended particles showed a relatively stable percentage of around 2.5% regardless of the intensity of the dust events. In addition, individual particle analysis using the scanning electron microscope (SEM) technique found that gypsum (CaSO4) particles could account for 11.1% of total number of particles as well as abundant Na2SO4 and NaCl particles. All the evidences above suggested the high sulfate observed in the Taklimakan Desert were largely attributed to primary sources but not formed via the traditional gas-to-particle formation pathway. As the Taklimakan Desert was speculated to be ocean 5-7 million years, the dried sea salts from the paleo-ocean should be the major source of the dust aerosol. Also, the dried salt lakes in the northwestern China may contribute to the high sulfate. Based on two different methods, the contribution of primary sources to sulfate over the Taklimakan Desert is estimated to be around 43% - 82%. This study implied that the cooling effect of the Taklimakan dust aerosol could be underestimated if the explicit dust chemical composition is not considered for modeling.
Desert dust and human health disorders.
Goudie, Andrew S
2014-02-01
Dust storms may originate in many of the world's drylands and have an effect not only on human health in the drylands themselves but also in downwind environments, including some major urban centres, such as Phoenix, Kano, Athens, Madrid, Dubai, Jedda, Tehran, Jaipur, Beijing, Shanghai, Seoul, Taipei, Tokyo, Sydney, Brisbane and Melbourne. In some parts of the world dust storms occur frequently throughout the year. They can transport particulate material, pollutants, and potential allergens over thousands of km from source. The main sources include the Sahara, central and eastern Asia, the Middle East, and parts of the western USA. In some parts of the world, though not all, the frequency of dust storms is changing in response to land use and climatic changes, and in such locations the health implications may become more severe. Data on the PM10 and P2.5 loadings of dust events are discussed, as are various pollutants (heavy metals, pesticides, etc.) and biological components (spores, fungi, bacteria, etc.). Particulate loadings can far exceed healthy levels. Among the human health effects of dust storms are respiratory disorders (including asthma, tracheitis, pneumonia, allergic rhinitis and silicosis) cardiovascular disorders (including stroke), conjunctivitis, skin irritations, meningococcal meningitis, valley fever, diseases associated with toxic algal blooms and mortality and injuries related to transport accidents. © 2013.
Iron: A Key Element for Understanding the Origin and Evolution of Interstellar Dust
NASA Technical Reports Server (NTRS)
Dwek, Eli
2016-01-01
The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of the interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB (Asymptotic Giant Branch) stars. Only the latter two are observed to be sources of interstellar dust, since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65 percent of the iron is injected into the ISM (Inter-Stellar Matter) in gaseous form. Yet, ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase compared to expected solar abundances. The missing iron, comprising about 90 percent of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.
IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwek, Eli, E-mail: eli.dwek@nasa.gov
The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB stars. Only the latter two are observed to be sources of interstellar dust since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65% of the iron is injected into the ISM in gaseous form. Yet ultraviolet and X-raymore » observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase as compared to expected solar abundances. The missing iron, comprising about 90% of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by a cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.« less
NASA Astrophysics Data System (ADS)
Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola
2014-05-01
The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport from known but differing origins (source regions in Tunisia, Algeria, and Mauritania) and at different times after transport, will be presented. Results will be compared to equivalent measurements over source regions interpreted in terms of the evolution of the particle size distribution, chemical composition and optical properties.
Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release
NASA Astrophysics Data System (ADS)
Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.
2017-11-01
We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.
Goodarzi, Fariborz; Sanei, Hamed; Labonté, Marcel; Duncan, William F
2002-06-01
The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.
Infrared Study of Supernova Ejecta and Dust
NASA Astrophysics Data System (ADS)
Meikle, W. Peter; Farrah, Duncan; Fesen, Robert; Fransson, Claes; Gerardy, Christopher; Hoeflich, Peter; Kotak, Rubina; Kozma, Cecilia; Lucy, Leon; Lundqvist, Peter; Mattila, Seppo; Pozzo, Monica; Sollerman, Jesper; van Dyk, Schuyler; Wheeler, Craig
2004-09-01
We propose to use IRAC and IRS to gain powerful new insights on the nature of supernova (SN) explosions and test the hypothesis that SNe are major sources of cosmic dust. One of our two aims is to carry out robust tests of SN explosion models through the measurement of fine-structure (FS) lines and, where possible, their evolution. The important molecule, SiO, will also be measured. By comparison with our spectral synthesis models, we shall test the explosion model-sensitive predictions of abundances and their distribution. Most of the FS lines arise from ground state transitions and so, in comparison with optical or near-IR spectra, are much less sensitive to temperature and density uncertainties. However, the FS lines are only accessible in the MIR and the most useful abundance measurements can only be achieved at late times when the ejecta are optically thin. Consequently, ground-based MIR observations at the necessary late epochs are difficult if not impossible for nearly all SNe. Observation with the Spitzer Space Telescope is therefore essential. Our second goal is to test the proposal that core-collapse SNe (CCSNe) are, or have been, the major source of dust in the universe. Direct evidence in support of this is still very sparse. Warm dust emits most strongly in the MIR region, and so is the ideal wavelength range for following the condensation of dust within the ejecta or, in the case of Type IIn SNe, in a cool, dense shell formed at the ejecta/progenitor wind interface. Alternatively, such radiation may arise from IR light echo emission from dust in the progenitor wind. Discrimination between condensing dust and pre-existing circumstellar dust can be achieved by measurement of its MIR spectral energy distribution and evolution. Such measurements can also provide dust mass estimates and give clues about the nature of the grain material. To achieve our two goals, we propose to use IRAC and IRS to observe up to 17 SNe at epochs ranging from about 100 days to 2 years post-explosion.
Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K
2016-09-01
To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reheis, M.C.
2006-01-01
An ongoing project monitors modern dust accumulation in the arid southwestern United States to (1) determine the rate and composition of dust inputs to soils and (2) relate dust accumulation to weather patterns to help predict the effects of climate change on dust production and accumulation. The 16-year records of 35 dust-trap sites in the eastern Mojave Desert and southern Great Basin reveal how generation and accumulation of dust, including the silt-clay, carbonate, and soluble-salt fractions, is affected by the amount and seasonal distribution of rainfall and the behavior of different source types (alluvium, dry playas, and wet playas). Accumulation rates (fluxes) of the silt-clay fraction of dust, including carbonates, range from about 2-20 g/m2/yr. Average rates are higher in the southern part of the study area (south of latitude 36.5??N) and annually fluctuate over a larger range than rates in the northern part of the area. Sites throughout the study area show peaks in dust flux in the 1984-1985 sampling period and again in 1997-1999; northern sites also show increased flux in 1987-1988 and southern sites in 1989-1991. These peaks of dust flux correspond with both La Nina (dry) conditions and with strong El Nino (wet) periods. The accumulation rates of different components of mineral dusts fluctuate differently. For example, soluble-salt flux increases in 1987-1988, coincident with a moderate El Nino event, and increases very strongly in 1997-1999, overlapping with a strong El Nino event. Both of these high-rainfall winters were preceded and accompanied by strong summer rains. In contrast, little or no change in soluble-salt flux occurred during other periods of high winter rainfall but little summer rain, e.g. 1992-1995. The differences between northern vs. southern sites and between sites with playa dust sources vs. alluvial dust sources indicate that regional differences in the response of precipitation and vegetation growth to ENSO influence and differences in the response of source types control dust production and accumulation. A major factor is the hydrologic condition of surface sediments. The silt-clay and soluble-salt fluxes increased during the El Nino events of 1987-1988 and 1997-1998 at sites close to "wet" playas with shallow depths to groundwater (<10 m), consistent with the concept that active evaporative concentration of salts disrupts surface crusts and increases the susceptibility of surface sediment to deflation. The silt-clay flux also increased during drought periods (1989-1991, 1995-1997) at sites downwind of alluvial sources and "dry" playas with deeper groundwater (<10 m). These increases are probably related to the die-off of drought-stressed vegetation on alluvial sediments, and in some cases to local runoff events that deliver fresh sediment to playa margins and distal portions of alluvial fans. ?? 2006 Elsevier Ltd. All rights reserved.
Geochemical evidence for diversity of dust sources in the southwestern United States
Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.
2002-01-01
Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.
2005-03-01
Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect. Moreover, some model assumptions on dust sources and particle size and the accuracy of model-simulated meteorological parameters are also likely to affect the dust forecast quality.
Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.
Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing
2016-11-01
Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bevan, Antonia; Barlow, M. J.
2016-02-01
The late-time optical and near-IR line profiles of many core-collapse supernovae exhibit a red-blue asymmetry as a result of greater extinction by internal dust of radiation emitted from the receding parts of the supernova ejecta. We present here a new code, DAMOCLES, that models the effects of dust on the line profiles of core-collapse supernovae in order to determine newly formed dust masses. We find that late-time dust-affected line profiles may exhibit an extended red scattering wing (as noted by Lucy et al. 1989) and that they need not be flux-biased towards the blue, although the profile peak will always be blueshifted. We have collated optical spectra of SN 1987A from a variety of archival sources and have modelled the Hα line from days 714 to 3604 and the [O I] 6300,6363 Å doublet between days 714 and 1478. Our line profile fits rule out day 714 dust masses >3 × 10-3 M⊙ for all grain types apart from pure magnesium silicates, for which no more than 0.07 M⊙ can be accommodated. Large grain radii ( ≥ 0.6 μm) are generally required to fit the line profiles even at the earlier epochs. We find that a large dust mass (≥0.1 M⊙) had formed by day 3604 and infer that the majority of the present dust mass must have formed after this epoch. Our findings agree with recent estimates from spectral energy distribution fits for the dust mass evolution of SN 1987A and support the inference that the majority of SN 1987A's dust formed many years after the initial explosion.
NASA Astrophysics Data System (ADS)
Gao, H.; Xiaohong Yao, Jinhui Shi, Jianhua Qi
2010-12-01
Dust storm carries a large amount of aerosol particles, sweeps continents and exports to oceans. When these aerosol particles deposit in ocean, which provides abundant nutrients such as nitrogen and iron for ocean ecosystem, increases the primary production and induces algae bloom. Asian dust storm generates at a high latitude and a high elevation and is obvious a hemispheric scale phenomenon. Dust sources in East Asia are one of the major dust sources on the earth which contribute to 5%-40% of the global dust release. The regions affected by the Asian dust storm include not only China and Mongolia but also the downwind Korea, Japan, the Pacific Ocean, the west coast of America, even the subarctic region and Europe. The Asian dust storm is obviously a hemispheric scale phenomenon, which has more important impact on the ecosystem in the western Pacific. Asian dust is unique not only in morphology, soil texture, and dust storm activities, but also mixing and capturing anthropogenic air pollutants on the transport pathway. Deposition of Asian dust substantially affects surface biological productivity. To improve understandings of Asian dust and its effect on ocean ecosystem from the coastal sea to open ocean, ADOES (Asian Dust and Ocean EcoSystem) was proposed under the frame of international SOLAS (Surface Ocean-Lower Atmosphere Study). A series of studies were performed in high- nutrient low-chlorophyll (HNLC), low-nutrient low-chlorophyll (LNLC) and eutrophication coastal regions of the Pacific Ocean. These studies provided evidence of biotic response to natural iron fertilization caused by Asian dust particles in the subarctic North Pacific and showed that dust storm episodes were significant in the initiation of spring blooms in the East China Sea. On-board incubations on the cruise in a LNLC region of the western Pacific at the southeast of Japan showed different responses of ocean ecosystem to nitrogen and dust fertilization. Correlation of the Asian dust storms with chlorophyll, primary productivity and algae blooms in the coastal seas of China from 1998 to 2008 were also illustrated.
Rauert, C; Harrad, S; Stranger, M; Lazarov, B
2015-08-01
Numerous studies have reported elevated concentrations of brominated flame retardants (BFRs) in dust from indoor micro-environments. Limited information is available, however, on the pathways via which BFRs in source materials transfer to indoor dust. The most likely hypothesized pathways are (a) volatilization from the source with subsequent partitioning to dust, (b) abrasion of the treated product, transferring microscopic fibers or particles to the dust (c) direct uptake to dust via contact between source and dust. This study reports the development and application of an in-house test chamber for investigating BFR volatilization from source materials and subsequent partitioning to dust. The performance of the chamber was evaluated against that of a commercially available chamber, and inherent issues with such chambers were investigated, such as loss due to sorption of BFRs to chamber surfaces (so-called sink effects). The partitioning of polybrominated diphenyl ethers to dust, post-volatilization from an artificial source was demonstrated, while analysis in the test chamber of a fabric curtain treated with the hexabromocyclododecane formulation, resulted in dust concentrations exceeding substantially those detected in the dust pre-experiment. These results provide the first experimental evidence of BFR volatilization followed by deposition to dust. Brominated flame retardants (BFRs) are ubiquitous in indoor air and dust, leading to human exposure and resultant concerns about their adverse impact on health. Indoor dust has been demonstrated to constitute an important vector of human exposure to BFRs, especially for toddlers. Despite the greater importance of dust contamination in the context of human exposure to BFRs, the mechanisms via which BFRs transfer from source materials to dust have hitherto been subject to only limited research. In this study, a test chamber is utilized to simulate the migration of BFRs to dust via volatilization from source materials and subsequent deposition to dust. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
SELF-SUSTAINED RECYCLING IN THE INNER DUST RING OF PRE-TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husmann, T.; Loesche, C.; Wurm, G., E-mail: tim.jankowski@uni-due.de
Observations of pre-transitional disks show a narrow inner dust ring and a larger outer one. They are separated by a cavity with no or only little dust. We propose an efficient recycling mechanism for the inner dust ring which keeps it in a steady state. No major particle sources are needed for replenishment. Dust particles and pebbles drift outwards by radiation pressure and photophoresis. The pebbles grow during outward drift until they reach a balanced position where residual gravity compensates photophoresis. While still growing larger they reverse their motion and drift inward. Eventually, their speed is fast enough for themmore » to be destroyed in collisions with other pebbles and drift outward again. We quantify the force balance and drift velocities for the disks LkCa15 and HD 135344B. We simulate single-particle evolution and show that this scenario is viable. Growth and drift timescales are on the same order and a steady state can be established in the inner dust ring.« less
Dust in Supernovae and Supernova Remnants II: Processing and Survival
NASA Astrophysics Data System (ADS)
Micelotta, E. R.; Matsuura, M.; Sarangi, A.
2018-03-01
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.
Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin
2017-12-01
China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59%). The large variation in sources of PM 2.5 across China suggests that PM 2.5 mitigation programs should be designed separately for different regions/provinces. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Haijun; Lü, Changwei; He, Jiang; Gao, Manshu; Zhao, Boyi; Ren, Limin; Zhang, Lijun; Fan, Qingyun; Liu, Tao; He, Zhongxiang; Dudagula; Zhou, Bin; Liu, Hualin; Zhang, Yu
2018-05-01
Water-soluble ions (WSIs) are major components of PM2.5 and it is valuable for understanding physical and chemical characteristics, sources, behaviors and formation mechanism of WSIs. Baotou is a traditionally industrial city in semi-arid region and frequently subjected to dust storms from March to May. In recent years, air pollution has been listed as one of the most important environmental problems in Baotou. To investigate the seasonal variations and sources of WSIs in PM2.5, the WSIs including SO42-, NO3-, Cl-, F-, NH4+, K+, Na+, Ca2+ and Mg2+ were monitored at six urban sites in Baotou. The results showed that high concentrations of Ca2+ and Na+ were found responding to dust storm events, while high concentrations of SO42-, NO3-, NH4+, K+ and Cl- were observed during haze days. The correlations analysis indicated that excess sulfuric and nitric acid was likely neutralized by carbonate minerals such as calcite, aragonite and dolomite in normal days and cations were fully neutralized during all the sampling periods, while cations were excessive in dust storm days. The concentrations of [NH4+ + SO42- + NO3-], [Na+ + Ca2+ + Mg2+] and [Cl- + K+ + F-] indicated the northwest and southeast region of Baotou presented comparatively high contributions of secondary aerosol and crustal dust, respectively, which were mainly related to the industrial distribution and urbanization process. The cluster analysis, ternary diagram and principal component analysis have a good agreement in source apportionment, where crustal dust sources, secondary aerosol source and the mixture of coal combustion, biomass burning and industrial pollution sources were the main sources of WSIs in PM2.5. The seasonal pattern of sulfur oxidation ratio (SOR) was September > April > November > January, while the nitrogen oxidation ratio (NOR) April > January > November > September in Baotou. This work evaluated the seasonal variation, distribution and source of WSIs on the basis of its stoichiometry in PM2.5, which help to explore the potential sources of these inorganic aerosols and provide scientific suggestion for air quality improvement in Baotou.
NASA Astrophysics Data System (ADS)
Diapouli, Evangelia; Manousakas, Manousos I.; Vratolis, Stergios; Vasilatou, Vasiliki; Pateraki, Stella; Bairachtari, Kyriaki A.; Querol, Xavier; Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki A.; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Célia; Custódio, Danilo; Pio, Casimiro; Spyrou, Christos; Kallos, George B.; Eleftheriadis, Konstantinos
2017-03-01
The contribution of natural sources to ambient air particulate matter (PM) concentrations is often not considered; however, it may be significant for certain areas and during specific periods of the year. In the framework of the AIRUSE-LIFE+ project, state-of-the-art methods have been employed for assessing the contribution of major natural sources (African dust, sea salt and forest fires) to PM concentrations, in southern European urban areas. 24 h measurements of PM10 and PM2. 5 mass and chemical composition were performed over the course of a year in five cities: Porto, Barcelona, Milan, Florence and Athens. Net African dust and sea-salt concentrations were calculated based on the methodologies proposed by the EC (SEC 2011/208). The contribution of uncontrolled forest fires was calculated through receptor modelling. Sensitivity analysis with respect to the calculation of African dust was also performed, in order to identify major parameters affecting the estimated net dust concentrations. African dust contribution to PM concentrations was more pronounced in the eastern Mediterranean, with the mean annual relative contribution to PM10 decreasing from 21 % in Athens, to 5 % in Florence, and around 2 % in Milan, Barcelona and Porto. The respective contribution to PM2. 5 was calculated equal to 14 % in Athens and from 1.3 to 2.4 % in all other cities. High seasonal variability of contributions was observed, with dust transport events occurring at different periods in the western and eastern Mediterranean basin. Sea salt was mostly related to the coarse mode and also exhibited significant seasonal variability. Sea-salt concentrations were highest in Porto, with average relative contributions equal to 12.3 % for PM10. Contributions from uncontrolled forest fires were quantified only for Porto and were low on an annual basis (1.4 and 1.9 % to PM10 and PM2. 5, respectively); nevertheless, contributions were greatly increased during events, reaching 20 and 22 % of 24 h PM10 and PM2. 5 concentrations, respectively.
Palaeo-dust records: A window to understanding past environments
NASA Astrophysics Data System (ADS)
Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik
2018-06-01
Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with reorganisation of Australian dust source areas occurring during the mid to late Holocene. Dust emissions are shown to sensitively map the structure of the Last Glacial Maximum in Australia, demonstrating that this period was associated with enhanced, but also variable dust emissions, driven by changing sources area conditions. Finally we show how dust emissions have responded to the arrival of Europeans and the associated onset of broad-scale agriculture across the Australian continent.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2012-08-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.
The ISOPHOT 170 μ m serendipity survey. I. Compact sources with galaxy associations
NASA Astrophysics Data System (ADS)
Stickel, M.; Lemke, D.; Klaas, U.; Beichman, C. A.; Rowan-Robinson, M.; Efstathiou, A.; Bogun, S.; Kessler, M. F.; Richter, G.
2000-07-01
The first set of compact sources observed in the ISOPHOT 170 μm Serendipity Survey is presented. From the slew data with low (I100 μm <= 15 MJy/sr) cirrus background, 115 well-observed sources with a high signal-to-noise ratio in all detector pixels having a galaxy association were extracted. Of the galaxies with known optical morphologies, the vast majority are classified as spirals, barred spirals, or irregulars. The 170 μm fluxes measured from the Serendipity slews have been put on an absolute flux level by using calibration sources observed additionally with the photometric mapping mode of ISOPHOT. For all but a few galaxies, the 170 μm fluxes are determined for the first time, which represents a significant increase in the number of galaxies with measured Far-Infrared (FIR) fluxes beyond the IRAS 100 μm limit. The 170 μm fluxes cover the range 2 <~ F170 μm la 100 Jy. Formulae for the integrated FIR fluxes F40-220μm and the total infrared fluxes F1-1000μm incorporating the new 170 μm fluxes are provided. The large fraction of sources with a high F170 μm / F100 μm flux ratio indicates that a cold (TDust la 20 K) dust component is present in many galaxies. The detection of such a cold dust component is crucial for the determination of the total dust mass in galaxies, and, in cases with a large F170 μm / F100 μm flux ratio, increases the dust mass by a significant factor. The typical mass of the coldest dust component is MDust = 107.5 +/- 0.5 Msun , a factor 2-10 larger than that derived from IRAS fluxes alone. As a consequence, the majority of the derived gas-to-dust ratios are much closer to the canonical value of ~ 160 for the Milky Way. By relaxing the selection criteria, it is expected that the Serendipity Survey will eventually lead to a catalog of 170 μm fluxes for ~ 1000 galaxies. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.
NASA Astrophysics Data System (ADS)
Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin
2017-04-01
Central Asian deserts are a significant source of dust in the middle latitudes, where economic activity and health of millions of people are affected by dust storms. Detailed knowledge of sources of dust, controls over their activity, seasonality and atmospheric pathways are of crucial importance but to date, these data are limited. This paper presents a detailed database of sources of dust emissions in Central Asia, from western China to the Caspian Sea, obtained from the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data between 2003 and 2012. A dust enhancement algorithm was employed to obtain two composite images per day at 1 km resolution from MODIS Terra/Aqua acquisitions, from which dust point sources (DPS) were detected by visual analysis and recorded in a database together with meteorological variables at each DPS location. Spatial analysis of DPS has revealed several active source regions, including some which were not widely discussed in literature before (e.g. Northern Afghanistan sources, Betpak-Dala region in western Kazakhstan). Investigation of land surface characteristics and meteorological conditions at each source region revealed mechanisms for the formation of dust sources, including post-fire wind erosion (e.g. Lake Balkhash basin) and rapid desertification (e.g. the Aral Sea). Different seasonal patterns of dust emissions were observed as well as inter-annual trends. The most notable feature was an increase in dust activity in the Aral Kum.
Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.
2009-01-01
We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U. S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat Dust was swept from parking lots in six cities in the central and eastern U. S., where coal-tar-based sealcoat dominates use, and three cities in the western U. S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2. 1 and 0. 8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.
Li, Baizhan
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4–6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR) and hierarchical clustering analysis (HCA) were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR) due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10−6, 5.00×10−6, 3.08×10−6, 6.02×10−6 for children and 5.92×10−6, 4.83×10−6, 2.97×10−6, 5.81×10−6 for adults, respectively. PMID:25719362
Ramírez, Omar; Sánchez de la Campa, A M; Amato, Fulvio; Catacolí, Ruth A; Rojas, Néstor Y; de la Rosa, Jesús
2018-02-01
Bogota registers frequent episodes of poor air quality from high PM 10 concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM 10 source contribution. A characterization of the chemical composition and the source apportionment of PM 10 at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO 4 2- , Cl - , NO 3 - , NH 4 + ), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM 10 components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM 10 , high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM 10 ) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM 10 source, accounting for ∼50% of the PM 10 . The results provided novel data about PM 10 chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kandler, K.; Lieke, K.
2009-04-01
The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500
Hammel, Stephanie C; Hoffman, Kate; Lorenzo, Amelia M; Chen, Albert; Phillips, Allison L; Butt, Craig M; Sosa, Julie Ann; Webster, Thomas F; Stapleton, Heather M
2017-10-01
Polyurethane foam (PUF) in upholstered furniture frequently is treated with flame retardant chemicals (FRs) to reduce its flammability and adhere to rigorous flammability standards. For decades, a commercial mixture of polybrominated diphenyl ethers (PBDEs) called PentaBDE was commonly applied to foam to fulfill these regulations; however, concerns over toxicity, bioaccumulation, and persistence led to a global phase-out in the mid-2000s. Although PentaBDE is still detected in older furniture, other FR compounds such as tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and Firemaster® 550 (FM550) have been increasingly used as replacements. While biomonitoring studies suggest exposure is widespread, the primary sources of exposure are not clearly known. Here, we investigated the relationships between specific FR applications in furniture foam and human exposure. Paired samples of furniture foam, house dust and serum samples were collected from a cohort in North Carolina, USA and analyzed for FRs typically used in PUF. In general, the presence of a specific FR in the sofa of a home was associated with an increase in the concentration of that FR in house dust. For example, the presence of PentaBDE in sofas was associated with significantly higher levels of BDE-47, a major component of PentaBDE, in house dust (10 β =6.4, p<0.001). A similar association was observed with a component of FM550, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), with levels that were approximately 3 times higher in house dust when FM550 was identified in the sofa foam (p<0.01). These relationships were modified by dust loading rates in the living room and the ratio of sofa size to room size. Interestingly, levels of TDCIPP and tris(1-chloro-2-isopropyl) phosphate (TCIPP) were also higher in dust with detections in sofa foam; however, these associations were not statistically significant and may suggest there are other prominent sources of these compounds in the home. In addition, the presence of PentaBDE in sofa foam was associated with significantly higher levels of BDE-47 in serum (p<0.01). These results suggest that FR applications in sofas are likely major sources of exposure to these compounds in the home. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saylor, P. L.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Koffman, B. G.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.
2015-12-01
Oceanic deposition of Asian-sourced, Iron-rich dust particulate has been linked to enhanced phytoplankton productivity in regions of the Pacific Ocean. High Nutrient Low Chlorophyll (HNLC) ocean regions, such as the North Pacific, are hypothesized to play a significant role in changing atmospheric CO2 concentrations on glacial-interglacial timescales. Phytoplankton blooms generate methanesulfonate (MSA), an atmospheric oxidation product of dimethylsulfide (DMS) that is readily aerosolized and deposited in nearby glacial ice. In the summer of 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000 year-long parallel ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940° N, 151.088° W, 3912 m elevation). The Mt. Hunter ice core site is well situated to record changes in trans-Pacific dust flux and MSA emissions in the North Pacific. Here we investigate the history of dust flux to Denali over the last millennium using major and trace element chemistry and microparticle concentration and size distribution data from the Mt. Hunter cores. We evaluate potential controlling mechanisms on Denali dust flux including conditions at Asian dust sources (storminess, wind speed, precipitation), the strength of the Aleutian Low, and large-scale climate modes such as the El Niño-Southern Oscillation and the Pacific Decadal Oscillation. We also evaluate the Mt. Hunter record for relationships between dust flux and MSA concentrations to investigate whether dust fertilization enhanced North Pacific phytoplankton production over the past 1000 years. Future work will create a composite North Pacific dust record using new and existing Mt. Logan ice core records to evaluate these relationships over the entire Holocene.
NASA Astrophysics Data System (ADS)
Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco
2015-04-01
Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a sampling head, allows the sampling of Martian atmosphere with embedded dust. The captured dust grains are detected by an Optical System and then ejected into the atmosphere. MicroMED is a miniaturization of the instrument MEDUSA, developed for the Humboldt payload of the ExoMars mission. An Elegant Breadboard has been developed and tested and successfully demonstrates the instrument performances. The design and performance test results will be discussed.
Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James
2009-01-01
Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly accumulate on the surface of Franklin Lake playa because through-going drainage prevents frequent inundation and deposition of widespread flood sediment.
Characteristics of mineral dust impacting the Persian Gulf
NASA Astrophysics Data System (ADS)
Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan
2018-02-01
It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. <10 μm) were collected at Abadan, a site beside the Persian Gulf. The research aim was to compare chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.
Han, Lanfang; Gao, Bo; Wei, Xin; Xu, Dongyu; Gao, Li
2016-02-01
Street dusts from heavy density traffic area (HDTA), tourism area (TA), residential area (RA), and educational area (EA) in Beijing were collected to explore the distribution, health risk assessment, and source of lead (Pb). The average concentration of Pb in TA was the highest among the four areas. Compared with other cities, Pb concentrations in Beijing were generally at moderate or low levels. The average value (14.05) of ecological risk index (RI) indicated that Pb was at "low pollution risk" status. According to the calculation on hazard index (HI), the ingestion of dust particles of children and adults was the major route of exposure to street dusts in four studied areas, followed by dermal contact. The lower values of HI than 1 further suggested that non-carcinogenic risks of Pb in the street dusts were in the low range. Comparing (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of street dusts with other environmental samples, it was found that atmospheric deposition of coal combustion dust might be the main pathway for anthropogenic Pb input to the street dusts in four functional areas.
NASA Astrophysics Data System (ADS)
Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon
2017-04-01
Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons
NASA Technical Reports Server (NTRS)
Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming
2012-01-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2013-04-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82%) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.
Chen, Pulong; Wang, Tijian; Lu, Xiaobo; Yu, Yiyong; Kasoar, Matthew; Xie, Min; Zhuang, Bingliang
2017-02-01
In this study, samples of size-fractionated particulate matter were collected continuously using a 9-size interval cascade impactor at an urban site in Nanjing, before, during and after the Asian Youth Games (AYG), from July to September of 2013, and the Youth Olympic Games (YOG), from July to September of 2014. First, elemental concentrations, water-soluble ions including Cl - , NO 3 - , SO 4 2- , NH 4 + , K + , Na + and Ca 2+ , organic carbon (OC) and elemental carbon (EC) were analysed. Then, the source apportionment of the fine and coarse particulate matter was carried out using the chemical mass balance (CMB) model. The average PM 10 concentrations were 90.4±20.0μg/m 3 during the 2013 AYG and 70.6±25.3μg/m 3 during the 2014 YOG. For PM 2.1, the average concentrations were 50.0±12.8μg/m 3 in 2013 and 34.6±17.0μg/m 3 in 2014. Investigations showed that the average concentrations of particles declined significantly from 2013 to 2014, and concentrations were at the lowest levels during the events. Results indicated that OC, EC, sulfate and crustal elements have significant monthly and size-based variations. The major components, including crustal elements, water-soluble ions and carbonaceous aerosol accounted for 75.3-91.9% of the total particulate mass concentrations during the sampling periods. Fugitive dust, coal combustion dust, iron dust, construction dust, soil dust, vehicle exhaust, secondary aerosols and sea salt have been classified as the main emissions in Nanjing. The source apportionment results indicate that the emissions from fugitive dust, which was the most abundance emission source during the 2013 AYG, contributed to 23.0% of the total particle mass. However, fugitive dust decreased to 6.2% of the total particle mass during the 2014 YOG. Construction dust (14.7% versus 7.8% for the AYG and the YOG, respectively) and secondary sulfate aerosol (9.3% versus 8.0% for the AYG and the YOG, respectively) showed the same trend as fugitive dust, suggesting that the mitigation measures of controlling particles from the paved roads, construction and industry worked more efficiently during the YOG. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, L-W Antony; Watson, John G; Chow, Judith C; DuBois, Dave W; Herschberger, Lisa
2011-11-01
Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter ≤2.5 μm (PM 2.5 ) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM 2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM 2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF factor profiles, and additional maps. [Box: see text].
Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching
2010-10-01
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.
Mineral Dust Instantaneous Radiative Forcing in the Arctic
NASA Astrophysics Data System (ADS)
Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.
2018-05-01
Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.
Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis.
Boloorani, Ali D; Nabavi, Seyed O; Bahrami, Hosain A; Mirzapour, Fardin; Kavosi, Musa; Abasi, Esmail; Azizi, Rasoul
2014-01-01
One of the natural phenomena which have had considerable impacts on various regions of the world, including Iran, is "dust storm". In recent years, this phenomenon has taken on new dimensions in Iran and has changed from a local problem to a national issue. This study is an attempt to investigate the formation of the dust storms crossing the Western Iran. To find the sources of the dust storms entering Iran, first we examine three determined dust paths in the region and their temporal activities, using MODIS satellite images. Then, four regions were identified as dust sources through soil, land cover and wind data. Finally, atmospheric analyses are implemented to find synoptic patterns inducing dust storms. Source 1 has covered the region between the eastern banks of Euphrates and western banks of Tigris. Source 2 is in desert area of western and south-western Iraq. Finally source 3 is bounded in eastern and south-eastern deserts of Saudi Arabia called Rub-Al-Khali desert, or Empty Quarter. Moreover, south-eastern part of Iraq (source 4) was also determined as a secondary source which thickens the dust masses originating from the above mentioned sources. The study of synoptic circulations suggests that the dust storms originating from source 1 are formed due to the intense pressure gradient between the low-pressure system of Zagros and a high-pressure cell formed on Mediterranean Sea. The dust events in sources 2 and 3 are outcomes of the atmospheric circulations dominant in the cold period of the year in mid-latitudes.
Pavement Sealcoat, PAHs, and the Environment
NASA Astrophysics Data System (ADS)
Van Metre, P. C.; Mahler, B. J.
2011-12-01
Recent research by the USGS has identified coal-tar-based pavement sealants as a major source of polycyclic aromatic hydrocarbons (PAHs) to the environment. Coal-tar-based sealcoat is commonly used to coat parking lots and driveways and is typically is 20-35 percent coal tar pitch, a known human carcinogen. Several PAHs are suspected mutagens, carcinogens, and (or) teratogens. In the central and eastern U.S. where the coal-tar-based sealants dominate use, sum-PAH concentration in dust particles from sealcoated pavement is about 1,000 times higher than in the western U.S. where the asphalt-based formulation is prevalent. Source apportionment modeling indicates that particles from sealcoated pavement are contributing the majority of the PAHs to recent lake sediment in 35 U.S. urban lakes and are the primary cause of upward trends in PAHs in many of these lakes. Mobile particles from parking lots with coal-tar-based sealcoat are tracked indoors, resulting in elevated PAH concentrations in house dust. In a recently completed study, volatilization fluxes of PAHs from sealcoated pavement were estimated to be about 60 times fluxes from unsealed pavement. Using a wide variety of methods, the author and colleagues have shown that coal-tar-based sealcoat is a major source of PAHs to the urban environment and might pose risks to aquatic life and human health.
Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997-2010.
Chudnovsky, A Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P; Garshick, Eric
2017-01-01
Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO 2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable.
Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo
2015-03-01
PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.
Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010
Chudnovsky, A. Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P.; Garshick, Eric
2016-01-01
Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. Implications The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable. PMID:28001122
Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
Twenty years of precipitation-chemistry data from the National Atmospheric Deposition Program site at El Verde, Puerto Rico, demonstrate that three major sources control the composition of solutes in rain in eastern Puerto Rico. In order of importance, these sources are marine salts, temperate contamination from the Northern Hemisphere, and Sahara Desert dust. Marine salts are a source of roughly 82 percent of the ionic charge in precipitation; marine salt inputs are greatest in January. Evaluation of 15 years of U.S. Geological Survey data for four watersheds in eastern Puerto Rico suggests that large storms, including hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Some of these storms were missed in sampling by the National Atmospheric Deposition Program, and therefore its data on the marine contribution likely underestimate chloride. The marine contribution is a weak source of acidity. Temperate contamination contributes about 10 percent of the ionic charge in precipitation; contaminants are primarily nitrate, ammonia, and sulfate derived from various manmade and natural sources. Peak deposition of temperate contaminants is during January, April, and May, months in which strong weather fronts arrive from the north. Temperate contamination, a strong source of acidity, is the only component that is increasing through time. Sahara Desert dust provides 5 percent of the ionic charge in precipitation; it is strongly seasonal, peaking in June and July during times of maximum dust transport from the Sahara and sub-Saharan regions. This dust contributes, on average, enough alkalinity to neutralize the acidity in June and July rains.
Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS
NASA Astrophysics Data System (ADS)
Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier
2016-06-01
During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 µg m-3 on average), Saharan dust (28 %, 2.1 µg m-3) and background mineral dust (37 %, 2.8 µg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.
Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS
NASA Astrophysics Data System (ADS)
Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.
2015-11-01
During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at twelve hours resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (Positive Matrix Factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 μg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 μg m-3, 8-12 %), (3) mineral dust (5 μg m-3, 13-26 %), (4) aged marine (3-5 μg m-3, 13-20 %), (5) heavy oil (0.4-0.6 μg m-3, 2 %), (6) industrial (1 μg m-3, 3-5 %), (7) sulphate (3-4 μg m-3, 11-17 %) and (8) nitrate (4-6 μg m-3, 17-21 %). Three aerosol sources were found enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factors concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 μg m-3 on average), Saharan dust (28 %, 2.1 μg m-3) and background mineral dust (37 %, 2.8 μg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Tegen, Ina; Miller, Ron L.
2000-01-01
The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.
NASA Astrophysics Data System (ADS)
Singh, Aditi; Iyengar, Gopal R.; George, John P.
2016-05-01
Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.
NASA Technical Reports Server (NTRS)
Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.
2002-01-01
Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.
Earth Observations taken by the Expedition 17 Crew
2008-10-16
ISS017-E-019616 (16 Oct. 2008) --- A dust storm in Turkmenistan, Central Asia is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This west-looking view, taken with a short focal length lens from the station, shows a wide swath of central Asia--from Afghanistan, along the length of Turkmenistan to the Caspian Sea. Winds blowing down the largest river valley in the region, the Amudarya, were strong enough to raise a large dust storm. Dust appears as a light brown mass extending into the center of the image from the lower right. Diffuse dust from prior windy weather appears over much of the area making a regional haze that clouds much of the landscape detail. The haze partly obscures the irrigated agriculture in Turkmenistan and entirely obscures the Caspian Sea. Numerous rivers rise in the Hindu Kush mountain complex (lower left). The Band-i Amir River is a major tributary of the main regional river, the Amudarya, which it reaches via a deep canyon. The Amudarya River was the major historical contributor of water to the Aral Sea, but today extensive diversion of river water for agricultural purposes has lead to extensive exposure and desiccation of the sea bed. The exposed sea bed is a major source of saline dusts contaminated with agricultural chemicals that pose a significant environmental hazard to central Asia. To a lesser extent, dusts are also mobilized from sediments along the Amudarya river channel. The Paropamisus Range and the Amudarya (also known as the Oxus River) are mentioned in histories of Alexander the Great's famous military expedition from Greece to India. His horsemen made a fast side excursion from near the Caspian Sea (top right) as far as the Amudarya (lower right).
Verifying reddening and extinction for Gaia DR1 TGAS main sequence stars
NASA Astrophysics Data System (ADS)
Gontcharov, George A.; Mosenkov, Aleksandr V.
2017-12-01
We compare eight sources of reddening and extinction estimates for approximately 60 000 Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) main sequence stars younger than 3 Gyr with a relative error of the Gaia parallax less than 0.1. For the majority of the stars, the best 2D dust emission-based reddening maps show considerable differences between the reddening to infinity and the one calculated to the stellar distance using the barometric law of the dust distribution. This proves that the majority of the TGAS stars are embedded in the Galactic dust layer and a proper 3D treatment of the reddening/extinction is required to calculate their dereddened colours and absolute magnitudes reliably. Sources with 3D estimates of reddening are tested in their ability to put the stars among the PARSEC and MIST theoretical isochrones in the Hertzsprung-Russell diagram based on the precise Gaia, Tycho-2, 2MASS and WISE photometry. Only the reddening/extinction estimates by Arenou et al. and Gontcharov, being appropriate for nearby stars within 280 pc, provide both the minimal number of outliers bluer than any reasonable isochrone and the correct number of stars younger than 3 Gyr in agreement with the Besançon Galaxy model.
The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation
NASA Astrophysics Data System (ADS)
Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.
2015-12-01
Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.
Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.
2013-01-01
above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.
Lime kiln dust as a potential raw material in portland cement manufacturing
Miller, M. Michael; Callaghan, Robert M.
2004-01-01
In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.
How Early Holocene Greening of the Afro-Asian Dust Belt Changed Sources of Mineral Dust in West Asia
NASA Astrophysics Data System (ADS)
Pourmand, A.; Sharifi, A.; Goes, L. M.; Clement, A. C.; Canuel, E. A.; Naderi Beni, A.; Ahmady-Birgani, H.
2016-12-01
Production, transport and deposition of mineral dust have significant temporal and spatial impacts on different components of the Earth systems. In modern times, dust plumes can be associated with their source origin(s) using satellite and land-based measurements and back-trajectory reconstruction of air masses. Reconstructing past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and their potential source origins. In this contribution, we present a 13,000-year record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in sources of dust over West Asia. The geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from times of high dust fluxes during the Younger Dryas, and that of the mid-late Holocene. This indicates that the composition of mineral dust deposited at the receptor site changed as a function of prevailing atmospheric circulation regimes and land exposure. Simulations of atmospheric circulation over the region show the Northern Hemisphere Westerly Jet (NHWJ) was displaced poleward across the study area during the early Holocene when solar insolation was higher. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia to dominate dust export to West Asia during this period, in contrast to the dominant western and southwest Asian and Eastern African sources that prevail during the modern period.
NASA Astrophysics Data System (ADS)
Wang, X.; Huang, J.
2009-12-01
The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.
NASA Astrophysics Data System (ADS)
Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.
2017-12-01
Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.
Sensitivity of WRF-chem predictions to dust source function specification in West Asia
NASA Astrophysics Data System (ADS)
Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus
2017-02-01
Dust storms tend to form in sparsely populated areas covered by only few observations. Dust source maps, known as source functions, are used in dust models to allocate a certain potential of dust release to each place. Recent research showed that the well known Ginoux source function (GSF), currently used in Weather Research and Forecasting Model coupled with Chemistry (WRF-chem), exhibits large errors over some regions in West Asia, particularly near the IRAQ/Syrian border. This study aims to improve the specification of this critical part of dust forecasts. A new source function based on multi-year analysis of satellite observations, called West Asia source function (WASF), is therefore proposed to raise the quality of WRF-chem predictions in the region. WASF has been implemented in three dust schemes of WRF-chem. Remotely sensed and ground-based observations have been used to verify the horizontal and vertical extent and location of simulated dust clouds. Results indicate that WRF-chem performance is significantly improved in many areas after the implementation of WASF. The modified runs (long term simulations over the summers 2008-2012, using nudging) have yielded an average increase of Spearman correlation between observed and forecast aerosol optical thickness by 12-16 percent points compared to control runs with standard source functions. They even outperform MACC and DREAM dust simulations over many dust source regions. However, the quality of the forecasts decreased with distance from sources, probably due to deficiencies in the transport and deposition characteristics of the forecast model in these areas.
Complex molecules in Sagittarius B2(N): The importance of grain chemistry
NASA Technical Reports Server (NTRS)
Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.
1995-01-01
The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.
Desert Dust and Health: A Central Asian Review and Steppe Case Study.
Sternberg, Troy; Edwards, Mona
2017-11-03
In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining's potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment.
Desert Dust and Health: A Central Asian Review and Steppe Case Study
Sternberg, Troy; Edwards, Mona
2017-01-01
In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining’s potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment. PMID:29099792
NASA Astrophysics Data System (ADS)
Brooks, G. R.
2011-12-01
Dust storm forecasting is a critical part of military theater operations in Afghanistan and Iraq as well as other strategic areas of the globe. The Air Force Weather Agency (AFWA) has been using the Dust Transport Application (DTA) as a forecasting tool since 2001. Initially developed by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), output products include dust concentration and reduction of visibility due to dust. The performance of the products depends on several factors including the underlying dust source database, treatment of soil moisture, parameterization of dust processes, and validity of the input atmospheric model data. Over many years of analysis, seasonal dust forecast biases of the DTA have been observed and documented. As these products are unique and indispensible for U.S. and NATO forces, amendments were required to provide the best forecasts possible. One of the quickest ways to scientifically address the dust concentration biases noted over time was to analyze the weaknesses in, and adjust the dust source database. Dust source database strengths and weaknesses, the satellite analysis and adjustment process, and tests which confirmed the resulting improvements in the final dust concentration and visibility products will be shown.
Laboratory study of PCB transport from primary sources to settled dust.
Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Greenwell, Dale J; Roache, Nancy F; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H
2016-04-01
Dust is an important sink for indoor air pollutants, such as polychlorinated biphenyls (PCBs) that were used in building materials and products. In this study, two types of dust, house dust and Arizona Test Dust, were tested in a 30-m(3) stainless steel chamber with two types of panels. The PCB-containing panels were aluminum sheets coated with a PCB-spiked primer or caulk. The PCB-free panels were coated with the same materials but without PCBs. The dust evenly spread on each panel was collected at different times to determine its PCB content. The data from the PCB panels were used to evaluate the PCB migration from the source to the dust through direct contact, and the data from the PCB-free panels were used to evaluate the sorption of PCBs through the dust/air partition. Settled dust can adsorb PCBs from air. The sorption concentration was dependent on the congener concentration in the air and favored less volatile congeners. When the house dust was in direct contact with the PCB-containing panel, PCBs migrated into the dust at a much faster rate than the PCB transfer rate due to the dust/air partition. The dust/source partition was not significantly affected by the congener's volatility. For a given congener, the ratio between its concentration in the dust and in the source was used to estimate the dust/source partition coefficient. The estimated values ranged from 0.04 to 0.16. These values are indicative of the sink strength of the tested house dust being in the middle or lower-middle range. Published by Elsevier Ltd.
Identification of dust storm source areas in West Asia using multiple environmental datasets.
Cao, Hui; Amiraslani, Farshad; Liu, Jian; Zhou, Na
2015-01-01
Sand and Dust storms are common phenomena in arid and semi-arid areas. West Asia Region, especially Tigris-Euphrates alluvial plain, has been recognized as one of the most important dust source areas in the world. In this paper, a method is applied to extract SDS (Sand and Dust Storms) sources in West Asia region using thematic maps, climate and geography, HYSPLIT model and satellite images. Out of 50 dust storms happened during 2000-2013 and collected in form of MODIS images, 27 events were incorporated as demonstrations of the simulated trajectories by HYSPLIT model. Besides, a dataset of the newly released Landsat images was used as base-map for the interpretation of SDS source regions. As a result, six main clusters were recognized as dust source areas. Of which, 3 clusters situated in Tigris-Euphrates plain were identified as severe SDS sources (including 70% dust storms in this research). Another cluster in Sistan plain is also a potential source area. This approach also confirmed six main paths causing dust storms. These paths are driven by the climate system including Siberian and Polar anticyclones, monsoon from Indian Subcontinent and depression from north of Africa. The identification of SDS source areas and paths will improve our understandings on the mechanisms and impacts of dust storms on socio-economy and environment of the region. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Guang; Ding, Xuhan; Kuruppu, Mahinda; Zhou, Wei; Biswas, Wahidul
2018-03-01
Bauxite residue is a by-product of aluminium processing. It is usually stored in large-scale residue drying area (RDA). The bauxite residue is highly alkaline and contains a large percentage of metal oxides which are hazardous to the environment and human health. Therefore, the generated dust is a major environmental concern that needs to be addressed and efficiently managed. One of the major dust generation sources is from the coarse fraction of the bauxite residue named red sand. To minimize the environmental and health impacts, non-traditional chemical stabilizers can be applied to construct a binding surface crust with certain hardness and strength. Dust emission is reduced due to the increased moisture retention capacity and strong cohesion between sand particles. There are limited number of refereed publications that discuss the application of this method to alleviate dust generation from red sand. By critically reviewing the literature and the application of non-traditional chemical stabilizers to sand-like materials in other fields, this paper introduces some non-traditional chemical stabilizers that can be potentially used for controlling red sand dust. Commonly used evaluation methods in various studies are compared and summarized; the stabilization mechanisms are examined; and the performance of three types of stabilizers are compared and evaluated. This review potentially serves as a reference and guide for further studies in red sand dust control. The findings are especially useful for developing suitable quantitative methods for evaluating the dust suppression efficiency of soil stabilizers, and for determining the appropriate additive quantities that achieve both economic and performance effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.
Distribution of pesticides in dust particles in urban environments.
Richards, Jaben; Reif, Ruben; Luo, Yuzhuo; Gan, Jay
2016-07-01
In regions with a mild climate, pesticides are often used around homes for pest control. Recent monitoring studies have linked pesticide use in residential areas to aquatic toxicity in urban surface water ecosystems, and suggested dust particles on paved surfaces as an important source of pesticides. To test the hypothesis that dust on hard surfaces is a significant source of pesticides, we evaluated spatial and temporal patterns of current-use insecticides in Southern California, and further explored their distribution as a function of particle sizes. Pyrethroid insecticides were detected in dust from the driveway, curb gutter and street at 53.5-94.8%, with median concentrations of 1-46 ng g(-1). Pyrethroid residues were uniformly distributed in areas adjacent to a house, suggesting significant redistribution. The total levels of pyrethroids in dust significantly (p < 0.01) decreased from October to February, suggesting rainfalls as a major mechanism to move pesticide residues offsite. Fipronil as well as its degradation products, were detected at 50.6-75.5%, and spatial and temporal patterns of fipronil residues suggested rapid transformations of fipronil to its biologically active intermediates. Moreover, pyrethroids were found to be enriched in fine particles that have a higher mobility in runoff than coarse particles. Results from this study highlight the widespread occurrence of pesticides in outdoor dust around homes and the potential contribution to downstream surface water contamination via rain-induced runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter C. Van Metre; Barbara J. Mahler; Jennifer T. Wilson
We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of {Sigma}PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg,more » respectively. For three western cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo(a)pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted. 30 refs., 4 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Zdanowicz, Christian Michel
1999-10-01
The past and present variability of climate in the Arctic region is investigated using ice core records of atmospheric dust (microparticles) and volcanic aerosols developed from the Canadian Arctic and Greenland. A high- resolution, 10 4-year long proxy record of atmospheric dust deposition is developed from an ice core (P95) drilled through the Penny Ice Cap, Baffin Island. Snowpit studies indicate that dust deposited on the Penny Ice Cap are representative of background mineral aerosol, and demonstrate that the variability of dust fallout is preserved in the P95 core at multi-annual to longer time scales. The P95 dust record reveals a significant increase in dust deposition on the Penny Ice Cap between ca 7500-5000 yr ago. This increase was driven by early to mid-/late Holocene transformations in the Northern Hemisphere landscape (ice cover retreat, postglacial land emergence) and climate (transition to colder, drier conditions) that led to an expansion of sources and enhanced eolian activity. Comparison between dust records in the P95 and GISP2 (Greenland) ice cores shows an increasing divergence between the two records beginning ca 7500 years ago. The effects of Northern Hemisphere atmospheric circulation and snow cover extent on atmospheric dust deposition in the Arctic are evaluated by comparing the P95 dust record with observational data. Changes in dust deposition are strongly linked to modes of the Northern Hemisphere winter circulation. Most prominently, an inverse relationship between the P95 dust record and the intensity of the winter Siberian High accounts for over 50% of the interannual variance of these two parameters over the period 1899-1995. On inter- to multi- annual time scales, the P95 dust record is significantly anticorrelated with variations in spring, and to a lesser extent fall, snow cover extent in the mid-latitude interior regions of Eurasia and North America. These relationships account for an estimated 10 to 20% of variance in the P95 dust record. An empirical orthogonal function (EOF) analysis is used to investigate patterns of temporal covariance among insoluble microparticles and major ions deposited in the GISP2 and P95 ice cores. Dust and major ions covary strongly in the GISP2 late glacial record but are uncorrelated in both the GISP2 and P95 Holocene records. Companion EOF analyses of the Holocene records identify distinctive covariance patterns among microparticles and/or major ions that are associated with certain aerosols types or with source-specific air masses reaching the Arctic, providing further evidence of increased regional-scale climatic and atmospheric variability over the last ~ 12,000 years. The atmospheric and climatic impact of the early Holocene eruption of Mount Mazama (Crater Lake, Oregon) is evaluated from the GISP2 ice core record of volcanically- derived sulfate and ash particles. The calendrical age of the eruption is determined to be 7627 +/- 150 cal yr B.P. The GISP2 sulfate record suggests a total stratospheric aerosol loading between 88 and 224 Mt spread over a ~ 6-year period following the eruption. From these figures, the Mount Mazama eruption is estimated to have depressed temperature by ~ 0.6 to 0.7°C at mid- to high northern latitudes. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.
2014-09-01
A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean environment.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.
2013-12-01
Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.
Aeolian system dynamics derived from thermal infrared data
NASA Astrophysics Data System (ADS)
Scheidt, Stephen Paul
Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a new application. Supporting data from AERONET and other orbital data enabled study of net radiative forcing.
Yang, Y.; Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.; Ligouis, B.; Razzaque, M.; Schaeffer, D.J.; Werth, C.J.
2010-01-01
Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, usedinsomepavementsealcoats, isadominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment. ?? 2010 American Chemical Society.
Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.
2012-12-01
Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.
Spatiotemporal Modelling of Dust Storm Sources Emission in West Asia
NASA Astrophysics Data System (ADS)
Khodabandehloo, E.; Alimohamdadi, A.; Sadeghi-Niaraki, A.; Darvishi Boloorani, A.; Alesheikh, A. A.
2013-09-01
Dust aerosol is the largest contributor to aerosol mass concentrations in the troposphere and has considerable effects on the air quality of spatial and temporal scales. Arid and semi-arid areas of the West Asia are one of the most important regional dust sources in the world. These phenomena directly or indirectly affecting almost all aspects life in almost 15 countries in the region. So an accurate estimate of dust emissions is very crucial for making a common understanding and knowledge of the problem. Because of the spatial and temporal limits of the ground-based observations, remote sensing methods have been found to be more efficient and useful for studying the West Asia dust source. The vegetation cover limits dust emission by decelerating the surface wind velocities and therefore reducing the momentum transport. While all models explicitly take into account the change of wind speed and soil moisture in calculating dust emissions, they commonly employ a "climatological" land cover data for identifying dust source locations and neglect the time variation of surface bareness. In order to compile the aforementioned model, land surface features such as soil moisture, texture, type, and vegetation and also wind speed as atmospheric parameter are used. Having used NDVI data show significant change in dust emission, The modeled dust emission with static source function in June 2008 is 17.02 % higher than static source function and similar result for Mach 2007 show the static source function is 8.91 % higher than static source function. we witness a significant improvement in accuracy of dust forecasts during the months of most soil vegetation changes (spring and winter) compared to outputs resulted from static model, in which NDVI data are neglected.
EMERGING APPROACHES FOR ASSESSING THE EXPOSURE OF CHILDREN TO ENDOCRINE DISRUPTORS
Humans can be exposed to endocrine disrupting chemicals (EDC's) from environmental sources such as water, food, air, dust and soil. A major concern is that children may be exposed to higher amounts of pollutants than adults because of their different activity patterns, higher b...
NASA Astrophysics Data System (ADS)
Goldstein, H. L.; Reynolds, R. L.; Landry, C.; Derry, J. E.; Kokaly, R. F.; Breit, G. N.
2016-12-01
Dust deposited on mountain snow cover (DOS) changes snow albedo, enhances absorption of solar radiation, and effectively increases rates of snow melt, leading to earlier-than-normal runoff and overall smaller late-season water supplies for tens of millions of people and industries in the American West. Visible-spectrum reflectance of DOS samples is on the order of 0.2 (80% absorption), in stark contrast to the high reflectivity of pure snow which approaches 1.0. Samples of DOS were collected from 12 high-elevation Colorado mountain sites near the end of spring from 2013 through 2016 prior to complete snow melt, when most dust layers had merged into one layer. These samples were analyzed to measure dust properties that affect snow albedo and to link DOS to dust-source areas. Dust mass loadings to snow during water year 2014 varied from 5 to 30 g/m2. Median particle sizes centered around 20 micrometers with more than 80% of the dust <63 micrometers. Dark minerals, carbonaceous matter, and iron oxides, including nano-sized hematite and goethite, together diminished reflectance according to their variable concentrations. Documenting variations in dust-particle masses, sizes, and compositions helps determine their influences on snow-melt and may be useful for modeling snow-melt effects from future dust. Furthermore, variations in dust components and particle sizes lead to new ways to recognize sources of dust by comparison with properties of fine-grained sediments in dust-source areas. Much of the DOS in the San Juan Mountains, Colorado can be linked to southern Colorado Plateau source areas by compositional similarities and satellite imagery. Understanding dust properties that affect snow albedo and recognizing the sources of dust deposited on snow cover may guide mitigation of dust emission that affects water resources of the Colorado River basin.
NASA Astrophysics Data System (ADS)
De Vis, P.; Gomez, H. L.; Schofield, S. P.; Maddox, S.; Dunne, L.; Baes, M.; Cigan, P.; Clark, C. J. R.; Gomez, E. L.; Lara-López, M.; Owers, M.
2017-10-01
We combine samples of nearby galaxies with Herschel photometry selected on their dust, metal, H I and stellar mass content, and compare these to chemical evolution models in order to discriminate between different dust sources. In a companion paper, we used an H I-selected sample of nearby galaxies to reveal a subsample of very gas-rich (gas fraction >80 per cent) sources with dust masses significantly below predictions from simple chemical evolution models, and well below Md/M* and Md/Mgas scaling relations seen in dust and stellar-selected samples of local galaxies. We use a chemical evolution model to explain these dust-poor, but gas-rich, sources as well as the observed star formation rates (SFRs) and dust-to-gas ratios. We find that (I) a delayed star formation history is required to model the observed SFRs; (II) inflows and outflows are required to model the observed metallicities at low gas fractions; (III) a reduced contribution of dust from supernovae (SNe) is needed to explain the dust-poor sources with high gas fractions. These dust-poor, low stellar mass galaxies require a typical core-collapse SN to produce 0.01-0.16 M⊙ of dust. To match the observed dust masses at lower gas fractions, significant grain growth is required to counteract the reduced contribution from dust in SNe and dust destruction from SN shocks. These findings are statistically robust, though due to intrinsic scatter it is not always possible to find one single model that successfully describes all the data. We also show that the dust-to-metal ratio decreases towards lower metallicity.
NASA Astrophysics Data System (ADS)
Christensen, J. N.; Cliff, S. S.; Vancuren, R. A.; Perry, K. D.; Depaolo, D. J.
2006-12-01
Research over the past decade has highlighted the importance of intercontinental transport and exchange of atmospheric aerosols, including soil-derived dust and industrial pollutants. Far-traveled aerosols can affect air quality, atmospheric radiative forcing and cloud formation and can be an important component in soils. Principal component analysis of elemental data for aerosols collected over California has identified a persistent Asian soil dust component that peaks with Asian dust storm events [1]. Isotopic fingerprinting can provide an additional and potentially more discriminating tool for tracing sources of dust. For example, the naturally variable isotopic compositions of Sr and Nd reflect both the geochemistry of the dust source and its pre- weathering geologic history. Sr and Nd isotopic data and chemical data have been collected for a time series of PM2.5 filter samples from Hefei, China taken from eraly April into early May, 2002. This period encompassed a series of dust storms. The sampling time frame overlapped with the 2002 Intercontinental Transport and Chemical Transformation (ITCT-2K2) experiment along the Pacific coast of North America and inland California. Highs in 87Sr/86Sr in the Hefei time series coincide with peaks in Ca and Si representing peaks in mineral particulate loading resulting from passing dust storms. Mixing diagrams combining isotopic data with chemical data identify several components; a high 87Sr/86Sr component that we identify with mineral dust (loess), and two different low 87Sr/86Sr components (local sources and marine aerosol). Using our measured isotopic composition of the "loess" standard CJ-1 [2] as representative of the pure high 87Sr/86Sr component, we calculate 24 hour average loess particulate concentrations in air which range up to 35 micrograms per cubic meter. Marine aerosol was a major component on at least one of the sampled days. The results for the Hefei samples provide a basis for our isotopic study of California mineral aerosols, including the identification and apportionment of local and far-traveled Asian dust components and their variation in time. [1]VanCuren R.A., Cliff, S.S., Perry, K.D. and Jimenez-Cruz, M. (2005) J. Geophys. Res., 110, D09S90, doi: 10.1029/2004JD004973 [2]Nishikawa, M., Hao, Q. and Morita, M. (2000) Global Environ. Res. 4, 1:103-113.
North African dust emissions and transport
NASA Astrophysics Data System (ADS)
Engelstaedter, Sebastian; Tegen, Ina; Washington, Richard
2006-11-01
The need for a better understanding of the role of atmospheric dust in the climate system and its impact on the environment has led to research of the underlying causes of dust variability in space and time in recent decades. North Africa is one of the largest dust producing regions in the world with dust emissions being highly variable on time scales ranging from diurnal to multiannual. Changes in the dust loading are expected to have an impact on regional and global climate, the biogeochemical cycle, and human environments. The development of satellite derived products of global dust distributions has improved our understanding of dust source regions and transport pathways in the recent years. Dust models are now capable of reproducing more realistic patterns of dust distributions due to an improved parameterization of land surface conditions. A recent field campaign has improved our understanding of the natural environment and emission processes of the most intense and persistent dust sources in the world, the Bodélé Depression in Chad. In situ measurements of dust properties during air craft observations in and down wind of source regions have led to new estimates of the radiative forcing effects which are crucial in predicting future climate change. With a focus on the North African desert regions, this paper provides a review of the understanding of dust source regions, the variability of dust emissions, climatic controls of dust entrainment and transport, the role of human impact on dust emission, and recent developments of global and regional dust models.
Long, Xin; Li, Nan; Tie, Xuexi; Cao, Junji; Zhao, Shuyu; Huang, Rujin; Zhao, Mudan; Li, Guohui; Feng, Tian
2016-01-15
Urban dust pollution has been becoming an outstanding environmental problem due to rapid urbanization in China. However, it is very difficult to construct an urban dust inventory, owing to its small horizontal scale and strong temporal/spatial variability. With the analysis of visual interpretation, maximum likelihood classification, extrapolation and spatial overlaying, we quantified dust source distributions of urban constructions, barrens and croplands in the Guanzhong Basin using various satellite data, including VHR (0.5m), Lansat-8 OLI (30 m) and MCD12Q1 (500 m). The croplands were the dominant dust sources, accounting for 40% (17,913 km(2)) of the study area in summer and 36% (17,913 km(2)) in winter, followed by barrens, accounting for 5% in summer and 10% in winter. Moreover, the total constructions were 126 km(2), including 84% of active and 16% inactive. In addition, 59% of the constructions aggregated on the only megacity of the study area, Xi'an. With high accuracy exceeding 88%, the proposed satellite-data based method is feasible and valuable to quantify distributions of dust sources. This study provides a new perspective to evaluate regional urban dust, which is seldom quantified and reported. In a companied paper (Part-2 of the study), the detailed distribution of the urban dust sources is applied in a dynamical/aerosol model (WRF-Dust) to assess the effect of dust sources on aerosol pollution. Copyright © 2015 Elsevier B.V. All rights reserved.
Van Metre, Peter C; Mahler, Barbara J; Wilson, Jennifer T
2009-01-01
We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dustfrom coal-tarsealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.
NASA Astrophysics Data System (ADS)
Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci
The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.
Mahowald, N.M.; Muhs, D.R.; Levis, S.; Rasch, P.J.; Yoshioka, M.; Zender, C.S.; Luo, C.
2006-01-01
Desert dust simulations generated by the National Center for Atmospheric Research's Community Climate System Model for the current climate are shown to be consistent with present day satellite and deposition data. The response of the dust cycle to last glacial maximum, preindustrial, modern, and doubled-carbon dioxide climates is analyzed. Only natural (non-land use related) dust sources are included in this simulation. Similar to some previous studies, dust production mainly responds to changes in the source areas from vegetation changes, not from winds or soil moisture changes alone. This model simulates a +92%, +33%, and -60% change in dust loading for the last glacial maximum, preindustrial, and doubled-carbon dioxide climate, respectively, when impacts of carbon dioxide fertilization on vegetation are included in the model. Terrestrial sediment records from the last glacial maximum compiled here indicate a large underestimate of deposition in continental regions, probably due to the lack of simulation of glaciogenic dust sources. In order to include the glaciogenic dust sources as a first approximation, we designate the location of these sources, and infer the size of the sources using an inversion method that best matches the available data. The inclusion of these inferred glaciogenic dust sources increases our dust flux in the last glacial maximum from 2.1 to 3.3 times current deposition. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.
2015-12-01
Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.
Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source
NASA Astrophysics Data System (ADS)
Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek
2018-02-01
Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.
Typical Types and Formation Mechanisms of Haze in an Eastern Asia Megacity, Shanghai
NASA Technical Reports Server (NTRS)
Huang, K.; Zhuang, G.; Lin, Y.; Fu, J. S.; Wang, Q.; Liu, T.; Zhang, R.; Jiang, Y.; Deng, C.; Fu, Q.;
2012-01-01
An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths) and low Angstrom exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5%) during the secondary inorganic and biomass burning episodes, while thick dust layer distributed at altitudes from near surface to 1.4 km (average depolarization ratio = 0.122+/-0.023) with dust accounting for 44-55% of the total aerosol extinction coefficient during the dust episode. This study portrayed a good picture of the typical haze types and proposed that identification of the complicated emission sources is important for the air quality improvement in megacities in China.
Compositional trends in aeolian dust along a transect across the southwestern United States
Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.
2008-01-01
Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.
Luo, Nana; An, Li; Nara, Atsushi; Yan, Xing; Zhao, Wenji
2016-06-01
Dust, as an important carrier of inorganic and organic pollutants, daily exposes to human without any protection. It affects our health adversely, especially its chemical elements and ions. In this research, we investigated the chemical characteristics of dustfall in Beijing, specifically in terms of 40 major and trace elements, and presented semi-quantitative evaluations of the relative local and remote contributions. In total, 58 samples were collected in Beijing and nearby cities during 2013-2014 "the winter heating period". Using multiple statistical methods and GIS techniques, we obtained the relative similarities among certain elements and identified their pollution sources (from local or nearby cities). And more interestingly, the relative contributions of nearby cities can be calculated by the Hysplit4 backward-trajectory model. In addition, the correlation analysis for the 40 elements in dust and soil indicated that traffic restricted interchange between them; the city center, with the heaviest traffic, had the most significant influence. Finally, the resulting source apportionment was examined and modified using land use data and terrain information. We hope it can provide a strong basis for the environmental protection and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigations of Wind/WAVES Dust Impacts
NASA Astrophysics Data System (ADS)
St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.
2017-12-01
The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year lifetime. We found a statistically significant and consistent trend of count rate deficits during the ICMEs compared to the periods immediately before and after the ICMEs. These preliminary results suggest that ICMEs may scatter micron-sized dust, or that they may exclude it during their initiation.
Soluble dust as source of nutrients to the oceans and the role of humans
NASA Astrophysics Data System (ADS)
Tsigaridis, K.; Kanakidou, M.; Myriokefalitakis, S.; Nikolaou, P.; Daskalakis, N.; Theodosi, C.; Nenes, A.; Mihalopoulos, N.
2014-12-01
Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA - PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.
NASA Astrophysics Data System (ADS)
Murray, Jon E.; Brindley, Helen E.; Bryant, Robert G.; Russell, Jacqui E.; Jenkins, Katherine F.
2013-04-01
Understanding the processes governing the availability and entrainment of mineral dust into the atmosphere requires dust sources to be identified and the evolution of dust events to be monitored. To achieve this aim a wide range of approaches have been developed utilising observations from a variety of different satellite sensors. Global maps of source regions and their relative strengths have been derived from instruments in low Earth orbit (e.g. Total Ozone Monitoring Spectrometer (TOMS) (Prospero et al., 2002), MODerate resolution Imaging Spectrometer (MODIS) (Ginoux et al., 2012)). Instruments such as MODIS can also be used to improve precise source location (Baddock et al., 2009) but the information available is restricted to the satellite overpass times which may not be coincident with active dust emission from the source. Hence, at a regional scale, some of the more successful approaches used to characterise the activity of different sources use high temporal resolution data available from instruments in geostationary orbit. For example, the widely used red-green-blue (RGB) dust scheme developed by Lensky and Rosenfeld (2008) (hereafter LR2008) makes use of observations from selected thermal channels of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) in a false colour rendering scheme in which dust appears pink. This scheme has provided the basis for numerous studies of north African dust sources and factors governing their activation (e.g. Schepanski et al., 2007, 2009, 2012). However, the LR2008 imagery can fail to identify dust events due to the effects of atmospheric moisture, variations in dust layer height and optical properties, and surface conditions (Brindley et al., 2012). Here we introduce a new method designed to circumvent some of these issues and enhance the signature of dust events using observations from SEVIRI. The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time-step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with low levels of dust emission. Different channel combinations are then rendered in false colour imagery to better identify dust source locations and activity. We have applied this new clear-sky difference (CSD) algorithm over three key source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case studies indicate that advantages associated with the CSD approach include an improved ability to detect dust and distinguish multiple sources, the observation of source activation earlier in the diurnal cycle, and an improved ability to pinpoint dust source locations. These advantages are confirmed by a survey of four-years of data, comparing the results obtained using the CSD technique with those derived from LR2008 dust imagery. On average the new algorithm more than doubles the number of dust events identified, with the greatest improvement for the Makgadigkadi Basin and coastal regions. We anticipate exploiting this new activation record derived using the CSD approach to better understand the surface and meteorological conditions controlling dust uplift and subsequent atmospheric transport.
