Extraction of information from major element chemical analyses of lunar basalts
NASA Technical Reports Server (NTRS)
Butler, J. C.
1985-01-01
Major element chemical analyses often form the framework within which similarities and differences of analyzed specimens are noted and used to propose or devise models. When percentages are formed the ratios of pairs of components are preserved whereas many familiar statistical and geometrical descriptors are likely to exhibit major changes. This ratio preserving aspect forms the basis for a proposed framework. An analysis of compositional variability within the data set of 42 major element analyses of lunar reference samples was selected to investigate this proposal.
Publications - PDF 96-18 | Alaska Division of Geological & Geophysical
content DGGS PDF 96-18 Publication Details Title: Major and trace element analyses of Cretaceous plutonic Bibliographic Reference Newberry, R.J., 1996, Major and trace element analyses of Cretaceous plutonic rocks in pdf1996_018.pdf (571.0 K) Keywords Geochemistry; Geology; Igneous Rocks; Major Oxides; Plutonic Rocks
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Blanchard, D. P.; Korotev, R.; Jacobs, J. W.; Brannon, J. A.; Herrmann, A. G.
1974-01-01
Analytical data have been obtained for Co, Sc, Hf, Zn, Cr, Ga, Rb, Cs, Ni, major elements, and rare earth elements in eight samples from boulder 1. The data for trace elements were obtained by radiochemical neutron activation analysis. Major elements, except Na and Mn, were obtained by atomic absorption spectral photometry. Values for Na and Mn were obtained by neutron activation analysis of the same powder that was later dissolved to provide the atomic absorption analyses.
Hammad, Tarek A; Neyarapally, George A; Pinheiro, Simone P; Iyasu, Solomon; Rochester, George; Dal Pan, Gerald
2013-01-01
Due to the sparse nature of serious drug-related adverse events (AEs), meta-analyses combining data from several randomized controlled trials (RCTs) to evaluate drug safety issues are increasingly being conducted and published, influencing clinical and regulatory decision making. Evaluation of meta-analyses involves the assessment of both the individual constituent trials and the approaches used to combine them. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting framework is designed to enhance the reporting of systematic reviews and meta-analyses. However, PRISMA may not cover all critical elements useful in the evaluation of meta-analyses with a focus on drug safety particularly in the regulatory-public health setting. This work was conducted to (1) evaluate the adherence of a sample of published drug safety-focused meta-analyses to the PRISMA reporting framework, (2) identify gaps in this framework based on key aspects pertinent to drug safety, and (3) stimulate the development and validation of a more comprehensive reporting tool that incorporates elements unique to drug safety evaluation. We selected a sample of meta-analyses of RCTs based on review of abstracts from high-impact journals as well as top medical specialty journals between 2009 and 2011. We developed a preliminary reporting framework based on PRISMA with specific additional reporting elements critical for the evaluation of drug safety meta-analyses of RCTs. The reporting of pertinent elements in each meta-analysis was reviewed independently by two authors; discrepancies in the independent evaluations were resolved through discussions between the two authors. A total of 27 meta-analyses, 12 from highest impact journals, 13 from specialty medical journals, and 2 from Cochrane reviews, were identified and evaluated. The great majority (>85%) of PRISMA elements were addressed in more than half of the meta-analyses reviewed. However, the majority of meta-analyses (>60%) did not address most (>80%) of the additional reporting elements critical for the evaluation of drug safety. Some of these elements were not addressed in any of the reviewed meta-analyses. This review included a sample of meta-analyses, with a focus on drug safety, recently published in high-impact journals; therefore, we may have underestimated the extent of the reporting problem across all meta-analyses of drug safety. Furthermore, temporal trends in reporting could not be evaluated in this review because of the short time interval selected. While the majority of PRISMA elements were addressed by most studies reviewed, the majority of studies did not address most of the additional safety-related elements. These findings highlight the need for the development and validation of a drug safety reporting framework and the importance of the current initiative by the Council for International Organizations of Medical Sciences (CIOMS) to create a guidance document for drug safety information synthesis/meta-analysis, which may improve reporting, conduct, and evaluation of meta-analyses of drug safety and inform clinical and regulatory decision making.
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments
NASA Astrophysics Data System (ADS)
Basaham, A. S.; El-Sayed, M. A.
1998-02-01
Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.
Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry
Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.
2008-01-01
This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.
Apollo 16 impact-melt splashes - Petrography and major-element composition
NASA Technical Reports Server (NTRS)
See, Thomas H.; Horz, Friedrich; Morris, Richard V.
1986-01-01
Petrographic and major-element analyses are applied to 50 Apollo 16 impact-melt splash (IMS) samples in order to determine their origin and assess the nature of the subregolith source. The macroscopic analyses reveal that the IMSs exhibit a glassy appearance, but the textures range from holohyaline to hyalopilitic. Schlieren-rich glasses dominate the holohyaline areas, and the crystalline areas are mainly spherulitic. It is observed that most IMSs contain feldspathic monomineralic and lithic clasts and no regolithic materials. It is detected that the chemistry of most IMSs is not like the local regolith and appears to represent varied mixtures of VHA impact-melt breccias and anorthosite; the host rocks are mainly dimict breccias. It is concluded that the Cayley Formation is a polymict deposit composed of VHA impact-melt breccias and anorthosites. Tables revealing the macroscopic characteristics of the IMSs and the major-element composition of IMSs and various host rock are presented.
Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.
1999-01-01
High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.
Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii
Helz, Rosalind Tuthill; Taggart, Joseph E.
2010-01-01
This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.
NASA Astrophysics Data System (ADS)
Panagopoulos, G.
2009-09-01
The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.
NASA Astrophysics Data System (ADS)
Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis
2008-10-01
A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.
2005-01-01
Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.
Evaluation of frictional melting on the basis of trace element analyses of fault rocks
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ujiie, K.
2016-12-01
Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or rarely preserved. Trace element analyses on clay-rich localized slipping zones shed light on this topic. References: Ujiie et al. (2007) J. Struct. Geol. 29, 599-613; Honda et al. (2011) GRL 38, L06310.
Publications - RDF 2015-14 | Alaska Division of Geological & Geophysical
content DGGS RDF 2015-14 Publication Details Title: Jumbo Dome, interior Alaska: Whole-rock, major- and , 2015, Jumbo Dome, interior Alaska: Whole-rock, major- and trace-element analyses: Alaska Division of
Lightning protection for shuttle propulsion elements
NASA Technical Reports Server (NTRS)
Goodloe, Carolyn C.; Giudici, Robert J.
1991-01-01
The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.
Chemical Analyses of Pre-Holocene Rocks from Medicine Lake Volcano and Vicinity, Northern California
Donnelly-Nolan, Julie M.
2008-01-01
Chemical analyses are presented in an accompanying table (Table 1) for more than 600 pre-Holocene rocks collected at and near Medicine Lake Volcano, northern California. The data include major-element X-ray fluorescence (XRF) analyses for all of the rocks plus XRF trace element data for most samples, and instrumental neutron activation analysis (INAA) trace element data for many samples. In addition, a limited number of analyses of Na2O and K2O by flame photometry (FP) are included as well assome wet chemical analyses of FeO, H2O+/-, and CO2. Latitude and longitude location information is provided for all samples. This data set is intended to accompany the geologic map of Medicine Lake Volcano (Donnelly-Nolan, in press); map unit designations are given for each sample collected from the map area.
Surface chemistry and mineralogy. [of planet Mars
NASA Technical Reports Server (NTRS)
Banin, A.; Clark, B. C.; Waenke, H.
1992-01-01
The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.
Soils element history, sampling, analyses, and recommendations. [Plutonium isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, E.B.; Essington, E.H.
A five year history of the Soils Element of the Nevada Applied Ecology Group (NAEG) is presented. Major projects are reviewed. Emphasis is placed on mound studies and profile studies for the period March 1, 1975, through February 1, 1976. A series of recommendations is made relative to extensions of past efforts of the Soils Element of the NAEG.
Bunburra Rockhole: Exploring the geology of a new differentiated asteroid
NASA Astrophysics Data System (ADS)
Benedix, G. K.; Bland, P. A.; Friedrich, J. M.; Mittlefehldt, D. W.; Sanborn, M. E.; Yin, Q.-Z.; Greenwood, R. C.; Franchi, I. A.; Bevan, A. W. R.; Towner, M. C.; Perrotta, G. C.; Mertzman, S. A.
2017-07-01
Bunburra Rockhole is the first recovered meteorite of the Desert Fireball Network. We expanded a bulk chemical study of the Bunburra Rockhole meteorite to include major, minor and trace element analyses, as well as oxygen and chromium isotopes, in several different pieces of the meteorite. This was to determine the extent of chemical heterogeneity and constrain the origin of the meteorite. Minor and trace element analyses in all pieces are exactly on the basaltic eucrite trend. Major element analyses show a slight deviation from basaltic eucrite compositions, but not in any systematic pattern. New oxygen isotope analyses on 23 pieces of Bunburra Rockhole shows large variation in both δ17O and δ18O, and both are well outside the HED parent body fractionation line. We present the first Cr isotope results of this rock, which are also distinct from HEDs. Detailed computed tomographic scanning and back-scattered electron mapping do not indicate the presence of any other meteoritic contaminant (contamination is also unlikely based on trace element chemistry). We therefore conclude that Bunburra Rockhole represents a sample of a new differentiated asteroid, one that may have more variable oxygen isotopic compositions than 4 Vesta. The fact that Bunburra Rockhole chemistry falls on the eucrite trend perhaps suggests that multiple objects with basaltic crusts accreted in a similar region of the Solar System.
Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis
NASA Technical Reports Server (NTRS)
Meyer, C., Jr.
1978-01-01
Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.
Effect of Shear Deformation and Continuity on Delamination Modelling with Plate Elements
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Riddell, W. T.; Raju, I. S.
1998-01-01
The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models that model the upper and lower surface of the delamination or debond with two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler geometric modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom or both in the neighborhood of the crack tip; element order and assumed shear deformation; and continuity of material properties and section stiffness in the vicinity of the debond front, Where appropriate, the plate element analyses are compared with corresponding two-dimensional plane strain analyses.
Major inorganic elements in tap water samples in Peninsular Malaysia.
Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R
2011-08-01
Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.
Content of selected elements in Boletus badius fruiting bodies growing in extremely polluted wastes.
Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Gąsecka, Monika; Sobieralski, Krzysztof; Szymańczyk, Mateusz; Goliński, Piotr
2015-01-01
The aim of the study was to analyse levels of 17 trace elements and 5 major minerals in 11 Boletus badius fruiting bodies able to grow in extremely polluted waste (flotation tailings) and polluted soil in southern Poland. The presented data widen the limited literature data about the abilities of wild-growing mushroom species to grow on heavily contaminated substrates. Content of elements in waste, soil and mushrooms was analysed by flame atomic absorption spectrometry (FAAS) and cold vapour atomic absorption spectrometry (CVAAS - Hg). The industrial areas differed greatly as regards the content of elements in flotation tailings and soil; therefore differences in Ag, Ba, Cd, Co, Fe, Mo, Ni, Pb, Ca, K, Mg, Na and P accumulation in mushrooms were observed. The highest contents of elements in mushrooms were observed for: As, Al, Cu and Zn (86 ± 28, 549 ± 116, 341 ± 59 and 506 ± 40 mg kg(-1) dry matter, respectively). Calculated bioconcentration factor (BCF) values were higher than 1 for Al (15.1-16.9), Fe (10.6-24.4) and Hg (10.2-16.4) only. The main value of the presented results is the fact that one of the common wild-growing mushroom species was able to grow on flotation tailings containing over 22 g kg(-1) of As and, additionally, effective accumulation of other elements was observed. In view of the high content of the majority of analysed elements in fruiting bodies, edible mushrooms from such polluted areas are nonconsumable.
Dusel-Bacon, Cynthia; Slack, John F.; Koenig, Alan E.; Foley, Nora K.; Oscarson, Robert L.; Gans, Kathleen D.
2011-01-01
This Open-File Report presents geochemical data for outcrop and drill-core samples from volcanogenic massive sulfide deposits and associated metaigneous and metasedimentary rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range, east-central Alaska. The data consist of major- and trace-element whole-rock geochemical analyses, and major- and trace-element analyses of sulfide minerals determined by electron microprobe and laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) techniques. The PDF consists of text, appendix explaining the analytical methods used for the analyses presented in the data tables, a sample location map, and seven data tables. The seven tables are also available as spreadsheets in several file formats. Descriptions and discussions of the Bonnifield deposits are given in Dusel-Bacon and others (2004, 2005, 2006, 2007, 2010).
NASA Technical Reports Server (NTRS)
Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine
1993-01-01
Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Determination of element affinities by density fractionation of bulk coal samples
Querol, X.; Klika, Z.; Weiss, Z.; Finkelman, R.B.; Alastuey, A.; Juan, R.; Lopez-Soler, A.; Plana, F.; Kolker, A.; Chenery, S.R.N.
2001-01-01
A review has been made of the various methods of determining major and trace element affinities for different phases, both mineral and organic in coals, citing their various strengths and weaknesses. These include mathematical deconvolution of chemical analyses, direct microanalysis, sequential extraction procedures and density fractionation. A new methodology combining density fractionation with mathematical deconvolution of chemical analyses of whole coals and their density fractions has been evaluated. These coals formed part of the IEA-Coal Research project on the Modes of Occurrence of Trace Elements in Coal. Results were compared to a previously reported sequential extraction methodology and showed good agreement for most elements. For particular elements (Be, Mo, Cu, Se and REEs) in specific coals where disagreement was found, it was concluded that the occurrence of rare trace element bearing phases may account for the discrepancy, and modifications to the general procedure must be made to account for these.
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756
Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.
Gamble, Bruce M.; Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.
2010-01-01
During the 1960s through the 1980s, the U.S. Geological Survey conducted reconnaissance geochemical surveys of drainage basins throughout most of the Iliamna, Lake Clark, Lime Hills, and Talkeetna 1:250,000-scale quadrangles and parts of the McGrath, Seldovia, and Tyonek 1:250,000-scale quadrangles in Alaska. These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources and provide data that may be used to determine regional-scale element baselines. This report provides new data for 1,075 of the previously collected stream-sediment samples. The new analyses include a broader spectrum of elements and provide data that are more precise than the original analyses. All samples were analyzed for arsenic by hydride generation atomic absorption spectrometry, for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation, and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry after sodium peroxide sinter at 450 degrees Celsius.
Water-quality data for selected stations in the East Everglades, Florida
Waller, Bradley G.
1981-01-01
The results of water-quality samples collected from April 1978 through April 1980 from three canal stations, four marsh stations, and two ground-water stations within the East Everglades, Dade County, Florida, are tabulated in 37 tables. The major categories of parameters analyzed are field measurements, physical characteristics, macronutrients (carbon, nitrogen, and phosphorus), major ions, trace elements, and algae. Chemical data for bulk-precipitation stations within and adjacent to the East Everglades are also given. The parameters analyzed include macronutrients, major ions, and trace elements. The period of record for these stations is October 1977 through April 1980. Bottom material at the canal and marsh stations was collected twice during the investigation. These data include analyses for macronutrients, trace elements, and chlorinated-hydrocarbon insecticides. (USGS)
Geology and geochemistry of the Arctic prospect, Ambler District, Alaska
NASA Astrophysics Data System (ADS)
Schmidt, J. M.
The Arctic volcanogenic massive sulfide prospect is the largest known (40 million ton) deposit hosted by the low greenschist grade, latest Devonian Ambler Sequence of bimodal, basaltic and rhyolitic volcanic and volcanoclastic rocks, pelitic, graphitic and calcareous metasediments. Detailed field mapping, core logging, petrography, X-ray diffractometry, electron microprobe analyses and whole-rock major element analyses of hydrothermally altered rocks were used to determine the emplacement history and setting of sulfide deposition. Low greenschist grade metamorphism was essentially isochemical on a macroscopic scale, and preserved volcanic compositions, the major element chemistry of alteration and the compositions of individual metamorphic, alteration and relict igneous minerals. Mineralization at Arctic was formed along a synvolcanic fault in a tectonically and volcanically active basin within a rifted continental margin, possibly related to an actively spreading oceanic rift.
Andrew Fowler
2015-10-01
Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.
Chemical analyses and K-Ar ages of samples from 13 drill holes, Medicine Lake volcano, California
Donnelly-Nolan, Julie M.
2006-01-01
Chemical analyses and K-Ar ages are presented for rocks sampled from drill holes at Medicine Lake volcano, northern California. A location map and a cross-section are included, as are separate tables for drill hole information, major and trace element data, and for K-Ar dates.
The potential of on-line continuous leach ICP-MS analysis for linking trace elements to mineralogy
NASA Astrophysics Data System (ADS)
Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; van Gaans, Pauline
2014-05-01
A set of five soil samples was subjected to an on-line continuous leach inductively coupled plasma mass spectrometry experiment, with progressively reactive solvents (0.01M CaCl2, 0.1 M HNO3, 1M HNO3, 4M HNO3) Each sample was packed in a quartz tube (Ø= 1 cm, length 2 cm) and diluted 1:1 with acid washed quartz to prevent clogging. The gas that was produced during the extraction was removed by leading the effluent into a small container, from where the sample was directly pumped into the ICP-MS. 115In was used as an internal standard. Continuous leach experiments have the advantage of real time (every 2 seconds) full elemental analysis. Mineral breakdown reactions can be monitored via the major elements. The trace elements associated with the minerals are monitored simultaneously, thus eliminating the uncertainties of host mineral-trace element combinations in traditional off-line sequential extractions. The continuous leach experimental data are correlated to XRD-results for mineralogy and total elemental concentrations. The soil samples used were collected from different sites in the Koiliaris River watershed, Crete, Greece 1). The selection of the sites was based on variability in bedrock (limestone, metamorphic and alluvial sediments) and current land use (grape farming, olive trees). Soils were sampled at two depths: at the surface and just above the bedrock. No large differences in the major elements between the two depths were measured. To provide background to the on-line sequential data, also total concentrations of the major elements were analysed by XRF and the mineralogy was analysed by XRD. The fraction <2mm was sieved and digested with HF, HClO4 and HNO3 for additional trace element analysis. 1) See related abstract Roskam et al., 2014: REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil, linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece.
NASA Astrophysics Data System (ADS)
Jordan, B.
2016-12-01
Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.
Deformation in Micro Roll Forming of Bipolar Plate
NASA Astrophysics Data System (ADS)
Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.
2017-09-01
Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
Analysing the Theme of Pollution in Portuguese Geography and Biology Textbooks
ERIC Educational Resources Information Center
Tracana, Rosa Branca; Ferreira, Claudia; Ferreira, Maria Eduarda; Carvalho, Graca S.
2008-01-01
Environmental education has been seen as a basic tool to contribute to the change of conceptions, values and attitudes. Textbook analysis is a major element in the evaluation of how the educational goals (at the legislative level of national programmes) are implemented at the school level. The aim of the present study was to analyse the…
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Nelms, M.; Breves, E. A.
2012-12-01
Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and other light elements are directly measured are nearly nonexistent in the 1-2 g quantities needed for LIBS analyses. For this study, we have obtained two sample suites that provide calibrations needed for accurate analyses of H, O, B, Be, and Li in geological samples. The first suite of 11 samples was analyzed for oxygen by fast neutron activation analysis. The second suite includes 11 gem-quality minerals representing the major rock-forming species for B, Li, and Be-rich parageneses. Light elements were directly analyzed using a combination of EMPA, XRF, ion microprobe, uranium extraction, proton-induced gamma-ray emission (PIGE), and prompt gamma-ray neutron activation analysis (PGNAA). LIBS spectra were acquired at Mount Holyoke College under air, vacuum, and CO2 to simulate terrestrial, lunar, and martian environments. Spectra were then used to develop three separate calibration models (one for each environment), enabling LIBS characterization of light elements using multivariate analyses. Results show that when direct analyses of H, O, Li, B, and Be are used rather than LOI results, inferred, or indirectly calculated values, optimal root mean squared errors of prediction result. We are actively adding samples to these calibration suites, and we expect that prediction errors (accuracies) of <1wt% for these elements are possible.
Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE
Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.
1997-01-01
The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Iveson, A. A.; Webster, J. D.; Rowe, M. C.; Neill, O. K.
2016-12-01
New experimental data for crystal-melt partitioning behaviour of a suite of trace-elements are presented. Hydrous rhyo-dacitic starting glasses from Mt. Usu, Japan, were doped with Li, Sc, Cr, Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Nb, Mo, Ba, W, and Pb. Aqueous solutions were added such that the volatile phase(s) coexisting with amphibole, plagioclase, and clinopyroxene at run conditions buffered the S, F, and Cl contents of the melts. Internally-heated pressure vessel experiments were conducted at 750-850 °C, 1.0-4.0 Kbar, and ƒO2 ≈ NNO-NNO+2 log units. Major- and minor-element concentrations in the phenocrysts and glasses were analysed by EPMA, and trace-element contents by SIMS and/or LA-ICP-MS. The long run durations, homogeneous glasses, and minimal compositional zonation of crystals suggest that near-equilibrium conditions were achieved. Results of multiple phenocryst and glass analyses show that Nernst-type crystal-melt partition coefficients for these elements range from strongly incompatible e.g. Dmineral/melt ≈ 0 for Nb into plagioclase, to moderately incompatible e.g. Dmineral/melt ≈ 0.75 for Ga into amphibole, to strongly compatible e.g. Dmineral/melt > 50 for Ni into amphibole and clinopyroxene. Furthermore, unlike other elements investigated, partitioning of Li between phenocrysts and melt is similar for all three phases, with average DLicpx/melt ≈ 0.26 > DLiplag/melt ≈ 0.24 > DLiamph/melt ≈ 0.19. Relative to major-element composition of crystalline phases, the temperature, pressure, and ƒO2 conditions do not appear to strongly affect this behaviour. The incorporation of F and Cl into amphiboles is also consistent with the Fe-F and Mg-Cl crystallographic avoidance principles. Importantly, across two orders of magnitude in concentration, partitioning behaviours of all analysed trace-elements appear to obey Henry's Law. The experimental data are integrated with new amphibole, plagioclase, and pyroxene analyses from eruptive products of Augustine and Mt. St. Helens volcanoes. The results are applicable to understanding processes governing melt evolution during shallow magma storage and formation of economic metal deposits, where the crystallisation of porphyry-type magmas leads to fluid exsolution, and enrichment and transport of such trace- and ore-elements.
Steigerwald, Celia H.; Mutschler, Felix E.; Ludington, Steve
1983-01-01
GRANNY is a data bank containing information on 507 chemically analyzed Laramide or younger high-silica rhyolites and granites from Colorado and north-central New Mexico. The data were compiled from both published and unpublished sources. The data bank is designed to aid in the recognition of igneous rocks with a high exploration potential for the discovery of molybdenum (and other lithophile element) deposits. Information on source reference, geographic location, age, mineralogic and petrologic characteristics, major constituent analyses, and trace element analyses for each sample are given. The data bank is available in two formats: 1) paper- or microfiche-hardcopy, and 2) fixed format computer readable magnetic tape.
Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina
1996-01-01
Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.
Piper, D.Z.; Isaacs, C.M.
1995-01-01
Approximately 24 samples of the Monterey Formation, Southern California, have been analyzed for their major-element oxide and minor-element content. These analyses allow identification of a detrital fraction, composed of terrigenous quartz, clay minerals, and other Al silicate minerals, and a marine fraction, composed of biogenic silica, calcite, dolomite, organic matter, apatite, and minor amounts of pyrite. The minor-element contents in the marine fraction alone are interpreted to have required, at the time of deposition, a high level of primary productivity in the photic zone and denitrifying bacterial respiration in the bottom water.
Geochemical and analytical implications of extensive sulfur retention in ash from Indonesian peats
Kane, Jean S.; Neuzil, Sandra G.
1993-01-01
Sulfur is an analyte of considerable importance to the complete major element analysis of ash from low-sulfur, low-ash Indonesian peats. Most analytical schemes for major element peat- and coal-ash analyses, including the inductively coupled plasma atomic emission spectrometry method used in this work, do not permit measurement of sulfur in the ash. As a result, oxide totals cannot be used as a check on accuracy of analysis. Alternative quality control checks verify the accuracy of the cation analyses. Cation and sulfur correlations with percent ash yield suggest that silicon and titanium, and to a lesser extent, aluminum, generally originate as minerals, whereas magnesium and sulfur generally originate from organic matter. Cation correlations with oxide totals indicate that, for these Indonesian peats, magnesium dominates sulfur fixation during ashing because it is considerably more abundant in the ash than calcium, the next most important cation in sulfur fixation.
Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H.
2010-01-01
In Brazil economically important coal deposits occur in the southern part of the Paran?? Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Paran?? Basin.In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapu??, Barro Branco and Treviso seams).Seam thicknesses range from 1.70 to 2.39. m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapu?? seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapu?? seam has the highest inertinite content (33.8. vol%). Liptinite mean values range from 7.8. vol% (Barro Branco seam) to 22.5. vol% (Irapu?? seam).Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (>50wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the predominance of quartz and kaolinite (also pyrite). Gypsum, gibbsite, jarosite and calcite were also identified in some samples. Feldspar was noted but is rare. The major element distribution in the three seams (coal basis) is dominated by SiO2 (31.3wt.%, mean value), Al2O3 (14.5wt.%, mean value) and Fe2O3 (6.9 wt.%, mean value). Considering the concentrations of trace elements that are of potential environmental hazards the Barro Branco, Bonito and Irapu?? seams (coal base) are significantly enriched in Co (15.7ppm), Cr (54.5ppm), Li (59.3ppm), Mn (150.4ppm), Pb (58.0ppm) and V (99.6ppm), when compared to average trace elements contents reported for U. S. coals.Hierarchical cluster analysis identified, based on similarity levels, three groups of major elements and seven groups of trace elements. Applying discriminant analyses using trace and major element distribution, it could be demonstrated that the three seams from Santa Catarina show distinct populations in the discriminant analyses plots, and also differ from the coals of Rio Grande do Sul analyzed in a previous study. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.
2002-04-01
The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.
2009-01-01
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996
Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas
2009-10-12
Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Closure and ratio correlation analysis of lunar chemical and grain size data
NASA Technical Reports Server (NTRS)
Butler, J. C.
1976-01-01
Major element and major element plus trace element analyses were selected from the lunar data base for Apollo 11, 12 and 15 basalt and regolith samples. Summary statistics for each of the six data sets were compiled, and the effects of closure on the Pearson product moment correlation coefficient were investigated using the Chayes and Kruskal approximation procedure. In general, there are two types of closure effects evident in these data sets: negative correlations of intermediate size which are solely the result of closure, and correlations of small absolute value which depart significantly from their expected closure correlations which are of intermediate size. It is shown that a positive closure correlation will arise only when the product of the coefficients of variation is very small (less than 0.01 for most data sets) and, in general, trace elements in the lunar data sets exhibit relatively large coefficients of variation.
Trace Elements and Healthcare: A Bioinformatics Perspective.
Zhang, Yan
2017-01-01
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.
1989-01-01
Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).
Hair analyses: worthless for vitamins, limited for minerals.
Hambidge, K M
1982-11-01
Despite many major and minor problems with interpretation of analytical data, chemical analyses of human hair have some potential value. Extensive research will be necessary to define this value, including correlation of hair concentrations of specific elements with those in other tissues and metabolic pools and definition of normal physiological concentration ranges. Many factors that may compromise the correct interpretation of analytical data require detailed evaluation for each specific element. Meanwhile, hair analyses are of some value in the comparison of different populations and, for example, in public health community surveys of environmental exposure to heavy metals. On an individual basis, their established usefulness is much more restricted and the limitations are especially notable for evaluation of mineral nutritional status. There is a wide gulf between the limited and mainly tentative scientific justification for their use on an individual basis and the current exploitation of multielement chemical analyses of human hair.
Clynne, Michael A.; Muffler, L.J.P.; Siems, D.F.; Taggart, J.E.; Bruggman, Peggy
2008-01-01
This open-file report presents WDXRF major-element chemical data for late Pliocene to Holocene volcanic rocks collected from Lassen Volcanic National Park and vicinity, California. Data for Rb, Sr, Ba, Y, Zr, Nb, Ni, Cr, Zn and Cu obtained by EDXRF are included for many samples. Data are presented in an EXCEL spreadsheet and are keyed to rock units as displayed on the Geologic Map of Lassen Volcanic National Park and vicinity (Clynne and Muffler, in press). Location of the samples is given in latitude and longitude in degrees and decimal minutes and in decimal degrees.
The chemistry and mineralogy of Mars soil and dust
NASA Technical Reports Server (NTRS)
Banin, A.
1991-01-01
A single geological unit consisting of fine, apparently weathered soil material is covering large portions of the surface of Mars. This soil material has been thoroughly homogenized by global dust storms and it is plausible to assume that Mars dust is strongly correlated with it. The chemical-elemental composition of the soil was directly measured by the Viking Landers. Positive detection of Si, Al, Fe, Mg, Ca, Ti, S, Cl, and Br was achieved. Analyses of the SNC meteorites, a group of meteorites that has been suggested to be ejected Martian rocks, supply additional elemental-concentration data, broadening considerably the chemical data-base on the surface materials. A composition model for Mars soil, giving selected average elemental concentrations of major and trace elements, was recently suggested. It was constructed by combining the Viking Lander data, the SNC meteorite analyses, and other analyses. The mineralogy of the surface materials on Mars has not been directly measured yet. By use of various indirect approaches, including chemical correspondence to the surface analyses, spectral analogies, simulations of Viking Lander experiments, analyses of the SNC meteorites and various modeling efforts, the mineralogical composition was constrained to some extent. No direct analyses of soil reactivity have been done yet. Indirect evidence, mostly from the Viking biology experimental results, suggests that the soil probably has a slightly acidic reaction and is generally oxidized. Unambiguous identification of the Mars soil minerals by direct mineralogical analyses, and non-disturbed or in-situ measurements of the soil's reactivity, are of primary importance in future Mars research.
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2005-02-01
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Biological forcing controls the chemistry of reef-building coral skeleton
NASA Astrophysics Data System (ADS)
Meibom, Anders; Mostefaoui, Smail; Cuif, Jean-Pierre; Dauphin, Yannicke; Houlbreque, Fanny; Dunbar, Robert; Constantz, Brent
2007-01-01
We present analyses of major elements C and Ca and trace elements N, S, Mg and Sr in a Porites sp. exoskeleton with a spatial resolution better than ˜150 nm. Trace element variations are evaluated directly against the ultra-structure of the skeleton and are ascribed to dynamic biological forcing. Individual growth layers in the bulk fibrous aragonite skeleton form on sub-daily timescales. Magnesium concentration variations are dramatically correlated with the growth layers, but are uncorrelated with Sr concentration variations. Observed (sub)seasonal relationships between water temperature and skeletal trace-element chemistry are secondary, mediated by sensitive biological processes to which classical thermodynamic formalism does not apply.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F
2015-01-01
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maloy, A. K.; Treiman, A. H.; Shearer, C. K., Jr.
2004-03-01
The clast’s bulk composition was reconstructed from mineral analyses by EMP and SIMS. The clast is closely related to ferroan anorthosite (FAN), and is similar to compositions suggested as parent magmas for FAN.
Reimann, C; Siewers, U; Skarphagen, H; Banks, D
1999-10-01
Groundwater samples from 15 boreholes in crystalline bedrock aquifers in South Norway (Oslo area) have been collected in parallel in five different clear plastic bottle types (high density polyethene [HDPE], polypropene [PP, two manufacturers], fluorinated ethene propene copolymer [FEP] and perfluoroalkoxy polymer [PFA]. In the cases of polyethene and polypropene, parallel samples have been collected in factory-new (unwashed) bottles and acid-washed factory-new bottles. Samples have been analysed by ICP-MS techniques for a wide range of inorganic elements down to the ppt (ng/l) range. It was found that acid-washing of factory-new flasks had no clear systematic beneficial effect on analytical result. On the contrary, for the PP-bottles concentrations of Pb and Sn were clearly elevated in the acid-washed bottles. Likewise, for the vast majority of elements, bottle type was of no importance for analytical result. For six elements (Al, Cr, Hf, Hg, Pb and Sn) some systematic differences for one or more bottle types could be tentatively discerned, but in no case was the discrepancy of major cause for concern. The most pronounced effect was for Cr, with clearly elevated concentrations returned from the samples collected in HDPE bottles, regardless of acid-washing or not. For the above six elements, FEP or PFA bottles seemed to be marginally preferable to PP and HDPE. In general, cheap HDPE, factory new, unwashed flasks are suitable for sampling waters for ICP-MS ultra-trace analysis of the elements tested.
Trace elements record complex histories in diogenites
NASA Astrophysics Data System (ADS)
Balta, J. B.; Beck, A. W.; McSween, H. Y.
2012-12-01
Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major element compositions imply. Many trace element analyses are performed using either bulk rock techniques or spot analyses, and these maps suggest those types of analyses likely sample variable trace element abundances even within otherwise homogeneous grains, rendering their results difficult to interpret. Consequently, the correlation discussed previously between trace elements and short lived isotopes has likely been impacted by post-magmatic alteration and cannot solely be used to argue that HED's cannot be derived from Vesta. Furthermore, these maps strengthen the HED-Vesta link by suggesting that the diogenites underwent an extended history of cooling, reheating, partial melting, impact fragmentation, fluid/melt migration, and finally re-annealing. These complicated steps are particularly noteworthy as the pyroxene cumulate layer on the asteroid Vesta should lie beneath the eucritic crust, implying that early impacts were able to penetrate that crust and affect the diogenite layers early in Vesta's history, most likely while the asteroid was still hot enough to allow for annealing and regrowth of fractured grains. [1] Schiller et al. (2011) [2] Milman-Barris et al. (2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankston, D.C.; Humphris, S.E.; Thompson, G.
1979-07-01
A technique for the determination of major concentrations of SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, MgO, CaO, Na/sub 2/O, and K/sub 2/O, minor levels of TiO/sub 2/, P/sub 2/O/sub 5/, and MnO, and trace concentrations of Ba, Cr, Cu, Ni, Sr, V, and Zn, in semi-microsamples 200 mg) of powdered whole rock, is described. Chemically diverse standard reference rocks are used both for calibration and assessment of accuracy. A lithium metaborate fusion melt of each standard or sample is dissolved in dilute HNO/sub 3/ containing Cs/sup +/ at a level of 0.2% (w/v). The resulting solution is usedmore » to perform all analyses except those for Na/sub 2/O and K/sub 2/O, which are determined in a portion of the original sample solution wherein the Cs/sup +/ concentration has been raised to 0.32% (w/v). Analyses of both portions of each sample solution are performed using an optical emission spectrometer/spectrograph equipped with an echelle monochromator and a dc argon plasma excitation source. Trace element detection limits ranged from 2 ppM for Cu to 15 ppM for Zn. A study of precision based on replicate determinations in three splits of the proposed USGS reference basalt BHVO-1 yielded the following results: (1) For analyses of the major and minor oxide constituents, values of the percent relative standard deviation (RSD) ranged from 1 for CaO, to 21 for P/sub 2/O/sub 5/. 2) For trace element determinations, values of the RSD ranged from 2 for Cu, to 19 for Zn. 2 figures, 11 tables.« less
The NASA Redox Storage System Development project, 1980
NASA Technical Reports Server (NTRS)
1982-01-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
The NASA Redox Storage System Development project, 1980
NASA Astrophysics Data System (ADS)
1982-12-01
The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.
Van Gosen, Bradley S.
2008-01-01
A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.
Alu expression in human cell lines and their retrotranspositional potential.
Oler, Andrew J; Traina-Dorge, Stephen; Derbes, Rebecca S; Canella, Donatella; Cairns, Brad R; Roy-Engel, Astrid M
2012-06-20
The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.
NASA Technical Reports Server (NTRS)
Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.
1976-01-01
The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
Modular structural elements in the replication origin region of Tetrahymena rDNA.
Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L
1995-01-01
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Pareizs, J.; Coleman, C.
For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt ormore » SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.« less
LA-ICP-MS of magnetite: Methods and reference materials
Nadoll, P.; Koenig, A.E.
2011-01-01
Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.
Volatiles in melt inclusions from Icelandic magmas
NASA Astrophysics Data System (ADS)
Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.
2006-12-01
Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context. Their compositions will show how the melt has evolved, enabling the relative roles of degassing, crystallisation and assimilation in the volatile systematics to be examined.
Lin, Xuan; Faridi, Nurul; Casola, Claudio
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138
The Apollo 17 'melt sheet' - Chemistry, age and Rb/Sr systematics
NASA Technical Reports Server (NTRS)
Winzer, S. R.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Schuhmann, P. J.; Lum, R. K. L.; Lindstrom, M. M.; Lindstrom, D. J.
1977-01-01
Major, minor, and trace-element compositions, age data, and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor, and trace-element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates (Ar-40/Ar-39) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 billion years ago. This impact excavated, shocked, brecciated, and melted norites, norite cumulates, and possibly anorthositic gabbros and dunites about 4.4 billion years old. The impact was likely a major one, possibly the Serenitatis basin-forming event.
Deducing Wild 2 Components with a Statistical Dataset of Olivine in Chondrite Matrix
NASA Technical Reports Server (NTRS)
Frank, D. R.; Zolensky, M. E.; Le, L.
2012-01-01
Introduction: A preliminary exam of the Wild 2 olivine yielded a major element distribution that is strikingly similar to those for aqueously altered carbonaceous chondrites (CI, CM, and CR) [1], in which FeO-rich olivine is preferentially altered. With evidence lacking for large-scale alteration in Wild 2, the mechanism for this apparent selectivity is poorly understood. We use a statistical approach to explain this distribution in terms of relative contributions from different chondrite forming regions. Samples and Analyses: We have made a particular effort to obtain the best possible analyses of both major and minor elements in Wild 2 olivine and the 5-30 micrometer population in chondrite matrix. Previous studies of chondrite matrix either include larger isolated grains (not found in the Wild 2 collection) or lack minor element abundances. To overcome this gap in the existing data, we have now compiled greater than 10(exp 3) EPMA analyses of matrix olivine in CI, CM, CR, CH, Kakangari, C2-ungrouped, and the least equilibrated CO, CV, LL, and EH chondrites. Also, we are acquiring TEM/EDXS analyses of the Wild 2 olivine with 500s count times, to reduce relative errors of minor elements with respect to those otherwise available. Results: Using our Wild 2 analyses and those from [2], the revised major element distribution is more similar to anhydrous IDPs than previous results, which were based on more limited statistics (see figure below). However, a large frequency peak at Fa(sub 0-1) still persists. All but one of these grains has no detectable Cr, which is dissimilar to the Fa(sub 0-1) found in the CI and CM matrices. In fact, Fa(sub 0-1) with strongly depleted Cr content is a composition that appears to be unique to Kakangari and enstatite (highly reduced) chondrites. We also note the paucity of Fa(sub greater than 58), which would typically indicate crystallization in a more oxidizing environment [3]. We conclude that, relative to the bulk of anhydrous IDPs, Wild 2 may have received a larger contribution from the Kakangari and/or enstatite chondrite forming regions. Alternatively, Wild 2 may have undergone accretion in an anomalously reducing region, marked by nebular condensation of this atypical forsterite. In [4], a similar conclusion was reached with an Fe-XANES study. We will also use similar lines of reasoning, and our previous conclusions in [5], to constrain the relative contributions of silicates that appear to have been radially transported from different ordinary and carbonaceous chondrite forming regions to the Kuiper Belt. In addition, the widespread depletion of Cr in these FeO-rich (Fa(sub greater than 20)) fragments is consistent with mild thermal metamorphism in Wild 2.
The volcanic-plutonic connection unveiled
NASA Astrophysics Data System (ADS)
Hartung, E.; Caricchi, L.; Floess, D.; Wallis, S.; Harayama, S.
2017-12-01
Are upper crustal plutons solidified magma bodies or residues from extracted and erupted liquids? This remains one of the key questions to address to understand the construction and eruption of upper crustal magmatic systems. We have investigated the Takidani Pluton and contemporaneous volcanic deposits (Nyukawa PFD, Chayano Tuff and Ebisutoge PD) distributed around this crustal intrusion to understand whether they were sourced from this pluton. The Takidani Pluton is a good candidate because it contains petrographic and geochemical evidences for residual melt extraction, and pressure quenching associated with eruptive activity (Hartung et al., 2017). We analysed major and trace element concentrations of 18 plagioclase phenocrysts (core to rim) from the Takidani Pluton and Nyukawa-Chayano-Ebisutoge eruptions. Major elements were first analysed using an electron microprobe and trace elements were subsequently determined by laser ablation inductively coupled mass spectrometry in the same spot. Plagioclase chemistry shows that the Chayano and Ebisutoge rhyolitic deposits are not petrogenetically related to either the Takidani Pluton or the Nyukawa PFD. However, plagioclase of the Nyukawa PDF and the Takidani Pluton show indistinguishable REE patterns suggesting a common source domain for plagioclase from the two units. Ebisutoge plagioclase grains commonly contain xenocrystic cores that have major and trace element compositions comparable to the plagioclase grains observed in the Takidani Pluton and Nyukawa PFD. Our data show that the Nyukawa and Takidani plagioclase are geochemically indistinguishable, suggesting that the Takidani pluton was the magma reservoir that fed this large eruptive unit (400 km3, Oikawa, 2003). The Ebisutoge magma was not extracted directly from the pluton, but interacted with Takidani-Nyukawa when it was still molten. We have no evidence to suggest that the Takidani Pluton was the source of either the Chayano Tuff or the Ebisutoge PD.
Gázquez, M J; Bolívar, J P; García-Tenorio, R; Vaca, F
2009-07-30
The present study was conducted to characterize several raw materials and co-products from the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology and physical composition. The main objective was to gain basic information for the future potential application of these co-products in fields such as agriculture, construction, civil engineering, etc. Microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA) while the mineralogical compositions were analysed by means of the X-ray diffraction (XRD) technique. The concentrations of major elements such as Na, Al, Si, Ca, Ti, Fe, S and K were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were determined by ICP-MS. The physicochemical characterization of the raw materials used in the titanium dioxide industry, in addition to the characterization of the co-products generated, has enabled the evaluation of the degree of fractionation of different elements and compounds between the different co-products, as well as the control of the possible variations in the physicochemical composition of the raw materials throughout the time and the study of the influence of these variations in the characteristics of the obtained co-products. As a main conclusion of our study, it is possible to indicate that the levels of the pollutant elements associated to the co-products analysed were, in general, within safe limits and, therefore, they could potentially be used in composites as fertilizers or for building materials in road construction, etc. Nevertheless, for the specific application of each of these co-products in agriculture, construction and civil engineering, additional studies need to be performed to evaluate their appropriateness for the proposed application, together with specific studies on their health and environmental impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
Lee, Jong Jin; Moon, Youngmin; Han, Jung Hyun; Jeong, Sungho
2017-04-01
The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser-induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca 2+ and Mg 2+ but lower intensities of Na + , Cl - and K + in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level. Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Urrutia-Fucugauchi, J.; Perez-Cruz, L.; Zhao, X.; Rebolledo-Vieyra, M.; Rodriguez, A.
2012-04-01
We present the preliminary results of geochemical, stable isotopes and rock magnetic studies of a stalagmite from a cave in eastern Quintana Roo, northern Yucatan peninsula. In the past years, there has been increased interest in understanding the paleoclimatic and paleoenvironmental evolution of the Yucatan peninsula and northern Central America, investigating the relationships between climate variations and the development of the Maya civilization. In particular, the variations in regional precipitation and occurrence of several drought periods, which might have been related to the collapse of the Classic Maya period. Stable isotope data on speleothems from different sites in Yucatan and Central America have provided evidence on changes in precipitation, which have affected the Maya region. The stalagmite is ~47 cm long and about 4-5 cm wide at its base. It was collected from the Hilariós Well cave in Tulum, Quintana Roo. Magnetic susceptibility and geochemical analyses have been completed as part of the initial characterization of the stalagmite, with measurements taken every centimeter. Geochemical analyses have been carried out for x-ray fluorescence, with a Niton XRF analyzer. Magnetic susceptibility was determined with a Bartington MS2 instrument using the high resolution surface probe. Additional rock magnetic analyses include magnetic hysteresis loops and isothermal remanent magnetization (IRM) acquisition, and saturation IRM demagnetization, which have been measured with a MicroMag instrument. Hysteresis loops are diamagnetic, with small varying low-coercivity ferromagnetic components. The elemental compositions of major oxides and trace elements vary with depth. Calcium is the major element and displays a pattern of small amplitude fluctuations with a trend to lower values at the bottom, which are also shown in other elements such as barium. Silica and elements such as titanium and strontium are positively correlated and show an apparent cyclic pattern, with a trend to higher values towards the bottom.
NASA Technical Reports Server (NTRS)
Germani, M. S.; Bradley, J. P.; Brownlee, D. E.
1990-01-01
A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.
NASA Astrophysics Data System (ADS)
Schmitz, Birger; Andersson, Per; Dahl, Jeremy
1988-01-01
Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.
Investigation of drinking water quality in Kosovo.
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.
Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.
2013-01-01
This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.
Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean
NASA Astrophysics Data System (ADS)
Özsoy, Türkan; Örnektekin, Sermin
2009-10-01
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
Transterm: a database to aid the analysis of regulatory sequences in mRNAs
Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.
2009-01-01
Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623
NASA Astrophysics Data System (ADS)
Tesmer, M.; Möller, P.; Wieland, S.; Jahnke, C.; Voigt, H.; Pekdeger, A.
2007-11-01
Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca-Cl brines. Residual brines and leachates are identified by Br-/Cl- ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.
Integrative and conjugative elements and their hosts: composition, distribution and organization
Touchon, Marie; Rocha, Eduardo P. C.