Wind erosion of cropland in the northwestern Tarim Basin
USDA-ARS?s Scientific Manuscript database
The Aksu region within the Tarim Basin is a major source of windblown dust due to aridity and vast areas under intensive irrigated crop production. Despite the importance of crop production to the local economy and sustenance, little is known about the amount of soil eroded by wind from agricultural...
Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa
NASA Astrophysics Data System (ADS)
Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng
2018-03-01
Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.
Fan, Jin; Yue, Xiaoying; Sun, Qinghua; Wang, Shigong
2017-06-01
A severe dust event occurred from April 23 to April 27, 2014, in East Asia. A state-of-the-art online atmospheric chemistry model, WRF/Chem, was combined with a dust model, GOCART, to better understand the entire process of this event. The natural color images and aerosol optical depth (AOD) over the dust source region are derived from datasets of moderate resolution imaging spectroradiometer (MODIS) loaded on a NASA Aqua satellite to trace the dust variation and to verify the model results. Several meteorological conditions, such as pressure, temperature, wind vectors and relative humidity, are used to analyze meteorological dynamic. The results suggest that the dust emission occurred only on April 23 and 24, although this event lasted for 5days. The Gobi Desert was the main source for this event, and the Taklamakan Desert played no important role. This study also suggested that the landform of the source region could remarkably interfere with a dust event. The Tarim Basin has a topographical effect as a "dust reservoir" and can store unsettled dust, which can be released again as a second source, making a dust event longer and heavier. Copyright © 2016. Published by Elsevier B.V.
Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia
NASA Astrophysics Data System (ADS)
Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam
2018-01-01
Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and southwest Asian and Eastern African sources have prevailed during the mid-Holocene to modern times.
On the dust load and rainfall relationship in South Asia: an analysis from CMIP5
NASA Astrophysics Data System (ADS)
Singh, Charu; Ganguly, Dilip; Dash, S. K.
2018-01-01
This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.
NASA Astrophysics Data System (ADS)
Sekiya, Minoru; Onishi, Isamu K.
2018-06-01
The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.
NASA Technical Reports Server (NTRS)
Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.
2008-01-01
The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.
Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J
2017-06-01
This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM 2.5 ) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM 2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM 2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM 2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM 2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM 2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiacek, A.; Peter, T.; Lohmann, U.
2010-09-01
This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳-40 °C) theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice clouds" and the general influence of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (T≲-40 °C), our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at T≲-40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei) highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.
A multidisciplinary approach to trace Asian dust storms from source to sink
NASA Astrophysics Data System (ADS)
Yan, Yan; Sun, Youbin; Ma, Long; Long, Xin
2015-03-01
Tracing the source of dust storm (DS) in mega-cities of northern China currently suffers ambiguities from different approaches including source-sink proxy comparison, air mass back trajectory modeling, and satellite image monitoring. By integrating advantages of all three methods, we present a multidisciplinary approach to trace the provenance of dust fall in Xi'an during the spring season (March to May) of 2012. We collected daily dust fall to calculate dust flux variation, and detected eight DS events with remarkable high flux values based on meteorological comparison and extreme detection algorithm. By combining MODIS images and accompanying real-time air mass back trajectories, we attribute four of them as natural DS events and the other four as anthropogenic DS events, suggesting the importance of natural and anthropogenic processes in supplying long-range transported dust. The primary sources of these DS events were constrained to three possible areas, including the northern Chinese deserts, Taklimakan desert, and Gurbantunggut desert. Proxy comparisons based upon the quartz crystallinity index and oxygen isotope further confirmed the source-to-sink linkage between the natural DS events in Xi'an and the dust emissions from the northern Chinese deserts. The integration of geochemical and meteorological tracing approaches favors the dominant contribution of short-distance transportation of modern dust fall on the Chinese Loess Plateau. Our study shows that the multidisciplinary approach could permit a better source identification of modern dust and should be applied properly for tracing the provenance fluctuations of geological dust deposits.
Ali, Nadeem; Ibrahim Ismail, Iqbal Mohammad; Kadi, Mohammad W; Salem Ali Albar, Hussain Mohammed
2018-05-23
Indoor settled dust particles are considered as an important source of human exposure to chemicals such as organophosphate flame retardants (PFRs). In recent decades the Kingdom of Saudi Arabia (KSA) has experienced tremendous growth in population, as a result the number of masjids has also increased significantly to provide sufficient space for the public to offer prayers. The hospitality industry in KSA is also expanding to cater for the ever-increasing number of pilgrims visiting the two holy cities of the kingdom. However, limited data are available on the indoor pollution of masjids and hotels. In this study, PFRs were analyzed in the settled dust collected from various hotels and masjids of Jeddah, KSA. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloro-2-propyl) phosphate (TCPP) were the major PFRs in masjid (median = 2490 and 2055 ngg-1) and hotel (median = 2360 and 3315 ngg-1) dust, respectively. A public health risk assessment was carried out by determining the incremental lifetime cancer risk (ILCR), and daily exposure via dust ingestion, inhalation, and dermal contact of PFRs. The calculated daily exposure via dust ingestion was well below the reference dose (RfD) values, and also the calculated hazardous quotient (HQ) and carcinogenic risk were well below the risk mark. However, the ILCR for PFRs was below the reference values of USEPA, which suggested that long-term exposure to these chemicals has a limited cause for concern. The study showed that the general public is exposed to PFRs in the studied microenvironments and the major exposure routes are dermal contact and ingestion.
Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hansell, Richard A.
2011-01-01
Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of the atmosphere along with heating rate profiles for cloud-free atmospheres. In both dust cases the efficiency in the L W DARE is investigated and its significance is compared relative to that of diurnally SW.
Laboratory study of PCB transport from primary sources to ...
Transport of house dust and Arizona Test Dust on polychlorinated biphenyl (PCB)-containing panels and PCB-free panels was investigated in a 30-m3 stainless steel chamber. The PCB-containing panels were aluminum sheets coated with a PCB-spiked, oil-based primer or two-part polysulfide caulk. The PCB-free panels were coated with the same materials but they were not spiked with PCBs. The dust was weighed and spread on the panels as evenly as possible. The dust on each panel was collected at different times to determine its PCB content. The dust data collected from the PCB panels were used to evaluate the PCB migration from the source to the dust through direct contact, and the data from the PCB-free panels were used to evaluate the sorption of PCBs through the dust/air partition. Settled dust can adsorb PCBs from air. The sorption concentration was dependent on the congener concentration in the air and favored less volatile congeners. When the house dust was in direct contact with a primary source, PCBs migrated into the dust at a much faster rate than the PCB transfer rate due to the dust/air partition. Unlike the dust/air partition, the dust/source partition was not significantly affected by the volatility of the congener. This research is important to decision makers, environmental engineers, and researchers who are concerned with risk assessment and risk management for PCB contamination.
High Latitude Dust Sources, Transport Pathways and Impacts
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Baddock, M. C.; Darlington, E.; Mockford, T.; Van-Soest, M.
2017-12-01
Estimates from field studies, remote sensing and modelling all suggest around 5% of global dust emissions originate in the high latitudes (≥50°N and ≥40°S), a similar proportion to that from the USA (excluding Alaska) or Australia. This paper identifies contemporary sources of dust within the high latitudes and their role within local, regional and hemispherical environmental systems. Field data and remote sensing analyses are used to identify the environmental and climatic conditions that characterize high latitude dust sources in both hemispheres. Examples from Arctic and sub-Arctic dust sources are used to demonstrate and explain the different regional relationships among dust emissions, glacio-fluvial dynamics and snow cover. The relative timing of dust input to high latitude terrestrial, cryospheric and marine systems determines its short to medium term environmental impact. This is highlighted through quantifying the importance of locally-redistributed dust as a nutrient input to high latitude soils and lakes in West Greenland.
Desert dust hazards: A global review
NASA Astrophysics Data System (ADS)
Middleton, N. J.
2017-02-01
Dust storms originate in many of the world's drylands and frequently present hazards to human society, both within the drylands themselves but also outside drylands due to long-range transport of aeolian sediments. Major sources of desert dust include the Sahara, the Middle East, central and eastern Asia, and parts of Australia, but dust-raising occurs all across the global drylands and, on occasion, beyond. Dust storms occur throughout the year and they vary in frequency and intensity over a number of timescales. Long-range transport of desert dust typically takes place along seasonal transport paths. Desert dust hazards are here reviewed according to the three phases of the wind erosion system: where dust is entrained, during the transport phase, and on deposition. This paper presents a synthesis of these hazards. It draws on empirical examples in physical geography, medical geology and geomorphology to discuss case studies from all over the world and in various fields. These include accelerated soil erosion in agricultural zones - where dust storms represent a severe form of accelerated soil erosion - the health effects of air pollution caused by desert aerosols via their physical, chemical and biological properties, transport accidents caused by poor visibility during desert dust events, and impacts on electricity generation and distribution. Given the importance of desert dust as a hazard to human societies, it is surprising to note that there have been relatively few attempts to assess their impact in economic terms. Existing studies in this regard are also reviewed, but the wide range of impacts discussed in this paper indicates that desert dust storms deserve more attention in this respect.
Biological effects of desert dust in respiratory epithelial cells and a murine model.
Ghio, Andrew J; Kummarapurugu, Suryanaren T; Tong, Haiyan; Soukup, Joleen M; Dailey, Lisa A; Boykin, Elizabeth; Ian Gilmour, M; Ingram, Peter; Roggli, Victor L; Goldstein, Harland L; Reynolds, Richard L
2014-04-01
As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO₂ of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.
Biological effects of desert dust in respiratory epithelial cells and a murine model
Ghio, Andrew J.; Kummarapurugu, Suryanaren T.; Tong, Haiyan; Soukup, Joleen M.; Dailey, Lisa A.; Boykin, Elizabeth; Gilmour, M. Ian; Ingram, Peter; Roggli, Victor L.; Goldstein, Harland L.; Reynolds, Richard L.
2014-01-01
As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO2 of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.
NASA Astrophysics Data System (ADS)
Lyu, Yanli; Qu, Zhiqiang; Liu, Lianyou; Guo, Lanlan; Yang, Yanyan; Hu, Xia; Xiong, Yiying; Zhang, Guoming; Zhao, Mengdi; Liang, Bo; Dai, Jiadong; Zuo, Xiyang; Jia, Qingpan; Zheng, Hao; Han, Xujiao; Zhao, Shoudong; Liu, Qi
2017-10-01
Dust transport and deposition processes are important for understanding the environmental risk of dust storms. This study investigated characteristics of dustfall at two rural sites and four urban sites from dust sources to downwind regions during three dust storms (DS1: March 19-22, DS2: April 24-26, DS3: May 7-10, 2010). Analysis of near-surface instantaneous maximum wind speed and prevailing wind direction revealed the dust storms bursted out from northwestern arid and semiarid regions to eastern China. Microaggregates, angular, subangular, columnar, subrounded, and spherical particles were identified by scanning electron microscope. Dust deposition flux (DDF) during the dust storms was significantly high at sites near sand deserts and sandy land. During DS2, DDF was 25.1, 9.9, 2.3, and 1.5 g m-2 in Jingbian, Shapotou, Lanzhou, and Beijing, respectively. The three dust storms contributed 7.3% of Beijing's annual dustfall in 2010, which suggests anthropogenic dust might contribute the majority of annual dustfall in urban areas. The mass medium diameter of dustfall during DS2 in Shapotou, Jingbian, Lanzhou, and Beijing was 26.1, 9.0, 16.4, and 15.5 μm, respectively. Urban dustfall contained more heavy metals, sulfur and arsenic than rural dustfall. Cadmium contamination was identified in all urban dust particles. Anthropogenic pollutants in combination with mineral dust might lead to complex environmental risk on local, regional, and global scales. China's environmental pollution control should integrate reductions in land desertification and multisource anthropogenic emissions within the context of climate change mitigation.
Aeolian Environments of Iceland
NASA Astrophysics Data System (ADS)
Arnalds, Olafur; Olafsson, Haraldur; Dagsson Waldhauserová, Pavla
2017-04-01
Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust can be generated from all the major sandy areas of Iceland; however the amount of finer particles that become dust varies with the surfaces. There are areas that produce more dust by far compared to the general sandy deserts; they have therefore been termed "dust plume areas" or "dust hot-spots". They are characterized by repeated charging of fine sediments with a relatively high proportion of finer (silty) materials which, upon repeated wind erosion become sorted downwind from the sources with loss of silt (dust) and an increasing saltation component (sand). Dust production is on the order of 30-40 million tons annually, some travelling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.
Dust from mineral extraction: regulation of emissions in England
NASA Astrophysics Data System (ADS)
Marker, Brian
2013-04-01
The United Kingdom, which includes England, has fairly high levels of rainfall but sporadic droughts occur especially in the east. Mineral working gives rise to dust. Concerns about dust soiling are major source of public objections to new minerals extraction operations. Dust emissions from mineral workings are a significant cause of public concern in the United Kingdom and are recognised as sources of health concerns and nuisance. Emissions are controlled through a number of complementary sets of regulations that are generally well observed by the industry and well enforced by the relevant public authorities. comprehensive system of regulation, based on European and national law, to deal with all aspects of these operations including pollution control, planning, occupational health and safety and statutory nuisances. Most minerals applications are subject to EIA which forms that basis for planning and environmental conditions and monitoring of operations. There are limit values on PM10 and PM2.5 in air, and for potentially harmful elements (PHEs) in soils and water, derived from European regulations but, as yet, no limit values for PHEs (other than radioactive materials) in air. Stakeholder engagement is encouraged so that members of the public can express concerns during minerals operations and operators can quickly deal with these. While some effects inevitably remain, the levels of dust emissions are kept low through good site design and management, proper use of machinery which is equipped to minimise emissions, and good training of the workforce. Operational sites are required to have dust monitoring equipment located outside the site boundary so that any emerging problems can be detected and addressed quickly.
NASA Astrophysics Data System (ADS)
Coz, Esther; Gómez-Moreno, Francisco J.; Casuccio, Gary S.; ArtíñAno, BegoñA.
2010-06-01
Mineral dust is the second major source of PM10 in Madrid, reaching up to 80% of the PM10 mass during certain long-range dust transport events. Three different types of scenarios have been found to be associated with the high particle concentration episodes in the city: local anthropogenic, regional recirculation, and African dust transport processes. The present study focuses on the characterization of the individual mineral dust particles related to some chemical and morphological features during these three types of episodes, with special attention to local and regional episodes. To achieve this purpose, four different samples were selectively collected during the 2004-2005 period campaigns, one corresponding to each type of scenario and other sample from an Atlantic ventilated one. Meteorological situation, dust source identification, impact on ambient concentrations, size range distribution, and particle individual analysis have been characterized for each of them. Elemental composition and morphology of more than 30,000 mineral particles were analyzed by computer-controlled scanning electron microscopy. Particles were grouped into clusters based on their elemental composition, and the aspect ratio (AR) of each cluster or category was compared for each type of episode. The AR was related to the mineralogical crystal structure of each chemical cluster. The dates chosen for microscopy analysis were in good agreement in size distribution and chemical composition with the average of the dates in the entire campaign and with those from previous campaigns. Major differences between local/regional and long-range transported mineral dust were found in the relative abundance between carbonates and silicates, with much higher abundance of calcium carbonates in the first ones. These differences between silicate and carbonate contents were consistent with the results found in previous campaigns and were directly related to the composition of the parent topsoil by studying the Ca/Si ratios of similar episodes recorded all over the Iberian Peninsula. Differences in morphology were also found for these scenarios. The predominance of calcium carbonate under regional and local influence is scientifically relevant since this mineral is known to react with both SO2 and HNO3 in the atmosphere. Larger average AR values were found for dust particles from long-range transport, and smaller average AR values were found for particles from local and regional resuspended dust. The increasing average AR value has been linked to the silicate cluster presence, whereas a reduction has been observed within the carbonate cluster.
Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India
Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K.; Srivastava, Manoj K.; Ghosh, Sanjay K.; Tiwari, Suresh; Devara, Panuganti C. S.; Raha, Sibaji
2010-01-01
Background There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. Methodology/Principal Findings An extensive aerosol sampling program was conducted in Darjeeling (altitude ∼2200 meter above sea level (masl), latitude 27°01′N and longitude 88°15′E), a high altitude station in northeastern Himalayas, during January–December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5±20.8 µg m−3 and 19.6±11.1 µg m−3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH4NO3 in fine mode aerosol during winter and as NaNO3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO4 2− in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. Conclusions/Significance The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies. PMID:20585397
Aerosol chemistry over a high altitude station at northeastern Himalayas, India.
Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K; Srivastava, Manoj K; Ghosh, Sanjay K; Tiwari, Suresh; Devara, Panuganti C S; Raha, Sibaji
2010-06-16
There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies.
NASA Astrophysics Data System (ADS)
Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.
2007-12-01
The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust storm land surface records and remote sensing aerosol data at the monthly/seasonal/annual to event/daily scale. For instance, in southwestern Asia, severe drought developed from 1998 to 2002 has intensified the frequency, duration, and spatial coverage of large dust storms originated in Iran, Afghanistan, Tajikistan, Taklimakan and Goby Deserts. The Pamir and Tien Shan ice-core records revealed, that concentration of major and REE elements during summer is about two times greater in period of 1998-2002 than at the following years. Our qualitative analysis based on ice-core records, the MODIS and SeaWiFS images and determined the origin of dust, transport pathways and aerosol spatial distribution over central Asia and western Siberia in summer 2000, 2001 and 2002. The transport pathways were reconstructed on the basis of visibility observations and NCAR MM5-predicted winds with further validation against of satellite data and isotope- geochemical ice-core data analysis.
Regional and climatic controls on seasonal dust deposition in the southwestern U.S.
Reheis, M.C.; Urban, F.E.
2011-01-01
Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.
NASA Astrophysics Data System (ADS)
Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo
2014-09-01
Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.
Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo
2014-09-01
Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.
Modeling of fugitive dust emission for construction sand and gravel processing plant.
Lee, C H; Tang, L W; Chang, C T
2001-05-15
Due to rapid economic development in Taiwan, a large quantity of construction sand and gravel is needed to support domestic civil construction projects. However, a construction sand and gravel processing plant is often a major source of air pollution, due to its associated fugitive dust emission. To predict the amount of fugitive dust emitted from this kind of processing plant, a semiempirical model was developed in this study. This model was developed on the basis of the actual dust emission data (i.e., total suspended particulate, TSP) and four on-site operating parameters (i.e., wind speed (u), soil moisture (M), soil silt content (s), and number (N) of trucks) measured at a construction sand and gravel processing plant. On the basis of the on-site measured data and an SAS nonlinear regression program, the expression of this model is E = 0.011.u2.653.M-1.875.s0.060.N0.896, where E is the amount (kg/ton) of dust emitted during the production of each ton of gravel and sand. This model can serve as a facile tool for predicting the fugitive dust emission from a construction sand and gravel processing plant.
Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo
2014-01-01
Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085
USDA-ARS?s Scientific Manuscript database
Dust from drylands are of major concern to human society. Dust deposition onto snowpacks can hasten melt rates, resulting in lowered inputs into major rivers. Blowing dust can result in traffic accidents, respiratory disease, and high economic costs. To abate dust emissions, it is necessary to exami...
Microplastic pollution in deposited urban dust, Tehran metropolis, Iran.
Dehghani, Sharareh; Moore, Farid; Akhbarizadeh, Razegheh
2017-09-01
Environmental pollutants such as microplastics have become a major concern over the last few decades. We investigated the presence, characteristics, and potential health risks of microplastic dust ingestion. The plastic load of 88 to 605 microplastics per 30 g dry dust with a dominance of black and yellow granule microplastics ranging in size from 250 to 500 μm was determined in 10 street dust samples using a binocular microscope. Fluorescence microscopy was found to be ineffective for detecting and counting plastic debris. Scanning electron microscopy, however, was useful for accurate detection of microplastic particles of different sizes, colors, and shapes (e.g., fiber, spherule, hexagonal, irregular polyhedron). Trace amounts of Al, Na, Ca, Mg, and Si, detected using energy dispersive X-ray spectroscopy, revealed additives of plastic polymers or adsorbed debris on microplastic surfaces. As a first step to estimate the adverse health effects of microplastics in street dust, the frequency of microplastic ingestion per day/year via ingestion of street dust was calculated. Considering exposure during outdoor activities and workspaces with high abundant microplastics as acute exposure, a mean of 3223 and 1063 microplastic particles per year is ingested by children and adults, respectively. Consequently, street dust is a potentially important source of microplastic contamination in the urban environment and control measures are required.
NASA Astrophysics Data System (ADS)
Feuerstein, Stefanie; Schepanski, Kerstin
2017-04-01
One of the world's largest sources of atmospheric dust is the Sahara. It is said that 55% of the total global dust emission can be linked to the desert in northern Africa. Thus, understanding the Saharan dust sources is of great importance to estimate the total global dust load and its variability. Especially one type of dust sources has gained attention in dust research in recent years: The emission of dust from sediments formed by hydrologic processes, so called alluvial dust sources. These sediments were either formed in the past under the influences of a more humid paleoclimate or are deposited recently, e.g. during strong precipitation events when surficial runoff leads to the activation of wadi systems or to the occurrence of flash floods. Especially the latter phenomenon is able to deliver a huge amount of potentially erodible sediments. The research presented here focuses on the characterization of these alluvial dust sources with special attention on their temporal variability in relation to wet and dry phases. A study area covering the Aïr Massif in Niger is analysed over a four years time span from January 2013 to December 2016. The whole cycle from sediment formation to dust emission is illustrated by using data of various satellite sensors that are able to capture the processes taking place at the land surface as well as in the atmosphere: (1) The rainfall distribution for the study area is shown by time series of the TRMM precipitation estimates. A catchment analysis of the area helps to estimate the amount of surficial runoff and to detect areas of potential sediment accumulation. (2) Changes in the sediment structure of the land surface are analysed using atmospherically corrected time series of NASA's Landsat-8 OLI satellite. A land cover classification shows the distribution of alluvial sediments over the area; fresh layers of alluvial deposits are detected. Furthermore, the evolution of the vegetation cover, which inhibits dust emission, is analysed by calculating NDVI time series from the Landsat data. (3) The MSG Dust Product is used to determine the frequency of dust emission from the investigation area. Furthermore, the product allows the precise localization of the sources. Therefore the alluvial sediments can directly be connected to dust emission. By combining the findings of these different satellite sensors, a profound analysis of alluvial dust sources on different levels is possible. The connection between the amount of precipitation and the supply of potentially erodible sediments is shown, which leads to a better understanding of the temporal evolution and importance of this source type.
Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)
NASA Astrophysics Data System (ADS)
Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.
2014-09-01
There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.
Mars Spark Source Prototype Developed
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.
2000-01-01
The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.
NASA Astrophysics Data System (ADS)
Bleiweiss, M. P.; DuBois, D. W.; Flores, M. I.
2013-12-01
Dust storms in the border region of the Southwest US and Northern Mexico are a serious problem for air quality (PM10 exceedances), health (Valley Fever is pandemic in the region) and transportation (road closures and deadly traffic accidents). In order to better understand the phenomena, we are attempting to identify critical characteristics of dust storm sources so that, possibly, one can perform more accurate predictions of events and, thus, mitigate some of the deleterious effects. Besides the emission mechanisms for dust storm production that are tied to atmospheric dynamics, one must know those locations whose source characteristics can be tied to dust production and, therefore, identify locations where a dust storm is eminent under favorable atmospheric dynamics. During the past 13 years, we have observed, on satellite imagery, more than 500 dust events in the region and are in the process of identifying the source regions for the dust plumes that make up an event. Where satellite imagery exists with high spatial resolution (less than or equal to 250m), dust 'plumes' appear to be made up of individual and merged plumes that are emitted from a 'point source' (smaller than the resolution of the imagery). In particular, we have observed events from the ASTER sensor whose spatial resolution is 15m as well as Landsat whose spatial resolution is 30m. Tying these source locations to surface properties such as NDVI, albedo, and soil properties (percent sand, silt, clay, and gravel; soil moisture; etc.) will identify regions with enhanced capability to produce a dust storm. This, along with atmospheric dynamics, will allow the forecast of dust events. The analysis of 10 events from the period 2004-2013, for which we have identified 1124 individual plumes, will be presented.
N. S. Wagenbrenner; S. H. Chung; B. K. Lamb
2017-01-01
Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...
DETERMINATION OF ROUTES OF EXPOSURE OF INFANTS AND TODDLERS TO HOUSEHOLD PESTICIDES: A PILOT STUDY
The U.S. EPA recently completed a study of nonoccupational exposure to household pesticides. uring that study, house dust and yard soil were recognized to be potential major sources of exposure for infants and toddlers. onsequently, a pilot study was initiated in the fall of 1990...
Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone
USDA-ARS?s Scientific Manuscript database
Wind erosion in the desert-oasis ecotone can accelerate desertification and thus impacts oasis ecological security. Little is known about the susceptibility of the desert-oasis ecotone to wind erosion in the Tarim Basin even though the ecotone is a major source of windblown dust in China. The object...
Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Kocurek, Gary
2014-09-01
Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the simulated vertical mass flux of dust differs greatly among the existing dust models. While most of the models utilize an erodibility factor to characterize dust sources, this factor is assumed to be static, without sufficient characterization of the highly heterogeneous and dynamic nature of dust source regions. We present a high-resolution land cover map of the Middle East and North Africa (MENA) in which the terrain is classified by visually examining satellite images obtained from Google Earth Professional and Environmental Systems Research Institute Basemap. We show that the correlation between surface wind speed and Moderate Resolution Imaging Spectroradiometer deep blue aerosol optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents the spatiotemporal distribution of soil-derived dust sources. This method also identifies agricultural dust sources and eliminates the satellite-observed dust component that arises from long-range transport, pollution, and biomass burning. The erodible land cover of the MENA region is grouped into nine categories: (1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our results indicate that erodibility is linked to the land cover type and has regional variation. An improved land cover map, which explicitly accounts for sediment supply, availability, and transport capacity, may be necessary to represent the highly dynamic nature of dust sources in climate models.
Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments.
Uni, Daphna; Katra, Itzhak
2017-11-15
Dust storms are a major source of global atmospheric particulate matter (PM), having significant impacts on air pollution and human health. During dust storms, daily averages of atmospheric PM concentrations can reach high levels above the World Health Organization (WHO) guideline for air quality. The objective of this study was to explore the impact of forests on PM distribution following dust events in a region that is subjected to frequent dust storms (Northern Negev, Israel). Dust was measured in a forest transect including urban environments that are nearby the forest and at a distal location. During a background period, without dust events, the forest with its surrounding areas were characterized by lower monthly average of PM concentrations (38μg/m 3 ) compared with areas that are not affected by the forest (54μg/m 3 ). Such difference can be meaningful for long-term human health exposure. A reduction in PM levels in the forest transect was evident at most measured dust events, depending on the storm intensity and the locations of the protected areas. A significant reduction in PM 2.5 /PM 10 during dust events, indicates the high efficiency of the forest trees to absorb airborne PM 2.5 . Analysis of dust particles absorbed on the foliage revealed a total dust deposits of 8.1-9.2g/m 2 , which is equal to a minimum of 418.2tons removed from the atmosphere per a forest foliage area (30km 2 ). The findings can support environmental strategies to enhance life quality in regions that are subjected to dust storms, or under potential risk of dust-related PM due to land use and/or climate changes. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of inert dust on olive (Olea europaea L.) leaf physiological para.
Nanos, George D; Ilias, Ilias F
2007-05-01
Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.
Long-Term Variability of Airborne Asian Dust Observed from TOMS
NASA Technical Reports Server (NTRS)
Herman, J. R.; Hsu, N. C.; Seftor, C. J.; Holben, B. N.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Recent studies suggest that airborne Asian dust may not only play an important role in the regional radiation budget, but also influence the air quality over North America through long-range transport. In this paper, we use satellite data to investigate the long-term variability of airborne Asian dust as well as the daily variation of the dust aerosol distribution. By combining the Total Ozone Mapping Spectrometer (TOMS) aerosol index with National Centers for Environmental Prediction (NCEP) wind data, our analysis shows a strong correlation between the generation of dust storms in the region and the passage of springtime weather fronts. This is consistent with earlier studies performed by other researchers. According to both the Nimbus-7 and Earth-Probe TOMS data the Takla Makan desert, the Gobi desert, and the and region of Inner Mongolia are major sources of the eastward-flowing airborne Asian dust. Heavily populated areas in eastern China (e.g., Beijing) are often on the primary path of the dust storms originating in these desert regions. The increasing desertification north of the Beijing region has served to exacerbate problems stemming from these storms. The time series derived from 20 years of TOMS aerosol index data shows the first significant satellite evidence of the atmospheric effect of increasing desertification, indicating that the amount of dust blown eastward has increased strongly during the past few years including the year 2000.
NASA Astrophysics Data System (ADS)
Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.
2009-04-01
The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical composition. At Tinfou, larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3. Evaluation of the Cape Verde data will show whether a significant difference exists between fresh and aged Saharan dust in aspect ratio.
High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015
NASA Astrophysics Data System (ADS)
Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes
2017-04-01
Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous in situ measurements at the dust source in 2013 revealed extremely high number concentrations of submicron particles, specifically in the size range 0.3-0.337 μm. The PM2.5/PM10 ratios of mass concentrations seem to be lower at the dust sources that in some distance from the sources as measured in 2015. Common dust storms in Iceland are of several hundred thousand tons of magnitude from relatively well defined main dust sources. Numerical simulations were used calculate the total dust flux from the sources as 180,000 - 280,000 tons in this study. The mean PM1 (PM10) concentrations inside of the dust plumes varied from 97 to 241 µg m-3 (PM10 = 158 to 583 µg m-3). The extent of moderate dust events was calculated as 2.450 km2 to 4.220 km2 of the land area suggesting the regional scale of the events. Dust plumes reported here passed the most densely inhabited areas of Iceland, health risk warnings for the general public were, however, not issued. The data provided stresses the need for such warning system and is an important step towards its development.
Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M
2016-05-15
This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemistry and Photochemistry at the Surface of Urban Road Dust and Photoactive Minerals
NASA Astrophysics Data System (ADS)
Styler, S. A.; Abou-Ghanem, M.; Wickware, B.
2017-12-01
Each year, over a billion tons of dust are released into the atmosphere from arid regions. After its emission, dust can undergo efficient long-range transport to urban centres, where it can interact with local pollution sources. Another source of dust in urban regions is road dust resuspension, which is the largest anthropogenic source of primary particulate matter in both Canada and the United States. Since dust contains light-absorbing components, including iron- and titanium-containing minerals, dust-catalyzed photochemical processes have the potential to influence both the lifetime of pollutants present at the dust surface and the composition of the surrounding atmosphere. To date, most studies of dust photochemistry have focused on TiO2-mediated processes, and no studies have explored trace gas uptake at the surface of road dust. Here, we present first results from aerosol and coated-wall flow tube investigations of ozone uptake at the surface of a suite of titanium-containing minerals and road dust collected in Edmonton, Alberta. Together, this work represents a significant advance in our understanding of chemistry and photochemistry at realistic environmental interfaces.
A simulation of Asian dust events observed from 20 to 29 December 2009 in Korea by using ADAM2
NASA Astrophysics Data System (ADS)
Park, Soon-Ung; Choe, Anna; Park, Moon-Soo
2013-01-01
The Asian dust Aerosol Model 2 (ADAM2) with the MM5 meteorological model has been employed to study long-range transport process of Asian dust and to estimate dust emission, deposition (wet and dry) and concentration over the Asian dust source region and the downwind regions for dust events observed in Korea during the period of 20-29 December 2009, which is one of the dust events chosen by the 3rd Meeting of Working Group for Joint Research on Dust Sand Storm among Mongolia, China, Japan and Korea to study intensively for the development of an early warning system in Asia. It is found that the model simulates quite well the starting and ending times of dust events and the peak dust concentrations with their occurrence times both in the source region and downwind regions. The dust emission in the dust source region is found to be associated with a developing synoptic weather system accompanied with strong surface winds over the source region that usually travels east to southeastward across the source region and then turns to move northeastward toward the north western Pacific Ocean. The dust emitted in the source region is found to be split into two parts: one is transported southeastward to the East China Sea in front of the surface high pressure system and experiencing enhanced deposition due to the sinking motion induced by the southeastward traveling the surface high pressure system whereas, the other moves northeastward toward the surface low pressure system and then lifted upward to form a upper-level high dust concentration layer that results in a favorable condition for the long-range transport of dust. It is also found that the maximum ten-day total dust emission of about 23 t km-2 occurs in the domain Northwestern China (NWC). However, the maximum ten-day total dust deposition of 21 t km-2 with the maximum mean surface concentration of 555 μg m-3 and the column integrated mean concentration of 2.9 g m-2 occurs in the domain Central-northern China (CNC). The column-integrated PM10 concentration is found to increase toward northeastward especially in the domain North northeastern China (NNEC) due to the upper-level transported high PM10 concentration. The ten-day total dust deposition, mean surface PM10 and column integrated PM10 concentrations in the downwind domains are found to decrease away from the source region from 2.44 t km-2, 112 μg m-3 and 1.68 g m-2, respectively in the domain YES to 0.06 t km-2, 2.1 μg m-3 and 0.4 g m-2, respectively in the domain Northwestern Pacific 1 (NWP1). Much of the total dust deposition is largely contributed by wet deposition in the far downwind region of the seas while that is contributed by dry deposition in the source region.
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms
Glaser, Paul H.; Hansen, Barbara C. S.; Donovan, Joe J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.
2013-01-01
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico. PMID:24101489
Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10
NASA Astrophysics Data System (ADS)
Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.
2018-06-01
We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M < 8 M⊙) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B - V) = 1.85 mag and d = 0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms
Glaser, Paul H.; Hansen, Barbara C. S.; Donovan, Joseph J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.
2013-01-01
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico.
Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms.
Glaser, Paul H; Hansen, Barbara C S; Donovan, Joe J; Givnish, Thomas J; Stricker, Craig A; Volin, John C
2013-10-22
Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.
2016-12-01
Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate variability over the last glacial cycle with the less studied variability recorded during previous glacial-interglacial cycles in order to improve our understanding of the balance of high and low-latitude controls on the climate of North Africa.
Contributions of Paint and Soil to Pb in Household Dust Wipes: An XAS Study
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Clague, J. W.; Amaya, M. A.
2010-12-01
Speciation of Pb by X-ray absorption spectroscopy (XAS) indicated that Pb compounds associated with lead-based paint accounted for perhaps half of the Pb in 24 household dust wipes collected in El Paso, Texas. Soil-derived, sorbed Pb, likely Pb-humate, was also a major Pb species in many of the dust wipes. Household dust wipes are a standard technique for evaluating health risks of Pb to children, particularly toddlers, in public and private housing. The level of Pb in the wipes does not, however, indicate whether the source of the Pb is the house itself (peeling or powdering interior or exterior paint) or external, from contaminated soil or airborne particulate matter brought into the house by wind or foot traction. Understanding the origin of Pb in household dust is important in remediation: cover the old paint or remove the yard soil. XAS speciation can assist in understanding the source of Pb in household dust. The presence of significant Pb-humate requires a soil source, and suggests the need for soil remediation. Such species of Pb as hydrocerussite, lead sulfate, lead silicate, and lead chromate can be presumed to be components of lead-based paint. These may represent interior and/or exterior paint and thus do not uniquely identify the locus of the Pb source(s). Pb L-III edge XAFS data were collected on beam lines 7-3, 10-2, and 11-2 at SSRL at typical conditions of 3 GeV field and 80-200 mA current, using Si(220) water- or liquid-nitrogen-cooled monochromator crystals. Data were collected at ambient temperature in fluorescence mode using a 13- or 30-element Ge detector with a Se 3 or 6 filter and Soller slits to reduce scattered radiation. This publication was made possible by grant numbers 1RO1-ES11367 and 1 S11 ES013339-01A1 from the National Institute of Environmental Health Sciences (NIEHS), NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.
Compositions of modern dust and surface sediments in the Desert Southwest, United States
Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.; Reynolds, R.L.
2009-01-01
Modern dusts across southwestern United States deserts are compositionally similar to dust-rich Av soil horizons (depths of 0-0.5 cm and 1-4 cm at 35 sites) for common crustal elements but distinctly different for some trace elements. Chemical compositions and magnetic properties of the soil samples are similar among sites relative to dust sources, geographic areas, and lithologic substrates. Exceptions are Li, U, and W, enriched in Owens Valley, California, and Mg and Sr, enriched in soils formed on calcareous fan gravel in southeast Nevada. The Av horizons are dominated by dust and reflect limited mixing with substrate sediments. Modern dust samples are also similar across the region, except that Owens Valley dusts are higher in Mg, Ba, and Li and dusts both there and at sites to the north on volcanic substrates are higher in Sb and W. Thus, dust and Av horizons consist of contributions from many different sources that are well mixed before deposition. Modern dusts contain significantly greater amounts of As, Cd, Cr, Cu, Ni, Pb, and Sb than do Av horizons, which record dust additions over hundreds to thousands of years. These results suggest that modern dust compositions are influenced by anthropogenic sources and emissions from Owens (dry) Lake after its artificial desiccation in 1926. Both modern dusts and Av horizons are enriched in As, Ba, Cu, Li, Sb, Th, U, and W relative to average crustal composition, which we interpret to indicate that the geologic sources of dust in the southwestern United States are geochemically distinctive.
The southern Kalahari as a dust source: preliminary results from the field
USDA-ARS?s Scientific Manuscript database
The Kalahari encompasses one of the largest drylands in the Southern Hemisphere and it is a potentially large source of atmospheric dust in its relatively low-dust region. The severe iron depletion in the southern Indian and Atlantic Oceans, the ocean basins that receive much of the Kalahari dust, ...
Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols
NASA Technical Reports Server (NTRS)
Lin, B.; Min, Q.-L.; Li, R.
2010-01-01
Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.
Wan, Dejun; Zhan, Changlin; Yang, Guanglin; Liu, Xingqi; Yang, Jinsong
2016-01-01
To examine levels, health risks, sources, and spatial distributions of potentially toxic elements in settled dust over Beijing urban area, 62 samples were collected mostly from residential building outdoor surfaces, and their <63 μm fractions were measured for 12 potentially toxic elements. The results show that V, Cr, Mn, Co, Ni, and Ba in dust are from predominantly natural sources, whereas Cu, Zn, As, Cd, Sb, and Pb mostly originate from anthropogenic sources. Exposure to these elements in dust has significant non-cancer risks to children but insignificant to adults. Cancer risks of Cr, Co, Ni, As, and Cd via inhalation and dermal contact are below the threshold of 10−6–10−4 but As via dust ingestion shows a tolerable risk. The non-cancer risks to children are contributed mainly (75%) by As, Pb, and Sb, and dominantly (92%) via dust ingestion, with relatively higher risks mainly occurring in the eastern and northeastern Beijing urban areas. Although Cd, Zn, and Cu in dust are heavily affected by anthropogenic sources, their health risks are insignificant. Source appointments suggest that coal burning emissions, the dominant source of As, are likely the largest contributors to the health risk, and traffic-related and industrial emissions are also important because they contribute most of the Pb and Sb in dust. PMID:27187427
NASA Astrophysics Data System (ADS)
Karimi, Khadijeh; Taheri Shahraiyni, Hamid; Habibi Nokhandan, Majid; Hafezi Moghaddas, Naser; Sanaeifar, Melika
2011-11-01
The dust storm happens in the Middle East with very high frequency. According to the dust storm effects, it is vital to study on the dust storms in the Middle East. The first step toward the study on dust storm is the enhancement of dust storms and determination of the point sources. In this paper, a new false color composite (FCC) map for the dust storm enhancement and point sources determination in the Middle East has been developed. The 28 Terra-MODIS images in 2008 and 2009 were utilized in this study. We tried to replace the Red, Green and Blue bands in RGB maps with the bands or maps that enhance the dust storms. Hence, famous indices for dust storm detection (NDDI, D and BTD) were generated using the different bands of MODIS images. These indices with some bands of MODIS were utilized for FCC map generation with different combinations. Among the different combinations, four better FCC maps were selected and these four FCC are compared using visual interpretation. The results of visual interpretations showed that the best FCC map for enhancement of dust storm in the middle east is an especial combination of the three indices (Red: D, Green: BTD and Blue: NDDI). Therefore, we utilized of this new FCC method for the enhancement of dust storms and determination of point sources in Middle East.
Some Dust/Ocean Connections - Past, Present, and Future
NASA Astrophysics Data System (ADS)
Duce, R. A.
2015-12-01
Atmospheric dust has been the subject of communications for more than 3000 years, since the ancient Chinese book Chronicles Reported on Bamboo Shoots in 1150 BC. Similar reports of hwangsa and woo-tou in ancient Korean and kosa in ancient Japanese literature also indicated major Asian dust events in those areas. Western observers noted dust storms in India and Afghanistan in the early 1800s, while in the 1840s Darwin surmised that Sahara dust could be an important component of marine sedimentation in the North Atlantic. More recent interest has focused on the importance of dust as a source of the nutrients iron and phosphorus in the global ocean and the role of iron as a limiting nutrient in many areas of the surface ocean. While significant progress has been made in the past 25 years in identifying important dust/ocean connections, many issues remain. Included are the relative dearth of long-term measurements of atmospheric dust (and iron and phosphorus) over and deposition to the ocean, especially in the southern hemisphere; comparisons between modeled and measured deposition of dust to the ocean; and the solubility of iron and phosphorus (and thus their availability as nutrients) after the mineral matter enters the ocean. Addressing these problems will certainly help to provide more accurate estimates of the input of dust to the ocean and its impacts. However, future changes in dust emissions in a warmer world as well as changes in the acid/base environment that mineral dust experiences during its transport and deposition as a result of emission controls on atmospheric NOx and SO2 are two facors that may change the input of these nutrients to the ocean and their impacts in the coming years. These and other issues will be reviewed in this paper.
NASA Astrophysics Data System (ADS)
Mohammad, R.; Ramsey, M.; Scheidt, S. P.
2010-12-01
Prior to mineral dust deposition affecting albedo, aerosols can have direct and indirect effects on local to regional scale climate by changing both the shortwave and longwave radiative forcing. In addition, mineral dust causes health hazards, such as respiratory-related illnesses and deaths, loss of agricultural soil, and safety hazards to aviation and motorists due to reduced visibility. Previous work utilized satellite and ground-based TIR data to describe the direct longwave radiative effect of the Saharan Air Layer (SAL) over the Atlantic Ocean originating from dust storms in the Western Sahara. TIR emission spectroscopy was used to identify the spectral absorption features of that dust. The current research focuses on Kuwait and utilizes a comprehensive set of spatial, analytical and geological tools to characterize dust emissions and its radiative effects. Surface mineral composition maps for the Kuwait region were created using ASTER images and GIS datasets in order to identify the possible sources of wind-blown dust. Backward trajectory analysis using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggests the dust source areas were located in Iraq, Syria, Jordan and Saudi Arabia. Samples collected from two dust storms (May and July 2010) were analyzed for their mineral composition and to validate the dust source areas identified by the modeling and remote sensing analysis. These air fall dust samples were collected in glass containers on a 13 meter high rooftop in the suburb of Rumaithiya in Kuwait. Additional samples will be collected to expand the analysis and their chemical compositions will be characterized by a combination of laboratory X-ray fluorescence (XRF), Scanning Electron Microscopy (SEM) and TIR emission spectroscopy. The overarching objective of this ongoing research is to both characterize the effects of mineral dust on climate as well as establish a predictive tool that can identify dust storm sources and potentially aid in establishing a more accurate prediction and warning system in the Middle East region.
NASA Astrophysics Data System (ADS)
Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.
2017-12-01
The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.
NASA Astrophysics Data System (ADS)
Wiacek, A.; Peter, T.; Lohmann, U.
2010-02-01
This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Without explicitly modelling dust emission and deposition processes, dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Practically none of the simulated air parcels reached regions where homogeneous ice nucleation can take place (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through regions supersaturated with respect to ice but subsaturated with respect to water, where "warm" (T≳-40 °C) ice clouds may form prior to supercooled water or mixed-phase clouds. The importance of "warm" ice clouds and the general influence of dust in the mixed-phase cloud region are highly uncertain due to considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work. For "classical" cirrus-forming temperatures, our results show that only mineral dust IN that underwent mixed-phase cloud-processing previously are likely to be relevant, and, therefore, we recommend further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.
NASA Astrophysics Data System (ADS)
Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank
2017-07-01
Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.
NASA Astrophysics Data System (ADS)
Hennen, Mark
2017-04-01
This paper provides the most up-to-date dust climatology for the Middle East, presenting a new high resolution inventory of over 27,000 dust emission events observed over the Middle East in 2006 - 2013. The inventory was derived from the dust RGB product of the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on-board Meteosat's second generation satellite (MSG). Mineral dust emissions were derived from visual inspection of the SEVIRI scenes which have 4-5 km2 spatial and 15-minute temporal resolution. The location of every emission event was recorded in a database, along with time and trajectory of dust movement. This is an improvement on previous studies, which derive dust source areas from the daily observations of Aerosol Optical Depth whose maxima do not necessarily coincide with sources of emissions and produces more accurate information on the location of the key dust sources in the region. Results showed that dust sources are constrained to relatively small areas, with 21% of dust emission generated from just 0.9% of total surface area of the Middle East, mainly from eight source regions including the Tigris-Euphrates flood plains of Iraq and Syria, Western and Northern Saudi Arabia and the Sistan Basin in Eastern Iran. The Tigris-Euphrates flood plain was the most active dust region, producing 41% of all dust events with a peak activity in 2009. The southern areas of the Arabian Peninsula recorded very few dust emission observations, in contrast to many previous studies which do not use such high temporal resolution data. The activation and frequency of dust emissions are characterised by strong seasonality developing in response to specific synoptic conditions. To characterise synoptic conditions conducive to the development of dust storms, dust days' emission thresholds, based on number of dust emission events per day / per region and specific to each of the eight main dust emitting regions, were determined. ERA Interim reanalysis data were used to characterise synoptic conditions on the identified dust days. With vegetation cover dictating the ability for surface areas to deflate, Normalised Difference Vegetation Index (NDVI) data was acquired from the Moderate Resolution Imaging Spectrodiometer (MODIS) (MOD13A2) 1km database and correlated with dust emission frequency data in the region of greatest dust activity, the Tigris and Euphrates flood plain in Iraq and Syria.
NASA Astrophysics Data System (ADS)
Gautam, R.; Hsu, N. C.; Lau, W. K.
2013-12-01
The Himalaya-Tibetan Plateau (HTP) has a profound influence on the Asian climate. The HTP are also among the largest snow/ice-covered regions on the Earth and provide major freshwater resource to the downstream densely-populated regions of Asia. Recent studies indicate climate warming over the HTP amplified by atmospheric heating and deposition of absorbing aerosols (e.g. dust and soot) over the HTP snowpack and glaciers. Recently, greater attention has focused on the effects of soot deposition on accelerated snowmelt and glacier retreat in the HTP, associated with increasing anthropogenic emissions in Asia. On the other hand, the role of transported dust affecting snow albedo/melt is not well understood over the HTP, in spite of the large annual cycle of mineral dust loading, particularly over the northern parts of south Asia during pre-monsoon season. This study addresses the large-scale effects of dust deposition on snow albedo in the elevated HTP from a satellite observational perspective. Dust aerosol transport, from southwest Asian arid regions, is observed in satellite imagery as darkening of the Himalayan snowpack. Additionally, multi-year spaceborne lidar observations, from CALIPSO, also show dust advected to elevated altitudes (~5km) over the Himalayan foothills, and episodically reaching the top of the western Himalaya. Spectral surface reflectance analysis of dust-laden snow cover (from MODIS) indicates enhanced absorption in the shorter visible wavelengths, yielding a significant gradient in the visible-nearIR reflectance spectrum. While soot in snow is difficult to distinguish from remote sensing, our spectral reflectance analysis of dust detection in the snowpack is consistent with theoretical simulations of snow darkening due to dust impurity. We find that the western HTP, in general, is influenced by enhanced dust deposition due to its proximity to major dust sources (and prevailing dust transport pathways), compared to the eastern HTP. Coinciding with the snowmelt period, dust deposition appears to further cause snow reflectance reduction, i.e. snow darkening, from spring to summer months. Among the entire HTP, we show that the western Himalaya and the Hindu-Kush snowpack are subjected to greater dust deposition and snow albedo reduction. Thus, our satellite-based observational study addresses the spatial variability of large-scale dust deposition on snow cover in the extensive HTP. A climatological and inter-annual perspective of the spatial variability of dust-induced snow darkening over the HTP will be presented, using ~10 years of MODIS spectral reflectance data (at high spatial resolution of ~1km). Results from this study provide insight into the particular role of desert dust towards accelerated seasonal snowmelt in the HTP.
Assessing sources of airborne mineral dust and other aerosols, in Iraq
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Jayanty, R. K. M.
2013-06-01
Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.
NASA Astrophysics Data System (ADS)
Murray, J. E.; Brindley, H. E.; Bryant, R. G.; Russell, J. E.; Jenkins, K. F.; Washington, R.
2016-09-01
A method is described to significantly enhance the signature of dust events using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with either (a) low levels of dust emission or (b) dust emissions with high salt or low quartz content. Different channel combinations, of the differenced data from the steps above, are then rendered in false color imagery for the purpose of improved identification of dust source locations and activity. We have applied this clear-sky difference (CSD) algorithm over three (globally significant) source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case study analyses indicate three notable advantages associated with the CSD approach over established image rendering methods: (i) an improved ability to detect dust plumes, (ii) the observation of source activation earlier in the diurnal cycle, and (iii) an improved ability to resolve and pinpoint dust plume source locations.
NASA Astrophysics Data System (ADS)
Bory, A. J.; Skonieczny, C.; Bout-Roumazeilles, V.; Grousset, F. E.; Biscaye, P. E.
2011-12-01
Dust records retrieved from ice and sediment cores represent some of our most valuable evidence for modifications of atmospheric circulation on various times scales over the last few Pleistocene glacial and interglacial climate cycles. These data also contribute to the documentation of changes in continental paleo-environments (e.g., changes in aridity), changes in iron inputs to the ocean, as well as changes in the hydrological cycle. Interpreting ice and sediment-core dust records, and using them for modelling purposes, requires firstly a good understanding of the dust provenance and its possible temporal variability. Specific intrinsic tracers such as clay mineralogy, major and trace elements, and radiogenic isotopes (strontium, neodymium, lead) have been used for this purpose, with variable effectiveness. One difficulty lies in the fact that these measurements require significant amount of mineral particles and can thus only be obtained at low temporal resolution, either because of the low dust concentration in ice cores or because of the low mass accumulation rates and bioturbation in marine sediments. As a result, dust samples extracted from ice and sediment cores for provenance investigation average long periods of time and may reflect mixtures from various source areas, complicating the interpretation of the data. Still, provenance tracers (clay mineralogy and Sr-Nd isotopes in particular) made possible for instance the discrimination of which continents provided most of the dust deposited in remote locations such as Greenland and Antarctica during the dusty glacial stages. The locations of the contributing source areas, however, were not precisely identified. During the low-dust, interglacial periods, provenance has proven more difficult to establish unambiguously, even at broad (i.e., continental) geographic scales. In other aeolian deposits, such as Asian loess or marine sediments off West Africa, the provenance of the dust is still poorly constrained, despite the fact that these archives are located close to the highest dust-emission areas in the world. Characterization of dust provenance (using mineralogical and isotopic fingerprints) at present, which can be achieved at much higher resolution and benefit from remote sensing data and well-constrained GMC outputs, may provide valuable clues for our understanding of dust provenance in paleoclimate records. We review some investigations carried out in Greenland and Antarctica over the last decade, and present new results from the West African margin. We discuss the extent to which these present-day time series may help us calibrating our paleo-dust provenance proxies, and improving our understanding of dust provenance in paleoclimate records.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana; Vollmer, Bruce; Li, Zhanqing
2016-01-01
Dust plays important roles in energy cycle and climate variations. The dust deposition is the major source of iron in the open ocean, which is an essential micronutrient for phytoplankton growth and therefore may influence the ocean uptake of atmospheric CO2. Mineral dust can also act as fertilizer for forests over long time periods. Over 35 years of simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using MERRA-2 aerosol model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Dust deposition data along with other major aerosol compositions (e.g. black carbon, sea salt, and sulfate, etc.) are simulated as dry and wet deposition, respectively. The hourly and monthly data are available at spatial resolution of 0.5ox0.625o (latitude x longitude). Quick data exploration of climatology and interannual variations of MERRA-2 aerosol can be done through the online visualization and analysis tool, Giovanni. This presentation, using dust deposition as an example, demonstrates a number of MERRA-2 data services at GES DISC. Global distributions of dust depositions, and their seasonal and inter-annual variations are investigated from MERRA-2 monthly aerosol products.
Gupta, Gyan Prakash; Singh, Sudha; Kumar, Bablu; Kulshrestha, U C
2015-03-01
Abundance of CaCO3 rich soil dust is a typical feature of atmospheric environment in the Indian region. During prevailing dry weather conditions, dustfall is deposited onto the foliar surfaces of plant affecting their morphology, stomata and the levels of biochemical constituents. This study reports the chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of a medicinal plant (Morus alba) at two sites which are differentiated on the basis of landuse pattern, viz., (i) residential, Jawaharlal Nehru University (JNU), and (ii) industrial, Sahibabad (SB), located in the National Capital Region (NCR) of Delhi. Dustfall was characterized for major anions (F(-), Cl(-), NO3 (-) and SO4 (--)) and cations (Na(+), NH4 (+), K(+), Mg(++) and Ca(++)). Biochemical parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, proline and ascorbic acid were determined in foliar samples. The results showed that the dustfall fluxes of all the major ions were found to be higher at the industrial site (SB) as compared to the residential site (JNU). Foliar analysis revealed that the levels of biochemical parameters were more affected at SB site due to higher levels of dust SO4 (--) contributed by various anthropogenic sources resulting in more stressful conditions affecting the biochemistry of the plant. The possible entry pathways for dust SO4 (--) into foliar cells are also discussed in the paper. It was noticed that the deposition of urban dust was responsible for the damage of trichome, epidermis, cuticle and stomatal guard cells significantly affecting foliar morphology. SB exhibited more damage to these morphological parts suggesting that industrial dust is harmful to the plants.
Chemical composition and sources of atmospheric aerosols at Djougou (Benin)
NASA Astrophysics Data System (ADS)
Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel
2017-06-01
In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.
Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea
NASA Astrophysics Data System (ADS)
Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.
2013-05-01
Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.
Type II supernovae as a significant source of interstellar dust.
Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike
2003-07-17
Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.
NASA Technical Reports Server (NTRS)
Tegen, Ina; Rind, David
2000-01-01
To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.
NASA Astrophysics Data System (ADS)
Jia, Y.; Clements, A.; Fraser, M.
2009-04-01
The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds were analyzed in size segregated soil and ambient PM samples at Higley; intra- and inter- comparisons were made between the ambient PM and three types of soil dust samples (agricultural soil, native soil, road dust) based on the particle size (fine vs. coarse), seasonality, and relative composition of 12 saccharide compounds. Based on the ambient concentrations of major saccharides and a number of other specific compounds (including elemental and organic carbon, ions, metals, alkanes, organic acids, and polycyclic aromatic hydrocarbons) that are simultaneously resolved in Higley PM samples, a Positive Matrix Factorization (PMF) model was performed to determine the key contributors to PM10 and PM2.5 levels. Six distinct factors were isolated, with two factors dominated by the enrichment of saccharide compounds. There was not consistency between the source profiles of these two saccharide rich source factors with the saccharide composition of the local size-segregated soil samples, which implies that there may be other major sources contributing to ambient PM saccharides. One possible alternative is that PBAPs that are injected directly into the atmosphere instead of residing in the surface soil and being re-entrained through soil erosion or agricultural processing. To our knowledge, this study is the first of its kind to compare the saccharide composition between the fine and coarse fraction of different soils types in two seasons, and to relate the contribution from soil dust to ambient PM using saccharide species. REFERENCE [1] AirData: Access to Air Pollution data. [cited 2009 Jan 11, 2009]; Available from: http://www.epa.gov/air/data/index.html [2] Allergy and Asthma in the Southwestern United States. [cited 2009 Jan 11, 2009]; Available from: http://allergy.peds.arizona.edu/southwest/swpollen.html [3] Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook, Lewis Publishers, NY [4] Simoneit, B.R.T., Elias, V.O., et al., 2004. "Sugars - Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter", Environmental Science and Technology (38): 5939-5949. [5] Simoneit, B.R.T., Mazurek, M.A., 1981. "Air Pollution - the Organic-Components", Crc Critical Reviews in Environmental Control (11): 219-276. [6] Medeiros, P.M., Simoneit, B.R.T, 2007. "Analysis of sugars in environmental samples by gas chromatography-mass spectrometry", Jouranl of Chromatography A (1141): 271-278. [7] Rogge, W.F., Medeiros, P.M, et al., 2007. ‘Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study", Atmospheric Environment (41): 8183-8204. [8] Bauer, H., Claeys, M., et al., 2008. "Arabitol and mannitol as tracers for the quantification of airborne fungal spores", Atmospheric Environment (42): 588-593. [9] Elbert, W., Taylor, P.E., et al., 2007. "Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions", Atmospheric Chemistry and Physics (7): 4569-4588. [10] Graham, B., Guyon, P., et al., 2003. "Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry", Journal of Geophysical Research (108): 4766, doi:10.1029/2003JD003990.
Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database
NASA Astrophysics Data System (ADS)
Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.
2016-02-01
Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase.
High-latitude dust in the Earth system
Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur
2016-01-01
Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.
High Latitude Dust in the Earth System
NASA Technical Reports Server (NTRS)
Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert;
2016-01-01
Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.
X-Ray Dust Tomography: Mapping the Galaxy one X-ray Transient at a Time
NASA Astrophysics Data System (ADS)
Heinz, Sebastian; Corrales, Lia
2018-01-01
Tomography using X-ray light echoes from dust scattering by interstellar clouds is an accurate tool to study the line-of-sight distribution of dust. It can be used to measure distances to molecular clouds and X-ray sources, it can map Galactic structure in dust, and it can be used for precision measurements of dust composition and grain size distribution. Necessary conditions for observing echoes include a suitable X-ray lightcurve and sufficient dust column density to the source. I will discuss a tool set for studying dust echoes and show results obtained for some of the brightest echoes detected to date.
Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio-waves
NASA Astrophysics Data System (ADS)
Cohen, M.; Zhang, X.; Cohen, M.; Mahmoudian, A.; Scales, W.; Kosch, M. J.; M Farahani, M.; Mohebalhojeh, A.
2016-12-01
So-called polar mesospheric winter echoes (PMWE) are radar echoes observed during winter at altitudes around 50-80 km and are much weaker than their PMSE (Polar Mesospheric Summer Echoes) counterpart. Unlike PMSE, PMWE are less studied and understood. Breaking of gravity waves and the associated turbulence are proposed as the major source for PMWE echoes. The action of neutral turbulence alone does not appear to give a good explanation for PMWE. PMWE is also attributed to Bragg scatter from electron irregularities which result from charging of free electrons onto sub-visible particles. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and off are distinct parameters that are a function of radar frequency. This work presents the first study of the modulation of PMWE by artificial radiowave heating using computational modeling and experimental observation in different radar frequency bands. Variation of dust plasma parameters associated with PMWE such as dust radius, dust density, recombination rate, electron- and dust-neutral collision frequencies, photo-detachment current and electron temperature enhancement ratio are included. Computational results derived from different sets of parameters are considered and compared with recent observations at EISCAT using 224 MHz and 56 MHz radars. The agreement between the model results and the observations show the high potential of remote sensing of dust and plasma parameters associated with PMWE. Measurement of Te/Ti using ISR and simultaneous observations in two frequency bands may lead to a more accurate estimation of dust density and radius. The enhancement of backscattered signal in the HF band during PMWE heating is predicted for the first time. The required background dust-plasma parameters as well as heater power (Te/Ti) for the observation of turn-on overshoot are investigated. It has been shown that the similarity of the temporal evolution of radar echoes in HF band and average charge on the dust particles can be used to study the fundamental physics associated with the dust charging in the PMWE source region. The possibilities of perusing PMWE heating experiments at HAARP will be discussed.
NASA Astrophysics Data System (ADS)
Corrales, Lia
2015-05-01
X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.
Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel
2017-01-01
Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a−1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models. PMID:28079148
Working Group on Circumstellar/Interstellar Relationships
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1986-01-01
Stars of various types are believed to be the main source of interstellar (IS) dust grans. The most important confirmed source is evolved giant and supergiant stars. Supernovae also contribute to the mass loss. The differences between circumstellar (CS) and IS dust were reviewed using the following topics: alteration of CS dust grains, size distribution, space observation of CS and IS dust, comparison of infrared spectra, isotopic signatures, Magellanic clouds and nearby galaxies, life cycles of dust grains, and physical and chemical data.
Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong
2016-04-01
Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.
Singlet Oxygen Production by Illuminated Road Dust and Winter Street Sweepings
NASA Astrophysics Data System (ADS)
Schneider, S.; Gan, L.; Gao, S.; Hoy, K. S.; Kwasny, J. R.; Styler, S. A.
2017-12-01
Road dust is an important urban source of primary particulate matter, especially in cities where sand and other traction materials are applied to roadways in winter. Although the composition and detrimental health effects of road dust are reasonably well characterized, little is currently known regarding its chemical behaviour. Motivated by our previous work, in which we showed that road dust is a photochemical source of singlet oxygen (1O2), we investigated 1O2 production by bulk winter street sweepings and by road dust collected in a variety of urban, industrial, and suburban locations in both autumn and spring. In all cases, the production of 1O2 by road dust was greater than that by Arizona test dust and desert-sourced dust, which highlights the unique photochemical environment afforded by this substrate. Mechanistically, we observed correlations between 1O2 production and the UV absorbance properties of dust extracts, which suggests the involvement of chromophoric dissolved organic matter in the observed photochemistry. Taken together, this work provides evidence that road dust-mediated photochemistry may influence the environmental lifetime of pollutants that react via 1O2-mediated pathways, including polycyclic aromatic hydrocarbons.
Eolian Dust and the Origin of Sedimentary Chert
Cecil, C. Blaine
2004-01-01
This paper proposes an alternative model for the primary source of silica contained in bedded sedimentary chert. The proposed model is derived from three principal observations as follows: (1) eolian processes in warm-arid climates produce copious amounts of highly reactive fine-grained quartz particles (dust), (2) eolian processes in warm-arid climates export enormous quantities of quartzose dust to marine environments, and (3) bedded sedimentary cherts generally occur in marine strata that were deposited in warm-arid paleoclimates where dust was a potential source of silica. An empirical integration of these observations suggests that eolian dust best explains both the primary and predominant source of silica for most bedded sedimentary cherts.
Source term model evaluations for the low-level waste facility performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, M.S.; Su, S.I.
1995-12-31
The estimation of release of radionuclides from various waste forms to the bottom boundary of the waste disposal facility (source term) is one of the most important aspects of LLW facility performance assessment. In this work, several currently used source term models are comparatively evaluated for the release of carbon-14 based on a test case problem. The models compared include PRESTO-EPA-CPG, IMPACTS, DUST and NEFTRAN-II. Major differences in assumptions and approaches between the models are described and key parameters are identified through sensitivity analysis. The source term results from different models are compared and other concerns or suggestions are discussed.
Sources and Levels of PCBs in Indoor Environments
Source assessment• Primary sources – caulk and light ballasts (6 schools)• Secondary sources – paint, tile, furnishings, etc. (3 schools)• Emission rate estimation Environmental levels (6 schools except dust)• Air, surface, dust, soil PCB c...
NASA Astrophysics Data System (ADS)
Yang, Zhongkang; Long, Nanye; Wang, Yuhong; Zhou, Xin; Liu, Yi; Sun, Liguang
2017-02-01
The contents of Ti, Al and Fe 2 O 3 in a lacustrine sediment core (DY6) collected from Dongdao Island, South China Sea (SCS), were determined to be much higher than those in the three major sediment end-members (coral sand, guano and plants), and their likely sources include terrigenous dust and volcanic ash. At 61 cm (˜AD 1300), the contents of Ti, Al and Fe 2 O 3 have an abnormally high spike, which cannot be explained by terrigenous dust. The Sr and Nd isotope compositions at 61 cm are in excellent agreement with those in volcanic materials, but they are significantly different from those in terrigenous dust, implying a possible material input from historical volcanic eruptions in the lacustrine sediment DY6. The documented great Samalas volcanic eruption at AD 1257 in Indonesia is likely the candidate for this volcanic eruption.
Indoor allergens, environmental avoidance, and allergic respiratory disease.
Bush, Robert K
2008-01-01
Indoor allergen exposure to sources such as house-dust mites, pets, fungi, and insects plays a significant role in patients with allergic rhinitis and asthma. The identification of the major allergens has led to methods that can quantitate exposure, e.g., immunoassays for Der p 1 in settled dust samples. Sensitization and the development of allergic respiratory disease result from complex genetic and environmental interactions. New paradigms that examine the role of other environmental factors, including exposure to proteases that can activate eosinophils and initiate Th2 responses, and epigenetics, are being explored. Recommendations for specific environmental allergen avoidance measures are discussed for house-dust mites, cockroaches, animal dander, and fungi. Specific measures to reduce indoor allergen exposure when vigorously applied may reduce the risk of sensitization and symptoms of allergic respiratory disease, although further research will be necessary to establish cost-effective approaches.
Risk of Adverse Health and Performance Effects of Celestial Dust Exposure
NASA Technical Reports Server (NTRS)
Scully, Robert R.; Meyers, Valerie E.
2015-01-01
Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline silica (Permissible Exposure Limit [PEL] 0.05 mg/m3) but more toxic than the nuisance dust titanium dioxide (TiO2 [PEL 5.0 mg/m3]). A PEL for episodic exposure to airborne lunar dust during a six-month stay on the lunar surface was established, in consultation with an independent, extramural panel of expert pulmonary toxicologists, at 0.3 mg/m3. The PEL provided for lunar dust is limited to the conditions and exposure specified therefore additional research remains to be accomplished with lunar dust to further address the issues of activation, address other areas of more unique lunar geology (Glotch et al., 2010; Greenhagen et al., 2010), examine potential toxicological effects of inhaled or ingested dust upon other organ systems, such cardiovascular, nervous systems, and examine effects of acute exposure to massive doses of dust such as may occur during off-nominal situations. Work to support the establishment of PELs for Martian dust and dusts of asteroids remains to be accomplished. The literature that describes health effects of exposure to toxic terrestrial dusts provides substantial basis for concern that prolonged exposure to respirable celestial dust could be detrimental to human health. Celestial bodies where a substantial portion of the dust is in the respirable range or where the dusts have large reactive surface areas or contain transition metals or volatile organics, represent greater risks of adverse effects from exposure to the dust. It is possible that in addition to adverse effects to the respiratory system, inhalation and ingestion of celestial dusts could pose risks to other systems
NASA Astrophysics Data System (ADS)
Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea
2017-04-01
Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil dust will be compared to existing AIDA experiments at higher temperatures published by Steinke et al. (2016). Finally, the ice nucleation activity of both desert dust and agricultural soil dust will be compared for the upper tropospheric temperature regime. Andreae et al. (2009), Sources and Nature of Atmospheric Aerosols, in Aerosol Pollution Impact on Precipitation - A Scientific Review, Ch.3, Springer Netherlands, 45-89 Cziczo et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324 O'Sullivan et al. (2014), Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853-1867 Steinke et al. (2016), Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany, J. Geophys. Res., 121 Tobo et al. (2014), Organic matter matters for ice nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521-8531 Ullrich et al. (2017), A new ice nucleation active site parametrization for desert dust and soot, J. Atmos. Sci., in press
Detection of anthropogenic dust using CALIPSO lidar measurements
NASA Astrophysics Data System (ADS)
Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.