2017-01-01
Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112
NASA Astrophysics Data System (ADS)
Smithka, I. N.; Perfit, M. R.
2013-12-01
Mid-ocean ridges (MORs) are the sites of oceanic lithosphere creation and construction. Ridge discontinuities are a global phenomenom but are not as well understood as ridge axes. Geochemical analyses provide insights into upper mantle processes since elements fractionate with melting and freezing as well as reside in material to retain source signature. Lavas collected from ridge discontinuities consist of greater chemical diversity and represent variations in source, melting parameters, and local crustal processes. The small overlapping spreading center (OSC) near the third parallel north on the East Pacific Rise has been superficially analyzed previously, but here we present new isotope analyses and expand our understanding of MOR processes and processes near OSCs. Initial analyses of lavas collected in 2000 on AHA-NEMO2 revealed normal MOR basalt trends in rare earth element enrichments as well as in major element concentrations. Crystal fractionation varies along the tips of both axes, with MgO and TiO2 concentrations increasing towards the OSC basin. Newly analyzed Sr, Nd, and Pb isotope ratios will further constrain the nature of geochemical diversity along axis. As the northern tip seems to be propagating and the southern tip dying, lavas collected from each may reflect two different underlying mantle melting and magma storage processes.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
NASA Technical Reports Server (NTRS)
Fulton, C. R.; Rhodes, J. M.
1984-01-01
Thirty-eight ordinary chondrites (17 H, 20 L, and 1 LL) have been analyzed for major and selected trace elements. These data indicate that the lithophile elements Mg, Ca, Al, Cr, and V normalized to Si are in higher abundance in the H than in the L chondrites. The siderophile elements Ni, Co, and Fe show very good correlation within, as well as between, the two major ordinary chondrite groups. Twenty-four of the analyses are of Antarctic finds, while ten are samples of falls. Comparing the Antarctic data with the fall data reveals no evidence that any of the elements studied here have been mobilized by terrestrial weathering processes. Within the H and L chondrite groups there is little chemical variation, indicating that the source of these samples is remarkably homogeneous. Equilibrium condensate fractionation from a nebula of CI composition can result in the observed ordinary chondrite compositions. The fractionation of metal at about 1440 K (and 0.001 atm) into high and low iron groups, followed by a gas-solid fractionation at about 1380 K with the H group losing more solids than the L, will produce the observed H and L compositions and intragroup trends.
Tariba Lovaković, Blanka; Lazarus, Maja; Brčić Karačonji, Irena; Jurica, Karlo; Živković Semren, Tanja; Lušić, Dražen; Brajenović, Nataša; Pelaić, Zdenka; Pizent, Alica
2018-01-01
The concentration of 23 major and trace elements, total phenolic content (TPC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were determined in nine samples of strawberry tree honey and compared to other types of unifloral honeys. The most abundant elements in strawberry tree honey were potassium, calcium, magnesium and sodium, ranging between 1276 and 2367, 95.2-154, 14.4-74.4 and 13.4-64.3mg/kg, respectively. Strawberry tree honey had generally higher TPC (range: 0.314-0.522g GA/kg) and DPPH (1.94-4.45mM TE/kg) compared to other analysed unifloral honeys. A strong positive relationship was found between TPC and DPPH, TPC and concentration of homogentisic acid (HGA), chemical marker of strawberry tree honey, and between DPPH and HGA. Regarding daily intake of essential elements, strawberry tree honey can be considered nutritionally richer than the majority of unifloral honeys available in Croatia, while contribution to tolerable intake set for potentially toxic elements was very low, corresponding to pristine areas. Copyright © 2017 Elsevier GmbH. All rights reserved.
Rare-earth abundances in chondritic meteorites
NASA Technical Reports Server (NTRS)
Evensen, N. M.; Hamilton, P. J.; Onions, R. K.
1978-01-01
Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.
NASA Astrophysics Data System (ADS)
Curry, A. C.; Caricchi, L.; Lipman, P. W.
2017-12-01
A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.
NASA Astrophysics Data System (ADS)
Xia, C. D.; Ge, L. J.; Liu, M. T.; Zhu, J. J.; An, Z.; Bai, B.
2018-02-01
The work presented here carried out elemental analyses on 60 porcelain shards of Tang and Song Dynasties, unearthed from Yongjinwan zone at Jinsha site, Sichuan, China, using a combination of PIXE and RBS methods. Six shards from Liulichang kiln site and 6 from Shifangtang kiln site were also analyzed as reference materials. The factor analyses for the elemental compositions in the bodies and glazes of the total 72 porcelain shards have been performed to explore their similarities and differences. Combining the results of factor analyses on elements in bodies and glazes and the classification by traditional archaeological criteria, the provenances for most of shards unearthed from Yongjinwan zone in Jinsha site could be determined. Majority of shards with a Qiong-kiln style were found as products of Liulichang kiln, this is consistent with Yongjinwan's geographical location and social environment, i.e., Yongjinwan was a suburban settlement nearest to Liulichang kiln in ancient times. Although both products of Liulichang kiln and Shifangtang kiln belonged to Qiong-kiln system and they shared a similar appearance such as red body and celadon glaze, there were distinct differences in chemical composition which could be unraveled by PIXE-RBS measurements and factor analysis. There were no apparent differences of chemical compositions for the same kinds of body and glaze between Tang and Song Dynasties, which may suggest that raw materials and production techniques for the same kinds of body and glaze continued between Tang and Song Dynasties. The chemical characteristics for each kind of body and glaze and the correlations between element composition and porcelain appearance were also obtained in this work.
Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya.
Gatari, Michael; Wagner, Annemarie; Boman, Johan
2005-04-01
Air pollution problems in major cities within the developing countries need to be studied. There are scanty measurements from the developing countries on airborne particles despite their adverse implications to human health, visibility and climate. One of the major sources of anthropogenic air pollution is energy production. Energy demand is bound to increase as population increases, especially in major cities of the world. Fine particles, particles with aerodynamic diameter < or = 2.5 microm, are mainly anthropogenic and these particles were collected in the capital cities of Vietnam and Kenya. A cyclone airborne particle collector was used to sample in Hanoi during the months of May to October 2000 and a dichotomous virtual impactor in Nairobi in February 2000. The samples were analysed for elemental content by an energy dispersive X-ray fluorescence (EDXRF) spectrometer. S, Cl, K and Fe exceeded atmospheric concentrations of 100 ng m(-3) at both cities. Atmospheric elemental concentrations in both Hanoi and Nairobi were orders of magnitude higher than their respective rural towns. Traffic, biomass and waste burning emissions were implicated as the main sources of air pollution in Nairobi, while coal combustion and road transport were the major sources in Hanoi. Regional air pollution had a major impact over Hanoi, whereas an influence of that kind was not identified in Nairobi. Pb and other toxic elements had concentration levels below WHO guideline, however, the two cities are threatened by future high levels of air pollution due to the high rate of population growth. Long-term measurements are required in both areas to evaluate if the alarming situation is deteriorating.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.
2004-12-01
The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt. Logan values. A strong correlation (R2>0.9) between Ca and S concentrations measured on different fractions of the same sample by IC and ICP-MS validates sample coregistration. Preliminary analyses of data from the 2001 Mt. Logan summit ice core confirm subannual resolution sampling and annual scale variability of major and trace elements. Accumulation rate models and isotope data suggest that annual resolution will be possible to 1000-2000 y.b.p., with multi-annual to centennial resolution for the remainder of the Holocene and possibly including the last deglaciation. Dust proxy elements, including REEs, strongly co-vary in time-series and reveal concentration ratio fluctuations interpreted as source region changes. Volcanic eruptions are characterized by elevated concentrations of S, SO42-, Cu, Sb, Zn and other trace elements. Concentrations of potential anthropogenic contaminants are also discussed.
Investigation of Drinking Water Quality in Kosovo
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472
Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine
NASA Technical Reports Server (NTRS)
Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.
2008-01-01
Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.
Spuesens, Emiel B M; Oduber, Minoushka; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2009-07-01
The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.
Distribution of trace elements in sediment and soil from river Vardar Basin, Macedonia/Greece.
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu
2016-01-01
A systematic study was carried out to investigate the distribution of 59 elements in the sediment and soil samples collected from the river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 28 sampling sites. Analyses were performed by inductively coupled plasma-mass spectrometry. R-mode factor analysis (FA) was used to identify and characterise element associations. Seven associations of elements were determined by the method of multivariate statistics. Every factor (Factors 1-3 and 6 and 7 as geogenic and Factors 4 and 5 as anthropogenic associations of elements) are examined and explained separately. The distribution of various elements showed that there is a presence of anthropogenic elements (Ag, Cd, Cu, Ge, Pb, Sn and Zn) introduced in the river sediments and soils from the mining, metallurgical, industrial and agricultural activities in Vardar River Basin, which covers most of the Republic of Macedonia and Central-northern part of Greece.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.
1999-07-01
As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less
NASA Astrophysics Data System (ADS)
Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.
2012-04-01
About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral
NASA Astrophysics Data System (ADS)
Cooperdock, Emily H. G.; Raia, Natalie H.; Barnes, Jaime D.; Stockli, Daniel F.; Schwarzenbach, Esther M.
2018-01-01
This study combines whole rock trace and major element geochemistry, and stable isotope (δD and δ18O) analyses with petrographic observations to deduce the origin and tectonic setting of serpentinization of ultramafic blocks from the exhumed HP/LT Aegean subduction complex on Syros, Greece. Samples are completely serpentinized and are characterized by mineral assemblages that consist of variable amounts of serpentine, talc, chlorite, and magnetite. δD and δ18O values of bulk rock serpentinite powders and chips (δD = - 64 to - 33‰ and δ18O = + 5.2 to + 9.0‰) reflect hydration by seawater at temperatures < 250 °C in an oceanic setting pre-subduction, or by fluids derived from dehydrating altered oceanic crust during subduction. Fluid-mobile elements corroborate the possibility of initial serpentinization by seawater, followed by secondary fluid-rock interactions with a sedimentary source pre- or syn-subduction. Whole rock major element, trace element, and REE analyses record limited melt extraction, exhibit flat REE patterns, and do not show pronounced Eu anomalies. The geochemical signatures preserved in these serpentinites argue against a mantle wedge source, as has been previously speculated for ultramafic rocks on Syros. Rather, the data are consistent with derivation from abyssal peridotites in a hyper-extended margin setting or mid-ocean ridge and fracture zone environment. In either case, the data suggest an extensional and/or oceanic origin associated with the Cretaceous opening of the Pindos Ocean and not a subduction-related derivation from the mantle wedge.
Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A
2015-10-22
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Chaosheng
2006-08-01
Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.
Integrative and conjugative elements and their hosts: composition, distribution and organization.
Cury, Jean; Touchon, Marie; Rocha, Eduardo P C
2017-09-06
Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Draper, D. S.
2005-01-01
Hydrothermal and aqueous alteration can explain some of the exciting results from the MER team s analyses of the martian soil, including the major elements, mobile elements, and the nickel enrichment. Published results from the five lander missions lead to the following conclusions: 1) The soil appears to be globally mixed and basaltic with only small local variations in chemistry. Relative to martian basaltic meteorites and Gusev rocks the soils are depleted in the fluid-mobile element calcium, but only slightly enriched to somewhat depleted in iron oxide. 2) The presence of olivine in the soils based on M ssbauer data argues that the soil is only partly weathered and is more akin to a lunar regolith than a terrestrial soil. 3) The presence of bromine along with sulfur and chlorine in the soils is consistent with addition of a mobile element component to the soil.
NASA Astrophysics Data System (ADS)
Raia, N. H.; Cooperdock, E. H. G.; Barnes, J.; Stockli, D. F.; Schwarzenbach, E. M.
2016-12-01
Serpentinized ultramafic rocks are commonly found in exhumed HP/LT subduction complexes, but their tectonic origins (i.e., setting of serpentinization) are difficult to decipher due to extensive alteration. Growing literature and geochemical datasets demonstrate that immobile elements (REE, HFSE) in serpentinites can retain magmatic signatures indicative of the tectonic setting of parent peridotite, while fluid-mobile elements and stable isotopic signatures shed light on the fluids causing serpentinization. This study combines whole-rock trace and major element geochemistry, stable isotope (δD and δO) analyses with petrographic observation to determine the tectonic origin of ultramafic rocks in the HP/LT Aegean subduction complex. The best-preserved HP rocks of the Cycladic Blueschist Unit (CBU) are found on Syros, Greece, where serpentinized ultramafic rocks within the CBU are closely associated with metamorphosed remnants of subducted oceanic crust. All samples are completely serpentinized, lacking relict pyroxene or spinel grains, with typical assemblages consisting of serpentine, talc, chlorite, magnetite, and minor carbonate. The serpentinizing fluid was characterized using stable isotopes. δD and δO values of bulk-rock serpentinite powders and chips, respectively, suggest seafloor serpentinites hydrated by seawater at low T, typical of alteration at mid-ocean ridges and hyper-extended margins (δD = -64 to -33‰ and δO = 5.2 to 9.0‰). To fingerprint a tectonic origin, whole rock serpentinite REE patterns are compared to a global database of whole rock serpentinite analyses from fore-arc mantle wedge, mid-ocean ridge, and hyper-extended margin tectonic settings. Whole rock major element, trace element, and REE analyses are consistent with limited melt extraction, flat REE patterns (LaN/SmN = 0.2-2.6, SmN/YbN = 0.3-3.5; N= C1 normalized), and do not show pronounced Eu anomalies. These data are consistent with abyssal peridotites derived from hyper-extended margin settings, although some overlap with mid-ocean ridge serpentinites makes it difficult to rule out. In any case, the geochemical signatures retained in these serpentinites indicate they are unlikely sourced from the mantle wedge, as has been historically speculated.
Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu
2018-04-15
Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake emphasizes the importance of interactions between hydrological change and pollutant loads in determining floodplain lake ecosystem state. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal structure analyses for CSM testbed (COMET)
NASA Technical Reports Server (NTRS)
Xue, David Y.; Mei, Chuh
1994-01-01
This document is the final report for the project entitled 'Thermal Structure Analyses for CSM Testbed (COMET),' for the period of May 16, 1992 - August 15, 1994. The project was focused on the investigation and development of finite element analysis capability of the computational structural mechanics (CSM) testbed (COMET) software system in the field of thermal structural responses. The stages of this project consisted of investigating present capabilities, developing new functions, analysis demonstrations, and research topics. The appendices of this report list the detailed documents of major accomplishments and demonstration runstreams for future references.
Lin, Xuan; Faridi, Nurul; Casola, Claudio
2016-05-02
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2016. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter
2017-04-01
Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.
Khan, Muhammad Tariq; Busch, Markus; Molina, Veronica Garcia; Emwas, Abdul-Hamid; Aubry, Cyril; Croue, Jean-Philippe
2014-08-01
To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
Designing magnetic systems for reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitzenroeder, P.J.
1991-01-01
Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not tomore » be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.« less
Multidata remote sensing approach to regional geologic mapping in Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, R.N.
1996-08-01
Remote Sensing played an important role in evaluating the exploration potential of selected lease blocks in Venezuela. Data sets used ranged from regional Landsat and airborne radar (SLAR) surveys to high-quality cloud-free air photos for local but largely inaccessible terrains. The resulting data base provided a framework for the conventional analyses of surface and subsurface information available to the project team. (1) Regional surface geology and major structural elements were interpreted from Landsat MSS imagery supplemented by TM and a regional 1:250,000 airborne radar (SLAR) survey. Evidence of dextral offset, en echelon folds and major thoroughgoing faults suggest a regionalmore » transpressional system modified by local extension and readjustment between small-scale crustal blocks. Surface expression of the major structural elements diminishes to the east, but can often be extended beneath the coastal plain by drainage anomalies and subtle geomorphic trends. (2) Environmental conditions were mapped using the high resolution airborne radar images which were used to relate vegetation types to surface texture and elevation; wetlands, outcrop and cultural features to image brightness. Additional work using multispectral TM or SPOT imagery is planned to more accurately define environmental conditions and provide a baseline for monitoring future trends. (3) Offshore oil seeps were detected using ERS-1 satellite radar (SAR) and known seeps in the Gulf of Paria as analogs. While partially successful, natural surfactants, wind shadow and a surprising variety of other phenomena created {open_quotes}false alarms{close_quotes} which required other supporting data and field sampling to verify the results. Key elements of the remote sensing analyses will be incorporated into a comprehensive geographic information (GIS) which will eventually include all of Venezuela.« less
Finite element analyses for seismic shear wall international standard problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y.J.; Hofmayer, C.H.
Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structuresmore » used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.« less
NASA Astrophysics Data System (ADS)
Mouton, M.; Botha, A.; Thornton, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.
2015-11-01
Several studies revealed that anthropogenic activities often cause toxic concentrations of some elements, such as mercury, which bio-accumulate through the marine food chain, impacting negatively on the health of animals in the top trophic levels, such as a variety of marine mammals. Moreover, analysis of cetacean skin has been reported to be a reliable, long-term and mostly non-invasive method to monitor bio-accumulation of chemicals in cetacean populations. Several elements, including trace elements, occur naturally in cetacean skin, although nothing is known about their distribution patterns and little about safe base line concentrations. In May 2009, 42 false killer whales (FKWs) beached and died at Kommetjie in the Western Cape of South Africa. Skin samples of these FKWs were collected and analysed to determine elemental distribution patterns. The concentrations and distribution patterns of the major, as well as detectable trace elements were determined in skin samples from ten randomly selected FKW individuals, using micro-PIXE (particle-induced X-ray emission) analysis. Results revealed differences between the distribution patterns of elements in the skin sections. Fe, for example, was found to be concentrated in the dermal papillae, whereas the highest Zn concentrations occurred in the epidermis and particularly in the epidermal papillae. Since these essential elements mediate factors such as host immunity, from skin integrity to humoral immunity, knowledge of their typical distribution patterns can be of great value in studies of bio-accumulation. This is the first report of micro-PIXE being employed to study elemental distribution in cetacean skin and the resulting elemental distribution maps can serve as reference in future environmental pollution studies.
Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS
NASA Astrophysics Data System (ADS)
Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.
2007-12-01
A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic rocks in the region indicate that 1) the enriched basalts have positive Ta-Nb anomalies, enriched relative to U, Th, and La 2) basalts have relatively high SiO2 abundances compared to the global average, 3) basalts show a HIMU isotopic signature, and 4) bulk major element abundances and mineral chemistry in mantle rocks indicate that they are among the most depleted,although variably refertilized, residual mantle assemblages sampled to date along MORs.We suggest that much of the regional variation in major and trace element data, as well as isotopic data and the unusual regional geology (multiple core complexes) can be explained by melting of a sub-axial mantle that contains two end members, one highly depleted and the other enriched. These components appear to involve ancient recycled ocean crust and lithospheric mantle.
ERIC Educational Resources Information Center
Carvalho, Graca S.; Tracana, Rosa Branca; Skujiene, Grita; Turcinaviciene, Jurga
2011-01-01
Textbook analysis is seen as a major element for studying environmental education addressing pupils, image analysis being rather relevant when studying textbooks written in 11 languages. We analysed 25 textbooks from 14 countries addressed to 14-16-year-old pupils, focusing on: (1) local and foreign/global images; (2) urban/rural and nature…
NASA Astrophysics Data System (ADS)
Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie
2014-09-01
In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.
NASA Technical Reports Server (NTRS)
Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.
2003-01-01
BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.
Thornber, Carl R.; Hon, Ken; Heliker, Christina; Sherrod, David A.
2003-01-01
This report presents major-element geochemical data from 652 glasses (~6,520 analyses) and 795 whole-rock aliquots from 1,002 fresh samples of olivine-tholeiitic lava collected throughout the near-continuous eruption of Kïlauea Volcano, Hawai'i, from January 1983 through September 2001. The data presented herein provide a unique temporal compilation of lava geochemistry that best reflects variations of pre-eruptive magma compositions during prolonged rift-zone eruption. This document serves as a repository for geochemical data referred to in U.S. Geological Survey Professional Paper 1676 (Heliker, Swanson, and Takahashi, eds., 2003) which includes multidisciplinary research papers pertaining to the first twenty years of Puu Oo-Kupaianaha eruption activity. Details of eruption characteristics and nomenclature are provided in the introductory chapter of that volume (Heliker and Mattox, 2003). Geochemical relations among all or portions of this data set are depicted and interpreted by Thornber (2003), Thornber and others (2003) and Thornber (2001). Trace element compositions and Nd, Sr and Pb isotopic analyses of representative samples of this select eruption suite will be provided in a separate and complimentary open file report. From 1983 to October 2001, approximately 2,500 eruption samples were collected and archived by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO). Geochemical data for 1,002 of these samples are included here. Previous reports present bulk-lava major- element chemistry for eruption samples collected from 1983 to 1986 and from 1990 to 1994 (Neal and others, 1988 and Mangan and others, 1995, respectively). Major element glass chemistry and thermometry data for samples collected from 1983 to 1994 is reported by Helz and Hearn (1998) and whole-rock and glass chemistry for samples collected from September 1994 to October 2001 is provided by Thornber and others (2002). This report is a compilation of previously published data along with unpublished whole-rock data for the 1986–1990 eruptive interval (episode 48, see Heliker and Mattox, 2003). The geochemical data in this report is mostly limited to well-quenched samples collected at or near their respective vents. The samples include tephra and spatter, in addition to lava dipped from lava lakes, lava tubes, and surface lava flows. The details of sample collection techniques as described by Thornber and others (2002) are generally applicable for this entire sampling interval. Specifically excluded from this database are samples of distal surface flows, many of which were collected for topical studies of emplacement dynamics (for example, Cashman and others, 1999). Samples of sluggish or crystal-laden tube flows collected during eruptive pauses were also excluded, because they bear visual, petrographic and geochemical evidence for crystal accumulation during surface-flow stagnation. In addition, the pre-1992 whole-rock major element data reported here has been corrected to compensate for minor analytical discrepancies between pre- and post-1991 XRF analyses. These discrepancies resulted from a change in instrumentation at the USGS Denver analytical laboratories. This select suite of time-constrained geochemical data is suitable for constructing petrologic models of pre-eruptive magmatic processes associated with prolong rift zone eruption of Hawaiian shield volcanoes.
Mantle-derived trace element variability in olivines and their melt inclusions
NASA Astrophysics Data System (ADS)
Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura
2018-02-01
Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.
Extra-Mediterranean refugia: The rule and not the exception?
2012-01-01
Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas. PMID:22953783
Major and trace elements in organically or conventionally produced milk.
Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn
2005-08-01
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.
Day, Warren C.; O'Neill, J. Michael
2008-01-01
The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.