2015-04-01
Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.
NASA Astrophysics Data System (ADS)
Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas
2017-12-01
A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500 km to more than 5000 km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000 km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.
Sensitivity of surface characteristics on the simulation of wind-blown-dust source in North America
NASA Astrophysics Data System (ADS)
Park, S. H.; Gong, S. L.; Gong, W.; Makar, P. A.; Moran, M. D.; Stroud, C. A.; Zhang, J.
Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust episode"). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were "activated" as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which "desert" is designated to be the only land-cover category that can emit wind-blown dust.
A survey of spatially distributed exterior dust lead loadings in New York City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caravanos, Jack; Weiss, Arlene L.; School of Medicine, New York University, NY 10016
This work documents ambient lead dust deposition values (lead loading) for the boroughs of New York City in 2003-2004. Currently, no regulatory standards exist for exterior concentrations of lead in settled dust. This is in contrast to the clearance and risk assessment standards that exist for interior residential dust. The reported potential for neurobehavioral toxicity and adverse cognitive development in children due to lead exposure prompts public health concerns about undocumented lead sources. Such sources may include settled dust of outdoor origin. Dust sampling throughout the five boroughs of NYC was done from the top horizontal portion of pedestrian trafficmore » control signals (PTCS) at selected street intersections along main thoroughfares. The data (n=214 samples) show that lead in dust varies within each borough with Brooklyn having the highest median concentration (730{mu}g/ft{sup 2}), followed in descending order by Staten Island (452{mu}g/ft{sup 2}), the Bronx (382{mu}g/ft{sup 2}), Queens (198{mu}g/ft{sup 2}) and finally, Manhattan (175{mu}g/ft{sup 2}). When compared to the HUD/EPA indoor lead in dust standard of 40{mu}g/ft{sup 2}, our data show that this value is exceeded in 86% of the samples taken. An effort was made to determine the source of the lead in the dust atop of the PTCS. The lead in the dust and the yellow signage paint (which contains lead) were compared using isotopic ratio analysis. Results showed that the lead-based paint chip samples from intact signage did not isotopically match the dust wipe samples taken from the same surface. We know that exterior dust containing lead contributes to interior dust lead loading. Therefore, settled leaded dust in the outdoor environment poses a risk for lead exposure to children living in urban areas, namely, areas with elevated childhood blood lead levels and background lead dust levels from a variety of unidentified sources.« less
Integrated spatiotemporal characterization of dust sources and outbreaks in Central and East Asia
NASA Astrophysics Data System (ADS)
Darmenova, Kremena T.
The potential of atmospheric dust aerosols to modify the Earth's environment and climate has been recognized for some time. However, predicting the diverse impact of dust has several significant challenges. One is to quantify the complex spatial and temporal variability of dust burden in the atmosphere. Another is to quantify the fraction of dust originating from human-made sources. This thesis focuses on the spatiotemporal characterization of sources and dust outbreaks in Central and East Asia by integrating ground-based data, satellite multisensor observations, and modeling. A new regional dust modeling system capable of operating over a span of scales was developed. The modeling system consists of a dust module DuMo, which incorporates several dust emission schemes of different complexity, and the PSU/NCAR mesoscale model MM5, which offers a variety of physical parameterizations and flexible nesting capability. The modeling system was used to perform for the first time a comprehensive study of the timing, duration, and intensity of individual dust events in Central and East Asia. Determining the uncertainties caused by the choice of model physics, especially the boundary layer parameterization, and the dust production scheme was the focus of our study. Implications to assessments of the anthropogenic dust fraction in these regions were also addressed. Focusing on Spring 2001, an analysis of routine surface meteorological observations and satellite multi-sensor data was carried out in conjunction with modeling to determine the extent to which integrated data set can be used to characterize the spatiotemporal distribution of dust plumes at a range of temporal scales, addressing the active dust sources in China and Mongolia, mid-range transport and trans-Pacific, long-range transport of dust outbreaks on a case-by-case basis. This work demonstrates that adequate and consistent characterization of individual dust events is central to establishing a reliable climatology, ultimately leading to improved assessments of dust impacts on the environment and climate. This will also help to identify the appropriate temporal and spatial scales for adequate intercomparison between model results and observational data as well as for developing an integrated analysis methodology for dust studies.
NASA Astrophysics Data System (ADS)
Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Chen, Fahu
2018-07-01
Aridification of the Asian interior is one of the most significant paleoenvironmental events during the Cenozoic. However, continuous paleoclimatic records from desert interiors are scarce because of the lack of outcrops, erosion and discontinuous sediment accumulation. Here we report a multi-proxy climatic record for the last ∼3.55 Ma from paleomagnetically-dated drilling core WEDP01 from the central Tengger Desert, which is one of the most important sediment source areas for Northern Hemisphere atmospheric dust and the Chinese Loess Plateau. Analysis of grain-size components indicates the onset of continuous dust deposition at 2.6 Ma and desert formation at 0.9 Ma. In addition, analysis of major element content and sediment color reveals a stepwise process of increasing aridification and significant cooling in the Tengger Desert area. Simultaneous aridification events in northwest China during the Quaternary were probably induced by the uplift of the Tibetan Plateau. Northern Hemisphere glaciation may have been another important factor for Asian aridification; meanwhile, the increased dust emission from sources such as the Tengger Desert may provide a positive feedback mechanism for global cooling.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng
Six dust episodes were observed in Beijing in 2002. Both TSP (Total Suspended Particulate, particle size smaller than 100 μm) and PM 2.5 (particle size smaller than 2.5 μm) aerosol samples in these episodes were collected and their characteristics of water-soluble part were elaborated in demonstrating the mixing of mineral aerosol with pollution aerosol in the long-range transport of Asia aerosols with various sources and different paths. The dust storm peaked on 20 March, in which the highest concentrations of TSP and PM 2.5 were 10.9 and 1.4 mg m -3, respectively. The mass fraction of water-soluble part generally decreased with the increase of dust intensity. SO 42- contributed 38-70% to the total anions and Ca 2+ contributed 37-80% to the total cations, indicating that SO 42- and Ca 2+ were the most abundant anion and cation, respectively. The major ions of the water-soluble parts could be classified into three groups, i.e., the crust ions (Ca 2+, Na +, and Mg 2+), the pollution-crust ions (SO 42-, Cl -, and K +), and the pollution ions (NO 3-, NH 4+, NO 2-, and F -). Crust ions and pollution ions were the main ion fractions in super dust and non-dust days, respectively, whereas the pollution-crust ions were the main ion fractions in both dust days of various dust intensity and non-dust days, which demonstrated clearly that the mixing between mineral and pollution aerosols was ubiquitous during the dust seasons (even in the super dust storm days) although it was more obvious in those normal and weak dust episodes. The main chemical species of the water-soluble part of the aerosols were CaCO 3 in the super dust storm, CaSO 4 in the normal and the weak dust events, and NH 4NO 3 in the non-dust event days. The secondary transformation of sulfate and nitrate occurred on dust particles both during and after dust days provided the strong evidence of the mixing between mineral and pollution aerosols during the long-range transport of dust.
Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model
NASA Astrophysics Data System (ADS)
Su, Lin; Toon, Owen B.
2009-07-01
We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.
NASA Astrophysics Data System (ADS)
Marnas, F.; Chazette, P.; Flamant, C.; Royer, P.; Sodemman, H.; Derimian, Y.
2012-04-01
In the framework of the FENNEC experiment (6 to 30 June 2011) an effort has been dedicated to characterize Saharan dust plumes transported towards southern Europe. Hence, a multi instrumented field campaign has been conducted. Ground based nitrogen Raman LIDAR (GBNRL) has been deployed in southern Spain close to Marbella, simultaneously with airborne lidar (AL) performing measurements over both the tropical Atlantic Ocean and the western Africa (from 2 to 23 June). The GBNRL was equipped with co-polar and cross-polar channels to perform continuous measurements of the dust aerosols trapped in the troposphere. It was developed by LSCE with the support of the LEOSPHERE Company. The French FALCON 20 research aircraft operated by SAFIRE (Service des Avions Francais Instrumentés pour la Recherche en Environnement) carried the AL Leandre Nouvelle Generation (LNG) as well as a dropsonde releasing system and radiometers. A major, one week long, dust event has been sampled over Spain from 25 June to 1 July with high optical depth (>0.5 at 355nm) and particular depolarization ratios (15 to 25%). Backtrajectory studies suggest that the dust particles observed were from dust uplifts that occurred in Southern Morocco and Northern Mauritania. The event has been also documented 3 days before by the AL flying over Mauritania. AERONET sunphotometer measurements of aerosol properties, along the dust plume transport path appear to be coherent with both the lidar and the backtrajectory analysis. These analysis exhibit a likely major contribution from the Western Sahara sources to the Southern Europe. Such a contribution may impact the visibility and then the airtrafic, modify the tropospheric chemistry, and add nutrients to both the Mediterranean Sea and the continental surfaces. It can also affect the health of European populations. We will present strategy of the experiment and the case study built from measurements performed at the end of June.
Muhs, D.R.; Budahn, J.R.
2009-01-01
The origin of red or reddish-brown, clay-rich, "terra rossa" soils on limestone has been debated for decades. A traditional qualitative explanation for their formation has been the accumulation of insoluble residues as the limestone is progressively dissolved over time. However, this mode of formation often requires unrealistic or impossible amounts of carbonate dissolution. Therefore, where this mechanism is not viable and where local fluvial or colluvial inputs can be ruled out, an external source or sources must be involved in soil formation. On the north coast of the Caribbean island of Jamaica, we studied a sequence of terra rossa soils developed on emergent limestones thought to be of Quaternary age. The soils become progressively thicker, redder, more Fe- and Al-rich and Si-poor with elevation. Furthermore, although kaolinite is found in all the soils, the highest and oldest soils also contain boehmite. Major and trace element geochemistry shows that the host limestones and local igneous rocks are not likely source materials for the soils. Other trace elements, including the rare earth elements (REE), show that tephra from Central American volcanoes is not a likely source either. However, trace element geochemistry shows that airborne dust from Africa plus tephra from the Lesser Antilles island arc are possible source materials for the clay-rich soils. A third, as yet unidentified, source may also contribute to the soils. We hypothesize that older, more chemically mature Jamaican bauxites may have had a similar origin. The results add to the growing body of evidence of the importance of multiple parent materials, including far-traveled dust, to soil genesis.
Samara, Constantini; Argyropoulos, George; Grigoratos, Theodoros; Kouras, Αthanasios; Manoli, Εvangelia; Andreadou, Symela; Pavloudakis, Fragkiskos; Sahanidis, Chariton
2018-05-01
The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM 10 (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM 10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM 10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM 10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM 10 concentrations at the different sites ranged from 38 to 72 μg m -3 . The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.
[Influence of traffic restriction on road and construction fugitive dust].
Tian, Gang; Li, Gang; Qin, Jian-Ping; Fan, Shou-Bin; Huang, Yu-Hu; Nie, Lei
2009-05-15
By monitoring the road and construction dust fall continuously during the "Good Luck Beijing" sport events, the reduction of road and construction dust fall caused by traffic restriction was studied. The contribution rate of road and construction dust to particulate matter of Beijing atmosphere environment, and the emission ratio of it to total local PM10 emission were analyzed. The results show that the traffic restriction reduces road and construction dust fall significantly. The dust fall average value of ring roads was 0.27 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.81 and 0.59 g x (m2 x d)(-1) 1 month and 7 days before. The dust fall average value of major arterial and minor arterial was 0.21 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.54 and 0.58 g x (m2 x d)(-1) 1 month and 7 days before. The roads emission reduced 60%-70% compared with before traffic restriction. The dust fall average values of civil architecture and utility architecture were 0.61 and 1.06 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 1.15 and 1.55 g x (m2 x d)(-1) 20 days before. The construction dust reduced 30%-47% compared with 20 days before traffic restriction. Road and construction dust emission are the main source of atmosphere particulate matter in Beijing, and its contribution to ambient PM10 concentration is 21%-36%. PM10 emitted from roads and constructions account for 42%-72% and 30%-51% of local emission while the local PM10 account for 50% and 70% of the total emission.
Vasilatou, Vasiliki; Diapouli, Evangelia; Abatzoglou, Dimitrios; Bakeas, Evangelos B; Scoullos, Michael; Eleftheriadis, Konstantinos
2017-04-01
The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM 2.5 , at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM 2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM 2.5 concentration is higher than 25 μg/m 3 , five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM 2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM 2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM 2.5 fraction, with implication to population exposure and human health.
Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results
NASA Astrophysics Data System (ADS)
Pabari, J. P.; Bhalodi, P. J.
2017-05-01
Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less
High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom
Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.
2017-01-01
Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098
Experimental studies about the impact of traction sand on urban road dust composition.
Kupiainen, Kaarle; Tervahattu, Heikki; Räisänen, Mika
2003-06-01
Traffic causes enhanced PM(10) resuspension especially during spring in the US, Japan, Norway, Sweden and Finland, among other countries. The springtime PM(10) consists primarily of mineral matter from tyre-induced paved road surface wear and traction sand. In some countries, the majority of vehicles are equipped with studded tyres to enhance traction, which additionally increases road surface wear. Because the traction sand and the mineral matter from the pavement aggregate can have a similar mineralogical composition, it has been difficult to determine the source of the mineral fraction in the PM(10). In this study, homogenous traction sand and pavement aggregate with different mineralogical compositions were chosen to determine the sources of PM(10) particles by single particle analysis (SEM/EDX). This study was conducted in a test facility, which made it possible to rule out dust contributions from other sources. The ambient PM(10) concentrations were higher when traction sand was used, regardless of whether the tyres were studded or not. Surprisingly, the use of traction sand greatly increased the number of the particles originating from the pavement. It was concluded that sand must contribute to pavement wear. This phenomenon is called the sandpaper effect. An understanding of this is important to reduce harmful effects of springtime road dust in practical winter maintenance of urban roads
Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn
2010-01-01
The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.
Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui
2016-01-15
We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli
2013-01-01
Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in external galaxies.
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.
2013-12-01
Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).
Modeling and observations of dust aerosols during the North American Monsoon
NASA Astrophysics Data System (ADS)
Arellano, A. F.; Raman, A.; Brost, J.; Sorooshian, A.
2016-12-01
Intense dust storms during North American Monsoon (NAM) pose a significant threat to local/regional air quality, economy, and public health. Convection-driven storms (or haboobs) in Arizona and in the southwest US have been given far less attention compared to those in Africa and Middle East. Blowing dusts from these haboobs typically lasts for 3-6 hours and accumulate more than 1000 µg m-3 of PM10 in the atmosphere. However, it is not clear whether haboobs are increasing in intensity and/or frequency in Arizona. Here, we address two science questions: 1) Do haboobs impact the observed trends in aerosol abundance in the NAM region?, 2) What are our current capabilities and limitations in understanding, monitoring, and assessing haboobs and their impacts? For 1), we calculated the trends of enhancements in aerosol optical depth (AOD) from Terra MODIS over dust hotspots in the NAM alley and and surrounding region (dust cluster). Both show similar decreasing trends before the monsoon. However, during the monsoon, a decreasing trend in AOD is more prominent in the dust cluster than in NAM alley. We attribute this to an apparent modulation of dust in the NAM alley by haboobs. Despite increase in rainfall during this period, we infer that the increase in dust sources in the NAM alley obscures the decreasing AOD trend. For 2), we conducted simulations simulations of these haboobs using WRF-Chem with GOCART AFWA scheme at convective resolving scales ( 1 km). Our case study for the 5 July 2011 haboob indicate that the downbursts occurred near Tucson and generated diverging high intensity winds, resulting to cold pools propagating towards Phoenix. We find that WRF-Chem captures the timing of the haboob but severely underestimates the magnitude of dust concentrations that reached as high as 2000 µg m-3 at USEPA Phoenix stations. The impact of the haboob was seen as far as 350 km northwest of Phoenix at an altitude of 2-4 km on 6 July. We find two major limitations in our simulations: 1) lack of dynamic high resolution land cover for prescribing dust sources, and 2) lack of observing system capability especially high temporal resolution, remotely-sensed measurements for monitoring and assessment. Future geostationary missions together with synergistic use of current and future expansion of in-situ measurements can improve these limitations.
Erhard M. Winkler
1976-01-01
Atmospheric dust originates from three sources, terrestrial airborn matter, volcanic, and cosmic. Terrestrial natural dust makes up the main bulk reflecting the soil composition to 150 miles away. Soil erosion from flood plains, plowed fields and construction sites are the main source. Quartz, feldspar, the carbonates calcite and dolomite, and clay minerals are the...
Performance evaluation of CESM in simulating the dust cycle
NASA Astrophysics Data System (ADS)
Parajuli, S. P.; Yang, Z. L.; Kocurek, G.; Lawrence, D. M.
2014-12-01
Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health and visibility. Mineral dust is injected into the atmosphere during dust storms when the surface winds are sufficiently strong and the land surface conditions are favorable. Dust storms are very common in specific regions of the world including the Middle East and North Africa (MENA) region, which contains more than 50% of the global dust sources. In this work, we present simulation of the dust cycle under the framework of CESM1.2.2 and evaluate how well the model captures the spatio-temporal characteristics of dust sources, transport and deposition at global scale, especially in dust source regions. We conducted our simulations using two existing erodibility maps (geomorphic and topographic) and a new erodibility map, which is based on the correlation between observed wind and dust. We compare the simulated results with MODIS satellite data, MACC reanalysis data, and AERONET station data. Comparison with MODIS satellite data and MACC reanalysis data shows that all three erodibility maps generally reproduce the spatio-temporal characteristics of dust optical depth globally. However, comparison with AERONET station data shows that the simulated dust optical depth is generally overestimated for all erodibility maps. Results vary greatly by region and scale of observational data. Our results also show that the simulations forced by reanalysis meteorology capture the overall dust cycle more realistically compared to the simulations done using online meteorology.
NASA Astrophysics Data System (ADS)
Dong, Chenyin; Taylor, Mark Patrick
2017-07-01
Resolving the source of environmental contamination is the critical first step in remediation and exposure prevention. Australia's oldest silver-zinc-lead mine at Broken Hill (>130 years old) has generated a legacy of contamination and is associated with persistent elevated childhood blood lead (Pb) levels. However, the source of environmental Pb remains in dispute: current mine emissions; remobilized mine-legacy lead in soils and dusts; and natural lead from geological weathering of the gossan ore body. Multiple lines of evidence used to resolve this conundrum at Broken Hill include spatial and temporal variations in dust Pb concentrations and bioaccessibility, Pb isotopic compositions, particle morphology and mineralogy. Total dust Pb loading (mean 255 μg/m2/day) and its bioaccessibility (mean 75% of total Pb) is greatest adjacent to the active mining operations. Unweathered galena (PbS) found in contemporary dust deposits contrast markedly to Pb-bearing particles from mine-tailings and weathered gossan samples. Contemporary dust particles were more angular, had higher sulfur content and had little or no iron and manganese. Dust adjacent to the mine has Pb isotopic compositions (208Pb/207Pb: 2.3197; 206Pb/207Pb: 1.0406) that are a close match (99%) to the ore body with values slightly lower (94%) at the edge of the city. The weight of evidence supports the conclusion that contemporary dust Pb contamination in Broken Hill is sourced primarily from current mining activities and not from weathering or legacy sources.
Modelling absorbing aerosol with ECHAM-HAM: Insights from regional studies
NASA Astrophysics Data System (ADS)
Tegen, Ina; Heinold, Bernd; Schepanski, Kerstin; Banks, Jamie; Kubin, Anne; Schacht, Jacob
2017-04-01
Quantifying distributions and properties of absorbing aerosol is a basis for investigations of interactions of aerosol particles with radiation and climate. While evaluations of aerosol models by field measurements can be particularly successful at the regional scale, such results need to be put into a global context for climate studies. We present an overview over studies performed at the Leibniz Institute for Tropospheric Research aiming at constraining the properties of mineral dust and soot aerosol in the global aerosol model ECHAM6-HAM2 based on different regional studies. An example is the impact of different sources for dust transported to central Asia, which is influenced, by far-range transport of dust from Arabia and the Sahara together with dust from local sources. Dust types from these different source regions were investigated in the context of the CADEX project and are expected to have different optical properties. For Saharan dust, satellite retrievals from MSG SEVIRI are used to constrain Saharan dust sources and optical properties. In the Arctic region, on one hand dust aerosol is simulated in the framework of the PalMod project. On the other hand aerosol measurements that will be taken during the DFG-funded (AC)3 field campaigns will be used to evaluate the simulated transport pathways of soot aerosol from European, North American and Asian sources, as well as the parameterization of soot ageing processes in ECHAM6-HAM2. Ultimately, results from these studies will improve the representation of aerosol absorption in the global model.
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang
2017-04-01
Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.
Zota, Ami R; Schaider, Laurel A; Ettinger, Adrienne S; Wright, Robert O; Shine, James P; Spengler, John D
2011-01-01
Children living near hazardous waste sites may be exposed to environmental contaminants, yet few studies have conducted multi-media exposure assessments, including residential environments where children spend most of their time. We sampled yard soil, house dust, and particulate matter with aerodynamic diameter <2.5 in 59 homes of young children near an abandoned mining area and analyzed samples for lead (Pb), zinc (Zn), cadmium (Cd), arsenic (As), and manganese (Mn). In over half of the homes, dust concentrations of Pb, Zn, Cd, and As were higher than those in soil. Proximity to mine waste (chat) piles and the presence of chat in the driveway significantly predicted dust metals levels. Homes with both chat sources had Pb, Zn, Cd, and As dust levels two to three times higher than homes with no known chat sources after controlling for other sources. In contrast, Mn concentrations in dust were consistently lower than in soil and were not associated with chat sources. Mn dust concentrations were predicted by soil concentrations and occupant density. These findings suggest that nearby outdoor sources of metal contaminants from mine waste may migrate indoors. Populations farther away from the mining site may also be exposed if secondary uses of chat are in close proximity to the home.
NASA Astrophysics Data System (ADS)
Cantor, B. A.; James, P. B.
The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed to date. With MOC we have observed that global dust events are not individual storms but are composed of a number of local and regional storms (sources) and that they do not signify climatic changes, but are only short-term perturbations to the general interannually repeatable Martian dust storm cycle.
Natural and Anthropogenic Aerosols in the World's Megacities and Climate Impacts
NASA Astrophysics Data System (ADS)
Kafatos, M.; Singh, R.; El-Askary, H.; Qu, J.
2005-12-01
The world's megacities are the sites of production of a variety of aerosols and are themselves affected by natural and human-induced aerosols. In particular, sources of aerosols impacting cities include: industrial and automobile emission; sand and dust storms from, e.g., the Sahara and Gobi Deserts; as well as fire-induced aerosols. Improving the ability of various stakeholder organizations to respond effectively to high concentrations of aerosols, with special emphasis on mineral dust from dust storms; smoke from controlled burns, wild fires and agricultural burning; and anthropogenic aerosols, would be an important goal not just to understand climate forcings but also to be able to better respond to the increasing amounts of aerosols at global and regional levels. Cities and surrounding areas are affected without good estimates of the current and future conditions of the aerosols and their impact on regional and global climate. Remotely sensed (RS) NASA, NOAA and international platform data can be used to characterize the properties of aerosol clouds and special hazard events such as sand and dust storms (SDS). Aerosol analysis and prediction-model capabilities from which stakeholders can choose the tools that best match their needs and technological expertise are important. Scientists validating mesoscale and aerosol-transport models, aerosol retrievals from satellite measurements are indispensable for robust climate predictions. Here we give two examples of generic SDS cases and urban pollution and their possible impact on climate: The Sahara desert is a major source of dust aerosols dust transport is an important climatic process. The aerosols in the form of dust particles reflect the incoming solar radiation to space, thereby reducing the amount of radiation available to the ground, known as `direct' radiative forcing of aerosols. The aerosols also change the cloud albedo and microphysical properties of clouds, known as `indirect' radiative forcing of aerosols. The highest boundary layer heights are associated with regions where the sensible heat flux is greatest, and latent heat flux is smallest due to lack of vegetation. Boundary layer heights in the deserts may be systematically higher than the slightly wetter regions at the edges of deserts. Latent heat flux model runs and MODIS observations of dust storms affecting the Nile Delta and Cairo indicate strong influence on the local weather and climate forcings. In the Indo-Gangetic, during the pre-monsoon period, dust storms form. We have examined SDS transport using RS data acquired from NASA's MODIS MISR instruments and from sun photometer measurements. The aerosol optical depth and size of the dust particles are found to be significantly higher during such dust storm events. Moreover, our results clearly show that power plants in this region are the key point source of air pollutants. The detailed analysis of aerosol parameters show the existence of absorbing and non-absorbing aerosols emitted from these plants. The combined effects of urban aerosols with dust aerosols in India and Cairo not only affect megacities, they also have long-term climate impacts. We will also discuss how the assimilation of RS data into mesoscale models can improve these models and predictability of hazards and effects on megacities, such as SDS events, and forest fires, all sources of aerosols. Therefore RS data can improve the prediction of climate forcings by aerosols.
Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa
Kellogg, C.A.; Griffin, Dale W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R.; Shinn, E.A.
2004-01-01
Millions of metric tons of African desert dust blow across the Atlantic Ocean each year, blanketing the Caribbean and southeastern United States. Previous work in the Caribbean has shown that atmospheric samples collected during dust events contain living microbes, including plant and opportunistic human pathogens. To better understand the potential downwind public health and ecosystem effects of the dust microbes, it is important to characterize the source population. We describe 19 genera of bacteria and 3 genera of fungi isolated from air samples collected in Mali, a known source region for dust storms, and over which large dust storms travel.
NASA Astrophysics Data System (ADS)
Aarons, S. M.; Aciego, S.; McConnell, J.
2017-12-01
Dust emissions and transport are linked to spatial and temporal climate variability, with dust provenance providing clues to past climate and climate impacts. The penultimate interglacial period (MIS 5e) has been suggested as an analog to Holocene climate change. We present the first evaluation of the MIS 5e ice archive developed at Taylor Glacier, East Antarctica and provide a record of dust transported to Taylor Glacier during MIS 5e. Our record shows significant differences between MIS 5e, Holocene, and pre-industrial dust transported to East Antarctica. The MIS 5e dust is sourced from New Zealand and southern South America (SSA), while the Holocene dust is sourced from local Antarctic, SSA, and potentially Australian sources. This profound change in composition suggests a variation in atmospheric transport pathways and/or paleo-environmental conditions between the interglacial periods, and indicates that MIS 5e should be reassessed as an analog for climate change and associated impacts.
Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun
2010-11-01
Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.
Peng, Xing; Shi, GuoLiang; Liu, GuiRong; Xu, Jiao; Tian, YingZe; Zhang, YuFen; Feng, YinChang; Russell, Armistead G
2017-02-01
Heavy metals (Cr, Co, Ni, As, Cd, and Pb) can be bound to PM adversely affecting human health. Quantifying the source impacts on heavy metals can provide source-specific estimates of the heavy metal health risk (HMHR) to guide effective development of strategies to reduce such risks from exposure to heavy metals in PM 2.5 (particulate matter (PM) with aerodynamic diameter less than or equal to 2.5 μm). In this study, a method combining Multilinear Engine 2 (ME2) and a risk assessment model is developed to more effectively quantify source contributions to HMHR, including heavy metal non-cancer risk (non-HMCR) and cancer risk (HMCR). The combined model (called ME2-HMHR) has two steps: step1, source contributions to heavy metals are estimated by employing the ME2 model; step2, the source contributions in step 1 are introduced into the risk assessment model to calculate the source contributions to HMHR. The approach was applied to Huzou, China and five significant sources were identified. Soil dust is the largest source of non-HMCR. For HMCR, the source contributions of soil dust, coal combustion, cement dust, vehicle, and secondary sources are 1.0 × 10 -4 , 3.7 × 10 -5 , 2.7 × 10 -6 , 1.6 × 10 -6 and 1.9 × 10 -9 , respectively. The soil dust is the largest contributor to HMCR, being driven by the high impact of soil dust on PM 2.5 and the abundance of heavy metals in soil dust. Copyright © 2016 Elsevier Ltd. All rights reserved.
Short-term variability of mineral dust, metals and carbon emission from road dust resuspension
NASA Astrophysics Data System (ADS)
Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier
2013-08-01
Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.
NASA Astrophysics Data System (ADS)
Hennen, Mark; White, Kevin; Shahgedanova, Maria
2017-04-01
This paper compares Dust RGB products derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data at 15 minute, 30 minute and hourly temporal resolutions. From January 2006 to December 2006, observations of dust emission point sources were observed at each temporal resolution across the entire Middle East region (38.50N; 30.00E - 10.00N; 65.50E). Previous work has demonstrated that 15-minute resolution SEVIRI data can be used to map dust sources across the Sahara by observing dust storms back through sequential images to the point of first emission (Schepanski et al., 2007; 2009; 2012). These observations have improved upon lower resolution maps, based on daily retrievals of aerosol optical depth (AOD), whose maxima can be biased by prevalent transport routes, not necessarily coinciding with sources of emissions. Based on the thermal contrast of atmospheric dust to the surface, brightness temperature differences (BTD's) in the thermal infrared (TIR) wavelengths (8.7, 10.8 and 12.0 µm) highlight dust in the scene irrespective of solar illumination, giving both increased accuracy of dust source areas and a greater understanding of diurnal emission behaviour. However, the highest temporal resolution available (15-minute repeat capture) produces 96 images per day, resulting in significantly higher data storage demands than 30 minute or hourly data. To aid future research planning, this paper investigates what effect lowering the temporal resolution has on the number and spatial distribution of the observed dust sources. The results show a reduction in number of dust emission events observed with each step decrease in temporal resolution, reducing by 17% for 30-minute resolution and 50% for hourly. These differences change seasonally, with the highest reduction observed in summer (34% and 64% reduction respectively). Each resolution shows a similar spatial distribution, with the biggest difference seen near the coastlines, where near-shore convective cloud patterns obscure atmospheric dust soon after emission, restricting the opportunity to be observed at hourly resolution.
NASA Astrophysics Data System (ADS)
Park, Soon-Ung; Ju, Jae-Won; Lee, In-Hye; Joo, Seung Jin
2016-09-01
The optimal regression equations for the dust emission flux parameterized with the friction velocity (u*) only, the friction velocity with the threshold friction velocity (u*t) and the friction velocity together with the flux Richardson number (Rf) in the dust source region are derived using the sonic anemometer measured momentum and kinematic heat fluxes at 8 m height and the two-level (3 m and 15 m height) measured PM10 concentrations from a 20-m monitoring tower located at Naiman in the Asian dust source region in China for the period from March 2013 to November 2014. The analysis period is divided into three sub-periods based on the Normalized Difference Vegetation Index (NDVI) to eliminate the effect of vegetation on the dust emission flux. The dust event is identified as a peak half hourly mean dust concentration (PM10) at 3 m height exceeding the sub-period mean dust concentration plus one standard deviation of the sub-period. The total of 317 dust events is identified with the highest number of dust event of 18.8 times a month in summer. The optimal regression equations of the dust emission flux (Fc) for dust events parameterized with u* and Rf are found to simulate quite well the dust emission flux estimated by the observed data at the site for all periods especially for the unstable stratification, suggesting the potential usefulness of these equations parameterized by u* with Rf rather than those by u* only and u* together with u*t for the estimation of the dust emission flux in the Asian dust source region.
Do Changes in Dust Flux to the North Pacific Correspond to Major Climate Shifts in the Pliocene?
NASA Astrophysics Data System (ADS)
Abell, J.; Winckler, G.; Anderson, R. F.
2017-12-01
In addition to its impacts on radiative forcing, eolian mineral dust plays a critical role in the climate system by supplying iron-limited high-nutrient/low-chlorophyll (HNLC) regions of the ocean with vital micronutrients, potentially lowering atmospheric CO2. There is evidence for iron fertilization in the late Pleistocene, but this relationship has been poorly studied for the Plio-Pleistocene and during the onset/intensification of Northern Hemisphere Glaciation (NHG). The North Pacific possesses potential for studying the effects of rising dust flux on climate during this time, as increasing aridification of Asia's interior has been suggested for this interval. Here we present a record of two extraterrestrial 3He-derived terrigenous dust flux proxies (4He and 232Th) for ODP core 1208A (36°N, 158°E) for the period spanning 2.5-4.5 Ma, along with opal and excess barium (BaXS) flux data to estimate relative paleoproductivity. Our results show lower and relatively constant dust fluxes of about 0.3 g/cm2 ka from 4.5Ma to 2.7Ma, with minor variability correlating to changes in benthic δ18O. At 2.7Ma there is a two-fold increase in dust deposition to ODP 1208A, coinciding with the intensification of Northern Hemisphere Glaciation (NHG) and suggested changes in subarctic North Pacific stratification. Dust flux subsequently tracks the 41ky benthic δ18O cycles for the remainder of the record to 2.5Ma. An increase in 4He/232Th ratios during glacial periods after 2.7Ma is observed, which we hypothesize is either from a shift in source region(s) in Asia or an increase in mean grain size of windblown material delivered to the ocean. Previous studies have shown an increase in North Pacific dust flux at 3.6Ma, and steady rise until present (Rea et al. 1998). Our record does not show a substantial increase in dust at 3.6Ma, but instead provides evidence for relatively little change in dust flux to the North Pacific until 2.7Ma, a time of major global climate transitions and changes in terrestrial loess records.
Long-term airborne contamination studied by attic dust in an industrial area: Ajka, Hungary
NASA Astrophysics Data System (ADS)
Völgyesi, P.; Jordan, G.; Szabo, Cs.
2012-04-01
Heavy industrial activities such as mining, metal industry, coal fired power plants have produced large amount of by-products and wide-spread pollution, particularly in the period of centrally dictated economy after WWII, in Hungary. Several studies suggest that significant amount of these pollutants have been deposited in the urban environment. Nowadays, more than half of the world's population is living in urban areas and people spend almost 80% of their lives indoors in developed countries increasing human health risk due to contamination present in urban dwellings. Attic dust sampling was applied to determine the long-term airborne contamination load in the industrial town of Ajka (Hungary). There has been a high industrial activity in Ajka since the end of the 19th century. In addition to aluminum and alumina industry, coal mining, coal fired power plant and glass industry sites, generated numerous waste heaps which act as multi-contamination sources in the area. In October 2010 the Ajka red mud tailings pond failed and caused an accidental regional contamination of international significance. The major objective of this research was to study and map the spatial distribution of heavy metal contamination in airborne attic dust samples. At 27 sampling sites 30 attic dust samples were collected. Sampling strategy followed a grid-based stratified random sampling design. In each cell a house for attic dust sample collection was selected that was located the closest to a randomly generated point in the grid cell. The project area covers a 8x8 grid of 1x1 km cells with a total area of 64 km2. In order to represent long-term industrial pollution, houses with attics kept intact for at least 30-40 years were selected for sampling. Sampling included the collection of background samples remotely placed from the industrialized urban area. The concentration of the major and toxic elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, and As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Sn, Sr, Ti, V, Zn) were measured with ICP-OES and the mercury content was measured with atom absorption spectrometry. Our results show a good spatial correlation of contamination sources and attic dust sampling locations reveal spatial trends as well. Attic dust seems to be an efficient and cheep sampling medium to study long-term airborne contamination and possibly associated human health risk in an industrial area.
Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments
NASA Technical Reports Server (NTRS)
Koeberl, Christian
1988-01-01
Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band samples, including Ir. Iridium determinations were made using INAA, with synthetical and natural (meteorite) standards. These findings are discussed.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
Sandford, S A; Bradley, J P
1989-01-01
The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.
Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson
2005-12-01
This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. Themore » source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal variation, and nitric acid dry removal.« less
Assessments of the contribution of land use change to the dust emission in Central Asia
NASA Astrophysics Data System (ADS)
Xi, X.; Sokolik, I. N.
2015-12-01
While the dust emission from arid and semi-arid regions is known as a natural process induced by wind erosion, human may affect the dust emission directly through land use disturbances and indirectly by climate change. There has been much debate on the relative importance of climate change and land use to the global dust budget, as past estimates on the proportion of dust contributed by land use, in particular agricultural practices, remains very uncertain. This to the large extent stems from the way how human-made dust sources are identified and how they are treated in models. This study attempts to assess the land use contribution to the dust emission in Central Asia during 2000-2014 by conducting multiple experiments on the total emission in the WRF-Chem-DuMo model, and applying two methods to separate the natural and anthropogenic sources. The model experiments include realistic treatments of agriculture (e.g., expansion and abandonment) and water body changes (e.g., Aral Sea desiccation) in the land cover map of WRF-Chem-DuMo, but impose no arbitrary labeling of dust source type or adjustment to the erosion threshold. Intercomparison of the model experiments will be focused on the magnitude, interannual variability, and climate sensitivity of dust fluxes resulting from the selections of surface input data and dust flux parameterizations. Based on annual land use intensity maps, the sensitivity of the anthropogenic dust proportion to selection of the threshold value will be evaluated. In conjunction with the empirical method, satellite-derived annual land classifications will be used to track the land cover dynamics, and separate potential human-made source areas.
Outflow and Infall in Star-forming Region L1221
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Ho, Paul T. P.
2005-10-01
We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.
2016-09-01
The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.
Wu, Ming-Hong; Pei, Jing-Cheng; Zheng, Ming; Tang, Liang; Bao, Yang-Yang; Xu, Ben-Tuo; Sun, Rui; Sun, Yan-Feng; Xu, Gang; Lei, Jian-Qiu
2015-01-01
In this study, 14 polybrominated diphenyl ethers (PBDEs) congeners were investigated in soil and outdoor dust taken from Jiading District, Shanghai City. The concentrations of Σ13PBDEs (BDE-17, BDE-28, BDE-47, BDE-66, BDE-71, BDE-85, BDE-99, BDE-100, BDE-138, BDE-153, BDE-154, BDE-183 and BDE-190) and BDE-209 ranged from 0.37 to 32.9ngg(-1) and 4.31 to 141.8ngg(-1) dry weight (dw) in soil. Concentrations in outdoor dust ranged from 1.03 to 112.5ngg(-1) and 6.71 to 342.1ngg(-1) (dw) for Σ13PBDEs and BDE-209. BDE-209 was the predominant congener both in soil and outdoor dust, but the BDE-209 contribution was much lower in dust compared with that in soil. A significant correlation between PBDEs congeners and specific land use type was observed, and principal component analysis (PCA) revealed that the major source of PBDE in samples was associated with prevalent use of technical Deca-BDE, which also suggested the contributions from Penta-BDE and Octa-BDE mixtures. Canonical correlation analysis suggested the two sets of PBDEs data (soil and outdoor dust) were uncorrelated, and Spearman correlation coefficient matrix implied that the degradation pathways of PBDEs were different between soil and outdoor dust. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kamal, Atif; Malik, Riffat Naseem; Martellini, Tania; Cincinelli, Alessandra
2015-08-01
The aim of this study was to determine the abundance and distribution of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from the selected professional cooking workplaces (WCs) and residential household cooking areas (WRs), where traditional and primitive cooking practices are still prevelent. Another aim of this study was to investigate the carcinogenic risk for Pakistani human exposure to dust-bound PAHs via the routes of inhalation, ingestion, and dermal contact. Generally, the concentration of individual congeners of PAHs in surface dust samples of WC sites was higher than those measured in WR sites (p < 0.05). The benzo(a)pyrene (B(a)P), a very high carcinogenic compound, was present in the dust samples from WC sites in the highest mean concentration (630 ng g(-1) dry weight (d.w.)). The BaP mean concentration in WC workplaces was almost eight times higher than the mean value found in WR exposure sites. Moreover, the average concentration of ∑PAHs, combustion origin PAHs (∑COMB) and sum total of 7-carcinogenic PAHs (∑7-carcinogens) were also significantly higher in WC dusts samples than that in WR workplaces. Principal component analysis (PCA) and diagnostic ratios suggested coal/wood combustion as major PAH emission sources in both exposure sites. The average incremental lifetime cancer risk (ILCR) suggested a moderate to potential high cancer risk for adults and children exposed to dust-bound PAHs in both exposure sites, in particular via both dermal and ingestion contact pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Walker; H Jamieson; P Rasmussen
2011-12-31
Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 {micro}m spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and Asmore » in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.« less
Atmospheric Ice-Nucleating Particles in the Dusty Tropical Atlantic
NASA Astrophysics Data System (ADS)
Price, H. C.; Baustian, K. J.; McQuaid, J. B.; Blyth, A.; Bower, K. N.; Choularton, T.; Cotton, R. J.; Cui, Z.; Field, P. R.; Gallagher, M.; Hawker, R.; Merrington, A.; Miltenberger, A.; Neely, R. R., III; Parker, S. T.; Rosenberg, P. D.; Taylor, J. W.; Trembath, J.; Vergara-Temprado, J.; Whale, T. F.; Wilson, T. W.; Young, G.; Murray, B. J.
2018-02-01
Desert dust is one of the most important atmospheric ice-nucleating aerosol species around the globe. However, there have been very few measurements of ice-nucleating particle (INP) concentrations in dusty air close to desert sources. In this study we report the concentration of INPs in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara. These measurements were performed as part of the Ice in Clouds Experiment-Dust campaign based in Cape Verde, during August 2015. INP concentrations active in the immersion mode, determined using a droplet-on-filter technique, ranged from around 102 m-3 at -12°C to around 105 m-3 at -23°C. There is about 2 orders of magnitude variability in INP concentration for a particular temperature, which is determined largely by the variability in atmospheric dust loading. These measurements were made at altitudes from 30 to 3,500 m in air containing a range of dust loadings. The ice active site density (ns) for desert dust dominated aerosol derived from our measurements agrees with several laboratory-based parameterizations for ice nucleation by desert dust within 1 to 2 orders of magnitude. The small variability in ns values determined from our measurements (within about 1 order of magnitude) is striking given that the back trajectory analysis suggests that the sources of dust were geographically diverse. This is consistent with previous work, which indicates that desert dust's ice-nucleating activity is only weakly dependent on source.
NASA Astrophysics Data System (ADS)
Laurent, Benoit; Formenti, Paola; Desboeufs, Karine; Vincent, Julie; Denjean, Cyrielle; Siour, Guillaume; Mayol-Bracero, Olga L.
2015-04-01
The Dust Aging and Transport from Africa to the Caribbean (Dust-AttaCk) project aims todocument the physical and optical properties of long-range transported African dust to the Caribbean. A comprehensive field campaign was conducted in Cape San Juan, Puerto Rico (18.38°N 65.62°W) during June-July 2012, offering the opportunity to constrain the way Saharan dust are transported from North Africa to the Caribbean by 3D models. Our main objectives are: (i) to discuss the ability of the CHIMERE Eulerian off-line chemistry-transport model to simulate atmospheric Saharan dust loads observed in the Caribbean during the Dust-AttaCk campaign, as well as the altitude of the dust plumes transport over the North Atlantic Ocean up to the Caribbean, (ii) to study the main Saharan dust emission source areas contributing to the dust loads in the Caribbean, (iii) to estimate the Saharan dust deposition in the Caribbean for deposition events observed during the Dust-AttaCk campaign. The dust model outputs are hourly dust concentration fields in µg m-3 for 12 aerosol size bins up to 30 µm and for each of the 15 sigma pressure vertical levels, column integrated dustaerosol optical depth (AOD), and dry and wet deposition fluxes.The simulations performed for the Dust-AttaCk campaign period as well as satellite observations (MODIS AOD, SEVIRI AOD) are used to identify the Saharan emission source regions activated and to study the evolution of the dust plumes tothe Cape San Juan station. In complement, the vertical transport of dust plumes transported from Saharan dust sources and over the North Atlantic Ocean is investigated combining model simulations and CALIOP observations. Aerosol surface concentrations and AOD simulated with CHIMERE are compared with sin-situ observations at Cape San Juan and AERONET stations. Wet deposition measurements performed allow us to constrain dust deposition flux simulated in the Caribbean after long-range transport.
The brightest high-latitude 12-micron IRAS sources
NASA Technical Reports Server (NTRS)
Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.
1985-01-01
The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.
NASA Astrophysics Data System (ADS)
Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max
2017-04-01
Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study contribute to the understanding of varying atmospheric mineral dust contributions to the aerosol burden affecting populated areas around Europe.
Environmental lead pollution threatens the children living in the Pearl River Delta region, China.
Chen, Jianmin; Tong, Yongpeng; Xu, Jiazhang; Liu, Xiaoli; Li, Yulan; Tan, Mingguang; Li, Yan
2012-09-01
The objective of this study is to determine children's blood lead levels and identify sources of lead exposure. Childhood lead exposure constitutes a major pediatric health problem today in China. A blood lead screening survey program for children in the age group of 2-12 years residing in Pearl River Delta region, south of China, was carried out from Dec 2007 to Jan 2008. Blood lead levels and lead isotope ratios of a total of 761 participants were assessed by inductively coupled plasma mass spectroscopy. Measurements of urban environmental samples for source identification of children lead exposure were also performed. The geometric mean value of the children's blood lead levels was 57.05 μg/L, and 9.6% of them were higher than 100 μg/L. The blood lead levels were still much higher than those in developed countries. Based on the data of environmental lead source inventories, lead isotopic tracing revealed that there is about 6.7% past used gasoline Pb embedded in Shenzhen residential dust and about 15.6% in Guangzhou dust, respectively.
Climatology of dust distribution over West Asia from homogenized remote sensing data
NASA Astrophysics Data System (ADS)
Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus
2016-06-01
In the past decade, West Asia has witnessed more frequent and intensified dust storms affecting Iran and Persian Gulf countries. Employing a varying threshold that takes into account systematic differences between TOMS and OMI data, TOMS-OMI Aerosol Index data are used to identify long-term changes in the horizontal distribution of dust storms in West Asia from 1980 to present. The northwest of Iraq and east of Syria are identified as emerging dusty areas, whereas east of Saudi Arabia and southeast of Iraq are identified as permanent dusty areas, including both dust sources and affected areas. Whereas the frequency of dust events increased slightly in the permanent dusty areas, it increased markedly in the emerging dusty areas. As expected, the frequency of dust events is highest in June and July. The dust source areas are identified as the Iraq-Saudi Arabia boundary region and (recently) the northwest of Iraq, using MODIS deep blue aerosol optical depth data. Subsequently, a lagged correlation was implemented between identified dust sources and whole West Asia to determine the main paths and receptors of intense dust storms. Accordingly, southwest of Iran and Persian Gulf countries were determined as main receptors of summertime dust storms in West Asia. During spring, dust storms mostly hit the northern half of the region and reach to the Caspian Sea. Analyzing atmospheric patterns, Shamal and Frontal patterns were found as dominant atmospheric circulations simultaneous with summertime and springtime dust storms, respectively.
The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius
NASA Astrophysics Data System (ADS)
Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea
2017-01-01
The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.
Nishioka, M G; Lewis, R G; Brinkman, M C; Burkholder, H M; Hines, C E; Menkedick, J R
2001-01-01
We collected indoor air, surface wipes (floors, table tops, and window sills), and floor dust samples at multiple locations within 11 occupied and two unoccupied homes both before and after lawn application of the herbicide 2,4-D. We measured residues 1 week before and after application. We used collected samples to determine transport routes of 2,4-D from the lawn into the homes, its subsequent distribution between the indoor surfaces, and air concentration as a function of airborne particle size. We used residue measurements to estimate potential exposures within these homes. After lawn application, 2,4-D was detected in indoor air and on all surfaces throughout all homes. Track-in by an active dog and by the homeowner applicator were the most significant factors for intrusion. Resuspension of floor dust was the major source of 2,4-D in indoor air, with highest levels of 2,4-D found in the particle size range of 2.5-10 microm. Resuspended floor dust was also a major source of 2,4-D on tables and window sills. Estimated postapplication indoor exposure levels for young children from nondietary ingestion may be 1-10 microg/day from contact with floors, and 0.2-30 microg/day from contact with table tops. These are estimated to be about 10 times higher than the preapplication exposures. By comparison, dietary ingestion of 2,4-D is approximately 1.3 microg/day. PMID:11713005
NASA Astrophysics Data System (ADS)
Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.
2011-10-01
This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March-May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Sprigg, W. A.; Huete, A.; Nickovic, S.; Pejanovic, G.; Levetin, E.; Van de water, P.; Myers, O.; Budge, A. M.; Krapfl, H.;
2011-01-01
Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Yin 2007) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Yin 2007). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). We are modifying the DREAM model to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that health effects of pollen can better be tracked for linkage with health outcome data including asthma, respiratory effects, myocardial infarction, and lost work days. DREAM is based on the SKIRON/Eta modeling system and the Eta/NCEP regional atmospheric model. The dust modules of the entire system incorporate the state of the art parameterizations of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particle size distribution on aerosol dispersion. The dust production mechanism is based on the viscous/turbulent mixing, shear-free convection diffusion, and soil moisture. In addition to these sophisticated mechanisms, very high resolution databases, including elevation, soil properties, and vegetation cover are utilized. The DREAM model was modified to use pollen sources instead of dust (PREAM). Pollen release will be estimated based on satellite-derived phenology of Juniperus spp. communities. The MODIS surface reflectance product (MOD09) will provide information on the start of the plant growing season, growth stage, peak greenness, dry-down and pollen release. Ground based observational records of pollen release timing and quantities will be used as verification. Techniques developed using MOD09 surface reflectance products will be directly applicable to the next generation sensors such as VIIRS. The resulting deterministic model for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. This information will be used to support the Centers for Disease Control and Prevention (CDC)'s National Environmental Public Health Tracking Program (EPHT) and the State of New Mexico environmental public health decision support for asthma and allergies alerts
Transported African Dust to the Amazon: Physiochemical Properties and Associated Nutrients
NASA Astrophysics Data System (ADS)
Barkley, A.; Blackwelder, P. L.; Prospero, J. M.; Gaston, C.
2017-12-01
African dust plays an essential role in fertilizing both oceanic and terrestrial ecosystems by supplying vital biological nutrients such as iron and phosphorus. During Boreal winter, large quantities of African dust are transported across the Atlantic Ocean to the Amazon Basin. It is thought that the Bodélé Depression, part of Paleolake Mega Chad, serves as a major source of this dust, although its importance is debated. The soil in this topographical depression contains a distinctive blend of fluvial and diatomaceous sediments that are thought to supply the Amazon with the nutrients necessary to maintain soil fertility. However, the composition and physical properties of dust transported to the Amazon remain under-explored. Here we present measurements of the size, morphology, and chemical composition of transported dust collected in Cayenne, French Guiana and soil samples collected from the Bodélé Depression using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Inductively coupled plasma mass spectrometry and soluble phosphorus measurements were also performed to investigate the nutrient profiles of filters collected during different air mass transport conditions. In addition to mineral dust, SEM revealed the presence of whole and fragmented freshwater diatoms transported from the Bodélé Depression, or other ephemeral African paleolakes, that were mixed with dust containing iron oxides and micronutrient-rich authigenic clays. Interestingly, transported diatoms were found to the be the largest transported particles with diameters well above 10 μm (up to 70 μm). The low density and high surface-to-volume ratios of diatoms could allow a longer range transport than dust of a comparable size. Therefore, the diatoms could act as a vehicle by which higher micronutrient fluxes could be transported to the Amazon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, J. D.; Crawford, T. M.; Switzer, E. R.
2010-08-10
We report the results of an 87 deg{sup 2} point-source survey centered at R.A. 5{sup h}30{sup m}, decl. -55{sup 0} taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei and the other consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0more » mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchrotron-dominated sources above {approx}15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N >4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite. However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as submillimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.« less
Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance
Herwitz, S.R.; Muhs, D.R.; Prospero, J.M.; Mahan, S.; Vaughn, B.
1996-01-01
Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-??m size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30 ?? N despite lower-than-present sea surface temperatures in the North Atlantic.
Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.
Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man
2017-06-01
Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Hyslop, N. P.; Schichtel, B. A.; Gill, T. E.
2016-12-01
Mineral dust influences air quality, visibility, health, hydrology, heterogeneous chemistry, biogeochemistry, ecology, and climate. The spatial and seasonal variability of fine (PM2.5) mineral dust (FD, mineral particles with diameters less than 2.5 µm) and coarse mass (CM, mass of particles with diameters between 2.5 and 10 µm) were characterized at over 160 rural and remote sites in the United States from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Monthly, seasonal, and annual means were computed for 2011 through 2014 to investigate the spatial and seasonal variability of FD and CM. Regions with significant FD included the Southwest in spring (≥ 50% contributions to PM2.5 mass) and in the Midwest, Midsouth, and Southeast regions in summer (20-30% of PM2.5 mass). The seasonality of FD and CM decoupled farther from local source regions suggesting long-range transport of FD or non-dust related CM. FD mineralogy was also explored and confirmed the seasonal and regional impacts of long-range transport. Temporal trends in FD from 2000-2014 revealed regions and seasons with significantly increased FD, especially the Southwest during spring months, the central United States during summer and fall, and the Southeast in summer—all regions that were associated with significant contributions of FD to PM2.5 mass. Positive trends in FD contrast negative trends in other major aerosol species over the same time periods, further enhancing the relative importance of FD to PM2.5 mass. Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and causal mechanisms for dust episodes in order to better inform resource management decisions.
Anh, Hoang Quoc; Tomioka, Keidai; Tue, Nguyen Minh; Tri, Tran Manh; Minh, Tu Binh; Takahashi, Shin
2018-04-01
Polybrominated diphenyl ethers (PBDEs) and selected novel brominated flame retardants (NBFRs) were examined in road dust samples collected from three representative areas in northern Vietnam, including seven inner districts of Hanoi metropolitan area, an industrial park in Thai Nguyen province and a rural commune in Bac Giang province. This study aims to provide basic information on the contamination status, potential sources and human exposure to PBDEs and NBFRs associated with road dust in northern Vietnam. PBDEs were detected in all the samples at a range of 0.91-56 ng g -1 with a median value of 16 ng g -1 . PBDE concentrations in road dusts from urban sites were significantly higher than those from industrial zone and rural area, suggesting their environmental load related to urbanization in northern Vietnam. BDE-209, major component of deca-BDE technical mixtures, dominated the congener patterns in all samples, accounting for 60.8-91.9% of total PBDE levels. Decabromodiphenyl ethane, an alternative of deca-BDE, was observed in a detection frequency of 100% in urban and industrial areas and at levels comparable to those of BDE-209. Other NBFRs such as pentabromoethylbenzene, hexabromobiphenyl and 1,2-bis-(2,4,6-tribromophenoxy)ethane, were found at trace levels. Daily intake doses of PBDEs via road dust ingestion from 2.3 × 10 -5 to 0.11 ng kg-bw -1 d -1 were estimated for residents in study areas, indicating a negligible risk with hazard indexes of 10 -9 to 10 -5 for selected congeners such as BDE-47, 99, 153 and 209. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ghorbel, Manel; Munoz, Marguerite; Solmon, Fabien
2014-10-01
This work presents a modeling approach to simulate spatial distribution of metal contamination in aerosols with evaluation of health hazard. This approach offers the advantage to be non-intrusive, less expensive than sampling and laboratory analyses. It was applied to assess the impact of metal-bearing dust from mining wastes on air quality for a nearby community and agricultural lands in Jebel Ressas (Tunisia) locality. Dust emission rates were calculated using existing parameterization adapted to the contamination source composed of mining wastes. Metal concentrations were predicted using a Gaussian model (fugitive dust model) with, as input: emission rates, dump physical parameters and meteorological data measured in situ for 30 days in summertime. Metal concentration maps were built from calculated PM10 particle concentrations. They evidence the areas where Pb and Cd concentrations exceeded WHO guidelines (0.5 and 0.005 µg/m(3), respectively). Maximum concentrations of Pb and Cd in PM10 are, respectively, of 5.74 and 0.0768 µg/m(3) for measured wind speed values up to 22 m/s. Preferential areas of contamination were determined in agricultural lands to the NW from the source dump where Pb and Cd exceeded guidelines up to a distance of 1,200 m. The secondary spreading directions were SW and E, toward the village. Health hazard prospecting shown that a major part of the village was exposed to contaminated dust and that daily hazard quotient (HQ) values reached locally 118 and 158, respectively, for Pb and Cd during the study period. However, HQ variations in the village are high, both temporally and geographically.
PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic.
Ducret-Stich, Regina E; Tsai, Ming-Yi; Thimmaiah, Devraj; Künzli, Nino; Hopke, Philip K; Phuleria, Harish C
2013-09-01
Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter < 10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.
Source analysis of radiocesium in river waters using road dust tracers.
Murakami, Michio; Saha, Mahua; Iwasaki, Yuichi; Yamashita, Rei; Koibuchi, Yukio; Tsukada, Hirofumi; Takada, Hideshige; Sueki, Keisuke; Yasutaka, Tetsuo
2017-11-01
Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137 Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137 Cs exceeded 10 4 , suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137 Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137 Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137 Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pey, Jorge; Alastuey, Andrés; Querol, Xavier
2013-07-01
PM₁₀ and PM₂.₅ chemical composition has been determined at a suburban insular site in the Balearic Islands (Spain) during almost one and a half year. As a result, 200 samples with more than 50 chemical parameters analyzed have been obtained. The whole database has been analyzed by two receptor modelling techniques (Principal Component Analysis and Positive Matrix Factorisation) in order to identify the main PM sources. After that, regression analyses with respect to the PM mass concentrations were conducted to quantify the daily contributions of each source. Four common sources were identified by both receptor models: secondary nitrate coupled with vehicular emissions, secondary sulphate influenced by fuel-oil combustion, aged marine aerosols and mineral dust. In addition, PCA isolated harbour emissions and a mixed anthropogenic factor containing industrial emissions; whereas PMF isolated an additional mineral factor interpreted as road dust+harbour emissions, and a vehicular abrasion products factor. The use of both methodologies appeared complementary. Nevertheless, PMF sources by themselves were better differentiated. Besides these receptor models, a specific methodology to quantify African dust was also applied. The combination of these three source apportionment tools allowed the identification of 8 sources, being 4 of them mineral (African, regional, urban and harbour dusts). As a summary, 29% of PM₁₀ was attributed to natural sources (African dust, regional dust and sea spray), whereas the proportion diminished to 11% in PM₂.₅. Furthermore, the secondary sulphate source, which accounted for about 22 and 32% of PM₁₀ and PM₂.₅, is strongly linked to the aged polluted air masses residing over the western Mediterranean in the warm period. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
NASA Astrophysics Data System (ADS)
Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas
2017-03-01
Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.
Global Distributions of Mineral Dust Properties from SeaWiFS and MODIS: From Sources to Sinks
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Bettenhausen, C.; Sayer, A.
2011-01-01
The impact of natural and anthropogenic sources of mineral dust has gained increasing attention from scientific communities in recent years. Indeed, these airborne dust particles, once lifted over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the oceans resulting in important biogeochemical impacts on the ecosystem. Due to the relatively short lifetime (a few hours to about a week), the distributions of these mineral dust particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of aerosol properties. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented satellite data records, studies of the radiative and biogeochemical effects due to dust aerosols are now possible. In this study, we will show the comparisons of satellite retrieved aerosol optical thickness using Deep Blue algorithm with data from AERONET sunphotometers over desert and semi-desert regions as well as vegetated areas. Our results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODIS-like instruments. The multiyear satellite measurements since 1997 from Sea WiFS will be compared with those retrieved from MODIS and MISR, and will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the dust outbreaks over the entire globe. Finally, the trends observed over the last decade based upon the SeaWiFS time series in the amounts of tropospheric aerosols due to natural and anthropogenic sources (such as changes in the frequency of dust storms) will be discussed.
[Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng].
Wang, Yan; Peng, Lin; Li, Li-juan; Zhang, Teng; Liu, Hai-li; Mu, Ling
2016-01-15
In order to make effective plan to provide the scientific basis for prevention and control of re-suspended dust (RD), samples of particulate sources including RD and other pollution sources of Jincheng were collected. Elements, ions and carbon in particulate sources were analyzed. Enrichment factor, potential ecological risk assessment, and chemical mass balance model were used to analyze the chemical composition and the source of RD. The result indicated that the main components in RD of Jingeheng were Si, TC, Ca, OC, Al, Mg, Na, Fe, K and SO4(2-), contributing 61.14% of total mass of RD. The most abundant content of RD was crustal elements, and the ions were enriched in the fine particles. The mass fraction of OC in PM2. was higher, whereas the mass fraction of EC in PM10 was higher, indicating that secondary organic pollutants were mainly dominated in the fine particles. The dust PM2.5 and PM10 potential ecological risk indexes were extremely strong, and PM2.5 had higher ecological harm than PM10. Pb had the highest enrichment factor of 196.97 in PM2.5, which was followed by As, Cr, Ni, V, Zn and Cu, the enrichment factors of which were all greater than 10, indicating that they were apparently enriched and affected by human activities. Soil dust, construction dust, vehicle exhaust, and coal dust were the main sources of RD.
Characterization of Asian Dust Properties Near Source Region During ACE-Asia
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.
2004-01-01
Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different sources in East Asia.
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1993-01-01
Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.
NASA Astrophysics Data System (ADS)
Kavouras, Ilias G.; Etyemezian, Vicken; Dubois, David W.; Xu, Jin; Pitchford, Marc
2009-01-01
Aerosol data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, air mass backward trajectories, land use maps, soil characteristics maps, diagnostic ratios of elemental composition, and multivariate linear regression were utilized as part of a semiquantitative analysis. The purpose of the analysis was to determine the types of dust-causing events that contribute to low visibility at a given site when the sum of extinction from coarse mass (CM) and fine soil (FS) was larger than any other aerosol component and the reconstructed aerosol extinction coefficient was among the 20% highest (calculated on a calendar year basis) for that site. For these "worst dust days," the above tools were used to ascribe the cause of low visibility to one of the following types of events: (1) transcontinental transport of dust originating from Asia; (2) windblown dust events from sources located nearby the site and; (3) transport of windblown dust from sources upwind of the site. Depending on the weight of evidence, a low or high level of confidence was associated with the assignment of one of these three events. Absence of convincing evidence resulted in ascribing the worst dust day to "undetermined events." Of the 610 worst dust days over the 2001-2003 period, 51% were associated with one of the three event types with high confidence and an additional 30% were accounted for with low confidence. Of the 496 worst dust days associated with an event (either low or high confidence), Asian dust was the assigned event on 55 days (for 2001-2002), locally generated windblown dust on 201 days, and transport from upwind source areas susceptible to wind erosion on 240 days. Events associated with windblown episodes from source areas in the United States and Mexico exhibited the highest dust concentrations. Asian dust events were associated with lower dust concentrations and a larger FS-to-CM ratio. Some variations between Asian dust and continental North American dust were observed in organic matter (OMC), black carbon (LAC), and nitrate (NO3-) content. None of the tools used in this study was adequate for identifying events associated with mechanically released dust by anthropogenic activities including, agriculture, construction and motor vehicle travel on paved and unpaved roads. Some of the worst dust days may have been caused by these types of activities, especially in central Arizona and northern and Southern California, where the fraction of undetermined events was higher than in other regions within the western United States. All in all, the methods and results of this study can help improve the performance of large-scale dust emission models and provide insight into the distribution of the types of events that cause dust resultant haze in relatively remote areas of the western United States.
The role of airborne mineral dusts in human disease
Morman, Suzette A.; Plumlee, Geoffrey S.
2013-01-01
Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.
Onset of frequent dust storms in northern China at ~AD 1100.
He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui
2015-11-26
Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.
Does warm debris dust stem from asteroid belts?
NASA Astrophysics Data System (ADS)
Geiler, Fabian; Krivov, Alexander V.
2017-06-01
Many debris discs reveal a two-component structure, with a cold outer and a warm inner component. While the former are likely massive analogues of the Kuiper belt, the origin of the latter is still a matter of debate. In this work, we investigate whether the warm dust may be a signature of asteroid belt analogues. In the scenario tested here, the current two-belt architecture stems from an originally extended protoplanetary disc, in which planets have opened a gap separating it into the outer and inner discs which, after the gas dispersal, experience a steady-state collisional decay. This idea is explored with an analytic collisional evolution model for a sample of 225 debris discs from a Spitzer/IRS catalogue that are likely to possess a two-component structure. We find that the vast majority of systems (220 out of 225, or 98 per cent) are compatible with this scenario. For their progenitors, original protoplanetary discs, we find an average surface density slope of -0.93 ± 0.06 and an average initial mass of (3.3^{+0.4}_{-0.3})× 10^{-3} solar masses, both of which are in agreement with the values inferred from submillimetre surveys. However, dust production by short-period comets and - more rarely - inward transport from the outer belts may be viable, and not mutually excluding, alternatives to the asteroid belt scenario. The remaining five discs (2 per cent of the sample: HIP 11486, HIP 23497, HIP 57971, HIP 85790, HIP 89770) harbour inner components that appear inconsistent with dust production in an 'asteroid belt.' Warm dust in these systems must either be replenished from cometary sources or represent an aftermath of a recent rare event, such as a major collision or planetary system instability.
Pingle, Shubhangi K.; Thakkar, Lucky R.; Jawade, Aruna A.; Tumane, Rajani G.; Jain, Ruchika K.; Soni, Pravin N.
2015-01-01
Introduction: Bauxite ore is a major source of aluminum (Al) which contains approximately 35–60% Al by weight. Occupational and environmental bauxite dust exposure may cause toxicity by interaction with human biological systems resulting in oxidative stress (OS) and cell death. A neopterin derivative as an antioxidant is able to modulate cytotoxicity by the induction of OS. Materials and Methods: A total of 273 subjects were selected for blood collection from three different major Al producing bauxite mines and were categorized into three groups as experimental (Exp) (n = 150), experimental controls (ExC) (n = 73) and control (Con) (n = 50). Whole blood and serum samples were used for measurement of Al, neopterin, urea and creatinine values. Statistical analysis was performed using R-2.15.1 programming language. Results and Discussion: The result showed that age, body mass index and the behavioral habits, that is, smoking, tobacco and alcohol consumption have possible effects on neopterin level. Serum neopterin levels were found to be significantly higher (P <0.0001) in the experimental group as compared to other groups. Significantly positive correlation (P < 0.0001) was observed between neopterin and creatinine. It was also observed that neopterin level increases as the duration of exposure increases. Conclusion: On the basis of findings it was concluded that exposure to bauxite dust (even at low levels of Al) changes biochemical profile leading to high levels of serum neopterin. Levels of serum neopterin in workers exposed to bauxite dust were probably examined for the 1st time in India. The outcome of this study suggested that serum neopterin may be used as potential biomarker for early detection of health risks associated with bauxite dust exposed population. PMID:26500413
Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng
2014-01-01
Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon. PMID:25060781
Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng
2014-07-25
Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon.
Comparison of the mixing state of long-range transported Asian and African mineral dust
NASA Astrophysics Data System (ADS)
Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.
2015-08-01
Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.
Dust-Metal Sources in an Urbanized Arid Zone: Implications for Health-Risk Assessments.
García-Rico, Leticia; Meza-Figueroa, Diana; Gandolfi, A Jay; Del Río-Salas, Rafael; Romero, Francisco M; Meza-Montenegro, Maria Mercedes
2016-04-01
The available information concerning metal pollution in different dust sources and the health effects in children remains limited in Mexico. This study focuses on Hermosillo, which is an urbanized area located in the Sonoran Desert in which soil resuspension and dust emission processes are common. The metal content of arsenic (As), chromium (Cr), manganese (Mn), and lead (Pb) were determined in three dust sources (playgrounds, roofs, and roads), each representing different exposure media (EM) for these elements. The metal levels in dust were found in the order of Mn > Cr > Pb > As with the highest metal content found in road dust. Despite the similar average metal distributions, principal component analysis shows a clear separation of the three EM with playground dust related to Cr and Mn and road dust to As and Pb. However, the geoaccumulation index results indicate that dust samples are uncontaminated to moderately polluted, except for Pb in road dust, which is considerably high. In addition, the enrichment factor suggests an anthropogenic origin for all of the studied metals except for Mn. In this context, the hazard index (HI) for noncarcinogenic risk is >1 in this population and thus represents a potential health risk. The spatial distribution for each metal on EM and the HI related to the marginality index could represent a more accurate decision-making tool in risk assessment studies.