NASA Astrophysics Data System (ADS)
Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan
2018-03-01
Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted lower crust. The Group II clinopyroxene phenocrysts, which lack zoning, display major and trace element compositions and 87Sr/86Sr ratios that are similar to those of the Group I rims, which indicates that all the high-Mg clinopyroxenes were derived from a common source in the lithospheric mantle. These high-Mg clinopyroxenes exhibit high 87Sr/86Sr ratios, high Sr contents and remarkable depletions in HFSEs, reflecting metasomatism of the mantle source by aqueous fluids derived by dehydration of the subducting slab and its marine sediments. The metasomatism of the source reveals that the lithospheric mantle beneath Jiaodong Peninsula was metasomatised by fluids from the subducting Paleo-Pacific slab. Progressive thinning of the lithosphere mantle under the NCC was induced by continuous thermo-mechanical erosion, promoting the partial melting of lithospheric mantle and generating the mafic dykes at Jiaodong. Table A2 Analytical results for the trace element standards used during LA-ICP-MS analyses of clinopyroxene phenocrysts. Table A3 Analytical results for the Sr isotope standards used during MC-ICP-MS analyses of clinopyroxene phenocrysts. Table A4 Major element contents (wt%) of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A5 Representative Sr isotopic compositions of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A6 Geochemistry of the mafic dykes on Jiaodong Peninsula. Table A7 Partition coefficients (KD) and end-member components used for REE modeling.
NASA Astrophysics Data System (ADS)
Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco
2014-05-01
Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.
Volatile organic compounds and trace metal level in some beers collected from Romanian market
NASA Astrophysics Data System (ADS)
Voica, Cezara; Kovacs, Melinda; Vadan, Marius
2013-11-01
Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.
Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P
2017-04-01
In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.
NASA Astrophysics Data System (ADS)
Milani, Lorenzo; Bolhar, Robert; Frei, Dirk; Harlov, Daniel E.; Samuel, Vinod O.
2017-12-01
In-situ trace element analyses of fluorapatite, calcite, dolomite, olivine, and phlogopite have been undertaken on representative phoscorite and carbonatite rocks of the Palaeoproterozoic Phalaborwa Complex. Textural and compositional characterization reveals uniformity of fluorapatite and calcite among most of the intrusions, and seems to favor a common genetic origin for the phoscorite-carbonatite association. Representing major repositories for rare earth elements (REE), fluorapatite and calcite exhibit tightly correlated light REE (LREE) abundances, suggesting that partitioning of LREE into these rock forming minerals was principally controlled by simple igneous differentiation. However, light rare earth element distribution in apatite and calcite cannot be adequately explained by equilibrium and fractional crystallization and instead favors a complex crystallization history involving mixing of compositionally distinct magma batches, in agreement with previously reported mineral isotope variability that requires open-system behaviour.
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs
Simmons, Stuart
2017-01-25
Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.
NERVA nozzle design status report
NASA Technical Reports Server (NTRS)
Williams, J. J.; Pickering, J. L.; Ackerman, R. G.
1972-01-01
The results of the design analyses are presented along with the status of the attained design maturity of the structural elements of the nozzle jacket and various aspects of the coolant passages. The design analyses relating to the nozzle shell were based on design allowables as supported by cursory values obtained from ARMCO 22-13-5 nozzle forgings. The major aspects of the coolant passages considered include: low cycle thermal fatigue, ability to operate at 4500 R gas temperature, tube buckling, and susceptibility to erosion. The scope of the analysis is limited to processes leading to reliability assessments of failure mechanisms.
NASA Astrophysics Data System (ADS)
Ge, Q.; Xue, Z. G.
2017-12-01
Major and trace elements contents and grain size were analyzed for surface sediments retrieved from the northeastern Beibu (Tonkin) Gulf. The study area was divided into four zones: Zone I locates in the northeastern coastal area of the gulf, which received large amount of the fluvial materials from local rivers; Zone II locates in the center of the study area, where surface sediments is from multiple sources; Zone III locates in the Qiongzhou Strait, which is dominated by material from the Pearl River and Hainan Island; Zone IV locates in the southwest of the study area, and the sediments mainly originated from the Red River. Statistical analyses of sediment geochemical characteristics reveal that grain size is the leading factor for elementary distribution, which is also influenced by hydrodynamics, mineral composition of terrigenous sediments, anthropogenic activity, and authigenic components.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
Longo, S J; Faircloth, B C; Meyer, A; Westneat, M W; Alfaro, M E; Wainwright, P C
2017-08-01
Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Skoumal, D. E.
1980-01-01
Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.
Scaling and functional morphology in strigiform hind limbs
Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.
2017-01-01
Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549
Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.
Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z
2016-01-01
The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.
Satellite Power System (SPS) concept definition study (exhibit C)
NASA Technical Reports Server (NTRS)
Haley, G. M.
1979-01-01
The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.
NASA Technical Reports Server (NTRS)
Darras, R.
1979-01-01
The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.
Stark, James R.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.
1999-01-01
This report describes the design, site-selection, and implementation of the study. Methods used to collect, process, and analyze samples; characterize sites; and assess habitat are described. A comprehensive list of sample sites is provided. Sample analyses for water-quality studies included chlorophyll a, major inorganic constituents, nutrients, trace elements, tritium, radon, environmental isotopes, organic carbon, pesticides, volatile organic compounds, and other synthetic and naturallyoccurring organic compounds. Aquatic-biological samples included fish, benthic macroinvertebrates, and algal enumeration and identification, as well as synthetic-organic compounds and trace elements in fish tissue.
NASA Astrophysics Data System (ADS)
Baccolo, Giovanni; Delmonte, Barbara; Clemenza, Massimiliano; Previtali, Ezio; Maggi, Valter
2015-04-01
Assessing the elemental composition of atmospheric dust entrapped in polar ice cores is important for the identification of the potential dust sources and thus for the reconstruction of past atmospheric circulation, at local, regional and global scale. Accurate determination of major and trace elements in the insoluble fraction of dust extracted from ice cores is also useful to better understand some geochemical and biogeochemical mechanisms which are linked with the climate system. The extremely reduced concentration of dust in polar ice (typical Antarctic concentrations during interglacials are in the range of 10 ppb), the limited availability of such samples and the high risk of contamination make these analyses a challenge. A new method based on low background Instrumental Neutron Activation Analysis (INAA) was specifically developed for this kind of samples. The method allows the determination of the concentration of up to 35 elements in extremely reduced dust samples (20-30 μg). These elements span from major to trace and ultra-trace elements. Preliminary results from TALDICE (TALos Dome Ice CorE, East Antarctica, Pacific-Ross Sea Sector) ice core are presented along with results from potential source areas in Victoria Land. A set of 5 samples from Talos Dome, corresponding to the last termination, MIS3, MIS4 and MIS6 were prepared and analyzed by INAA.
Stille, P.; Tatsumoto, M.
1985-01-01
Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Stille, P.; Tatsumoto, M.
1985-04-01
Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-10-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3 > CO 3 > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-01-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965
Spears, D.A.; Tewalt, S.J.
2009-01-01
The Parkgate coal of Langsettian age in the Yorkshire-Nottinghamshire coalfield is typical of many coals in the UK in that it has a high sulphur (S) content. Detailed information on the distribution of the forms of S, both laterally and vertically through the seam, was known from previous investigations. In the present work, 38 interval samples from five measured sections of the coal were comprehensively analysed for major, minor and trace elements and the significance of the relationships established using both raw and centered log transformed data. The major elements are used to quantify the variations in the inorganic and organic coal components and determine the trace element associations. Pyrite contains nearly all of the Hg, As, Se, Tl and Pb and is also the major source of the Mo, Ni, Cd and Sb. The clays contain the following elements in decreasing order of association: Rb, Cs, Li, Ga, U, Cr, V, Sc, Y, Bi, Cu, Nb, Sn, Te and Th. Nearly all of the Rb is present in the clay fraction, whereas for elements such as V, Cu and U, a significant amount is thought to be present in the organic matter, based on the K vs trace element regression equations. Only Ge, and possibly Be, would appear to have a dominant organic source. The trace element concentrations are calculated for pyrite, the clay fraction and organic matter. For pyrite it is noted that concentrations agree with published data from the Yorkshire-Nottinghamshire coalfield and also that Tl concentrations (median of 0.33 ppm) in the pyrite are greater than either Hg or Cd. Unlike these elements, Tl has attracted less attention and possibly more information is needed on its anthropogenic distribution and impacts on man and the environment. A seawater source is thought to be responsible for the high concentrations of S, Cl and the non-detrital trace elements in the Parkgate coal. Indicative of the seawater control is the Th/U ratio, which expresses the detrital to non-detrital element contributions. Using other elements, similar ratios can be calculated, which in combination offer greater interpretative value. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Guillong, M.; Günther, D.
2001-07-01
A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and principal multi-component analysis.
NASA Astrophysics Data System (ADS)
Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu
2017-10-01
We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ujiie, K.
2017-12-01
Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages. These results demonstrate that trace element and isotope analyses are useful not only to detect preexistence of pseudotachylytes but also to evaluate the frictional melting in subduction zone faults quantitatively.
Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity
Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.
1993-01-01
Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt
NASA Astrophysics Data System (ADS)
di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.
2009-04-01
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.
Investigation of the Constitutive Model Used in Nonlinear, Incremental Structural Analyses.
1998-06-01
package, ABAQUS , was chosen for performing NISA studies in part because user supplied subroutines could be used for constitutive relationships. After a...loading and the shrinkage and thermally induced strains determined from control specimens. The majority of creep tests are uniaxial compressive tests...Kennedy, and Perry (1970). Description of FE Model The tests were simulated using the finite element (FE) program ABAQUS and the aging viscoelastic
The molecular composition of ambers
Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.
1988-01-01
Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.
NASA Technical Reports Server (NTRS)
Nakamura, T.; Noguchi, T.; Tanaka, M.; Zolensky, M. E.; Kimura, M.; Nakato, A.; Ogami, T.; Ishida, H.; Tsuchiyama, A.; Yada, T.;
2011-01-01
Remote sensing by the spacecraft Hayabusa suggested that outermost surface particles of Muses-C regio of the asteroid Itokawa consist of centimeter and sub-centimeter size small pebbles. However, particles we found in the sample catcher A stored in the Hayabusa capsule, where Muses-C particles were captured during first touchdown, are much smaller. i.e., most are smaller than 100 microns in size. This suggests that only small fractions of Muses-C particles were stirred up due to the impact of the sampling horn onto the surface, or due to jets from chemical thrusters during the lift off of the spacecraft from the surface. X-ray fluorescence and near-infrared measurements by the Hayabusa spacecraft suggested that Itokawa surface materials have mineral and major element composition roughly similar to LL chondrites. The particles of the Muses-C region are expected to have experienced some effects of space weathering. Both of these prospects can be tested by the direct mineralogical analyses of the returned Itokawa particles in our study and another one. This comparison is most important aspect of the Hayabusa mission, because it finally links chemical analyses of meteorites fallen on the Earth to spectroscopic measurements of the asteroids.
The distribution of selected elements and minerals in soil of the conterminous United States
Woodruff, Laurel G.; Cannon, William F.; Smith, David; Solano, Federico
2015-01-01
In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1600 km2, 4857 sites) geochemical and mineralogical survey of soil of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Three soil samples were collected, if possible, from each site; (1) a sample from a depth of 0 to 5 cm, (2) a composite of the soil A-horizon, and (3) a deeper sample from the soil C-horizon or, if the top of the C-horizon was at a depth greater than 100 cm, from a depth of approximately 80–100 cm. The < 2 mm fraction of each sample was analysed for a suite of 45 major and trace elements following near-total multi-acid digestion. The major mineralogical components in samples from the soil A- and C-horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling ended in 2010 and chemical and mineralogical analyses were completed in May 2013. Maps of the conterminous United States showing predicted element and mineral concentrations were interpolated from actual soil data for each soil sample type by an inverse distance weighted (IDW) technique using ArcGIS software. Regional- and national-scale map patterns for selected elements and minerals apparent in interpolated maps are described here in the context of soil-forming factors and possible human inputs. These patterns can be related to (1) soil parent materials, for example, in the distribution of quartz, (2) climate impacts, for example, in the distribution of feldspar and kaolinite, (3) soil age, for example, in the distribution of carbonate in young glacial deposits, and (4) possible anthropogenic loading of phosphorus (P) and lead (Pb) to surface soil. This new geochemical and mineralogical data set for the conterminous United States represents a major step forward from prior national-scale soil geochemistry data and provides a robust soil data framework for the United States now and into the future.
Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.
Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A
2018-04-11
The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.
Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.
1990-01-01
A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.
Cotta, Aloisio J. B.; Enzweiler, Jacinta; Wilson, Stephen A.; Perez, Carlos A.; Nardy, Antonio J. R.; Larizzatti, Joao H.
2007-01-01
Reference materials (RM) are required for quantitative analyses and their successful use is associated with the degree of homogeneity, and the traceability and confidence limits of the values established by characterisation. During the production of a RM, the chemical characterisation can only commence after it has been demonstrated that the material has the required level of homogeneity. Here we describe the preparation of BRP-1, a proposed geochemical reference material, and the results of the tests to evaluate its degree of homogeneity between and within bottles. BRP-1 is the first of two geochemical RM being produced by Brazilian institutions in collaboration with the United States Geological Survey (USGS) and the International Association of Geoanalysts (IAG). Two test portions of twenty bottles of BRP-1 were analysed by wavelength dispersive-XRF spectrometry and major, minor and eighteen trace elements were determined. The results show that for most of the investigated elements, the units of BRP-1 were homogeneous at conditions approximately three times more rigorous than those strived for by the test of “sufficient homogeneity”. Furthermore, the within bottle homogeneity of BRP-1 was evaluated using small beam (1 mm2) synchrotron radiation XRF spectrometry and, for comparison, the USGS reference materials BCR-2 and GSP-2 were also evaluated. From our data, it has been possible to assign representative minimum masses for some major constituents (1 mg) and for some trace elements (1-13 mg), except Zr in GSP-2, for which test portions of 74 mg are recommended.
NASA Technical Reports Server (NTRS)
Margolis, S. V.; Doehne, E. F.
1988-01-01
Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.
The Gypsy Database (GyDB) of mobile genetic elements
Lloréns, C.; Futami, R.; Bezemer, D.; Moya, A.
2008-01-01
In this article, we introduce the Gypsy Database (GyDB) of mobile genetic elements, an in-progress database devoted to the non-redundant analysis and evolutionary-based classification of mobile genetic elements. In this first version, we contemplate eukaryotic Ty3/Gypsy and Retroviridae long terminal repeats (LTR) retroelements. Phylogenetic analyses based on the gag-pro-pol internal region commonly presented by these two groups strongly support a certain number of previously described Ty3/Gypsy lineages originally reported from reverse-transcriptase (RT) analyses. Vertebrate retroviruses (Retroviridae) are also constituted in several monophyletic groups consistent with genera proposed by the ICTV nomenclature, as well as with the current tendency to classify both endogenous and exogenous retroviruses by three major classes (I, II and III). Our inference indicates that all protein domains codified by the gag-pro-pol internal region of these two groups agree in a collective presentation of a particular evolutionary history, which may be used as a main criterion to differentiate their molecular diversity in a comprehensive collection of phylogenies and non-redundant molecular profiles useful in the identification of new Ty3/Gypsy and Retroviridae species. The GyDB project is available at http://gydb.uv.es. PMID:17895280
Effects of FRP application on the seismic response of a masonry church in Emilia-Romagna (Italy)
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Shehu, Rafael; Valente, Marco
2016-12-01
The paper presents some preliminary results of advanced Finite Element (FE) analyses on the upgrading of old masonry constructions by means of Fiber Reinforced Polymers (FRPs). The case study is a masonry Romanesque church, located in Ferrara, Emilia Romagna (Italy). The church exhibits widespread damage caused by the recent earthquake sequence occurred in 2012 about 60 km far from Ferrara with two major seismic events of magnitude 5.8 and 5.9. The main damage involved mainly the columns of the central nave and the apse. A partial detachment of the façade was observed too. First, gravity load analyses and non-linear static and dynamic analyses are performed on the church in the unretrofitted configuration. Numerical results put in evidence the insufficient strength of the apse and the columns of the naves, and the detachment of the façade. A strengthening intervention conducted by means of FRP strips is numerically analysed, assuming the behavior of the strips, especially for what concerns delamination, in agreement with Italian Guidelines. Numerical results show a quite reasonable strength improvement of the weak structural elements due to FRP application, with levels of strength higher than the minimum ones required by Italian Code.
Overview of the Mathematical and Empirical Receptor Models Workshop (Quail Roost II)
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Pace, Thompson G.
On 14-17 March 1982, the U.S. Environmental Protection Agency sponsored the Mathematical and Empirical Receptor Models Workshop (Quail Roost II) at the Quail Roost Conference Center, Rougemont, NC. Thirty-five scientists were invited to participate. The objective of the workshop was to document and compare results of source apportionment analyses of simulated and real aerosol data sets. The simulated data set was developed by scientists from the National Bureau of Standards. It consisted of elemental mass data generated using a dispersion model that simulated transport of aerosols from a variety of sources to a receptor site. The real data set contained the mass, elemental, and ionic species concentrations of samples obtained in 18 consecutive 12-h sampling periods in Houston, TX. Some participants performed additional analyses of the Houston filters by X-ray powder diffraction, scanning electron microscopy, or light microscopy. Ten groups analyzed these data sets using a variety of modeling procedures. The results of the modeling exercises were evaluated and structured in a manner that permitted model intercomparisons. The major conclusions and recommendations derived from the intercomparisons were: (1) using aerosol elemental composition data, receptor models can resolve major emission sources, but additional analyses (including light microscopy and X-ray diffraction) significantly increase the number of sources that can be resolved; (2) simulated data sets that contain up to 6 dissimilar emission sources need to be generated, so that different receptor models can be adequately compared; (3) source apportionment methods need to be modified to incorporate a means of apportioning such aerosol species as sulfate and nitrate formed from SO 2 and NO, respectively, because current models tend to resolve particles into chemical species rather than to deduce their sources and (4) a source signature library may be required to be compiled for each airshed in order to improve the resolving capabilities of receptor models.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The study of coal wastes in Chautauga County, New York was begun on June 1, 1975. The major effort to date has been made on the fly ash dump west of Dunkirk, N.Y. The following topics are covered: description of the site; invertebrate biology; selection of trace elements for study and methods of analysis; water analyses; analyses of invertebrates; literature search; physical chemistry of coal ash and the leaching process; and study of lake sediments.
Transcriptional activity of transposable elements in coelacanth.
Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas
2014-09-01
The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.
Nicholson, Caroline; Hepworth, Julie; Burridge, Letitia; Marley, John; Jackson, Claire
2018-01-31
Against a paucity of evidence, a model describing elements of health governance best suited to achieving integrated care internationally was developed. The aim of this study was to explore how health meso-level organisations used, or planned to use, the governance elements. A case study design was used to offer two contrasting contexts of health governance. Semi-structured interviews were conducted with participants who held senior governance roles. Data were thematically analysed to identify if the elements of health governance were being used, or intended to be in the future. While all participants agreed that the ten elements were essential to developing future integrated care, most were not used. Three major themes were identified: (1) organisational versus system focus, (2) leadership and culture, and, (3) community (dis)engagement. Several barriers and enablers to the use of the elements were identified and would require addressing in order to make evidence-based changes. Despite a clear international policy direction in support of integrated care this study identified a number of significant barriers to its implementation. The study reconfirmed that a focus on all ten elements of health governance is essential to achieve integrated care.
NASA Astrophysics Data System (ADS)
Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.
2017-12-01
Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will present will help to fill data gaps for the diffusivity of certain metals in silicate melts (e.g., V, Mo, W). First data analyses indicate a higher diffusivity of V when compared to W . Liang (2010) Rev Mineral Geochem 72, 409-446; Zhang et al. (2010) Rev Mineral Geochem 72, 311-408.
Chemistry of Apollo 11 low-K mare basalts
NASA Technical Reports Server (NTRS)
Rhodes, J. M.; Blanchard, D. P.
1980-01-01
A reexamination of the bulk major and trace element geochemistry of Apollo 11 low-K mare basalts is presented. New analyses are given for seven previously unanalyzed samples (10003, 10020, 10044, 10047, 10050, 10058, and 10062) and for two low-K basalts (10029 and 10092) and one high-K basalt (10071) for which comprehensive compositional data were previously lacking. The data show that three distinct magma types have been sampled, as proposed by Beaty and Albee (1978), and that these magma types are unrelated by near-surface crystal fractionation. Each magma type is characterized by distinctive magmaphile element ratios, which enable previously unclassified samples (10050 and 10062) to be assigned to an appropriate magma type.
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Krebstein, Kadri; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina
2015-04-01
Soils provide vital ecosystem functions, playing an important role in our economy and in healthy living environment. However, soils are increasingly degrading in Europe and at the global level. Knowledge about the content of major plant available nutrients, i.e. calcium, magnesium, potassium and phosphorus, plays an important role in the sustainable soil management. Mobility of nutrients depends directly on the environmental conditions, two of the most important factors are the pH and organic matter content. Therefore it is essential to have correct information about the content and behaviour of the above named elements in soil, both from the environmental and agronomical viewpoint. During the last decades several extracting solutions which are suitable for the evaluation of nutrient status of soils have been developed for this purpose. One of them is called Mehlich 3 which is widely used in USA, Canada and some European countries (e.g. Estonia, Czech Republic) because of its suitability to extract several major plant nutrients from the soil simultaneously. There are several different instrumental methods used for the analysis of nutrient elements in the soil extract. Potassium, magnesium and calcium are widely analysed by the AAS (atomic absorption spectroscopic) method or by the ICP (inductively coupled plasma) spectroscopic methods. Molecular spectroscopy and ICP spectroscopy were used for the phosphorus determination. In 2011 a new multielemental instrumental method MP-AES (microwave plasma atomic emission spectroscopy) was added to them. Due to its lower detection limits and multielemental character, compared with AAS, and lower exploitation costs, compared with ICP, the MP-AES has a good potential to achieve a leading position in soil nutrient analysis in the future. The objective of this study was to investigate: (i) the impact of soil pH and humus content and (ii) applicability of MP-AES instrumental method for the determination of soil nutrients extracted according to Mehlich 3. For the experiment 100 soil samples with different content of organic matter and pH were used. The determination of Ca, Mg, K and P was analysed by MP and ICP methods and additionally P was analysed molecular spectroscopically. Within the framework of the study the regressions between MP and ICP methods were created for all the analysed elements, i.e. Ca, Mg, K and P. According to MP and ICP, the relationships between the analysed soil major nutrient contents at different soil humus levels and at different pH ranges were determined for the evaluation of their impact. The optimal instrumental settings for calcium, magnesium and potassium analysis, according to Mehlich 3 using MP-AES method, are reported.
Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy).
Zuzolo, Daniela; Cicchella, Domenico; Catani, Vittorio; Giaccio, Lucia; Guagliardi, Ilaria; Esposito, Libera; De Vivo, Benedetto
2017-06-01
The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km 2 . All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3-4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.