Assessment of State-of-the-Art Dust Emission Scheme in GEOS
NASA Technical Reports Server (NTRS)
Darmenov, Anton; Liu, Xiaohong; Prigent, Catherine
2017-01-01
The GEOS modeling system has been extended with state of the art parameterization of dust emissions based on the vertical flux formulation described in Kok et al 2014. The new dust scheme was coupled with the GOCART and MAM aerosol models. In the present study we compare dust emissions, aerosol optical depth (AOD) and radiative fluxes from GEOS experiments with the standard and new dust emissions. AOD from the model experiments are also compared with AERONET and satellite based data. Based on this comparative analysis we concluded that the new parameterization improves the GEOS capability to model dust aerosols originating from African sources, however it lead to overestimation of dust emissions from Asian and Arabian sources. Further regional tuning of key parameters controlling the threshold friction velocity may be required in order to achieve more definitive and uniform improvement in the dust modeling skill.
The geologic records of dust in the Quaternary
Muhs, Daniel R.
2013-01-01
Study of geologic records of dust composition, sources and deposition rates is important for understanding the role of dust in the overall planetary radiation balance, fertilization of organisms in the world’s oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions. Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind. Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits; (2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives have several characteristics that make them highly suitable for understanding the dynamics of dust entrainment, transport, and deposition. First, they are often distributed over wide geographic areas, which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can be applied to sediment archives, which allows identification of specific periods of greater or lesser dust flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth’s surface, dust deposition rates were greater during the last glacial period than during the present interglacial period. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less vegetation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and greater production of dust-sized particles from expanded ice sheets and glaciers.
Millennial-scale fluctuations in Saharan dust supply across the decline of the African Humid Period
NASA Astrophysics Data System (ADS)
Zielhofer, Christoph; von Suchodoletz, Hans; Fletcher, William J.; Schneider, Birgit; Dietze, Elisabeth; Schlegel, Michael; Schepanski, Kerstin; Weninger, Bernhard; Mischke, Steffen; Mikdad, Abdeslam
2017-09-01
The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the 'southern dust mode' was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.
Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts
NASA Astrophysics Data System (ADS)
Apeagyei, Eric; Bank, Michael S.; Spengler, John D.
2011-04-01
Human exposures to particulate matter emitted from on-road motor vehicles include complex mixtures of metals from tires, brakes, parts wear and resuspended road dust. The aim of this study was to assess road dust for metals associated with motor vehicle traffic, particularly those metals coming from brake and tire wears. We hypothesized that the road dust would show significant difference in both composition and concentration by traffic type, road class and by location. X-ray fluorescence (XRF) analyses of 115 parked car tires showed Zn and Ca were likely associated with tire wear dust. XRF results of three used brake pads indicated high concentrations of Fe, Ti, Cu, Ba, Mo and Zr. To assess heavy metal exposures associated with tires and brake wear adjacent to roads of varying traffic and functional classes, 85 samples of road dust were collected from road surfaces adjacent to the curb and analyzed by XRF. Median concentrations for Fe, Ca and K were greater than Ti (1619 ppm), with concentration ratios of Fe: Ca: K: Ti [16:5:3:1]. Cumulative frequency distribution graphs showed distribution of Fe, Ba, Cu, and Mo were similar regardless of road traffic rating. However, Zn, Ti, and Zr varied significantly ( p < 0.05) with traffic ratings of roadways (heavy > moderate > low traffic). Fe, Ba, Cu, and Mo also had similar distributions regardless of road class while composition of Zn, Ti, and Zr varied significantly across road class ( p < 0.05) (Major roads > Minor roads > highway). In comparing urban road dust to rural road dust, we observed Fe, Ca, K, and Ti were significantly greater in urban road dust ( p < 0.05). In urban road dust the Fe: Ca: K: Ti relationship with median Ti of 2216 ppm was 12: 6: 3.5: 1. These results indicate that roadway dust may be important sources of metals for runoff water and localized resuspended particulate matter.
Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji
2017-01-01
To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170
Statistical analysis of micrometeoroids at the heliocentric distance of Mercury
NASA Astrophysics Data System (ADS)
Borin, P.; Cremonese, G.; Marzari, F.
2007-08-01
This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. We can distinguish two population of meteoroids depending on their dynamical evolution: small particles (r < 1 cm) dominated by the Poynting-Robertson drag, and large particles (r > 1 cm) driven by gravity only. In this work we consider small particles and, in particular, the micrometeoroids produced by collisional fragmentation of cometary or asteroidal bodies. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We will perform numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. Meteoroid impacts have a very important role in the evolution of Mercury's surface and exosphere. Since the exobase is presently on the surface of the planet, the sources and sinks of the exosphere are tightly linked to the composition and structure of the planet surface. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.
Some Coolness on Martian Global Warming and Reflections on the Role of Surface Dust
NASA Astrophysics Data System (ADS)
Richardson, M. I.; Vasavada, A. R.
2007-12-01
Recent comparisons of global snap-shots of Mars' surface taken by the Viking and Mars Global Surveyor (MGS) cameras have been used to suggest that Mars has darkened, and hence has warmed, between the 1970's and 1990's. While this conclusion is not supported by more quantitative analysis of albedo data, the idea of Martian darkening and warming has found its way into the terrestrial climate change debate. Through blogs and other opinion pieces it has been used, both amusingly and disturbingly, to argue that Mars' apparent natural warming should alleviate our concerns about anthropomorphic climate change on Earth. Relating planetary research results to terrestrial analogs is instructive and promotes public understanding, but this example provides a cautionary tale of misinterpretation in this age of politicized science. The dust cycle is the dominant short-term component of the Martian climate. The atmosphere is strongly forced via dust's modification of atmospheric radiative heating rates, while dust loading displays dramatic interannual variability, from background opacity to aperiodic global dust storms. Until recently, the atmospheric component of the dust cycle was better documented than the surface component (which on Mars can be gauged via albedo). But now thanks to the combination of regional imaging, spot thermal infrared spectra, and spot short-wavelength photometry sampled at synoptic time and length scales by MGS, a rich new view of the relationship between specific meteorological phenomena and the patterns of surface dust is emerging. Seasonal cap winds, local, regional, and global dust storms, and monsoonal circulations all redistribute surface dust on large spatial scales, while dust devils are surprisingly shown to be insignificant. Rapid and widespread albedo modification is accomplished by storms that darken relatively bright regions through dust removal, and deposit dust upon largely dust free areas, brightening them. (It is not possible with existing data to infer dust deposition or erosion in perennially dusty areas.) However, most of the dust deposited on darker regions is removed within one Martian year. This rapid cleaning suggests that darker areas retain their dust-free albedo over decadal time scales because any dust deposited there can be eroded at commonly experienced wind speeds. Bright regions recover more slowly, sometimes requiring several martian years. The depletion of these dust sources in some years may play an important role in the interannual variability in dust storm occurrence and intensity by introducing a multiyear "memory" into the system. The observation of the 2001 global storm and its wake allows predictions to be made for the recovery following the 2007 global storm: the southern hemisphere should retain a transient brightening until after the seasonal cap has advanced and retreated. The MGS data show that albedo is a dynamic and evolving meteorologically and climatologically active variable, not a static boundary condition. Overall, the major story that albedo has to tell is one of major dust storms and recovery from them - not of secular changes - and that the changes are mostly cyclic such that surfaces tend to return to their pre-storm albedos. We speculate that this system of fine balances is dynamically controlled, such that interannual occurrence of dust storms and the partial dust coating of the surface should be robust against the expected large changes of orbital parameters throughout Martian geological history.
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.
2012-12-01
The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on aerosol filters collected in the US Virgin Islands and Tobago are similar to those of aerosols from Mali, demonstrating that the African dust isotope signal is detectable and transported as far as Central and South America. Thus, while it appears undeniable that Saharan dust reaches the Amazon Basin, its importance for overall soil fertility requires a careful assessment of the dust budget versus bedrock weathering rates for key nutrient elements.
NASA Astrophysics Data System (ADS)
Boreddy, Suresh K. R.; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Kanaya, Yugo; Wang, Zifa
2017-04-01
To better understand the impact of agricultural waste burning on the air quality of free troposphere over the North China Plain (NCP), we collected total suspended particles (TSP) at the summit of Mt. Tai, located in the NCP using a high volume air sampler during 29 May to 28 June 2006, when the field burning of agricultural residue was intense. Temporal variations of all measured species showed that their concentration increases from late May to mid June (major BB period), peaking during 12-14 June, and then significantly decreased towards late June (minor BB period). We noticed that a significant reduction in the concentrations of carbonaceous aerosols during the period of 8-11 June, when the wind direction shifted from southerly to northerly. We found that concentrations of carbonaceous aerosols and some major ions showed several times higher during major BB period than those of minor BB period. We also found that nighttime concentrations are higher than daytime during major BB period, suggesting that a long-range atmospheric transport of biomass burning plumes in the free troposphere, which arrived at the summit of Mt. Tai. In contrast, daytime concentrations are higher than nighttime during minor BB period. We found higher concentrations of secondary organic carbon (SOC) during major BB period, suggesting that formation of secondary organic aerosols through aqueous phase chemistry under high NOx conditions during a long-range atmospheric transport. nss-K+ showed about four times higher concentrations during major BB than those of minor BB. Concentrations of nss-Ca2+ are higher in nighttime during major BB period, implying that a significant long-range atmospheric transport of mineral dust over the sampling site. These results are further supported by the positive matrix factorization (PMF) analysis, which showed that biomass burning was a major source for the carbonaceous aerosols followed by mineral dust sources over the summit of Mt. Tai.
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-01-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment. PMID:12361921
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-10-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment.
An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess
NASA Astrophysics Data System (ADS)
Crouvi, Onn; Dayan, Uri; Amit, Rivka; Enzel, Yehouda
2017-02-01
Meso-scale weather systems, such as convective haboobs, are considered to be an important dust generation mechanism. In Israel, however, rather than of meso-scale weather systems, most dust storms are generated by synoptic-scale systems, originating from Sahara and Arabia. Consequently, only distal sources of suspended and deposited dust in Israel are currently reported. Here we report the first detailed study on the merging of synoptic- and meso-scale weather systems leading to a prominent dust outbreak over the Negev, Israel. During the afternoon of May 2nd, 2007, a massive dust storm covered the northern Negev, forming a one kilometer high wall of dust. The haboob was associated with PM10 concentrations of 1000-1500 μg m-3 that advanced at a speed of 10-15 m s-1 and caused temporary closure of local airports. In contrast to most reported haboobs, this one was generated by a sea breeze front acting as a weak cold front enhanced by a cold core cyclone positioned over Libya and Egypt. The sea breeze that brought cold and moist marine air acted as a gravity current with strong surface winds. The sources for the haboob were the loessial soils of the northwestern Negev, especially agricultural fields that were highly disturbed in late spring to early summer. Such surface disturbance is caused by agricultural and/or intensive grazing practices. Our study emphasizes the importance of local dust sources in the Negev and stresses loess recycling as an important process in contemporary dust storms over Israel.
Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle
NASA Technical Reports Server (NTRS)
Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.
2005-01-01
Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.
NASA Technical Reports Server (NTRS)
2002-01-01
Lake Chad (lower left) and the surrounding wetlands are under increasing pressure from desertification. The encroachment of the Sahara occurs with creeping sand dunes and major dust storms, such as the one pictured in this MODIS image from October 28, 2001. The amount of open water (lighter green patch within the darker one) has declined markedly over the last decades and the invasion of dunes is creating a rippled effect through the wetlands that is all too clear in the high-resolution images. Growing population and increasing demands on the lake give it an uncertain future. The loss of such an important natural resource will have profound effects on the people who depend on the rapidly diminishing source of fresh water. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
The Role of Dust Mites in Allergy.
Miller, Jeffrey D
2018-06-23
House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.
Dust as a tipping element: The Bodélé Depression, Chad
Washington, Richard; Bouet, Christel; Cautenet, Guy; Mackenzie, Elisabeth; Ashpole, Ian; Engelstaedter, Sebastian; Lizcano, Gil; Henderson, Gideon M.; Schepanski, Kerstin; Tegen, Ina
2009-01-01
Dust plays a vital role in climate and biophysical feedbacks in the Earth system. One source of dust, the Bodélé Depression in Chad, is estimated to produce about half the mineral aerosols emitted from the Sahara, which is the world's largest source. By using a variety of new remote sensing data, regional modeling, trajectory models, chemical analyses of dust, and future climate simulations, we investigate the current and past sensitivity of the Bodélé. We show that minor adjustments to small features of the atmospheric circulation, such as the Bodélé Low-Level Jet, could profoundly alter the behavior of this feature. Dust production during the mid-Holocene ceased completely from this key source region. Although subject to a great deal of uncertainty, some simulations of the 21st century indicate the potential for a substantial increase in dust production by the end of the century in comparison with current values. PMID:19620716
NASA Astrophysics Data System (ADS)
Bory, Aloys; Wolff, Eric; Mulvaney, Robert; Jagoutz, Emil; Wegner, Anna; Ruth, Urs; Elderfield, Harry
2010-03-01
The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/ 86Sr and much less radiogenic 143Nd/ 144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards "younger" isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 μm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.
Iceland as the largest source of natural air pollution in the Arctic
NASA Astrophysics Data System (ADS)
Dagsson Waldhauserova, Pavla; Meinander, Outi; Olafsson, Haraldur; Arnalds, Olafur
2017-04-01
Arctic aerosols are often attributed to the Arctic Haze and long-range transport tracers. There is, however, an important dust source in the Arctic/Sub-arctic region which should receive more attention. The largest desert in the Arctic as well as in the Europe is Iceland with > 40,000 km2 of desert areas. The mean dust suspension frequency was 135 dust days annually in 1949-2012 with decreasing numbers in 2013-2015. The annual dust deposition was calculated as 31-40 million tons yr-1 affecting the area of > 500,000 km2. Satelite MODIS pictures have revealed dust plumes traveling > 1000 km at times. The physical properties of Icelandic dust showed differences in mineralogy, geochemical compositions, shapes, sizes, and colour, compared to the crustal mineral dust. Icelandic dust is of volcanic origin, dark in colour with sharp-tipped shards and large bubbles. About 80% of the particulate matter is volcanic glass rich in heavy metals, such as iron and titanium. Suspended dust measured at the glacial dust source consisted of such high number of close-to-ultrafine particles as concentrations during active eruptions. Generally, about 50% of the suspended PM10 are submicron particles in Iceland. Contrarily, suspended grains > 2 mm were captured during severe dust storm after the 2010 Eyjafjallajokull eruption when the aeolian transport exceeded 11 t m-1 of materials and placed this storms among the most extreme wind erosion events recorded on Earth. Our reflectance measurements showed that Icelandic dust deposited on snow lowers the snow albedo and reduces the snow density as much as Black Carbon. Icelandic volcanic dust tends to act as a positive climate forcing agent, both directly and indirectly, which is different to what generally concluded for crustal dust in the 2013 IPCC report. The high frequency, severity and year-round activity of volcanic dust emissions suggest that Icelandic dust may contribute to Arctic warming.
MacKinnon, D.J.; Elder, D.F.; Helm, P.J.; Tuesink, M.F.; Nist, C.A.
1990-01-01
Precipitation causes several short- and long-term effects on wind-induced surface erodibility and subsequent dust emission. Among the principal effects considered by this paper are soil moisture, soil crusts, and vegetation. A quantitative method is developed to assess these effects using differences between the potential and the actual amounts of dust emitted from dust sources as inferred from surface meteorological measurements obtained downwind from those sources. The results of this assessment must be interpreted with caution, however, when the size and location of dust sources are unknown. Using meteorological data recorded near Yuma, Arizona at the Yuma Marine Corps Air Station (YMCAS), the method is applied to calculate the potential and actual amounts of dust emitted from upwind dust sources during the spring and fall/winter seasons between January 1, 1981 and May 31, 1988. (Spring is considered to be the period between February 1 and May 31; fall/winter, between October 1 and January 31.) Because summer precipitation is intermittent and wind patterns are localized, summer meteorological data are not used to evaluate regional correlations between precipitation and dust storms. For the period between 1981 and 1988, a correlation of -0.60 was found between fall/winter precipitation and the actual amount of dust emitted from sources upwind of YMCAS during the following spring. A particularly strong reduction in dust emission was noted during the springs of 1983 and 1984 following the start of an 'El Nino event' in fall/winter 1982. Photographs taken at a geological and meteorological data-collection (Geomet) site, located in the natural desert 25 km southeast of YMCAS, show a correspondence between increased antecedent precipitation recorded at the site and increased vegetation. Whereas the annual precipitation totals at YMCAS and the Geomet site from the beginning of 1982 through 1984 are high, their seasonal totals, especially during the fall/winter seasons, are disparate. This fall/winter precipitation disparity may account for evidence suggesting that significant vegetation growth occurred at dust sources upwind of YMCAS by spring 1983, but that such growth did not occur at the Geomet site until fall/ winter of 1983. Spatial inhomogeneity in fall/winter precipitation probably contributed to the relatively low correlation (-0.60) between fall/winter precipitation recorded at YMCAS and the actual amount of dust emitted from upwind sources during the following spring. ?? 1990 Kluwer Academic Publishers.
Soil organic carbon dust emission: an omitted global source of atmospheric CO2.
Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A
2013-10-01
Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. © 2013 John Wiley & Sons Ltd.
Meteorological Situations Favouring the Development of Dust Plumes over Iceland
NASA Astrophysics Data System (ADS)
Schepanski, K.; Szodry, K.
2017-12-01
The knowledge on mineral dust emitted at high latitudes is limited, but its impact on the polar environments is divers. Within a warming climate, dust emitted from regions in cold climates is expected to increase due to the retreat of the ice sheet and increasing melting rates. Therefore, and for its extensive impacts on different aspects of the climate system, a better understanding of the atmospheric dust life-cycle at high latitudes/cold climates in general, and the spatio-temporal distribution of dust sources in particular, are essential. At high-latitudes, glacio-fluvial sediments as found on river flood plains e.g. supplied by glaciers are prone to wind erosion when dry and bare. In case of the occurrence of strong winds, sediments are blown out and dust plumes develop. As dust uplift is controlled by soil surface characteristics, the availability of suitable sediments, and atmospheric conditions, an interannual variability in dust source activity is expected. We investigated atmospheric circulation patterns that favour the development of dust plumes over Iceland, which presents a well-known dust source at high latitudes. Using the atmosphere model COSMO (COnsortium for Small-scale MOdeling), we analysed the wind speed distribution over the Iceland region for identified and documented dust cases. As one outcome of the study, the position of the Icelandic low, the anticyclones located over Northern Europe, and the resulting pressure gradients are of particular relevance. The interaction of the synoptic-scale winds with the Icelandic orography may locally enhance the wind speeds and thus foster local dust emission. Results from this study suggest that the atmospheric circulation determined by the pressure pattern is of particular relevance for the formation of dust plumes entering the North Atlantic.
The delivery of organic matter from asteroids and comets to the early surface of Mars
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1996-01-01
Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.
Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ
NASA Astrophysics Data System (ADS)
Fraser, M. P.; Jia, Y.; Clements, A.
2008-12-01
In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.
Composition of Atmospheric Dust from Qatar in the Arabian Gulf
NASA Astrophysics Data System (ADS)
Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Al-Ansi, M.; Paul, B.; Nelson, A.; Turner, J.; Murray, J. W.; Alfoldy, B. Z.; Mahfouz, M. M. K.; Giamberini, M.
2015-12-01
Samples of atmospheric dust from Qatar have been collected and analyzed for major and trace elemental composition. Twenty-one samples were collected in 2014 and 2015 from Doha, Al Khor, Katara, Sealine, and Al Waab by a variety of techniques. Some samples were collected during the megastorms that occurred in April 2015. Back trajectories were determined for each sample using the NOAA HYSPLIT model over a 50 hour time interval. Our samples were about equally divided between northerly (n=12; northern Saudi Arabia, Kuwait or Iraq) and southerly (n=8; SE Saudi Arabia, United Arab Emirates and Oman) sources. One sample originated directly westward, in Saudi Arabia. Samples were microwave-assisted total acid digested (HF+HCl+HNO3) and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). There are only 12 out of 23 elements for which the Qatari dust was enriched relative to upper continental crust (UCC). Calcium was especially enriched at 400% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni and Zn were the most enriched relative to UCC, with enrichment factors of 182%, 233% and 209%, respectively. Others like Pb and V were not significantly enriched, with enrichment factors of 25% and 3%, respectively. The major elements Al, Mn and Fe were depleted relative to UCC because of the strong enrichment in CaCO3, with enrichment factors of -58%, -35% and -45% respectively. We separately averaged the samples with northern and southern origins to see if composition could be used to identify source. Only three elements had a statistical difference. Pb and Na were higher in the samples from the Se while Cr was higher in those from the north.
Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T
2005-11-01
Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.
Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples
Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.
2014-01-01
Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.
Accurate Modeling of X-ray Extinction by Interstellar Grains
NASA Astrophysics Data System (ADS)
Hoffman, John; Draine, B. T.
2016-02-01
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
Characterization of potential zones of dust generation at eleven stations in the southern Sahara
NASA Astrophysics Data System (ADS)
Clark, I.; Assamoi, P.; Bertrand, J.; Giorgi, F.
Synoptic wind data for multi-decadal periods at eleven stations located in the southern Sahara region (Agadez, Atar, Bilma, Dori, Gao, Kayes, Nema, Niamey, Nouadhibou, Ouagadougou and Tessalit) are used to study the monthly dust deflation power over the region. We found that, regardless of the conditions of the soil, the deflation power (or wind efficiency) is not sufficient to generate significant amounts of aerosols south of 15°N. North of this latitude, the deflation power is much larger, with potential zones of either very strong deflation (Nouadhibou and Bilma) or severe deflation (Gao, Tessalit, Nema, Atar, Agadez). Stations in the Sahel region such as Gao, Agadez and Tessalit are characterized by a gradual reinforcement of the deflation power between 1970 and 1984 in correspondence of increasing desertification over the region. During this same period, Bilma, a well know region of dust source, experienced a major reduction in deflation power due to shifts in large scale wind patterns.
Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI
NASA Astrophysics Data System (ADS)
Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.
2012-04-01
Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed above. We will also highlight the challenges that go along with such retrievals.
Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.
2016-12-01
An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.
Environmental Sequencing of Biotic Components of Dust in the Chihuahuan Desert
NASA Astrophysics Data System (ADS)
Walsh, E.; Gill, T. E.; Rivas, J. A., Jr.; Leung, M. Y.; Mohl, J.
2015-12-01
A growing number of studies mark the role of wind in dispersing biota. Most of these approaches have used traditional methods to assess taxonomic diversity. Here we used next generation sequencing to characterize microbiota in dust collected from the Chihuahuan Desert. Atmospheric dust was collected during events during 2011-2014 using dry deposition collectors placed at two sites in El Paso Co., TX. In parallel experiments, we rehydrated subsamples of dust and conducted PCR amplifications using conserved primers for 16S and 18S ribosomal genes. Sequenced reads were de-multiplexed, quality filtered, and processed using QIIME. Taxonomy was assigned based on pairwise identity using BLAST for microbial eukaryotes. All samples were rarefied to a set number of sequences per sample prior to downstream analyses. Bioinformatic analysis of four of the dust samples yielded a diversity of biota, including zooplankton, bacteria, fungi, algae, and protists, but fungi predominate (>90% of both 10K and 3K reads). In our rehydrations of dust samples from the U.S. southwest nematodes, gastrotrichs, tardigrades, monogonont and bdelloid rotifers, branchiopods and numerous ciliates have been recovered. Variability in genetic diversity among samples is based, in part, on the source and extent of the particular dust event. We anticipate the same patterns will be seen in the complete data set. These preliminary results indicate that wind is a major transporter of not only fungi, bacteria and other unicellular organisms but may also be important in shaping the distribution patterns of multi-cellular organisms such as those that inhabit aquatic environments in the arid southwestern US.
Comparative study of the dust emission of 19P/Borrelly (Deep Space 1) and 1P/Halley
Ho, T.-M.; Thomas, N.; Boice, D.C.; Kollein, C.; Soderblom, L.A.
2003-01-01
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios. ?? 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Hallas, T E; Gislason, D; Björnsdottir, U S; Jörundsdottir, K B; Janson, C; Luczynska, C M; Gislason, T
2004-05-01
House dust mites are common sources of indoor allergens. In Reykjavik, Iceland, 9% of the young adult population had serum-specific IgE to Dermatophagoides pteronyssinus. Sensitization to mites is usually assumed to be due to exposure to house dust mites in the indoor environment. This investigation was carried out to measure the concentrations of house dust mite allergens and to investigate which species of mites were present in beds in Iceland. A total of 197 randomly selected adults were visited at home using the European Community Respiratory Health Survey (ECRHS) II Indoor protocol. Dust samples were collected from mattresses for measurement of house dust mite allergen concentrations and to estimate the number and type of house dust mites. Additional samples from mattresses and floors were collected from the homes of 10 patients with positive skin prick tests (SPT) to D. pteronyssinus. House dust mite allergen concentrations were measured using ELISA and examination of mite species was carried out using microscopy. Climatic parameters were assessed using psychrometer readings in the bedrooms and outdoors. We found two single mite specimens, both D. pteronyssinus, in two dust samples. Mite allergen analyses indicated that two other dust samples had Der f 1 results close to the cut-off of 0.1 microg/g of dust. No samples were positive for Der p 1. In an additional collection of dust from the homes of 10 SPT-positive patients no Dermatophagoides spp. were found. Reykjavik citizens are exposed to extremely low amounts of house dust mite allergens in their homes. Possible alternative sources for sensitization are discussed, such as bird nests, exposure from travelling abroad, or other mites or invertebrates that cross-react with house dust mite allergens. Our findings suggest that exposures other than to house dust mites indoors are possible sources of mite allergen exposure.
Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.
1996-01-01
The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.
NASA Astrophysics Data System (ADS)
Macholdt, D.; Jochum, K. P.; Otter, L.; Stoll, B.; Weis, U.; Pöhlker, C.; Müller, M.; Kappl, M.; Weber, B.; Kilcoyne, A. L. D.; Weigand, M.; Al-Amri, A. M.; Andreae, M. O.
2015-12-01
Rock varnishes are up to 250 μm thick, Mn- and Fe-rich, dark black to brownish-orange lustrous rock coatings. Water and aeolian dust (60-70%), in combination with biological oxidation or inorganic precipitation processes, or even a combination of both, induce varnish growth rates of a few μm per 1000 a, indicating that element enrichment and aging processes are of major importance for the varnish formation. A combination of 200 nm-fs laser- and 213 nm-ns laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) was chosen for high-spatial-resolution analyses. The aim was to identify provenance, chemistry, and dynamics of the varnishes, and their formation over the millennia. To this end, mineral dust and adjacent varnishes were sampled in six arid to semi-arid deserts, in Israel, South Africa, California, and Saudi Arabia. Dust minerals incorporated in the varnishes were examined by STXM-NEXAFS spectroscopic and element mapping at the nm scale. Varnishes from different locations can be distinguished by element ratio plots of Pb/Ni vs. Mn/Ba. A comparison of dust element ratios of particles <50 μm to ratios of adjacent varnishes reveals much lower values for dust. However, the factors between the element ratios of dust and of varnish are similar for four of six regions (Mn/Ba: 6 ± 2; Pb/Ni: 4 ± 3). Two of the six regions diverge, which are South African (Mn/Ba: 20, Pb/Ni: 0.5) and Californian (Anza Borrego Desert: Mn/Ba: 4.5; Pb/Ni: 16.5) varnishes.The results indicate that the enrichment and degradation processes might be similar for most locations, and that Mn and Pb are preferably incorporated and immobilized in most varnishes compared to Ba and Ni. The Pb/Ni ratios of the South African varnishes are indicators for either a preferred incorporation of Ni compared to Pb from available dust, and therefore possibly a different genesis, or it shows a changed dust source over time, or even an additional element source. The latter two arguments, or even Pb pollution by automobiles, might also be true for the Anza Borrego varnish with its higher Pb/Ni ratios. Our investigations of dust and the rock coatings at the nm scale may help to unravel the genesis of rock varnish.
The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny
2006-01-01
Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.
Origin-Dependent Variations in the Atmospheric Microbiome in Eastern Mediterranean Dust Storms
NASA Astrophysics Data System (ADS)
Rudich, Y.; Gat, D.
2017-12-01
Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins, or that followed different trajectories, provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust- borne bacterial communities in dust storms from three distinct origins—North Africa, Syria and Saudi Arabia—and compare them with local bacterial communities sampled on clear days, all collected at a single location, in Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa for each source. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local, possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. We will also discuss how exposure to dust containing biological components affect lung epithelial cells. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible distinct effects on the environment and public health.
Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit
2017-03-01
Size classified (PM 10 and PM 2.5 ) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM 10 and PM 2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM 10 and PM 2.5 , for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM 10 and PM 2.5 ) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P
2016-10-01
An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.
NASA Technical Reports Server (NTRS)
Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.;
2010-01-01
We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.
Lin, Yu-Ping; Nelson, Charmaine; Kramer, Holger; Parekh, Anant B
2018-04-19
The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca 2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca 2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca 2+ channels and suggest a therapeutic strategy for treating mite-induced asthma. Copyright © 2018 Elsevier Inc. All rights reserved.
No iron fertilization in the equatorial Pacific Ocean during the last ice age
NASA Astrophysics Data System (ADS)
Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.
2016-01-01
The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.
No iron fertilization in the equatorial Pacific Ocean during the last ice age.
Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C
2016-01-28
The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.
Chemistry and mineralogy of Martian dust: An explorer's primer
NASA Technical Reports Server (NTRS)
Gooding, James L.
1991-01-01
A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.
NASA Astrophysics Data System (ADS)
Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available. In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM 10 and PM 2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM 10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650-1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called "pulling equations". ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m -3 (17%) in PM 10, 2.2 μg m -3 (8%) of PM 2.5 and 0.3 μg m -3 (2%) of PM 1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM 10, PM 2.5 and PM 1. Therefore the overall traffic contribution resulted in 18 μg m -3 (46%) in PM 10, 14 μg m -3 (51%) in PM 2.5 and 8 μg m -3 (48%) in PM 1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.
Ali, Nadeem; Ismail, Iqbal Mohammad Ibrahim; Khoder, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Costa, Max; Ali, Lulwa Naseer; Wang, Wei; Eqani, Syed Ali Musstjab Akber Shah
2016-12-15
This study reports levels and profiles of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from three different microenvironments (cars, air conditioner (AC) filters and household floor dust) of Jeddah, Saudi Arabia (KSA) and Kuwait. To the best of our knowledge, this is first study reporting PAHs in indoor microenvironments of KSA, which makes these findings important. Benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), phenanthrene (Phe), and pyrene (Pyr) were found to be the major chemicals in dust samples from all selected microenvironments. ΣPAHs occurred at median concentrations (ng/g) of 3450, 2200, and 2650 in Saudi AC filter, car and household floor dust, respectively. The median levels (ng/g) of ΣPAHs in Kuwaiti car (950) and household floor (1675) dust samples were lower than Saudi dust. The PAHs profile in Saudi dust was dominated by high molecular weight (HMW) (4-5 ring) PAHs while in Kuwaiti dust 3 ring PAHs have marked contribution. BaP equivalent, a marker for carcinogenic PAHs, was high in Saudi household floor and AC filter dust with median levels (ng/g) of 370 and 455, respectively. Different exposure scenarios, using 5th percentile, median, mean, and 95th percentile levels, were estimated for adults and toddlers. For Saudi and Kuwaiti toddlers worst exposure scenario of ΣPAHs was calculated at 175 and 85ng/kg body weight/day (ng/kgbw/d), respectively. For Saudi toddlers, the calculated worst exposure scenarios for carcinogenic BaP (27.7) and BbF (29.3ng/kgbw/d) was 2-4 times higher than Kuwaiti toddlers. This study is based on small number of samples which necessitate more detailed studies for better understanding of dynamics of PAHs in the indoor environments of this region. Nevertheless, our finding supports the ongoing exposure of organic pollutants to population that accumulates indoor. Copyright © 2016. Published by Elsevier B.V.
Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...
The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2012-01-01
In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .
The Origin and Evolution of Interstellar Dust in the Local and High-Redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2011-01-01
In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. Using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that - 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of SN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history.
Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America
Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël
2015-01-01
Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739
Al Ali, Saja; Debade, Xavier; Chebbo, Ghassan; Béchet, Béatrice; Bonhomme, Céline
2017-12-01
A deep understanding of pollutant buildup and wash-off is essential for accurate urban stormwater quality modeling and for the development of stormwater management practices, knowing the potential adverse impacts of runoff pollution on receiving waters. In the context of quantifying the contribution of airborne pollutants to the contamination of stormwater runoff and assessing the need of developing an integrated AIR-WATER modeling chain, loads of polycyclic aromatic hydrocarbons (PAHs) and metal trace elements (MTEs) are calculated in atmospheric dry deposits, stormwater runoff, and surface dust stock within a small yet highly trafficked urban road catchment (~ 30,000 vehicles per day) near Paris. Despite the important traffic load and according to the current definition of "atmospheric" source, atmospheric deposition did not account for more than 10% of the PAHs and trace metal loads in stormwater samples for the majority of the events, based on the ratio of deposition to stormwater. This result shows that atmospheric deposition is not a major source of pollutants in stormwater, and thus, linking the air and water compartment in a modeling chain to have more accurate estimates of pollutant loads in stormwater runoff might not be relevant. Comparison of road dust with water samples demonstrates that only the fine fraction of the available stock is eroded during a rainfall event. Even if the atmosphere mostly generates fine particles, the existence of other sources of fine particles to stormwater runoff is highlighted.
NASA Astrophysics Data System (ADS)
Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David
2018-05-01
In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.
Dust emissions from unpaved roads on the Colorado Plateau
NASA Astrophysics Data System (ADS)
Duniway, M.; Flagg, C.; Belnap, J.
2013-12-01
On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV), the minimum wind velocity required to initiate erosion, and sediment production were also quantified using a portable wind tunnel at monitoring sites. Additionally, numerous characteristics including gravel cover, particle-size distribution, soil compaction, and loose-erodible material were measured on road surfaces at monitoring sites. Preliminary results suggest that roads are an important regional dust source, as emissions from roads are comparable to non-road, rural sources that are being monitored concurrently. While gravel roads produce more dust per day on average, per vehicle emissions are larger on dirt roads. Dust flux decreases with distance from the road edge on all road types, however this decline is less pronounced on dirt roads. Portable wind tunnel results indicate that TFV is consistently lower on dirt versus gravel roads across all soil types. Fugitive dust flux is generally larger and more variable on dirt roads compared to gravel roads. Initial analyses suggest that several easily measurable road surface characteristics can potentially be used to predict both TFV and sediment production, including: total gravel cover, gravel particle-size classes, clay content, and road compaction. The relation between TFV and total gravel cover in particular appears to be non-linear, with TFV increasing rapidly above ~40% gravel cover.