Rare Earth elements in individual minerals in Shergottites
NASA Technical Reports Server (NTRS)
Wadhwa, Meenakshi; Crozaz, Ghislaine
1993-01-01
Shergottites (i.e., Shergotty, Zagami, EETA79001, ALHA77005, and LEW88516) are an important set of achondrites because they comprise the majority of the SNC group of meteorites (nine, in total, known to us), which are likely to be samples of the planet Mars. Study of these meteorites may therefore provide valuable information about petrogenetic processes on a large planetary body other than Earth. Rare earth element (REE) distributions between various mineral phases were found to be useful in geochemically modeling the petrogenesis of various rock types (terrestrial and meteoritic). However, with the exception of a few ion microprobe studies and analyses of mineral separates, there has previously not been any comprehensive effort to characterize and directly compare REE in individual minerals in each of the five known shergottites. Ion microprobe analyses were made on thin sections of each of the shergottites. Minerals analyzed were pyroxenes (pigeonite and augite), maskelynite, and whitlockite. The REE concentrations in each mineral type in each shergottite is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behling, H.; Behling, K.; Amarasooriya, H.
1995-02-01
A generic difficulty encountered in cost-benefit analyses is the quantification of major elements that define the costs and the benefits in commensurate units. In this study, the costs of making KI available for public use, and the avoidance of thyroidal health effects predicted to be realized from the availability of that KI (i.e., the benefits), are defined in the commensurate units of dollars.
NASA Astrophysics Data System (ADS)
Nedjimi, Bouzid
2018-05-01
The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.
Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time
NASA Astrophysics Data System (ADS)
McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.
2010-12-01
Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.
Nuclear microscopy in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Makjanic, Jagoda; Watt, Frank
1999-04-01
The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.
Waters, Keith P; Zuber, Alexandra; Simbini, Tungamirirai; Bangani, Zwashe; Krishnamurthy, Ramesh S
2017-04-01
There have been numerous global calls to action to utilize human resources information systems (HRIS) to improve the availability and quality of data for strengthening the regulation and deployment of health workers. However, with no normative guidance in existence, the development of HRIS has been inconsistent and lacking in standardization, hindering the availability and use of data for health workforce planning and decision making (Riley et al., 2012). CDC and WHO partnered with the Ministry of Health in several countries to conduct HRIS functional requirements analyses and establish a Minimum Data Set (MDS) of elements essential for a global standard HRIS. As a next step, CDC advanced a study to examine the alignment of one of the HRIS it supports (in Zimbabwe) against this MDS. For this study, we created a new data collection and analysis tool to assess the extent to which Zimbabwe's CDC-supported HRIS was aligned with the WHO MDS. We performed systematic "gap analyses" in order to make prioritized recommendations for addressing the gaps, with the aim of improving the availability and quality of data on Zimbabwe's health workforce. The majority of the data elements outlined in the WHO MDS were present in the ZHRIS databases, though they were found to be missing various applicable elements. The lack of certain elements could impede functions such as health worker credential verification or equitable in-service training allocation. While the HRIS MDS treats all elements equally, our assessment revealed that not all the elements have equal significance when it comes to data utilization. Further, some of the HRIS MDS elements exceeded the current needs of regulatory bodies and the Ministry of Health and Child Care (MOHCC) in Zimbabwe. The preliminary findings of this study helped inspire the development of a more recent HRH Registry MDS subset, which is a shorter list of priority data elements recommended as a global standard for HRIS. The field-tested assessment methodology presented here, with suggested improvements to the tool, can be used to identify absent or unaligned elements in either an HRH Registry or a full HRIS. Addressing the prioritized gaps will increase the availability of critical data in the ZHRIS and can empower the MOHCC and councils to conduct more strategic analyses, improving health workforce planning and ultimately public health outcomes in the country. Published by Elsevier B.V.
Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola)
NASA Astrophysics Data System (ADS)
Vinha, Manuela; Silva, M. G.; Cabral Pinto, Marina M. S.; Carvalho, Paula Cristina S.
2016-03-01
The mineralogy, texture, major, trace and rare earth elements, from recent sediment samples collected in the lower Catumbela River, were analysed in this study to characterize and discuss the factors controlling its geochemistry and provide data that can be used as tracers of Catumbela River inputs to the Angolan continental shelf. The sediments are mainly sands and silty-sands, but sandy-silt also occurs and the mineralogy is composed of quartz, feldspar, phyllosilicates, magnetite, ilmenite and also carbonates when the river crosses limestones and marls in the downstream sector. The hydraulic sorting originates magnetite-ilmenite and REE-enriched minerals placers. The mineralogy of the sediments is controlled by the source rocks and the degree of chemical weathering is lower than erosion. The texture is mainly controlled by location. There is enrichment in all the analysed trace elements in the fine grained, clay minerals and Fe-oxy-hydroxides rich sediments, compared to the coarse grained and quartz plus feldspar rich ones. The coarse grained sediments (without the placers) are impoverished in ΣREE when compared with UCC and NASC compositions, while the fine grained sediments have ΣREE contents similar to UCC and NASC. The placers have ΣREE contents up to 959.59 mg/kg. The source composition is the dominant factor controlling the REE geochemistry of the analysed sediments as there is no difference in the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios in coarse and fine grained sediments. The sorting of magnetite, ilmenite, zircon, throrite, thorianite, rutile and titanite explain the HREE/LREE enriched patterns of the coarse grained sediments.
A Methodological Review of US Budget-Impact Models for New Drugs.
Mauskopf, Josephine; Earnshaw, Stephanie
2016-11-01
A budget-impact analysis is required by many jurisdictions when adding a new drug to the formulary. However, previous reviews have indicated that adherence to methodological guidelines is variable. In this methodological review, we assess the extent to which US budget-impact analyses for new drugs use recommended practices. We describe recommended practice for seven key elements in the design of a budget-impact analysis. Targeted literature searches for US studies reporting estimates of the budget impact of a new drug were performed and we prepared a summary of how each study addressed the seven key elements. The primary finding from this review is that recommended practice is not followed in many budget-impact analyses. For example, we found that growth in the treated population size and/or changes in disease-related costs expected during the model time horizon for more effective treatments was not included in several analyses for chronic conditions. In addition, all drug-related costs were not captured in the majority of the models. Finally, for most studies, one-way sensitivity and scenario analyses were very limited, and the ranges used in one-way sensitivity analyses were frequently arbitrary percentages rather than being data driven. The conclusions from our review are that changes in population size, disease severity mix, and/or disease-related costs should be properly accounted for to avoid over- or underestimating the budget impact. Since each budget holder might have different perspectives and different values for many of the input parameters, it is also critical for published budget-impact analyses to include extensive sensitivity and scenario analyses based on realistic input values.
1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM
NASA Astrophysics Data System (ADS)
Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia
2013-04-01
Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
Major chemical characteristics of Mesozoic Coast Range ophiolite in California
Bailey, E.H.; Blake, Jr., M.C.
1974-01-01
Sixty-four major element analyses of rocks representative of the Coast Range ophiolite in California were compared with analyses of other onland ophiolite sequences and those of rocks from oceanic ridges. The rocks can be classed in five groups harzburgite-dunite, clinopyroxenite-wehrlite, gabbro, basalt-spilite, and keratophyre-quartz keratophyre which on various diagrams occupy nonoverlapping fields. The harzburgite-dunite from onland ophiolite and ocean ridges are comparable and very low in alkalies. Possible differentiation trends defined on AFM diagrams by other rocks from onland ophiolites and ocean ridges suggest two lines of descent: (1) A trend much like the calc-alkalic trend, though shifted somewhat toward higher iron, and (2) an iron-enrichment trend defined chiefly by the more iron-rich gabbros and amphibolite. MgO-variation diagrams for rocks from the Coast Range ophiolite further distinguish the iron-rich gabbros and amphibolite from the other rock groups and indicate that the iron enrichment, unlike that of the Skaergaard trend, is related to the formation of amphibole. Ophiolite sequences that include the most silicic rock types, such as quartz keratophyre, also exhibit the most pronounced dual lines of descent, suggesting that the silicic rocks and the amphibole-rich gabbros are somehow related. Although the major element chemistry of the Coast Range ophiolite is clearly like that of rocks dredged from oceanic ridges, it is not sufficiently diagnostic to discriminate among the choices of a spreading ridge, an interarc basin, or perhaps even the root zone of an island arc as the site of ophiolite formation.
Tannins and terpenoids as major precursors of Suwannee River fulvic acid
Leenheer, Jerry A.; Rostad, Colleen E.
2004-01-01
Suwannee River fulvic acid (SRFA) was fractionated into 7 fractions by normal-phase chromatography on silica gel followed by reverse-phase fractionation on XAD-8 resin that produced 18 subfractions. Selected major subfractions were characterized by 13C-nuclear magnetic resonance (NMR), infrared spectrometry, and elemental analyses. 13C-NMR spectra of the subfractions were more indicative of precursor structures than unfractionated SRFA, and gave spectral profiles that indicated SRFA mass was about equally split between tannin precursors and terpenoid precursors. Lignin precursors were minor components. Synthesis of 13C-NMR data with elemental data for subfractions derived from both tannin and terpenoid precursors revealed high ring contents and low numbers of carbon per rings which is indicative of fused ring structures that are extensively substituted with carboxyl and methyl groups. These results ruled out extended chain structures for SRFA. This information is useful for determining sources and properties of fulvic acid in drinking water supplies as tannins are more reactive with chlorine to produce undesirable disinfection by-products than are terpenoids.
NASA Technical Reports Server (NTRS)
Hu, H.-N.; Taylor, L. A.
1977-01-01
Rhodes et al. (1975, 1976) and Adams et al. (1975) have reported that the agglutinate fraction of the soils on the lunar surface displays a marked enrichment in Fe, Mg, Ti, K, and La, and a depletion in Ca, Na, Al, and Eu, relative to the bulk soils. The reported investigation is concerned with a testing of the theory of chemical fractionation involving magnetic separation which was developed in connection with these findings. Soils 64421 and 71501 were sieved and the magnetic fractions separated according to the method developed by Adams and McCord (1973). Analyses of agglutinitic glass did not indicate any appreciable chemical fractionation for the major and minor elements accompanying the agglutination process. It was found that most, if not all fractionations reported can be accounted for completely by the magnetic nonagglutinate impurities in the agglutinate fraction. It is, therefore, concluded that there appears to be no reason to make use of any chemical fractionation theory, whose validity remains to be demonstrated.
X-ray analysis of aerosol samples from a therapeutic cave
NASA Astrophysics Data System (ADS)
Alföldy, B.; Török, Sz.; Kocsonya, A.; Szőkefalvi-Nagy, Z.; Balla, Md. I.
2001-04-01
Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlőhegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.
Mehringer, P.J.; Sarna-Wojcicki, A. M.; Wollwage, L.K.; Sheets, P.
2005-01-01
Eruption of central El Salvador's Ilopango Volcano early in the first millennium A.D. caused death, cultural devastation, and exodus of southern Mesoamericans. It also left a time-stratigraphic marker in western El Salvador and adjacent Guatemala - the Ilopango Tierra Blanca Joven, or TBJ tephra. Mineral suites and major element abundances identify a silicic volcanic ash in cores from Lago de Yojoa, Honduras, as Ilopango TBJ. This extends its reported range more than 150 km to the northeast. Analyses of glass from the TBJ tephra from the Chalchuapa archaeological site, El Salvador, and from Lago de Yojoa, Honduras, establish the first major element reference fingerprint for the TBJ tephra. The Lago de Yojoa cores also hold two previously undated trachyandesitic tephra layers originating from the nearby Lake Yojoa Volcanic Field. One fell shortly before 11,000 14C yr B.P. and the other about 8600 14C yr B.P. ?? 2004 University of Washington. All rights reserved.
Environmental assessment of Al-Hammar Marsh, Southern Iraq.
Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim
2017-02-01
(a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results compatible with multivariate statistical techniques findings. Analysis of heavy metals in plant samples revealed that there is no pollution in plants in Al-Hammar Marsh. However, the concentrations of heavy metals in fish samples showed that all samples were contaminated by Pb, Mn, and Ni, while some samples were contaminated by Pb, Mn, and Ni. Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.
SU-F-T-243: Major Risks in Radiotherapy. A Review Based On Risk Analysis Literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Tarjuelo, J; Guasp-Tortajada, M; Iglesias-Montenegro, N
Purpose: We present a literature review of risk analyses in radiotherapy to highlight the most reported risks and facilitate the spread of this valuable information so that professionals can be aware of these major threats before performing their own studies. Methods: We considered studies with at least an estimation of the probability of occurrence of an adverse event (O) and its associated severity (S). They cover external beam radiotherapy, brachytherapy, intraoperative radiotherapy, and stereotactic techniques. We selected only the works containing a detailed ranked series of elements or failure modes and focused on the first fully reported quartile as much.more » Afterward, we sorted the risk elements according to a regular radiotherapy procedure so that the resulting groups were cited in several works and be ranked in this way. Results: 29 references published between 2007 and February 2016 were studied. Publication trend has been generally rising. The most employed analysis has been the Failure mode and effect analysis (FMEA). Among references, we selected 20 works listing 258 ranked risk elements. They were sorted into 31 groups appearing at least in two different works. 11 groups appeared in at least 5 references and 5 groups did it in 7 or more papers. These last sets of risks where choosing another set of images or plan for planning or treating, errors related with contours, errors in patient positioning for treatment, human mistakes when programming treatments, and planning errors. Conclusion: There is a sufficient amount and variety of references for identifying which failure modes or elements should be addressed in a radiotherapy department before attempting a specific analysis. FMEA prevailed, but other studies such as “risk matrix” or “occurrence × severity” analyses can also lead professionals’ efforts. Risk associated with human actions ranks very high; therefore, they should be automated or at least peer-reviewed.« less
Barghini, Elena; Mascagni, Flavia; Natali, Lucia; Giordani, Tommaso; Cavallini, Andrea
2017-02-01
Short Interspersed Nuclear Elements (SINEs) are nonautonomous retrotransposons in the genome of most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, SINE identification has been carried out only in a limited number of plant species. This lack of information is apparent especially in non-model plants whose genome has not been sequenced yet. The aim of this work was to produce a specific bioinformatics pipeline for analysing second generation sequence reads of a non-model species and identifying SINEs. We have identified, for the first time, 227 putative SINEs of the olive tree (Olea europaea), that constitute one of the few sets of such sequences in dicotyledonous species. The identified SINEs ranged from 140 to 362 bp in length and were characterised with regard to the occurrence of the tRNA domain in their sequence. The majority of identified elements resulted in single copy or very lowly repeated, often in association with genic sequences. Analysis of sequence similarity allowed us to identify two major groups of SINEs showing different abundances in the olive tree genome, the former with sequence similarity to SINEs of Scrophulariaceae and Solanaceae and the latter to SINEs of Salicaceae. A comparison of sequence conservation between olive SINEs and LTR retrotransposon families suggested that SINE expansion in the genome occurred especially in very ancient times, before LTR retrotransposon expansion, and presumably before the separation of the rosids (to which Oleaceae belong) from the Asterids. Besides providing data on olive SINEs, our results demonstrate the suitability of the pipeline employed for SINE identification. Applying this pipeline will favour further structural and functional analyses on these relatively unknown elements to be performed also in other plant species, even in the absence of a reference genome, and will allow establishing general evolutionary patterns for this kind of repeats in plants.
Voskarides, Konstantinos; Mazières, Stéphane; Hadjipanagi, Despina; Di Cristofaro, Julie; Ignatiou, Anastasia; Stefanou, Charalambos; King, Roy J; Underhill, Peter A; Chiaroni, Jacques; Deltas, Constantinos
2016-01-01
The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks.
NASA Astrophysics Data System (ADS)
Ortolano, Gaetano; Visalli, Roberto; Godard, Gaston; Cirrincione, Rosolino
2018-06-01
We present a new ArcGIS®-based tool developed in the Python programming language for calibrating EDS/WDS X-ray element maps, with the aim of acquiring quantitative information of petrological interest. The calibration procedure is based on a multiple linear regression technique that takes into account interdependence among elements and is constrained by the stoichiometry of minerals. The procedure requires an appropriate number of spot analyses for use as internal standards and provides several test indexes for a rapid check of calibration accuracy. The code is based on an earlier image-processing tool designed primarily for classifying minerals in X-ray element maps; the original Python code has now been enhanced to yield calibrated maps of mineral end-members or the chemical parameters of each classified mineral. The semi-automated procedure can be used to extract a dataset that is automatically stored within queryable tables. As a case study, the software was applied to an amphibolite-facies garnet-bearing micaschist. The calibrated images obtained for both anhydrous (i.e., garnet and plagioclase) and hydrous (i.e., biotite) phases show a good fit with corresponding electron microprobe analyses. This new GIS-based tool package can thus find useful application in petrology and materials science research. Moreover, the huge quantity of data extracted opens new opportunities for the development of a thin-section microchemical database that, using a GIS platform, can be linked with other major global geoscience databases.
Wang, Zhi-gang; Yu, Hong-mei
2012-01-01
The content of the elements C, H, O and N in Jinhua bergamot was analysed by using Vario III elemental analyser, the bergamot sample was scanned by using X-ray fluorescence spectrometer with PW2400 wavelength dispersion, and the content of the elements Mg, Al, P, S, Cl, K, Ca, Mn, Fe and Sr was analysed by using IQ+ analytical method. It turned out that the result is more ideal if the content of the elements C, H, O and N is processed as fix phase, and the analytical result is more ideal if, to prevent the sample skin from coming off, the sample is wrapped with mylar film with the film coefficient adjusted.
Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H
1991-12-01
During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.
The evolution of complex type B Allende inclusion - An ion microprobe trace element study
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Crozaz, Ghislaine; Lundberg, Laura L.
1989-01-01
Results are presented of a detailed trace-element and isotopic analyses of the constituent phases in each of the major textural parts (mantle, core, and islands) of a Type B refractory inclusion, the USNM 5241 inclusion from Allende, first described by El Goresy et al. (1985). The REE data on 5241 were found to be largely consistent with a model in which the mantle and the core of 5241 formed sequentially out of a single melt by fractional crystallization. The numerical models of REE evolution in the 5241 melt, especially that of Eu, require that a significant mass of spinel-free island material was assimilated into the evolving melt during the last half of the solidification history of 5241. The trace element results pbtained thus strongly support the interpretation of El Goresy et al. (1985) that the spinel-free islands in the 5241 are trapped xenoliths.
Comparison of the properties of some synthetic crudes with petroleum crudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1979-01-01
Physical properties and chemical compositions of six synthetic crudes were determined. The results were compared to those of typical petroleum crudes, with the interest being the feasibility of making jet fuels from oil shale and coal syncrudes. The specific gravity, viscosity, and pour point were measured, showing that these crudes would be described as heavier rather than lighter crudes. The boiling range distribution of the crudes was determined by distillation and by gas chromatography. In addition, gel permeation chromatograms were obtained, giving a unique molecular weight distribution profile for each crude. Analyses for carbon, hydrogen, nitrogen and sulfur concentrations were performed, as well as for hydrocarbon group type and trace element concentrations. It was found that the range in concentration of vanadium, an element whose presence in turbine fuels is of major concern, was lower than that of petroleum crudes. Sodium and potassium, other elements of concern, were present in comparatively high concentrations.
Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico
Wilson, Jennifer T.; Van Metre, Peter C.
2000-01-01
Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.
NASA Astrophysics Data System (ADS)
Baumgartner, Raphael J.; Fiorentini, Marco L.; Lorand, Jean-Pierre; Baratoux, David; Zaccarini, Federica; Ferrière, Ludovic; Prašek, Marko K.; Sener, Kerim
2017-08-01
The shergottite meteorites are ultramafic to mafic igneous rocks whose parental magmas formed from partial melting of the martian mantle. This study reports in-situ laser ablation inductively coupled plasma mass spectrometry analyses for siderophile and chalcophile major and trace elements (i.e., Co, Ni, Cu, As, Se, Ag, Sb, Te, Pb, Bi, and the highly siderophile platinum-group elements, PGE: Os, Ir, Ru, Rh, Pt and Pd) of magmatic Fe-Ni-Cu sulfide assemblages from four shergottite meteorites. They include three geochemically similar incompatible trace element- (ITE-) depleted olivine-phyric shergottites (Yamato-980459, Dar al Gani 476 and Dhofar 019) that presumably formed from similar mantle and magma sources, and one distinctively ITE-enriched basaltic shergottite (Zagami). The sulfides in the shergottites have been variably modified by alteration on Earth and Mars, as well as by impact shock-shock related melting/volatilization during meteorite ejection. However, they inherit and retain their magmatic PGE signatures. The CI chondrite-normalized PGE concentration patterns of sulfides reproduce the whole-rock signatures determined in previous studies. These similarities indicate that sulfides exerted a major control on the PGE during shergottite petrogenesis. However, depletions of Pt (and Ir) in sulfide relative to the other PGE suggest that additional phases such discrete Pt-Fe-Ir alloys have played an important role in the concentration of these elements. These alloys are expected to have enhanced stability in reduced and FeO-rich shergottite magmas, and could be a common feature in martian igneous systems. A Pt-rich PGM was found to occur in a sulfide assemblage in Dhofar 019. However, its origin may be related to impact shock-related sulfide melting and volatilisation during meteorite ejection. In the ITE-depleted olivine-phyric shergottites, positive relationships exist between petrogenetic indicators (e.g., whole-rock Mg-number) and most moderately to strongly siderophile and chalcophile elements in sulfides. These variations extend to incompatible elements like Te and Pd. The whole-rock concentrations of Pd derived from mass-balance calculations decrease by one order of magnitude in the order Y-980459, DaG 476 and Dhofar 019, and broadly overlap the trends in previously published whole-rock analyses. Mantle heterogeneities, and the timing of sulfide saturation as function of mantle melting and/or magma fractionation following ascent from the mantle, may have been the controlling factors of the siderophile and chalcophile element systematics in the analyzed shergottites.
NASA Astrophysics Data System (ADS)
Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.
2017-04-01
We present the results of a coordinated SIMS U-Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ∼4.33 Ga, however they differ in that only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ⩽300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb-206Pb ages of 4.33 Ga. These grains are our best constraints on impact ages within our sample population, and suggest at least one large impact is contemporaneous with the most common time of magmatic zircon formation on the Moon's crust visited by the Apollo missions.
Reanalysis of a 15-year Archive of IMPROVE Samples
NASA Astrophysics Data System (ADS)
Hyslop, N. P.; White, W. H.; Trzepla, K.
2013-12-01
The IMPROVE (Interagency Monitoring of PROtected Visual Environments) network monitors aerosol concentrations at 170 remote sites throughout the United States. Twenty-four-hour filter samples of particulate matter are collected every third day and analyzed for chemical composition. About 30 of the sites have operated continuously since 1988, and the sustained data record (http://views.cira.colostate.edu/web/) offers a unique window on regional aerosol trends. All elemental analyses have been performed by Crocker Nuclear Laboratory at the University of California in Davis, and sample filters collected since 1995 are archived on campus. The suite of reported elements has remained constant, but the analytical methods employed for their determination have evolved. For example, the elements Na - Mn were determined by PIXE until November 2001, then by XRF analysis in a He-flushed atmosphere through 2004, and by XRF analysis in vacuum since January 2005. In addition to these fundamental changes, incompletely-documented operational factors such as detector performance and calibration details have introduced variations in the measurements. Because the past analytical methods were non-destructive, the archived filters can be re-analyzed with the current analytical systems and protocols. The 15-year sample archives from Great Smoky Mountains, Mount Rainier, and Point Reyes National Parks were selected for reanalysis. The agreement between the new analyses and original determinations varies with element and analytical era (Figure 1). Temporal trends for some elements are affected by these changes in measurement technique while others are not (Figure 2). Figure 1. Repeatability of analyses for sulfur and vanadium at Great Smoky Mountains National Park. Each point shows the ratio of mass loadings determined by the original analysis and recent reanalysis. Major method distinctions are indicated at the top. Figure 2. Trends, based on Thiel-Sen regression, in lead concentrations based on the original and reanalysis data.
Results of a geochemical survey, Wadi Ash Shu'Bah quadrangle, sheet 26E, Kingdom of Saudi Arabia
Miller, W.R.; Arnold, M.A.
1989-01-01
A major problem in the interpretation of the regional data resulted from the incomplete removal of magnetite before analyses. The magnetite can cause anomalous values for Ni, Fe, V, Cu, and Co because of it's ability to incorporate these elements into it's structure during magmatic crystallization. It is essential that samples be prepared and analyzed in a consistent manner so that the resulting data may be as reliable as possible.
Degradation of carbohydrates and lignins in buried woods
Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.
1985-01-01
Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.
Geochemical and mineralogical data for soils of the conterminous United States
Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Kilburn, James E.; Fey, David L.
2013-01-01
In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Sampling and analytical protocols were developed at a workshop in 2003, and pilot studies were conducted from 2004 to 2007 to test and refine these recommended protocols. The final sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting dataset provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report (1) describes the sampling, sample preparation, and analytical methods used; (2) gives details of the quality control protocols used to monitor the quality of chemical and mineralogical analyses over approximately six years; and (3) makes available the soil geochemical and mineralogical data in downloadable tables.
A Simulated Geochemical Rover Mission to the Taurus-Littrow Valley of the Moon
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.
1995-01-01
We test the effectiveness of using an alpha backscatter, alpha-proton, X ray spectrometer on a remotely operated rover to analyze soils and provide geologically useful information about the Moon during a simulated mission to a hypothetical site resembling the Apollo 17 landing site. On the mission, 100 soil samples are "analyzed" for major elements at moderate analytical precision (e.g., typical relative sample standard deviation from counting statistics: Si[11%], Al[18%], Fe[6%], Mg[20%], Ca[5%]). Simulated compositions of soils are generated by combining compositions of components representing the major lithologies occurring at the site in known proportions. Simulated analyses are generated by degrading the simulated compositions according to the expected analytical precision of the analyzer. Compositions obtained from the simulated analyses are modeled by least squares mass balance as mixtures of the components, and the relative proportions of those components as predicted by the model are compared with the actual proportions used to generate the simulated composition. Boundary conditions of the modeling exercise are that all important lithologic components of the regolith are known and are represented by model components, and that the compositions of these components are well known. The effect of having the capability of determining one incompatible element at moderate precision (25%) is compared with the effect of the lack of this capability. We discuss likely limitations and ambiguities that would be encountered, but conclude that much of our knowledge about the Apollo 17 site (based on the return samples) regarding the distribution and relative abundances of lithologies in the regolith could be obtained. This success requires, however, that at least one incompatible element be determined.
Meter Scale Heterogeneities in the Oceanic Mantle Revealed in Ophiolites Peridotites
NASA Astrophysics Data System (ADS)
Haller, M. B.; Walker, R. J.; Day, J. M.; O'Driscoll, B.; Daly, J. S.
2016-12-01
Mid-ocean ridge basalts and other oceanic mantle-derived rocks do not capture the depleted endmember isotopic compositions present in oceanic peridotites. Ophiolites are especially useful in interrogating this issue as field-based observations can be paired with geochemical investigations over a wide range of geologic time. Grid sampling methods (3m x 3m) at the 497 Ma Leka Ophiolite Complex (LOC), Norway, and the 1.95 Ga Jormua Ophiolite Complex (JOC), Finland, offer an opportunity to study mantle domains at the meter and kilometer scale, and over a one billion year timespan. The lithology of each locality predominately comprises harzburgite, hosting layers and lenses of dunite and pyroxenite. Here, we combine highly siderophile elements (HSE) and Re-Os isotopic analysis of these rocks with major and trace element measurements. Harzburgites at individual LOC grid sites show variations in γOs(497 Ma) (-2.1 to +2.2) at the meter scale. Analyses of adjacent, more radiogenic dunites within the same LOC grid, reveal that dunites may either have similar γOs to their host harzburgite, or different, implying interactions between spatially associated rock types may differ at the meter scale. Averaged γOs values between the mantle sections of two LOC grid sites (+1.3 and -0.4) separated by 5 km indicate km-scale heterogeneity in the convecting upper mantle. Pd/Ir and Ru/Ir ratios are scattered and do not obviously correlate with γOs values. Analyses of pyroxenites within LOC grid sections, thin section observations of relict olivine grains, and whole rock major and trace element data are also examined to shed light on the causes of the isotopic heterogeneities in the LOC. Data from JOC grid sampling will be presented as well.
Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test
Lewis, L. A.; Knight, K. B.; Matzel, J. E.; ...
2015-07-28
The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ( 238U/ 235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/ 238U < 11.84 among all five spherules and 0.02 < 235U/ 238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/ 238U ratio is correlated with changes in major elementmore » composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/ 238U, 235U/ 238U, and 236U/ 238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less
The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.
Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel
2018-05-16
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Fallon, J.D.; McChesney, J.A.
1993-01-01
Surface-water-quality data were collected from the lower Kansas River Basin in Kansas and Nebraska. The data are presented in 17 tables consisting of physical properties, concentrations of dissolved solids and major ions, dissolved and total nutrients, dissolved and total major metals and trace elements, radioactivity, organic carbon, pesticides and other synthetic-organic compounds, bacteria and chlorophyll-a, in water; particle-size distributions and concentrations of major metals and trace elements in suspended and streambed sediment; and concentrations of synthetic-organic compounds in streambed sediment. The data are grouped within each table by sampling sites, arranged in downstream order. Ninety-one sites were sampled in the study area. These sampling sites are classified in three, non-exclusive categories (fixed, synoptic, and miscellaneous sites) on the basis of sampling frequency and location. Sampling sites are presented on a plate and in 3 tables, cross-referenced by downstream order, alphabetical order, U.S. Geological Survey identification number, sampling-site classification category, and types of analyses performed at each site. The methods used to collect, analyze, and verify the accuracy of the data also are presented. (USGS)
Capsule- and disk-filter procedure
Skrobialowski, Stanley C.
2016-01-01
Capsule and disk filters are disposable, self-contained units composed of a pleated or woven filter medium encased in a polypropylene or other plastic housing that can be connected inline to a sample-delivery system (such as a submersible or peristaltic pump) that generates sufficient pressure (positive or negative) to force water through the filter. Filter media are available in several pore sizes, but 0.45 µm is the pore size used routinely for most studies at this time. Capsule or disk filters (table 5.2.1.A.1) are required routinely for most studies when filtering samples for trace-element analyses and are recommended when filtering samples for major-ion or other inorganic-constituent analyses.
Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance
NASA Technical Reports Server (NTRS)
Lindell, Michael C.
1996-01-01
This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance
NASA Technical Reports Server (NTRS)
Lindell, Michael C. (Editor)
1999-01-01
This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
An assessment of the usability of undergraduate healthcare management program websites.
Roggenkamp, Susan D
2005-01-01
Prospective students in higher education programs increasingly use the Internet as a source of information to assist in the selection of both university and major programs of study. Therefore, having an informative and well designed website is now an integral component of a higher education program's marketing mix. This article attempts to inform undergraduate health administration programs about the elements of good website design, namely content that is important and relevant to users, site layout appeal, and ease of navigation. Content analyses of undergraduate health administration program websites in 2002 and 2005 assessed both the extent of content from a standard list of twenty-five information elements and usability features of the sites. Implications for improvements to program websites are discussed.
A Geochemical Study of Postshield Volcanism and the Generation of Trachyte on West Maui, HI
NASA Astrophysics Data System (ADS)
Trenkler, M. L.; Cousens, B.
2016-12-01
The West Maui Volcano provides a complete evolutionary history of a fully developed Hawaiian volcano described by three main phases: (1) the tholeiitic shield-building stage of the Wailuku Basalts; (2) the postshield alkalic stage Honolua Volcanics; and (3) the rejuvenated stage Lahaina Volcanics of silica-undersaturated rocks. On West Maui, the postshield Honolua Volcanics erupted highly differentiated rocks (benmoreite to trachyte), with little to no intermediate alkalic rocks, upon cessation of tholeiitic shield building. Utilizing K-Ar dated samples, we present 35 new major and trace element analyses of shield, postshield, and rejuvenated stage lavas on West Maui in an attempt to identify the mechanisms present during evolution from basalt to trachyte over a defined temporal and spatial range. Wailuku basalts are dominated by olivine fractionation, whereas decreasing Sc and CaO/Al2O3 with increasing degree of differentiation indicate Honolua benmoreites and trachytes heavily fractionated clinopyroxene. Major element trends are consistent with crystallization of titano-magnetite, potassium feldspar, and minor apatite. Trace element patterns of the Honolua Volcanics are uniform with strong enrichments in LILE and the LREEs indicating fractionation and lower degrees of partial melting compared to Wailuku basalts. The HREEs are enriched relative to shield basalts with Gd/Yb values of 2.0-2.8 as a result of high degrees of fractionation and the presence of crystalizing apatite. Major and trace element trends follow the evolution of the postshield Hawi Volcanics of Kohala, where alkalic basalts differentiate up to trachyte. Compared to shield lavas, the Honolua Volcanics represent a drastic decrease in magma supply rates, infrequent eruptions, and magma residence times long enough to produce highly differentiated magmas with no significant mafic magma input.
Hepworth, Julie; Burridge, Letitia; Marley, John; Jackson, Claire
2018-01-01
Introduction: Against a paucity of evidence, a model describing elements of health governance best suited to achieving integrated care internationally was developed. The aim of this study was to explore how health meso-level organisations used, or planned to use, the governance elements. Methods: A case study design was used to offer two contrasting contexts of health governance. Semi-structured interviews were conducted with participants who held senior governance roles. Data were thematically analysed to identify if the elements of health governance were being used, or intended to be in the future. Results: While all participants agreed that the ten elements were essential to developing future integrated care, most were not used. Three major themes were identified: (1) organisational versus system focus, (2) leadership and culture, and, (3) community (dis)engagement. Discussion: Several barriers and enablers to the use of the elements were identified and would require addressing in order to make evidence-based changes. Conclusion: Despite a clear international policy direction in support of integrated care this study identified a number of significant barriers to its implementation. The study reconfirmed that a focus on all ten elements of health governance is essential to achieve integrated care. PMID:29588645
Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341
NASA Astrophysics Data System (ADS)
Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.
2016-12-01
In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.
Detrital and oceanic dysoxia influence on OAE2 sediment geochemistry from Tarfaya, SW Morocco
NASA Astrophysics Data System (ADS)
Turgeon, S. C.; Kolonic, S.; Brumsack, H.-J.; Wagner, T.
2003-04-01
The Cretaceous "greenhouse" world's stratigraphic record is punctuated by several important organic-rich intervals representing quasi-global "Oceanic Anoxic Events" (OAEs). This study focuses on sediments from Tarfaya in SW Morocco deposited during the Cenomanian-Turonian Boundary Event (CTBE or OAE2 at 93.5 Ma). These sediments consist of distinctly laminated, carbonate-rich black shales alternating with lighter coloured structureless intervals and sporadic chert lenses. Sediments from three sites representing proximal to distal settings were studied. Samples were analysed for Ctot, Corg, Stot, as well as several major-, minor- and trace elements using XRF and ICP-MS. These sediments are characterised by high Corg, Stot, and CaCO3 contents and consist of a simple two component mixing system ("average shale"-CaCO3). Major element concentrations are low, except for Ca and P, owing in part to the carbonate dilution effect. Most elements plot along "average shale" lines. Elements such as Si, Ti, Fe, K, Rb, and Zr show positive relationships with Al2O3, pointing to homogeneous source area material. Several Al-normalised elements (As, Ba, Cr, Cu, Ni, Sr, U, V, Y, Zn), many of them redox-sensitive or sulphide-residing, are enriched in the sediments indicating an oxygen-depleted environment and potential availability of hydrogen sulfide in the water column at the time of deposition. High Zn concentrations suggest increased submarine volcanism and/or hydrothermal activity during this time interval. High Ba concentrations are possibly indicative of high regional paleoproductivity, which is further supported by the elevated P concentrations hinting at nutrient availability. Basinward trends in the geochemical distribution of some elements are apparent and probably reflect the decreasing influence of terrestrial sediments away from the shoreline.
Frías, Sergio; Conde, José E; Rodríguez, Miguel A; Dohnal, Vlasta; Pérez-Trujillo, Juan P
2002-10-01
Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of Li and Rb for which flame atomic emission spectrophotometry was used. The content in copper and iron did not present risks of cases. All samples presented a copper and zinc content below the maximum amount recommended by the Office International de la Vigne et du Vin (OIV) for these elements. Significant differences in the metallic content were found among the different islands. Thus, Lanzarote presented the highest mean content in sodium and lithium and the lowest mean content in rubidium, and La Palma presented the highest mean content in strontium and rubidium. Sweet wines from La Palma, elaborated as naturally sweet with over-ripe grapes, presented mean contents significantly higher with regard to dry wines from the same island in the majority of the analysed elements. Cluster analysis and Kohonen self-organising maps showed differences in wines according to the island of origin and the ripening state of the grapes. Back-propagation artificial neural networks showed better prediction ability than stepwise linear discriminant analysis.
Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J
2011-01-01
Background: Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. Methods: A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Results: Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a ‘methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Conclusion: Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy. PMID:21712824
Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J
2011-08-09
Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... measurements as well as finite element modelling and fatigue analyses to better understand the stress... include strain measurements as well as finite element modeling and fatigue analyses to better understand... finite element modelling and fatigue analyses to better understand the stress distribution onto the frame...
Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.
1986-01-01
A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.
Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.
Low, Fiona; Zhang, Lian
2012-11-15
In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant. Copyright © 2012 Elsevier B.V. All rights reserved.
Igneous fractionation and subsolidus equilibration of diogenite meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.
1993-01-01
Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.
Transient Changes in Shallow Groundwater Chemistry During the MSU-ZERT CO2 Injection Experiment
NASA Astrophysics Data System (ADS)
Zheng, L.; Apps, J. A.; Spycher, N.; Birkholzer, J. T.; Kharaka, Y. K.; Thordsen, J. J.; Kakouros, E.; Trautz, R. C.
2009-12-01
The Montana State University Zero Emission Research and Technology (MSU-ZERT) field experiment at Bozeman, Montana, is designed to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the potential leakage of CO2 from deep storage reservoirs. However, the experiment also affords an excellent opportunity to investigate the transient changes in groundwater chemical composition in response to increasing CO2 partial pressures. Between July 9 and August 7, 2008, 300 kg/day of food-grade CO2 was injected into shallow groundwater through a horizontal perforated pipe about 2-2.3 m below the ground surface. Changes in groundwater quality were investigated through comprehensive chemical analyses of 80 water samples taken before, during and following CO2 injection from 10 shallow observation wells located 1-6 m from the injection pipe, and from two distant monitoring wells. Field and laboratory analyses suggest rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of both major and trace element species. A principal component analysis and independent thermodynamic interpretation of the water quality analyses were conducted. Results were interpreted in conjunction with a mineralogical characterization of the shallow sediments and a review of historical records of the chemical composition of rainfall at neighboring monitoring sites. The interpretation permitted tentative identification of a complex array of adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction and infiltration processes that were operative during the test. Geochemical modeling was conducted using TOUGHREACT to test whether the observed water quality changes were consistent with the hypothesized processes, and very good agreement was obtained with respect to the behavior of both major and trace elements.
Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C
2017-04-01
Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.
Temporal and local variations in biochemical composition of Crassostrea gigas shells
NASA Astrophysics Data System (ADS)
Almeida, Maria J.; Machado, Jorge; Moura, Gabriela; Azevedo, Manuela; Coimbra, João
1998-12-01
The objective of this work was to find relations between organic and inorganic shell components. Crassostrea gigas shells were analysed from live specimens collected at five different stations: the Lima estuary (1), the Ria de Aveiro (2, 3), and the Mondego estuary (4, 5), Portugal. About 30% of the oysters, from stations 1, 2 and 3 had shell-thickness-index values ≤10, indicating a severe thickening. Oysters from the Mondego estuary contained mud blisters due to Polydora infestations. Oysters from station 3 had thicker shells and showed a higher Pb content in shell and tissues than oysters from the other stations. Amino-acid composition changed mainly according to the modified protein (jelly-like substance) probably produced by the presence of TBT (tributyltin) in the water; in particular, we observed an increase in glutamic acid and threonine and a decrease in major amino acids such as aspartic acid, serine and glycine. Elemental shell composition was mainly associated with environmental conditions: shells from stations in open areas had higher Li, Cd, Cr and Ca and lower Mn levels than those from semi-enclosed areas (fish farms). Discriminant analyses against the three kinds of shell observed (normal, thick and infested), using chemical elements and amino acids as discriminant variables, showed the infested group to have the biggest differences. There was no correlation between amino-acid and chemical-element patterns in shell composition. Observed changes in amino-acid pattern, probably due to TBT, did not imply a simultaneous change of elemental composition.
Assessing the Continuum of Care Pathway for Maternal Health in South Asia and Sub-Saharan Africa.
Singh, Kavita; Story, William T; Moran, Allisyn C
2016-02-01
We assess how countries in regions of the world where maternal mortality is highest-South Asia and Sub-Saharan Africa-are performing with regards to providing women with vital elements of the continuum of care. Using recent Demographic and Health Survey data from nine countries including 18,036 women, descriptive and multilevel regression analyses were conducted on four key elements of the continuum of care-at least one antenatal care visit, four or more antenatal care visits, delivery with a skilled birth attendant and postnatal checks for the mother within the first 24 h since birth. Family planning counseling within a year of birth was also included in the descriptive analyses. Results indicated that a major drop-out (>50 %) occurs early on in the continuum of care between the first antenatal care visit and four or more antenatal care visits. Few women (<5 %) who do not receive any antenatal care go on to have a skilled delivery or receive postnatal care. Women who receive some or all the elements of the continuum of care have greater autonomy and are richer and more educated than women who receive none of the elements. Understanding where drop-out occurs and who drops out can enable countries to better target interventions. Four or more ANC visits plays a pivotal role within the continuum of care and warrants more programmatic attention. Strategies to ensure that vital services are available to all women are essential in efforts to improve maternal health.
NASA Astrophysics Data System (ADS)
Zularisam, A. W.; Wahida, Norul; Alfian, Ahmad
2017-07-01
This paper presents the green method to synthesis two types of adsorbent called mesoparticle graphene sand composite (MGSC) by using table sugar (MGSCts) and arenga palm sugar (MGSCaps) as different carbon sources to remove methylene blue acted as a dye model. Immobilisations of these materials on sand were introduced by using pyrolysis method without binder usage. Sand was treated by removing deleterious materials before sieved. The solutions of sugar were prepared and heated to 95 °C. The sand and sugar solutions were mixed and constantly stirred before putting them in furnace with nitrogen environment to produce MGSCts and MGSCaps. The composites were activated by using concentrated sulphuric acid to open the pores and maximise the capacity of absorbency. The analyses on the characteristic of both MGSCts and MGSCaps were conducted through field emission scanning electron microscope (FESEM), elemental dispersive x-ray (EDX) and elemental mapping (EM). FESEM analyses exhibited that the coating process was done uniformly as there were layers of coating sheets formation on the sand particles surfaces. After conducting EDX and EM, there were major elements found in both MGSCts and MGSCaps which were carbon, oxygen and silica. EM exhibited the distribution of these elements were scattered on the MGSC’s surfaces. Removal of methylene blue was successfully carried out by using both MGSCts and MGSCaps, with maximum removal up to 40% at the first hour of contact time.
Quantitative Effects of P Elements on Hybrid Dysgenesis in Drosophila Melanogaster
Rasmusson, K. E.; Simmons, M. J.; Raymond, J. D.; McLarnon, C. F.
1990-01-01
Genetic analyses involving chromosomes from seven inbred lines derived from a single M' strain were used to study the quantitative relationships between the incidence and severity of P-M hybrid dysgenesis and the number of genomic P elements. In four separate analyses, the mutability of sn(w), a P element-insertion mutation of the X-linked singed locus, was found to be inversely related to the number of autosomal P elements. Since sn(w) mutability is caused by the action of the P transposase, this finding supports the hypothesis that genomic P elements titrate the transposase present within a cell. Other analyses demonstrated that autosomal transmission ratios were distorted by P element action. In these analyses, the amount of distortion against an autosome increased more or less linearly with the number of P elements carried by the autosome. Additional analyses showed that the magnitude of this distortion was reduced when a second P element-containing autosome was present in the genome. This reduction could adequately be explained by transposase titration; there was no evidence that it was due to repressor molecules binding to P elements and inhibiting their movement. The influence of genomic P elements on the incidence of gonadal dysgenesis was also investigated. Although no simple relationship between the number of P elements and the incidence of the trait could be discerned, it was clear that even a small number of elements could increase the incidence markedly. The failure to find a quantitative relationship between P element number and the incidence of gonadal dysgenesis probably reflects the complex etiology of this trait. PMID:2155853
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena
2016-02-15
A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman
1985-01-01
A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.
2012-01-01
Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A.; Dilkes, Brian P.; Baxter, Ivan
2016-01-01
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. PMID:27770027
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome.
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A; Dilkes, Brian P; Baxter, Ivan
2016-12-07
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. Copyright © 2016 Asaro et al.
Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R
2000-01-01
1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.
Sediments as tracers for transport and deposition processes in peri-alpine lakes: A case study
NASA Astrophysics Data System (ADS)
Righetti, Maurizio; Toffolon, Marco; Lucarelli, Corrado; Serafini, Michele
2011-12-01
SummaryThe benthic sediment fingerprint is analysed in the small peri-alpine lake Levico (Trentino, Italy) to identify the causes of recurrent phenomena of turbidity peaks, particularly evident in a littoral region of the water body. In order to study the sediment transport processes, we exploit the fact that the sediment supply from the major tributary has a specific chemical composition, which differs from that of the nearby lake basin. Three elements (Fe, Al, K) have been used as tracers to identify the source and the deposition patterns of tributary sediments, and another typical element, Si, has been critically analysed because of its dual (allochthonous and autochthonous) origin. Several samples of the benthic material have been analysed using SEM-EDS, and the results of the sedimentological characterisation have been compared with the patterns of sediment accumulation at the bed of the lake obtained using a three-dimensional numerical model, in response to the tributary supply under different external forcing and stratification conditions. The coupled use of field measurements and numerical results suggests that the turbidity phenomena are strongly related to the deposition of the sediments supplied by the tributary stream, and shows that it is possible to reconstruct the process of local transport when the tributary inflow is chemically specific.