NASA Technical Reports Server (NTRS)
Nowottnick, E.
2007-01-01
During August 2006, the NASA African Multidisciplinary Analyses Mission (NAMMA) field experiment was conducted to characterize the structure of African Easterly Waves and their evolution into tropical storms. Mineral dust aerosols affect tropical storm development, although their exact role remains to be understood. To better understand the role of dust on tropical cyclogenesis, we have implemented a dust source, transport, and optical model in the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model and data assimilation system. Our dust source scheme is more physically based scheme than previous incarnations of the model, and we introduce improved dust optical and microphysical processes through inclusion of a detailed microphysical scheme. Here we use A-Train observations from MODIS, OMI, and CALIPSO with NAMMA DC-8 flight data to evaluate the simulated dust distributions and microphysical properties. Our goal is to synthesize the multi-spectral observations from the A-Train sensors to arrive at a consistent set of optical properties for the dust aerosols suitable for direct forcing calculations.
PERSPECTIVE: Dust, fertilization and sources
NASA Astrophysics Data System (ADS)
Remer, Lorraine A.
2006-11-01
Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the fraction that arrives at another continent [2]. At the deposition end of the chain, it is still unclear how the limited minerals in the dust such as iron are released for uptake by organisms either on land or in the ocean. Not all dust deposited into oceans results in a phytoplankton bloom. The process requires a chemical pathway that mobilizes a fraction of the iron into soluble form. Meskhidze et al [3] show that phytoplankton blooms following dust transport from the Gobi desert in Asia into the Pacific ocean result in a phytoplankton bloom only if the dust is accompanied by high initial SO2-to-dust ratios, suggesting that sulfuric acid coatings on the dust particle mobilize the embedded iron in the dust for phytoplankton uptake. Quantifying transport, deposition and nutrient availability are the latter ends of a puzzle that must begin by identifying and quantifying dust emission at the sources. The emission process is complex at the microscale requiring the right conditions for saltation and bombardment, which makes identification and inclusion of sources in global transport models very difficult. The result is that estimates of annual global dust emissions range from 1000 to 3000 Tg per year [4]. Even as global estimates of dust emissions are uncertain, localizing the sources brings even greater uncertainty. It has been recognized for several years that dust sources are not uniformly distributed over the arid regions of the Earth, but are regulated to topographic lows associated with dried lake deposits [5]. Using aerosol information from satellites, a comprehensive map of the world's source regions shows sources localized to specific areas of the Earth's arid regions [6]. Still these maps suggest broad emission sources covering several degrees of latitude and longitude. In the paper by Koren and co-authors [7] appearing in this issue, one particular dust source, the Bodélé depression in Chad, is analyzed in detail. They find that the specific topography of the depression combined with the prevailing wind direction in the winter provides perfect conditions for aerosol saltation, uplift and transport. The winter Bodélé dust is carried over the populated regions of west Africa where it can be affected by smoke and urban pollution before it continues transport over the Atlantic and towards Amazonia. Although Koren et al do not speculate on the chemical possibilities in their paper, the interaction between the dust and the pollutants provides opportunity for acids to coat the dust particles and to mobilize the iron compounds, creating a highly efficient fertilizing agent for ocean phytoplankton and the biota of the Amazon forest. Koren et al do quantify the dust emission of the Bodélé depression, estimating that this small area produces approximately 50% of the Saharan dust deposited in the Amazon. The findings of Koren and his co-authors suggest that dust emission sources may be highly localized spots in the Earth's deserts that can be mapped precisely by satellites of moderate to fine resolution. Like fire hot spots that localize smoke emission, desert dust hot spots can be identified with great detail. This can provide aerosol transport models with better source emission information and improve estimates that will help in making estimates concerning biogeochemical processes and also estimates of climate forcing and response. References [1] Swap R et al 1992 Saharan dust in the Amazon basin Tellus B 44 133-49 (doi:10.1034/j.1600-0889.1992.t01-1-00005.x) [2] Kaufman Y J, Koren I, Remer L A, Tanré D, Ginoux P and Fan S 2005 Dust transport and deposition observed from the Terra-MODIS space observations J. Geophys. Res. 110 D10S12 (doi:10.1029/2003JD004436) [3] Meskhidze N, Chameides W L and Nenes A 2005 Dust and pollution: a recipe for enhanced ocean fertizilation? J. Geophys. Res. 110 (D3) D03301 (doi:10.1029/2004JD005082) [4] Cakur R V et al 2006 Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations J. Geophys. Res. 111 D06207 (doi:10.1029/2005JD005791) [5] Ginoux P et al 2001 Sources and distribution of dust aerosol simulated with the GOCART model J. Geophys. Res. 106 20255-74 (doi:10.1029/2000JD000053) [6] Prospero J M, Ginoux P, Torres O, Nicholson S E and Gill T E 2002 Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product Rev. Geophys. 40 (1) 1002 (doi:10.1029/2000RG000095) [7] Koren I, Kaufman Y J, Washington R, Todd M C, Rudich Y, Martins J V and Rosenfeld D 2006 The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest Environ. Res Lett. 1 014005 (doi:10.1088/1748-9326/1/1/014005) Photo of Lorraine A Remer Lorraine A Remer received a BS degree in atmospheric science from the University of California, Davis, in 1980, an MS degree in oceanography from the Scripps Institution of Oceanography, University of California, San Diego, in 1983, and a PhD degree, also in atmospheric science from the University of California, Davis, in 1991. She became involved with the MODIS retrievals of atmospheric aerosols in 1991, first as a Research Scientist with Science Systems and Applications, Inc., and subsequently with the National Aeronautics and Space Administration, which she joined in 1998. She is an Associate Member of the MODIS Science Team and a Member of the Global Aerosol Climatology Project Science Team.
The dusty ballerina skirt of Jupiter
NASA Astrophysics Data System (ADS)
Horanyi, M.; Morfill, G.; Gruen, E.
1993-12-01
We suggest a model to explain the unexpected recurrent dust events that were observed during the Jupiter encounter by the dust detector on board the Ulysses spacecraft. This model is based dust-magnetosphere interactions. Dust particles inside the Jovian magnetosphere collect electrostatic charges and their interaction with the magnetic and electric fields can lead to energization and subsequent ejection. We discuss the dusty regions (ring/halo, `gossamer' ring) and also Io as potential sources for the Ulysses events. This model favors Io as a source. The mass and velocity range of the escaping particles are compatible with the observations, and we also suggest internal periodicities to explain the recurrent nature of the Ulysses dust events.
Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island
NASA Astrophysics Data System (ADS)
Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.
2017-12-01
Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.
Source Apportionment of PM2.5 in Delhi, India Using PMF Model.
Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit
2016-08-01
Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).
Aerosol composition and source apportionment in Santiago de Chile
NASA Astrophysics Data System (ADS)
Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto
1999-04-01
Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp<2 μm) and coarse mode aerosol (2
NASA Astrophysics Data System (ADS)
Koffman, B. G.; Goldstein, S. L.; Kaplan, M. R.; Winckler, G.; Bory, A. J. M.; Biscaye, P.
2015-12-01
Atmospheric dust directly influences Earth's climate by altering the radiative balance and by depositing micronutrients in the surface ocean, affecting global biogeochemical cycling. In addition, mineral dust particles provide observational evidence constraining past atmospheric circulation patterns. Because dust can originate from both local and distant terrestrial sources, knowledge of dust provenance can substantially inform our understanding of past climate history, atmospheric transport pathways, and differences in aerosol characteristics between glacial and interglacial climate states. Dust provenance information from Antarctic ice cores has until now been limited to sites in East Antarctica. Here we present some of the first provenance data from West Antarctica. We use Sr-Nd isotopes to characterize dust extracted from late Holocene ice (~1000-1800 C.E.) from the Siple Dome ice core. The data form a tight array in Sr-Nd isotope space, with 87Sr/86Sr ranging between ~0.7087 and 0.7102, and ɛNd ranging between ~ -7 and -16. This combination is unique for Antarctica, with low Nd and low Sr isotope ratios compared to high-elevation East Antarctic sites, requiring a dust source from ancient (Archean to early Proterozoic) and unweathered continental crust, which mixes with young volcanic material. Both components are likely sourced from Antarctica. We also observe significant, systematic variability in Sr and Nd isotopic signatures through time, reflecting changes in the mixing ratio of these sources, and hypothesize that these changes are driven by shifts in circulation patterns. A large change occurs over about 10 years at ca. 1125 C.E. (ΔɛNd = +3 and Δ87Sr/86Sr = -0.0014). This shift coincides with changes in climate proxies in Southern Hemisphere paleoclimate records reflecting variability in the Westerlies. We therefore interpret the shift in dust provenance at Siple Dome to be related to larger-scale circulation changes. In general, the observed shifts in the particle source signatures indicate that dust transport pathways to and around the West Antarctic Ice Sheet are highly responsive to perturbations in atmospheric circulation, and can record rapid shifts in provenance.
ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hull, Charles L. H.; Yang, Haifeng; Li, Zhi-Yun; Kataoka, Akimasa; Stephens, Ian W.; Andrews, Sean; Bai, Xuening; Cleeves, L. Ilsedore; Hughes, A. Meredith; Looney, Leslie; Pérez, Laura M.; Wilner, David
2018-06-01
We present 870 μm ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ∼1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 μm) and IM Lup (61 μm, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.
Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S
2016-01-01
Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM < 0.1 μm. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the Bodélé Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1 μm). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems.
Detection of anthropogenic dust using CALIPSO lidar measurements
NASA Astrophysics Data System (ADS)
Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.
2015-10-01
Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.
A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean
NASA Astrophysics Data System (ADS)
Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.
2014-01-01
Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and atmospheric transport.
NASA Technical Reports Server (NTRS)
Davis, C. J.; Davis, J. A.; Meyer-Vernet, Nicole; Crothers, S.; Lintott, C.; Smith, A.; Bamford, S.; Baeten, E. M. L.; SaintCyr, O. C.; Campbell-Brown, M.;
2012-01-01
The distribution of dust in the ecliptic plane between 0.96 and 1.04 au has been inferred from impacts on the two Solar Terrestrial Relations Observatory (STEREO) spacecraft through observation of secondary particle trails and unexpected off-points in the heliospheric imager (HI) cameras. This study made use of analysis carried out by members of a distributed webbased citizen science project Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The different position of the HI instrument on the two STEREO spacecraft leads to each sampling different populations of dust particles. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera, these dust particles are estimated to have masses in excess of 10 (exp-17) kg with radii exceeding 0.1 µm. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary 'storm' trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. Investigating the mass distribution for the off-points of both HI-A and HI-B, it is apparent that the differential mass index of particles from the apex direction (causing off-points in HI-B) is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass index of particles from the anti-apex direction (causing off-points in HI-A) is consistently below 2, indicating that the majority of the mass is to be found in larger particles of this distribution.
NASA Astrophysics Data System (ADS)
Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.
2015-08-01
The health implications of PM2.5 in tropical regions of Southeast Asia are significant as PM2.5 can pose serious health concerns. PM2.5 is strongly influenced by the monsoon. We quantitatively characterize the health risks posed to human populations by selected heavy metals in PM2.5. Monsoonal effects as well as factors influencing the sources of PM2.5 were also determined. Apportionment analysis of PM2.5 was undertaken using US EPA positive matrix factorization (PMF) 5.0 and a mass closure model. Overall, 48 % of the samples exceeded the World Health Organization (WHO) 24 h guideline. The mass closure model identified four sources of PM2.5: (a) mineral matter (MIN) (35 %), (b) secondary inorganic aerosol (SIA) (11 %), (c) sea salt (SS) (7 %), (d) trace elements (TE) (2 %) and (e) undefined (UD) (45 %). PMF 5.0 identified five potential sources and motor vehicle emissions and biomass burning were dominant followed by marine and sulfate aerosol, coal burning, nitrate aerosol, and mineral and road dust. The non-carcinogenic risk level for four selected metals (Pb, As, Cd and Ni) in PM2.5 and in the identified major sources by PMF > 5.0, with respect to inhalation follows the order of PM2.5 > coal burning > motor vehicle emissions/biomass burning > mineral/road dust. The lifetime cancer risk follows the order of As > Ni > Pb > Cd for mineral/road dust, coal burning and overall of PM2.5 concentration and As > Pb > Ni > Cd for motor vehicle/biomass burning. Overall, the associated cancer risk posed by the exposure of toxic metals in PM2.5 is three to four in 1 000 000 people in this location.
Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.
2014-01-01
Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.
Anthropogenic Enrichment of Heavy Metals in Urban Dust and Possible Corresponding Sources
NASA Astrophysics Data System (ADS)
van Laaten, Neele; Merten, Dirk; Pirrung, Michael
2017-04-01
Atmospheric dust (particulate matter, PM) is regarded as a crucial factor for human health and a major environmental problem in densely populated areas. Due to anthropogenic processes like traffic, waste incineration and industry increased amounts of PM can be detected in those areas. To reduce the amounts detailed knowledge on both the composition of PM and the source contribution in a target area is needed. The latter has, to our knowledge, rarely been regarded in central Europe. Within this study, spider webs from various locations in the city of Jena (Germany), that act as natural trappers of PM, were analyzed for the contents of 27 trace elements using aqua regia digestion followed by ICP-OES and ICP-MS determinations. Aerosol-crust enrichment factors were calculated for selected elements and both a cluster analysis and a factor analysis were executed to identify sources of PM. High values for the enrichment factors clearly show an anthropogenic influence. In addition, the cluster analysis leads to a grouping of the sampling points mainly depending on the kind and volume of traffic at the corresponding locations. Five different possible sources of PM can be found by the factor analysis: Soil erosion (41% of variance), abrasion of rails (16%), tyre and break wear (16%), charcoal combustion (8%) and oil combustion (7%).
NASA Astrophysics Data System (ADS)
Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra
2017-04-01
The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. Ice cores can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow ice cores have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter ice core has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The ice cores have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An increase of dust and Ca2+ concentration was registered since the beginning of XX century. The ice core record depicts also a prominent increase of dust concentration in 1980's which may be related to the increase of dust sources strength in North Africa.
NASA Technical Reports Server (NTRS)
Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott
2002-01-01
Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of the Israel Space Agency (ISA) and NASA, under a cooperation agreement between the two agencies.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less
NHEXAS PHASE I REGION 5 STUDY--METALS IN DUST ANALYTICAL RESULTS
This data set includes analytical results for measurements of metals in 1,906 dust samples. Dust samples were collected to assess potential residential sources of dermal and inhalation exposures and to examine relationships between analyte levels in dust and in personal and bioma...
African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls
NASA Astrophysics Data System (ADS)
Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.
2017-12-01
Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of African dust aerosol optical depth (AOD) provides a significant transferfunction [(REE)=3.00(AOD)-3.11, R 2 = 0.72, p ≤ 0.0005, df= 24]. Our results suggest coral REErecords have the potential to robustly reconstruct past African dust plume transport, thusproviding insight into the regional easterly trade wind patterns driving them.
NASA Astrophysics Data System (ADS)
He, Q.; Matimin, A.; Yang, X.
2016-12-01
TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2
NASA Astrophysics Data System (ADS)
Yu, Zechen; Jang, Myoseon; Park, Jiyeon
2017-08-01
The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone).
NASA Astrophysics Data System (ADS)
Gili, S.; Gaiero, D. M.; Jweda, J.; Koestner, E.; Chemale, F.; Kaplan, M. R.; Goldstein, S. L.
2012-12-01
Wind-transported dust is a tracer of atmospheric circulation and also provides important information about the climatic conditions prevailing in dust source areas. Understanding the origin of mineral dust deposited in different environments (e.g., continent, ocean, polar ice sheet) and the variability of its concentration and composition, can be used as a proxy for the interpretation of the wind systems characteristics and probable changes in the atmospheric circulation patterns. In order to improve the atmospheric circulation models developed for the Southern Hemisphere, it is necessary to increase the understanding of the characteristics of the South American dust sources. Prospero et al., (2002), showed the existence of three present-day persist dust sources in South America: Patagonia (39°-52°S), central-western Argentina (26°-33°S), and the Puna-Altiplano plateau (19°-26°S). An important question to be addressed is whether these dust sources were also important during the last glacial-interglacial cycles. In most cases, researchers working in the reconstruction of paleo-environments in the Southern Hemisphere have employed sparse geochemical and isotopic data from southern South American samples. As a consequence, there are no regional or systematic studies that define their geochemical "fingerprints" of likely sources. The main goal of this work is to identify the "fingerprints" of materials exported from these areas by means of rare earth elements (REEs) and Sr-Nd-Pb-isotopes measured in surface sediments (topsoils) and mineral dust samples. Samples (n=86) were taken across the "arid diagonal" of southern South America in a N-S transect from Uyuni (20°39'S, 68°11'W, Bolivia) to Bahia Blanca (38°43'S, 62°15'W, Argentina) representing different geomorphologic environments: e.g., ephemeral lakes, lowland areas, edges of salt flats, alluvial fans, dunes, etc. Preliminary data indicate the existence of a heterogeneous chemical/isotopic signature along the "arid diagonal": a) the Altiplano and Puna have chemical and isotopic compositions inherited from the large volume of Cenozoic ignimbrites and from the Late Paleozoic granitoids (south of 21°S), respectively, b) the potential dust source in central-western Argentina appears to show a separate geochemical fingerprint explained basically by the mixing of metamorphic rocks from Eastern Sierras Pampeanas, Central Argentina and, c) dust from Patagonia with clear chemical/isotopic signatures characteristic of the Quaternary volcanism (Gaiero et al., 2004; 2007). These results are promising, as they would enable the identification of the main dust source regions in provenance studies of different paleoclimatic records (Pampean loess, Antarctic ice cores, Atlantic and Southern oceans, etc).
A 3D parameterization of nutrients atmospheric deposition to the global ocean
NASA Astrophysics Data System (ADS)
Myriokefalitakis, S.; Nenes, A.; Baker, A. R.; Mihalopoulos, N.; Kanakidou, M.
2016-12-01
Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (such as iron and phosphorus) to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. The global atmospheric iron (Fe) and phosphorus (P) cycles are here parameterized in a global 3-D chemical transport model. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings and model results are evaluated by comparison with available observations. The effect of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The link between the soluble Fe and P atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified.
Microbial hitchhikers on intercontinental dust: catching a lift in Chad
Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G; Brown, Christopher T; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H; Kirchner, Timothy; de Quadros, Patricia Dorr; Triplett, Eric W; Broughton, William J; Gorbushina, Anna A
2013-01-01
Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. PMID:23254516
NASA Astrophysics Data System (ADS)
Deng, Junjun; Zhang, Yanru; Qiu, Yuqing; Zhang, Hongliang; Du, Wenjiao; Xu, Lingling; Hong, Youwei; Chen, Yanting; Chen, Jinsheng
2018-04-01
Source apportionment of fine particulate matter (PM2.5) were conducted at the Lin'an Regional Atmospheric Background Station (LA) in the Yangtze River Delta (YRD) region in China from July 2014 to April 2015 with three receptor models including principal component analysis combining multiple linear regression (PCA-MLR), UNMIX and Positive Matrix Factorization (PMF). The model performance, source identification and source contribution of the three models were analyzed and inter-compared. Source apportionment of PM2.5 was also conducted with the receptor models. Good correlations between the reconstructed and measured concentrations of PM2.5 and its major chemical species were obtained for all models. PMF resolved almost all masses of PM2.5, while PCA-MLR and UNMIX explained about 80%. Five, four and seven sources were identified by PCA-MLR, UNMIX and PMF, respectively. Combustion, secondary source, marine source, dust and industrial activities were identified by all the three receptor models. Combustion source and secondary source were the major sources, and totally contributed over 60% to PM2.5. The PMF model had a better performance on separating the different combustion sources. These findings improve the understanding of PM2.5 sources in background region.
Tan, Jihua; Duan, Jingchun; Ma, Yongliang; He, Kebin; Cheng, Yuan; Deng, Si-Xin; Huang, Yan-Ling; Si-Tu, Shu-Ping
2016-09-15
Foshan is a major international ceramic center and the most polluted city in the Pearl River Delta (PRD). Here we present the results of the first long-term PM2.5 (particles <2.5μm) sampling and chemical characterization study of the city. A total of 2774 samples were collected at six sites from 2008 to 2014, and analyzed for water soluble species, elements and carbonaceous species. The major constituents of PM2.5 were sulfate, OC (Organic Carbon), nitrate, ammonium and EC (Elemental Carbon), which accounted for 50%-88% of PM2.5. PM2.5 and the most abundant chemical species decreased from 2008 to 2011, but rebounded in 2012-2013. After 2008, the chemical composition of PM2.5 changed dramatically due to the implementation of pollution control measures. From 2008 to 2011, SO4(2-) and NO3(-) were the two largest components; subsequently, however, OC was the largest component. The respective contributions of SO4(2-), NO3(-) and OC to the sum of water soluble species and carbonaceous species were 30.5%, 22.9% and 19.9% in 2008; and 20.2%, 16.5% and 30.2% in 2014. Distinct differences in nitrate and sulfate, and in mass ratio [NO3(-)]/[SO4(2-)] imply that mobile sources tended to more important in Foshan during 2012-2014. The results indicate that pollution control measures implemented during 2008-2014 had a large effect on anthropogenic elements (Pb, As, Cd, Zn and Cu) and water soluble species, but little influence on crustal elements (V, Mn, Ti, Ba and Fe) and carbonaceous species. The PMF method was used for source apportionment of PM2.5. Industry (including the ceramic industry and coal combustion), vehicles and dust were the three most important sources and comprised 39.2%, 20.0% and 18.4% of PM2.5 in 2008, respectively. However, secondary aerosols, vehicles and industry were the three most important sources and comprised 29.5%, 22.4% and 20.4% of PM2.5 in 2014, respectively. During the seven year study interval, the contributions of primary sources (industry and dust) decreased significantly, but secondary sources increased dramatically. Industry, dust and vehicles contributed 36.6μgm(-3), 13.9μgm(-3), and 9.2μgm(-3) to the reduction of PM2.5, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Shin, Hyeong-Moo; McKone, Thomas E.; Nishioka, Marcia G.; Fallin, M. Daniele; Croen, Lisa A.; Hertz-Picciotto, Irva; Newschaffer, Craig J.; Bennett, Deborah H.
2014-01-01
Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 U.S. homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity-based indoor mass-balance model to estimate the whole house emission rates of SVOCs that would account for the measured dust concentrations. Di-2-ethylhexyl phthalate (DEHP) and di-iso-nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate (DEP) is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust-assay modeling approach shows promise for estimating indoor emission rates for SVOCs. PMID:24118221
Eastern Equatorial Pacific Dust Provenance on Deglacial Timescales
NASA Astrophysics Data System (ADS)
Xie, R.; Marcantonio, F.
2008-12-01
Changing patterns of eolian dust deposition preserved in deep-sea sediments have the potential to provide us with a better understanding of changes in past atmospheric circulation. One way in which to determine the provenance of dust in deep-sea sediments is to use radiogenic isotopic tracers which can fingerprint potential dust sources. Models (e.g., [1]) suggest that sources of dust to the Eastern Equatorial Pacific (EEP) are from areas as diverse as Asia, North, Central, and South America, and, perhaps, even Africa. Here, we investigate spatial and temporal changes in the provenance of the eolian component in the EEP by measuring Pb, Sr, and Nd isotope ratios in dust extracted from sediments along a transect at 110oW from 7oN to 3oS (ODP sites 853 - 848). In this region, although fluxes of dust were higher during the last glacial maximum (LGM) than those in the Holocene by up to 100%, the glacial flux of dust displayed a shallower meridional gradient [2]. However, it is unclear whether this shallower gradient is due to a mean southerly displacement of the Intertropical Convergence Zone (ITCZ). Most of the dust trying to pass through the ITCZ will be scavenged and rained out at the ITCZ. Along the meridional gradient, therefore, temporal variations in the Pb, Sr, and Nd isotopic fingerprints of the distinct dust sources will determine the extent to which the position of the ITCZ changes on deglacial timescales. [1] Mahowald et al., 2005, Global Biogeochemical Cycles 19, GB4025. [2] McGee et al., 2007, EPSL 257, 215-230.
Using Si depletion in aerosol to identify the sources of crustal dust in two Chinese megacities
NASA Astrophysics Data System (ADS)
Zhao, Qing; He, Kebin; Rahn, Kenneth A.; Ma, Yongliang; Yang, Fumo; Duan, Fengkui
2010-07-01
Depletion of Si in transported dust has been recognized for many years. It can be used to distinguish between transported and local dust in cities, although it rarely has been. Here we use the variations of the Si/Al ratio in 15 months of continuous PM 2.5 samples at Beijing (northern China) and Chongqing (southwestern China) to reveal the seasonal patterns of their dust sources. For both cities, peaks of concentration for Si and Al in PM 2.5 corresponded with minima of Si/Al, and could often be linked to pulsed air flow from deserts to the northwest. With significant depletion (up to 80%) and homogeneous distribution at urban and rural sites, Si/Al showed a clear seasonal evolution, which decreased from spring to summer, increased from fall to winter, and collapsed during Chinese Spring Festival, indicating the dominance of transported dust, local fugitive dust and firework influence, respectively. The low ratios implied that desert dust is a common source during spring at Chongqing, whereas its presence during cold season at Beijing was also more frequent than expected. Failing to recognize the depletion of Si may lead to an overestimate of desert dust by 15%-65% when using the average abundance of Al in crust (6%-8%), as in previous studies. The difference in Si/Al ratio between local and transported dust implies that >60% of the dust at Beijing came from outside the city during the springs of 2004-2006. This result can help resolve the contradictory findings on this topic that have been presented earlier.
NASA Astrophysics Data System (ADS)
Valenzuela, A.; Olmo, F. J.; Lyamani, H.; Granados-Muñoz, M. J.; Antón, M.; Guerrero-Rascado, J. L.; Quirantes, A.; Toledano, C.; Perez-Ramírez, D.; Alados-Arboledas, L.
2014-12-01
Eight months (June 2011 to January 2012) of aerosol property data were obtained at the remote site of Alborán Island (35.95°N, 3.03°W) in the western Mediterranean basin. The aim of this work is to assess the aerosol properties according to air mass origin and transport over this remote station with a special focus on air mass transport from North Africa. For air masses coming from North Africa, different aerosol properties showed strong contributions from mineral dust lifted from desert areas. Nevertheless, during these desert dust intrusions, some atmospheric aerosol properties are clearly different from pure mineral dust particles. Thus, Angström exponent α(440-870) presents larger values than those reported for pure desert dust measured close to dust source regions. These results combine with α(440, 670) - α(670, 870) ≥ 0.1 and low single scattering albedo (ω(λ)) values, especially at the largest wavelengths. Most of the desert dust intrusions over Alborán can be described as a mixture of dust and anthropogenic particles. The analyses support that our results apply to North Africa desert dust air masses transported from different source areas. Therefore, our results indicate a significant contribution of fine absorbing particles during desert dust intrusions over Alborán arriving from different source regions. The aerosol optical depth data retrieved from Sun photometer measurements have been used to check Moderate Resolution Imaging Spectroradiometer retrievals, and they show reasonable agreement, especially for North African air masses.
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Lora, J. M.; Pollen, A.; Vollmer, T.; Thomas, M.; Leithold, E. L.; Mitchell, J.; Tripati, A.
2016-12-01
The net amount of mineral dust accumulation in arid and semi-arid regions might not be entirely sourced locally or even regionally; in fact, new evidence suggests that there could be significant contributions from distal sources. The contribution from the distal sources needs to be identified, and accounted for, in order to accurately understand the meteorological and climatologic factors, both regional and global, that control mineral dust accumulation in arid and semi-arid regions. Most importantly, if identified, the two components of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns)- could provide critical information about regional as well as global climate. There are large-scale climatological controls on the finer fraction of mineral dust, while the coarser fraction is related to intense invents (i.e., the occurrence of cyclones). However, studies attempting to separate these two size fractions in terrestrial archives have been limited. Here we separate the two size fractions using grain size analysis, and use trace element analysis in each size fraction to identify contributing source regions. We apply this technique to well-dated cores collected from three lakes that are distributed across the western, southwestern and Great Plains in the United States: Pear Lake in the Sierra Nevada Mountains (CA), Senator Beck Lake in the San Juan Mountains (CO), and North Lake (WY). These lakes are uniquely situated to monitor dust fluxes; previous studies have demonstrated that sedimentation in these lakes are dominated by mineral dust accumulation; there is also evidence of remotely and locally sourced dust in these lakes, and of textural differences between the two types of dust fractions. We compare our results with previously published data on dust from loess deposits in the United States, and isotopic modeling (LMDZ). We find evidence that the finer-grain size fraction in alpine lake cores could be of remote origin; work is underway to quantify this contribution. Most importantly, we find that during the Last Glacial Maximum (LGM) the Great Plains may not have witnessed an increase in the incidence of tornado frequency. Acknowledgements: James Sigman, Jacob Ashford, Jason Neff and Amato Evan
Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu
2013-01-01
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas. PMID:23460892
Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu
2013-01-01
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54-0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.
All-year-round aerosol chemical composition at Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita
2010-05-01
Since 2005, continuous, all-year-round aerosol sampling was carried out at Dome C (Central East Antarctica, 3233 m a.s.l., about 1100 km far from the coastline), in the framework of "Station Concordia" project, an Italian PNRA - French IPEV joint program. Size-segregated aerosol samples were collected in summer and winter periods by using different low- and medium-volume systems, including pre-selected cut-off samplers (with PM10, PM2.5 and PM1 cut-off heads) and multi-stage (Andersen 8-stage and Dekati 4-stage) impactors. Sampling resolution and volumes ranged from 1 day to 1 month and from 2.3 to 12 m3/h, respectively. Aerosol study at Dome C is expected improving our knowledge on present-day source intensity, transport efficiency and pathways (including stratosphere-troposphere interchanges) of particles reaching internal sites of Antarctica. Besides, more detailed information on atmosphere-snow interactions, including depositional and post-depositional processes, as well as the effect of sublimation/condensation processes on snow surface, will be used for improving the reconstruction of past atmosphere composition from ice core chemical stratigraphies (EPICA Dome C ice core). Here we report major results from the chemical composition of the Antarctic background aerosol reaching Dome C, pointing out the seasonal pattern and the temporal trend of some ionic components used as tracers of sea spray, marine biogenic and crustal emissions. Oxidised sulfur compounds are assumed to affect the climate system by influencing the Earth's radiative budget, both directly (solar light scattering) and indirectly (acting as cloud condensation nuclei). Among these compounds, methanesulphonic acid (MSA) and H2SO4 (arising from the atmospheric oxidation of phytoplanktonic dimethylsulphide - DMS), are considered the best tracers of marine productivity. Their use as reliable markers of oceanic biogenic emissions is hindered by poorly known mechanisms (temperature and photochemistry induced) controlling the MSA-H2SO4 ratio from DMS. Since, in summer, DMS in route toward central Antarctica is subjected to larger atmospheric concentrations of OH (and/or BrO) radical, lower temperatures and lower humidity, all conditions promoting the preferential H2SO4 formation, non-sea-salt sulphate is assumed to be the most reliable biogenic marker at Dome C. A further insight from ice-core stratigraphies is concerning the sea salt sodium (ssNa) content in snow precipitation as a reliable marker of sea-ice extent, via frost-flower formation at the pack-ice seasonal growth. This interpretation faces with the classical view that consider higher sea-spray production as caused by an increase in zonal wind intensity. Sea spray originated from frost flowers can be distinguished from sea spray coming from bulk sea-water by the lower sulphate/sodium ratio (caused by mirabilite - Na2SO4 10H20 - precipitation occurring when sea-ice temperature falls below -8°C). High resolution aerosol measurement can allow to identify different sea-spray sources and quantify frost flowers contribution to the annual ssNa budget. Finally, dust recorded in ice cores can be used as a valuable proxy for changes in hydrological cycles in the dust source areas and transport processes (pathways and scavenging). The geochemical characterization of dust in the present-day aerosol, compared with chemical composition of soils collected in South America and Australia, allows identifying the major dust source area (South America) and reconstructing pathways of atmospheric circulation. South America role in feeding dust aerosol at Dome C was supported also by comparing aerosol composition with satellite observations (dust plumes on the source sites) and back-trajectory analysis (air masses reaching Antarctica) during massive dust-storm events.
Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health
Griffin, Dale W.
2007-01-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources. PMID:17630335
Atmospheric movement of microorganisms in clouds of desert dust and implications for human health
Griffin, Dale W.
2007-01-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.
Atmospheric movement of microorganisms in clouds of desert dust and implications for human health.
Griffin, Dale W
2007-07-01
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.
Iron solubility related to particle sulfur content in source emission and ambient fine particles.
Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J
2012-06-19
The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (<1%, mineral dust and coal fly ash) up to 75% (mobile exhaust and biomass burning emissions). Differences in iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.
NASA Astrophysics Data System (ADS)
Błaszczak, Barbara
2018-01-01
The paper reports the results of the measurements of water-soluble ions and carbonaceous matter content in the fine particulate matter (PM2.5), as well as the contributions of major sources in PM2.5. Daily PM2.5 samples were collected during heating and non-heating season of the year 2013 in three different locations in Poland: Szczecin (urban background), Trzebinia (urban background) and Złoty Potok (regional background). The concentrations of PM2.5, and its related components, exhibited clear spatiotemporal variability with higher levels during the heating period. The share of the total carbon (TC) in PM2.5 exceeded 40% and was primarily determined by fluctuations in the share of OC. Sulfates (SO42-), nitrates (NO3-) and ammonium (NH4+) dominated in the ionic composition of PM2.5 and accounted together 34% (Szczecin), 30% (Trzebinia) and 18% (Złoty Potok) of PM2.5 mass. Source apportionment analysis, performed by PCA-MLRA model (Principal Component Analysis - Multilinear Regression Analysis), revealed that secondary aerosol, whose presence is related to oxidation of gaseous precursors emitted from fuel combustion and biomass burning, had the largest contribution in observed PM2.5 concentrations. In addition, the contribution of traffic sources together with road dust resuspension, was observed. The share of natural sources (sea spray, crustal dust) was generally lower.