Holocene geochemical footprint from Semi-arid alpine wetlands in southern Spain
NASA Astrophysics Data System (ADS)
García-Alix, Antonio; Jiménez-Espejo, Francisco J.; Jiménez-Moreno, Gonzalo; Toney, Jaime L.; Ramos-Román, María J.; Camuera, Jon; Anderson, R. Scott; Delgado-Huertas, Antonio; Martínez-Ruiz, Francisca; Queralt, Ignasi
2018-02-01
Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ˜2500 to ˜3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.
Heavy metals in the atmosphere coming from a copper smelter in Chile
NASA Astrophysics Data System (ADS)
Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.
The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (<2.5 μm) and coarse (2.5-15 μm) particles on Nuclepore filters. S, Cu, Zn and As were quite enriched in normal working periods relative to the strike period. Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.
Proteomics technique opens new frontiers in mobilome research.
Davidson, Andrew D; Matthews, David A; Maringer, Kevin
2017-01-01
A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.
Geochemical and mineralogical maps for soils of the conterminous United States
Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Ellefsen, Karl J.
2014-01-01
The U.S. Geological Survey began sampling in 2007 for a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils in the conterminous United States as part of the North American Soil Geochemical Landscapes Project. The sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, a sample from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting data set provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report releases geochemical and mineralogical maps along with a histogram, boxplot, and empirical cumulative distribution function plot for each element or mineral.
ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.
Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard
2012-12-15
The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
Ball, J.W.; Nordstrom, D. Kirk
1985-01-01
Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these acid waters are derived from pyrite oxidation and not from the oxidation of elemental sulfur. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.
2013-12-01
Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.
Transport of particle-associated elements in two agriculture-dominated boreal river systems.
Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn
2013-09-01
Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.
Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal
2018-01-01
The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.
Kim, K H; Hemenway, C
1997-05-26
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin
NASA Astrophysics Data System (ADS)
Pattan, J. N.; Parthiban, G.
2011-01-01
Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.
2011-01-01
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity. PMID:21943072
NASA Astrophysics Data System (ADS)
Chakhmouradian, A.
2009-04-01
There have been several attempts to systematize the geochemistry of carbonatites, most recently by Samoilov (1984), Nelson et al. (1988), Woolley and Kempe (1989), and Rass (1998). These studies revealed a number of important geochemical characteristics that can be used to track the evolutionary history of these rocks, distinguish them from modally similar metamorphic parageneses, and aid in mineral exploration for rare earths, niobium and other resources commonly associated with carbonatites. Important breakthroughs in the understanding of carbonatite petrogenesis and numerous reports of new carbonatite localities made in the past two decades lay the ground for a critical re-assessment of the geochemistry of these rocks. A new representative database of whole-rock carbonatite analyses was compiled from the post-1988 literature and various unpublished sources. The database contains 820 analyses encompassing calcio-, magnesio- and ferrocarbonatites from 174 localities (ca. one-third of the total number of carbonatites known worldwide) reduced to ca. 350 analyses following the approach of Woolley and Kempe (1989). Carbonatites emplaced in oceanic settings (e.g., Cape Verde), ophiolite belts (e.g., Oman), or those of uncertain tectonic affinity (e.g., El Picacho in Mexico) were not included. Two major types of continental carbonatites can be distinguished on the basis of their geological setting and trace-element geochemistry: (1) carbonatites emplaced in rifts and smaller-scale extensional structures developed in stable Archean cratons or paleo-orogenic belts, and (2) carbonatites emplaced in collisional settings following the orogenesis. In both settings, the most common and best-studied type of carbonatite is calcite carbonatite (predominantly intrusive with a small percentage of extrusive occurrences), which accounts for 62% of the analyses included in the database. Both types of carbonatite are typically associated with alkaline silicate lithologies (meleigites, nepheline syenites, etc.), but those associated with type-1 rocks are typically Na-rich and silica-undersaturated, whereas type-2 carbonatites are associated with K-rich silica-saturated to undersaturated syenites. Type-1 carbonatites are notably different from their type-2 counterparts in showing higher abundances of high-field-strength elements (HFSE = Ti, Zr, Hf, Nb, Ta), Rb, U and V, but lower levels of Sr, Ba, Pb, rare-earth elements, F and S. Key element ratios are also different in the two carbonatite types; in particular, Rb/K, Nb/Ta, Zr/Hf and Ga/Al values are consistently higher in type-1 samples. Notably, some element ratios (e.g., Co/Ni and Y/Ho) are very similar in both groups. Type-2 carbonatites commonly show a 13C-depleted signature relative to the "primary carbonatite" range (Deines, 1989). The observed differences in geological setting and geochemistry indicate the existence of two distinct carbonatite sources in the subcontinental lithosphere: amphibole-bearing lherzolite producing type-1 rocks (cf. Chakhmouradian, 2006), and subducted oceanic crust (rutile-bearing eclogite?) yielding type-2 melts depleted in HFSE, but enriched in light carbon, large-ion-incompatible elements, F and S. References: Chakhmouradian, A.R. (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol., 235, 138-160. Deines, P. (1989) Stable isotope variations in carbonatites. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 301-359. Nelson, D.R., Chivas, A.R., Chappell, B.V. and McCulloch, M.T. (1988) Geochemical and isotopic systematic in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 1-17. Rass, I.T. (1998) Geochemical features of carbonatite indicative of the composition, evolution, and differentiation of their mantle magmas. Geochem. Int., 36, 107-116. Samoilov, V.S. (1984) Geochemistry of Carbonatites. Nauka, Moscow (in Russ.). Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 1-14.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-05-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, T.L.; Simonen, F.A.
1992-01-01
Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less
NASA Astrophysics Data System (ADS)
Keshavarzi, B.; Moore, F.
2009-04-01
The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As content in all analysed samples is higher than the published standard levels. The most probable source for As contamination is the high concentration of this element in tap water and nutrients in all trophic levels. As content was also found to be high in livestock's wool and hair. Arsenic toxicity is probably the main reason for the observed hyperpigmentation and keratosis of palms and soles seen in the villagers. The high concentration of arsenic in various biogeochemical cycles in the Muteh region is the result of the geological nature of the Muteh district enhanced by gold mining and processing which plays an active role in the remobilization of this elements.
NASA Astrophysics Data System (ADS)
Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.
2012-12-01
The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs, perhaps signifying the "local source" and the mechanism of the REE enrichment in the LMG apatite in the IOA ores and host rocks. In contrast, the minor- and trace-element compositions of the other major rock-forming minerals (e.g., clinopyroxene and fayalite) as well as the zircon, and fluorite in the LMG have average igneous granitic trace- and minor-element compositions. To better understand the timing and origin of these post ~1050 Ma events, U-Pb ID-TIMS dating of apatite and titanite, and in situ LA-MC-ICPMS Sm-Nd analysis were done on the ore and host rock samples. Apatite dates range from 1050 to 850 Ma and titanite dates range from ~1015 to 970 Ma. There is significant age variation within samples and within grains. Titanite does not have sufficient spread for accurate Sm-Nd isochron dating and two ore-apatite samples have homogenous initial Nd isotopic and Sm-Nd elemental ratios, precluding calculation of Sm-Nd dates. A third ore sample shows a large spread in Sm-Nd and yields a Sm-Nd isochron date of ~850 Ma, in close agreement with U-Pb apatite dates. The Sm-Nd isochron and U-Pb apatite dates may reflect cooling recorded in these minerals or a younger hydrothermal mineralization event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, B.; Rousseau, D.; Gaillardet, J.
The Congo river Basin is the second largest drainage basin in the world, after the Amazon. The materials carried by its main rivers provide the opportunity to study the products of denudation of a large fraction of the upper continental crust of the African continent. This paper presents the chemical composition of the different phases carried in the Congo rivers and is followed by a companion paper, devoted to the modelling of major and trace elements. The Congo river between Bangui and Brazzaville as well as its main tributaries, including a few organic-rich rivers, also called Black Rivers, were sampledmore » during the 1989 high water stage. The three main phases (suspended load, dissolved load, and bedload) were analysed for twenty-five major and trace elements. Concentrations normalized to the upper continental crust show that in each river, suspended sediments and dissolved load are chemical complements for the most soluble elements (Ca, Na, Sr, K, Ba, Rb, and U). While these elements are enriched in the dissolved loads, they are considerably depleted in the corresponding suspended sediments. This is consistent with their high mobility during weathering. Another type of complementarity is observed for Zr and Hf between suspended sediments and bedload, related to the differential velocity of suspended sediments and zircons which are concentrated in bedloads. Compared to other rivers, absolute dissolved concentrations of Ca, Na, Sr, K, Ba, Rb, and U are remarkably low. Surprisingly, high dissolved concentrations are found in the Congo waters for other trace elements (e.g., REEs), especially in the Black rivers. On a world scale, these concentrations are among the highest measured in rivers and are shown to be pH dependent for a number of dissolved trace elements. The dissolved loads are systematically normalized to the suspended loads for each river, in order to remove the variations of the element abundances owing to source rock variations.« less
The differentiation of eucrites: The role of in situ crystallization
NASA Astrophysics Data System (ADS)
Barrat, J. A.; Blichert-Toft, J.; Gillet, Ph.; Keller, F.
2000-09-01
We report on major and trace element analyses of 17 eucrites, including three cumulate eucrites (Binda, Moore County, and Serra de Magé), determined by, respectively, ICP-AES and ICP-MS. The results obtained for Binda and Moore County are consistent with the model of Treiman (1997) for the formation of cumulate eucrites, which holds that these meteorites were produced from a eucritic melt. Our sample of Serra de Magé contains unusually large amounts of pyroxene and probably an accessory phase rich in HREEs and is therefore not representative of this eucrite as known from literature data. Our results for the noncumulate eucrites Bereba, Bouvante, Cachari, Caldera, Camel Donga, Ibitira, Jonzac, Juvinas, Lakangaon, Millbillillie, Padvarninkai, Pasamonte, Sioux County and Stannern are in good agreement with literature data. The observed decoupling between major and trace elements for noncumulate eucrites can be explained by in-situ crystallization during the differentiation of an asteroidal magma ocean. This model can further account for both the Nuevo Laredo and the Stannern trends but has as a consequence that none of the analyzed eucrites represents a primary melt.
Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H
2013-01-01
The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martín, Francisco; Diez, María; García, Inés; Simón, Mariano; Dorronsoro, Carlos; Iriarte, Angel; Aguilar, José
2007-05-25
In the present work, soil profiles were sampled 40 days and three years after an accidental pyrite tailing spill from the Aznalcóllar mine (S Spain) in order to figure out the effects of the acidic solution draining from the tailing. The composition of the acidic solution, the mineralogy, and the total and soluble content of the major elements were analysed at varying depths. The results show a weathering process of carbonates and of primary silicates. Calcium released is leached or reacts with the sulphate ions to form gypsum. Magnesium, aluminium and potassium tend to leach from the uppermost millimetres of the soil, accumulating where the pH>/=5.0; also the iron, probably forming more or less complex hydroxysulphates, precipitate in the upper 5 cm. The strong releasing of soluble salts increases the electrical conductivity, while the soluble potassium tends to decrease in the uppermost part of the soil due to the neoformation of jarosite. Iron is soluble only where the pH=2.3, and aluminium where the pH=5.5.
NASA Technical Reports Server (NTRS)
Glass, B. P.
1976-01-01
The major-element compositions of 93 low-specific-gravity (less than 2.60) high-silica (greater than 60%) glass particles from a sample of lunar fines (14259,20) were determined by electron microprobe analyses. The size, shape, abundance, mineralogy, and major-element composition of more than 60% of the high-silica glasses is consistent with their being fragments of interstitial glass from mare basalts. However, one group of 30 glasses with between 72% and 78% SiO2 and an average of approximately 2.6% FeO can be distinguished from other high-silica glasses both chemically and petrographically. Glass particles with this composition do not contain crystalline inclusions and are fairly homogeneous not only within a single particle but also from particle to particle. The chemistry and petrology of these glasses suggest that they are not fragments of interstitial glass or shock-melted particles from a 'granitic' source rock. Rather, the homogeneity and lack of crystalline inclusions suggest that this group of high-silica glasses was the product of lunar acidic volcanism.
NASA Astrophysics Data System (ADS)
Ozerov, Alexei Y.
2000-01-01
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91-64), clinopyroxene (Wo 45-38En 40-51Fs 5-20) and chrome—spinel/magnetite inclusions in them (Cr 2O 3 45-0 wt.%, TiO 2 0.5-11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.
Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less
Origins and Distribution of Chondritic Olivine Inferred from Wild 2 and Chondrite Matrix
NASA Technical Reports Server (NTRS)
Frank, D. R.; Zolensky, M. E.
2014-01-01
To date, only 180 particle impact tracks from Wild 2 have been extracted from the Stardust aerogel collector and even fewer have been thoroughly characterized. In order to provide a cohesive compositional dataset that can be compared to the meteorite record, we have made both major and minor element analyses (TEM/EDXS) of olivine and low-Ca pyroxene for 39 particles harvested from 26 tracks. However, the dearth of equivalent analyses for these phases in chondrite matrix hinders their comparison to the Wild 2 samples. To properly permit comparison of chondritic olivine and pyroxene to the Wild 2 samples, we have also provided a large, comprehensive EPMA dataset (greater than10(exp 3) analyses) of analogous grains (5-30 micrometers) isolated in L/LL3.0-4, CI, CM, CR, CH, CO, CV, Acfer 094, EH3, EL6, and Kakangari matrix
Changes to Idaho's statewide surface-water quality monitoring program since 1995
O'Dell, Ivalou; Maret, Terry R.; Moore, Susan E.
1998-01-01
The program design included chemical analyses of water samples collected at 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples were collected every year (1990 through 1995) at 5 sites (annual sites), every other year at 19 sites (biennial sites), and every third year at 32 sites (triennial sites). Each year, 25 of the 56 sites were sampled. During water years 1990–95 (October 1, 1989, to September 30, 1995), samples were collected bimonthly. Onsite analyses consisted of discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses consisted of major ions, nutrients, trace elements, turbidity, and suspended sediment. Analytical results from the five annual sites sampled during water years 1990–93 are presented in a report by O’Dell and Berenbrock (1994).
Hooker, Claire; Chapman, Simon
2006-02-01
To analyse structural factors revealed by politicians that shaped legislation on tobacco control in New South Wales, 1955-95. Parliamentary debates and other records were collected. Open-ended interviews were conducted with 17 Members of Parliament (MPs) who were significantly involved, and then analysed for structural elements. Tobacco industry lobbying had a significant but limited influence on policy making, being exerted largely through social interactions with executives and based on concerns about the economic impact on third parties. MPs saw health advocates' chief functions as (1) generating community concern about the issue and support for control measures, and (2) bringing any new information to political attention, providing pro-control arguments and data through the media. Factors that delayed tobacco control policies included: the conservative stance of Premiers and major parties, commitments to unanimous federal action, and rivalry between parties. Factors that facilitated control policies included: reforms that gave the Legislative Council increased power, the use of parliamentary committees, and backbencher and grass roots support. Tobacco control policy and legislation has been the product of political structures that gave power to those MPs in the least powerful positions--minor parties, Members of the Legislative Council (MLCs), backbenchers, women and party rank and file--rather than to major parties and their executives. Advocates should make the most of their access points to the political process, providing information, arguments and support and demonstrating public opinion in favour of further control.
Phylogenomic analyses data of the avian phylogenomics project.
Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Narula, Nitish; Liu, Liang; Burt, Dave; Ellegren, Hans; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas Pius; Zhang, Guojie
2015-01-01
Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.
Luo, Jie; Qi, Shihua; Xie, Xianming; Gu, X W Sophie; Wang, Jinji
2017-01-01
Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.
Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J
2015-08-01
In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.
Argyraki, Ariadne; Kelepertzis, Efstratios
2014-06-01
Understanding urban soil geochemistry is a challenging task because of the complicated layering of the urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements. A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil samples (0-10cm) were collected from 238 sampling sites on a regular 1×1km grid and were digested by a HNO3-HCl-HClO4-HF mixture. A combination of multivariate statistics and Geographical Information System approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24mg kg(-1) respectively). The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians of 45, 39, 98, 3.6, 1.7 and 0.3mg kg(-1) respectively) was also observed; significant correlations were identified between concentrations and urbanization indicators, including vehicular traffic, urban land use, population density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other cities around the world, and further investigation should characterize and evaluate their geochemical reactivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).
Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas
2017-01-01
The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.
NASA Astrophysics Data System (ADS)
Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.
2013-04-01
The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612 glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting
Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei
2018-04-01
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.
Here, we present the results of a coordinated SIMS U–Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ~4.33 Ga, however they differ in thatmore » only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ≤300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb– 206Pb ages of 4.33 Ga. These grains are our best constraints on impact ages within our sample population, and suggest at least one large impact is contemporaneous with the most common time of magmatic zircon formation on the Moon’s crust visited by the Apollo missions.« less
NASA Astrophysics Data System (ADS)
Murray, K. E.; Ducea, M. N.; Reiners, P. W.
2009-12-01
Foundering or delamination of the lower lithosphere into the convecting mantle is required by mass balance in convergent orogens such as the central Andes. In the central Andean volcanic zone (CVZ), late Miocene to Recent mafic lavas erupted on the Puna plateau are small volume fissure flows and cinder cones classically cited as evidence of convective lithospheric removal, in concert with a suite of observations including high surface elevation (>4000m) and anomalously thin lithosphere relative to other parts of the CVZ. Mafic lavas provide the best available geochemical window into the recent history of the upper mantle in this and other regions. However, an increasing number of elemental and isotopic data suggest that these melts are less distinct from the neighboring arc magmatism than originally predicted. This observation weakens the hypothesis that there is a distinct geochemical fingerprint for so-called delamination magmatism, while advancing our understanding of the size of delaminating bodies and the timescales over which they detach from the lithosphere and interact with the mantle wedge. In this contribution, we present elemental and radiogenic isotopic data from 20 newly sampled mafic lavas from the Puna plateau (24.5°S to 27°S). Preliminary major element analyses show that the Puna lavas are high-K to shoshonitic in composition, in broad agreement with other mafic lavas sampled though out the region. Several sampled flows contain xenotliths of granitoid composition, which likely represent the crustal end member that contributed to the more evolved lavas. Along with major, trace and rare earth element analyses, we will present 87Sr/86Sr and 143Nd/144Nd data to further characterize source regions of these melts. In sum, these data will allow us to (1) expand the spatial coverage of this dataset in the central Andes, (2) contribute to the effort to parse contributions from the subcontinental lithosphere, asthenosphere, subduction-related fluids, and upper crustal sources and (3) examine these lavas in the context of the CVZ, as well as other regions where delamination magmatism has been proposed, including the Sierra Nevada batholith and Coast Mountains batholith in British Columbia.
Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.
2016-12-28
Here, we present the results of a coordinated SIMS U–Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ~4.33 Ga, however they differ in thatmore » only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ≤300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb– 206Pb ages of 4.33 Ga. These grains are our best constraints on impact ages within our sample population, and suggest at least one large impact is contemporaneous with the most common time of magmatic zircon formation on the Moon’s crust visited by the Apollo missions.« less
Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada
Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.
1989-01-01
The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled by first mixing primitive arc magma with enriched basaltic liquid derived either from garnet peridotite or metasomatized mantle, followed by fractionation of olivine, pyroxenes, plagioclase and spinel. ?? 1989.
The Origin of Fibrous Calcite Veins: Aragonite?
NASA Astrophysics Data System (ADS)
Elburg, M. A.; Bons, P. D.
2005-12-01
Truly fibrous calcite veins occur mainly in carbonaceous shales and are characterised by high length:width ratios of their fibres (>10). Previous studies on their Sr isotopic geochemistry (Elburg et al., 2002: Geol. Soc. London Spec. Publ. 200, 103-118; Hilgers and Sindern, 2005: Geofluids, in press) have shown that some of the material could be derived from the local wall rock. These studies also showed that the veins were always enriched in Sr compared to the calcite in the host rocks. Aragonite can contain significantly more Sr than calcite, while it also tends to have a fibrous crystal habit. It is therefore possible that the fibrous habit of these veins, which now consist of calcite, are a reflection of their initial aragonitic mineralogy, rather than of any special tectonic regime during their formation. This idea was investigated by analysing the major and trace element geochemistry of selected fibrous and non-fibrous calcite veins from Arkaroola (northern Flinders Ranges, Australia). The fibrous vein analysed for major elements contains less than 1% MgCO3, whereas calcite in the host rock, with which it is in Sr isotopic equilibrium, contains 18% MgCO3. Calcite can contain significant Mg, whereas the aragonitic structure cannot accomodate this ion, so this result is consistent with the idea of an original aragonitic mineralogy of the veins. The fibrous veins show an enrichment in the middle rare earth elements (REE) compared to the calcite in the host rock and blocky veins. In a Post-Archean Average Shale normalised diagram, Eu is more strongly enriched compared to its neighbouring elements in the fibrous veins, but not in the host calcite, blocky veins, or in the silicate fraction of the host rock, suggesting more reducing conditions during fibrous vein formation. This data cannot be used as direct evidence for the fibrous veins' aragonitic mineralogy. It does, however, show that significant differences exist between calcite in host rocks, blocky and fibrous calcite veins, and this data should be incorporated in any model explaining the origin of fibrous veins.
Boundary element analyses for sound transmission loss of panels.
Zhou, Ran; Crocker, Malcolm J
2010-02-01
The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.
Assessing the Continuum of Care Pathway for Maternal Health in South Asia and Sub-Saharan Africa
Singh, Kavita; Story, William T.; Moran, Allisyn C.
2016-01-01
Objective We assess how countries in regions of the world where maternal mortality is highest - South Asia and Sub-Saharan Africa - are performing with regards to providing women with vital elements of the continuum of care. Methods Using recent Demographic and Health Survey data from nine countries including 18,036 women, descriptive and multilevel regression analyses were conducted on four key elements of the continuum of care - at least one antenatal care visit, four or more antenatal care visits, delivery with a skilled birth attendant and postnatal checks for the mother within the first 24 hours since birth. Family planning counseling within a year of birth was also included in the descriptive analyses. Results Results indicated that a major drop-out (more than 50%) occurs early on in the continuum of care between the first antenatal care visit and four or more antenatal care visits. Few women (less than 5%) who do not receive any antenatal care go on to have a skilled delivery or receive postnatal care. Women who receive some or all the elements of the continuum of care have greater autonomy and are richer and more educated than women who receive none of the elements. Conclusion Understanding where drop-out occurs and who drops out can enable countries to better target interventions. Four or more ANC visits plays a pivotal role within the continuum of care and warrants more programmatic attention. Strategies to ensure that vital services are available to all women are essential in efforts to improve maternal health. PMID:26511130
Electron-probe microanalysis of light elements in coal and other kerogen
Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.
1996-01-01
Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with mechanically isolating macerals. Studies to date have demonstrated the level of compositional variability within and between macerals in suites of Canadian coals.
Plazzi, Federico; Mantovani, Barbara
2017-01-01
Abstract Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3′-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. PMID:28505260
Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P
2015-12-01
Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McDonald, Iain; Hughes, Hannah S. R.; Butler, Ian B.; Harris, Jeffrey W.; Muir, Duncan
2017-11-01
Base metal sulphide (BMS) inclusions in diamonds provide a unique insight into the chalcophile and highly siderophile element composition of the mantle. Entombed within their diamond hosts, these provide a more robust (closed system) sample, from which to determine the trace element, Re-Os and S-isotopic compositions of the mantle than mantle xenoliths or orogenic peridotites, as they are shielded from alteration during ascent to the Earth's crust and subsequent surface weathering. However, at temperatures below 1100 °C some BMS inclusions undergo subsolidus re-equilibration from an original monosulphide solid solution (Mss) and this causes fractionation of the major and trace elements within the inclusions. Thus to study the subjects noted above, current techniques require the entire BMS inclusion to be extracted for analyses. Unfortunately, 'flaking' of inclusions during break-out is a frequent occurrence and hence the risk of accidentally under-sampling a portion of the BMS inclusion is inherent in current practices. This loss may have significant implications for Re-Os isotope analyses where incomplete sampling of a Re-rich phase, such as chalcopyrite that typically occurs at the outer margins of BMS inclusions, may induce significant bias in the Re-Os and 187Os/188Os measurements and resulting model and isochron ages. We have developed a method for the homogenisation of BMS inclusions in diamond prior to their break-out from the host stone. Diamonds are heated to 1100 °C and then quenched to chemically homogenise any sulphide inclusions for both major and trace elements. Using X-ray Computed Microtomography (μCT) we determine the shape and spatial setting of multiple inclusions within a host stone and crucially show that the volume of a BMS inclusion is the same both before and after homogenisation. We show that the homogenisation process significantly reduces the inherent variability of in situ analysis when compared with unhomogenised BMS, thereby widening the scope for multiple methods for quantitative analysis, even on 'flakes' of single BMS inclusions. Finally we show that the trace elements present in peridotite (P-type) and eclogitic (E-type) BMS are distinct, with P-type diamonds having systematically higher total platinum-group element (particularly Os, Ir, Ru) and Te and As concentrations. These distinctions suggest that the PGE and semi-metal budgets of mantle-derived partial melts will be significantly dependent upon the type(s) and proportions of sulphides present in the mantle source.
NASA Technical Reports Server (NTRS)
1972-01-01
The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.
Contemporary Issues in Science. Implementation Manual.
ERIC Educational Resources Information Center
Staten Island Continuum of Education, NY.
Contemporary Issues in Science Program (CIIS) is designed to provide teachers and students with the necessary tools and strategies for bringing contemporary scientific issues into the classroom. Provided in this document are discussions of the three major elements in the program, support elements, and major activities. Major elements include the…
NASA Astrophysics Data System (ADS)
Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.
2017-12-01
For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our findings for the Bishop Tuff with results for very large and supereruptions elsewhere in the world. We argue that supereruptions typically mobilize a complex patchwork of magma bodies that reside within specific levels of the crust. They reveal moments of high-melt productivity in the crust, unlike what we observe in the Earth today.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav
2017-02-01
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.
Non-Target Analyses of organic compounds in ice cores using HPLC-ESI-UHRMS
NASA Astrophysics Data System (ADS)
Zuth, Christoph; Müller-Tautges, Christina; Eichler, Anja; Schwikowski, Margit; Hoffmann, Thorsten
2015-04-01
To study the global climatic and environmental changes it is necessary to know the environmental and especially atmospheric conditions of the past. By analysing climate archives, such as for example ice cores, unique environmental information can be obtained. In contrast to the well-established analysis of inorganic species in ice cores, organic compounds have been analysed in ice cores to a much smaller extent. Because of current analytical limitations it has become commonplace to focus on 'total organic carbon' measurements or specific classes of organic molecules, as no analytical methods exist that can provide a broad characterization of the organic material present[1]. On the one hand, it is important to focus on already known atmospheric markers in ice cores and to quantify, where possible, in order to compare them to current conditions. On the other hand, unfortunately a wealth of information is lost when only a small fraction of the organic material is examined. However, recent developments in mass spectrometry in respect to higher mass resolution and mass accuracy enable a new approach to the analysis of complex environmental samples. The qualitative characterization of the complex mixture of water soluble organic carbon (WSOC) in the ice using high-resolution mass spectrometry allows for novel insights concerning the composition and possible sources of aerosol derived WSOC deposited at glacier sites. By performing a non-target analysis of an ice core from the Swiss Alps using previous enrichment by solid-phase extraction (SPE) and high performance liquid chromatography coupled to electrospray ionization and ultra-high resolution mass spectrometry (HPLC-ESI-UHRMS) 475 elemental formulas distributed onto 659 different peaks were detected. The elemental formulas were classified according to their elemental composition into CHO-, CHON-, CHOS-, CHONS-containing compounds and 'others'. Several methods for the analysis of complex data sets of high resolution mass spectrometry were applied to the results of the non-target analysis. By various classifications in Van Krevelen plots[2], amino acids and degradation products of proteins as well as degradation products of lignins have been determined as the main components of the ice core. Furthermore, the majority of WSOC molecular formulas identified in this non-target analysis had molar H/C and O/C ratios similar to mono- and di-carboxylic acids and SOAs[3]. Studies of the carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol showed that a majority of the elemental formulas can be associated with the combustion of biomass as a major source of the WSOC[4]. References: [1] Grannas et al., J. Geophys Res.,2006, 111 [2] Sleighter, RL, Hatcher, PG, J. Mass Spectrom., 2007, 42, 559-574 [3] Wozniak et al., Atmos. Chem. Phys., 2008, 8, 5099-5111 [4] Kroll et al., Nature Chemistry, 2011, 3, 133-139
Particulate matter analysis at elementary schools in Curitiba, Brazil.
Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M
2008-06-01
The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.
Three in One—Multiple Faunal Elements within an Endangered European Butterfly Species
Junker, Marius; Zimmermann, Marie; Ramos, Ana A.; Gros, Patrick; Konvička, Martin; Nève, Gabriel; Rákosy, László; Tammaru, Toomas
2015-01-01
Ice ages within Europe forced many species to retreat to refugia, of which three major biogeographic basic types can be distinguished: "Mediterranean", "Continental" and "Alpine / Arctic" species. However, this classification often fails to explain the complex phylogeography of European species with a wide range of latitudinal and altitudinal distribution. Hence, we tested for the possibility that all three mentioned faunal elements are represented within one species. Our data was obtained by scoring 1,307 Euphydryas aurinia individuals (46 European locations) for 17 allozyme loci, and sequencing a subset of 492 individuals (21 sites) for a 626 base pairs COI fragment. Genetic diversity indices, F statistics, hierarchical analyses of molecular variance, individual-based clustering, and networks were used to explore the phylogeographic patterns. The COI fragment represented 18 haplotypes showing a strong geographic structure. All but one allozyme loci analysed were polymorphic with a mean F ST of 0.20, supporting a pronounced among population structure. Interpretation of both genetic marker systems, using several analytical tools, calls for the recognition of twelve genetic groups. These analyses consistently distinguished different groups in Iberia (2), Italy, Provence, Alps (3), Slovenia, Carpathian Basin, the lowlands of West and Central Europe as well as Estonia, often with considerable additional substructures. The genetic data strongly support the hypothesis that E. aurinia survived the last glaciation in Mediterranean, extra-Mediterranean and perialpine refugia. It is thus a rare example of a model organism that combines attributes of faunal elements from all three of these sources. The observed differences between allozymes and mtDNA most likely result from recent introgression of mtDNA into nuclear allozyme groups. Our results indicate discrepancies with the morphologically-based subspecies models, underlining the need to revise the current taxonomy. PMID:26566029
Analysing the hidden curriculum: use of a cultural web
Mossop, Liz; Dennick, Reg; Hammond, Richard; Robbé, Iain
2013-01-01
CONTEXT Major influences on learning about medical professionalism come from the hidden curriculum. These influences can contribute positively or negatively towards the professional enculturation of clinical students. The fact that there is no validated method for identifying the components of the hidden curriculum poses problems for educators considering professionalism. The aim of this study was to analyse whether a cultural web, adapted from a business context, might assist in the identification of elements of the hidden curriculum at a UK veterinary school. METHODS A qualitative approach was used. Seven focus groups consisting of three staff groups and four student groups were organised. Questioning was framed using the cultural web, which is a model used by business owners to assess their environment and consider how it affects their employees and customers. The focus group discussions were recorded, transcribed and analysed thematically using a combination of a priori and emergent themes. RESULTS The cultural web identified elements of the hidden curriculum for both students and staff. These included: core assumptions; routines; rituals; control systems; organisational factors; power structures, and symbols. Discussions occurred about how and where these issues may affect students’ professional identity development. CONCLUSIONS The cultural web framework functioned well to help participants identify elements of the hidden curriculum. These aspects aligned broadly with previously described factors such as role models and institutional slang. The influence of these issues on a student’s development of a professional identity requires discussion amongst faculty staff, and could be used to develop learning opportunities for students. The framework is promising for the analysis of the hidden curriculum and could be developed as an instrument for implementation in other clinical teaching environments. PMID:23323652
Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M Jay; Casuccio, Gary; Gertler, Alan W
2009-02-01
The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected during a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). To fully understand mineral dusts, their chemical and physical properties, as well as mineralogical inter-relationships, were accurately established. In addition to the ambient samples, bulk soil samples were collected at each of the 15 sites. In each case, approximately 1 kg of soil from the top 10 mm at a previously undisturbed area near the aerosol sampling site was collected. The samples were air-dried and sample splits taken for soil analysis. Further sample splits were sieved to separate the < 38 micro m particle fractions for mineralogical analysis. Examples of major-element and trace-element chemistry, mineralogy, and other physical properties of the 15 grab samples are presented. The purpose of the trace-element analysis was to measure levels of potentially harmful metals while the major-element and ion-chemistry analyses provided an estimate of mineral components. X-ray diffractometry provided a measure of the mineral content of the dust. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze chemical composition of small individual particles. From similarities in the chemistry and mineralogy of re-suspended and ambient sample sets, it is evident that portions of the ambient dust are from local soils.
NASA Astrophysics Data System (ADS)
Sandler, A.; Brenner, I. B.; Halicz, L.
1988-02-01
Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.
Petrography and Geochemistry of Metals in Almahata Sitta Ureilites
NASA Technical Reports Server (NTRS)
Ross, A. J.; Herrin, J. S.; Mittlefehldt, D. W.; Downes, H.; Smith, C. L.; Lee, M. R.; Jones, A. P.; Jenniskens, P.; Shaddad, M. H,
2011-01-01
Ureilites are ultramafic achondrites, predominantly composed of olivine and pyroxenes with accessory carbon, metal and sulfide. The majority of ureilites are believed to represent the mantle of the ureilite parent body (UPB) [1]. Although ureilites have lost much of their original metal [2], the metal that remains retains a record of the formative processes. Almahata Sitta is predominantly composed of unbrecciated ureilites with a wide range of silicate compositions [3,4]. As a fall it presents a rare opportunity to examine fresh ureilite metal in-situ, and analyzing their highly siderophile element (HSE) ratios gives clues to their formation. Bulk siderophile element analyses of Almahata Sitta fall within the range observed in other ureilites [5]. We have examined the metals in seven ureilitic samples of Almahata Sitta (AS) and one associated chondrite fragment (AS#25).
Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001
NASA Technical Reports Server (NTRS)
Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).
Probable age of Autolycus and calibration of lunar stratigraphy
NASA Technical Reports Server (NTRS)
Ryder, G.; Bogard, D.; Garrison, D.
1991-01-01
Ar-39 - Ar-40 analyses of three petrographically distinct, shocked Apollo 15 KREEP (i.e., high K, rare earth element, P, and other trace element contents) basalt samples demonstrate that a major impact event affected all three samples at about 2.1 Ga. The Copernican System craters Aristillus and Autolycus are to the north. Autolycus, the older of the two, is in a particularly appropriate terrain and is the most likely source of the 2.1 Ga heating and delivery event. With this calibration point, and if Autolycus really is a Copernican crater, the Copernican System lasted twice as long as has previously been suggested. Furthermore, the moon was not subjected to a constant cratering rate over the past 3 billion years; the average rate in the preceding Eratosthenian must have been twice that in the Copernican.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.
2017-11-01
In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.
Geochemical Assessment of Groundwater in the Peri-urban Environment of Buenos Aires, Argentina
NASA Astrophysics Data System (ADS)
Gallardo, A.
2014-12-01
Groundwater pollution is a major concern in peri-urban environments. Thus, water quality is being investigated at several domestic wells in Brandsen, 70 km south of Buenos Aires, Argentina. To present, about 20 water sources were sampled in orchards and small farms of the area. There is limited data about the wells construction, although collected information suggests that groundwater is derived from the superficial sandy loams of the Pampean Aquifer. Samples were analysed for major inorganic elements using ion chromatography and ICP-MS. Titration was used to estimate alkalinity. Physical characteristics (EC, pH, temperature) were measured on site. Results show that groundwater pH ranges from 6.5 to 7.8, with a specific conductance of 180 to 255 mS/m. A peak of 360 mS/m in one horticultural parcel is associated to local NO3- concentrations up to 140 mg/L. This value exceeds the maximum recommendations set by the WHO (50 mg/L). Considering that fertilizer inputs in that property are negligible, the high levels of NO3- might be attributed to effluents from a neighbour septic tank. An increase in NO3- (>150mg/L) was also detected in two conventional farms. This increase correlates to elevated SO42- concentrations (>300 mg/L) suggesting thus, fertilizers percolation into the saturated zone. The leaching of these fluids might be exacerbated by irrigation during new planting, and accumulations of fertilizer-solids in the root zones from previous seasons. Chloride concentrations average ~90 mg/L and would not pose a threat to health at the moment. Its main origin would be related to connate waters in the loam matrix, although some anthropogenic inputs might occur in the previously described farms. In general, the rest of the analysed elements fall within acceptable levels for drinking purposes as well. Nevertheless, further work is still necessary to better define the fate of the potential harmful elements and assess seasonal variations in water quality.
Trace-element analyses of core samples from the 1967-1988 drillings of Kilauea Iki lava lake, Hawaii
Helz, Rosalind Tuthill
2012-01-01
This report presents previously unpublished analyses of trace elements in drill core samples from Kilauea Iki lava lake and from the 1959 eruption that fed the lava lake. The two types of data presented were obtained by instrumental neutron-activation analysis (INAA) and energy-dispersive X-ray fluorescence analysis (EDXRF). The analyses were performed in U.S. Geological Survey (USGS) laboratories from 1989 to 1994. This report contains 93 INAA analyses on 84 samples and 68 EDXRF analyses on 68 samples. The purpose of the study was to document trace-element variation during chemical differentiation, especially during the closed-system differentiation of Kilauea Iki lava lake.
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
Proteomics technique opens new frontiers in mobilome research
Davidson, Andrew D.; Matthews, David A.
2017-01-01
ABSTRACT A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the “mobilome,” which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the “domestication” of transposon proteins for cellular functions. Although ‘omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called “proteomics informed by transcriptomics” (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease. PMID:28932623
Active and passive compliance in an enhanced recovery programme.
Thorn, Christopher C; White, Ian; Burch, Jennie; Malietzis, George; Kennedy, Robin; Jenkins, John T
2016-07-01
Enhanced recovery after surgery (ERAS) is a well-established and accepted practice following colorectal surgery and has been demonstrated to reduce hospital length of stay (LOS) and 30-day morbidity. Despite evidence to support the individual elements on which the programme is based, there remains uncertainty as to how many and which of these are required to realise its benefits. Furthermore, elements of an ERAS programme might either precipitate or reflect recovery, in which case compliance could have a role in the improvement or prediction of outcome. A multidimensional prospective database of 799 consecutive patients undergoing colorectal surgery within an established ERAS programme at a single institution was interrogated. After application of exclusion criteria, 614 patients were studied. The novel concept of 'active compliance' is introduced. An ERAS element is classified as 'active' if the participation of the patient is required to achieve its compliance. This contrasts with 'passive' compliance, where an intervention is delivered to the patient without their direct contribution. The short-term surgical outcomes of this cohort are reported with reference to ERAS protocol compliance. Compliance with the passive elements of the programme was higher than with the active elements. Univariate and multivariate analyses demonstrate that poor compliance with active but not passive elements of the programme was significantly associated with major morbidity. Receiver operator characteristic curve analysis demonstrated active compliance to be a stronger predictor of both major morbidity (AUC 0.71 vs. AUC 0.56) and length of stay (AUC 0.83 vs. 0.57) when compared with passive compliance. The results suggest that poor active compliance may be a surrogate marker of morbidity which can be recognised in the early post-operative period. This implies the potential for timely diagnosis and intervention. This aspect of ERAS compliance is clinically relevant yet has achieved scant attention. Independent validation of our observations is required.
Utilizing Skylab data in on-going resources management programs in the state of Ohio
NASA Technical Reports Server (NTRS)
Baldridge, P. E. (Principal Investigator); Goesling, P. H.; Martin, T. A.; Wukelic, G. E.; Stephan, J. G.; Smail, H. E.; Ebbert, T. F.
1975-01-01
The author has identified the following significant results. The use of Skylab imagery for total area woodland surveys was found to be more accurate and cheaper than conventional surveys using aerial photo-plot techniques. Machine-aided (primarily density slicing) analyses of Skylab 190A and 190B color and infrared color photography demonstrated the feasibility of using such data for differentiating major timber classes including pines, hardwoods, mixed, cut, and brushland providing such analyses are made at scales of 1:24,000 and larger. Manual and machine-assisted image analysis indicated that spectral and spatial capabilities of Skylab EREP photography are adequate to distinguish most parameters of current, coal surface mining concern associated with: (1) active mining, (2) orphan lands, (3) reclaimed lands, and (4) active reclamation. Excellent results were achieved when comparing Skylab and aerial photographic interpretations of detailed surface mining features. Skylab photographs when combined with other data bases (e.g., census, agricultural land productivity, and transportation networks), provide a comprehensive, meaningful, and integrated view of major elements involved in the urbanization/encroachment process.
Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance
Plantegenet, Stephanie; Weber, Johann; Goldstein, Darlene R; Zeller, Georg; Nussbaumer, Cindy; Thomas, Jérôme; Weigel, Detlef; Harshman, Keith; Hardtke, Christian S
2009-01-01
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5′ regulatory sequence variation in the corresponding genes is indeed increased. However, ∼42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL. PMID:19225455
Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.
2015-01-01
This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010
Allometry and apparent paradoxes in human limb proportions: Implications for scaling factors.
Auerbach, Benjamin M; Sylvester, Adam D
2011-03-01
It has been consistently demonstrated that human proximal limb elements exhibit negative allometry, while distal elements scale with positive allometry. Such scaling implies that longer limbs will have higher intralimb indices, a phenomenon not borne out by empirical analyses. This, therefore, creates a paradox within the limb allometry literature. This study shows that these apparently conflicting results are the product of two separate phenomena. First, the use of the geometric mean of limb elements produces allometry coefficients that are not independent, and that when using ordinary least squares regression must yield an average slope of one. This phenomenon argues against using the geometric mean as a size variable when examining limb allometry. While the employment of relevant dimensions independent of those under analysis to calculate the geometric mean--as suggested by Coleman (Am J Phys Anthropol 135 (2008) 404-415)--may be a partial method for resolving the problem, an empirically determined, independent and biologically relevant size variable is advocated. If stature is used instead of the geometric mean as an independent size variable, all major limb elements scale with positive allometry. Second, while limb allometry coefficients do indicate differential allometry in limb elements, and thus should lead to some intralimb index allometry, this pattern appears to be attenuated by other sources of limb element length variation. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jannot, S.; Schiano, P.; Boivin, P.; Clocchiatti, R.; Chazot, G.
2003-04-01
The Massif Central area, characterized by a typical intraplate alkaline serie, is the largest magmatic province of the West-European Rift system. Although it has been the subject of several studies, the nature of Massif Central sources is still a matter of debate and many hypotheses are proposed, including deep-rooted continental hotspot, metasomatised spinel lherzolites and an asthenospheric flow linked to the lithospheric root of the Alpine chain. The Chaîne des Puys is the last magmatic province of the French Massif Central and is composed of hundred young well-preserved volcanoes. The present work aims to supply information on the nature and the origin of the source chemistry of alkaline serie from the Chaîne des Puys, by characterizing the trace and major element composition of minute melts preserved as quenched glass inclusions inside olivines phenocrysts in scoria from the Beaunit Maar. Heating stage experiments performed at ambient pressure on partially crystallised primary melt inclusions suggest CO_2 oversaturation of the trapped melt, and an entrapment temperature around 1200^oC±10^oC. Daughter minerals analyses point to a Ti-and Ca-rich basaltic paragenesis, in good agreement with that of erupted basalts from the Chaîne des Puys. Major element compositions show that melts trapped in inclusions evolve by limited fractional crystallization. Inclusions trapped in the more primitive olivine phenocrysts (Fo85) have alkali-basalt compositions that fall on the primitive end of the compositional trend define by the lavas of the Chaîne des Puys. Their major element chemistry rules out the hypothesis of a mantle source in the spinel stability field and requires a garnet-bearing mantle source. Analyzed for trace-element composition by LA-ICP-MS, they display homogeneous, enriched patterns, similar to those characterizing oceanic island and continental basalts. They have high concentration of LILE and LREE/HREE ratios. Such trace-element feature are typical of OIB showing EM(1-2)-type isotopic signatures and thought to reflect the involvement of recycled continental and/or sedimentary components.
Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro
2017-01-01
Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876
Adelman, Zach N; Jasinskiene, Nijole; Vally, K J M; Peek, Corrie; Travanty, Emily A; Olson, Ken E; Brown, Susan E; Stephens, Janice L; Knudson, Dennis L; Coates, Craig J; James, Anthony A
2004-10-01
The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15-30% of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.
NASA Astrophysics Data System (ADS)
Moisescu, Alexandra-Raluca; Anghelache, Gabriel
2017-10-01
In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.
Paz, Rosalía Cristina; Kozaczek, Melisa Eliana; Rosli, Hernán Guillermo; Andino, Natalia Pilar; Sanchez-Puerta, Maria Virginia
2017-10-01
Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.
NASA Astrophysics Data System (ADS)
Lowe, David J.; Pearce, Nicholas J. G.; Jorgensen, Murray A.; Kuehn, Stephen C.; Tryon, Christian A.; Hayward, Chris L.
2017-11-01
We define tephras and cryptotephras and their components (mainly ash-sized particles of glass ± crystals in distal deposits) and summarize the basis of tephrochronology as a chronostratigraphic correlational and dating tool for palaeoenvironmental, geological, and archaeological research. We then document and appraise recent advances in analytical methods used to determine the major, minor, and trace elements of individual glass shards from tephra or cryptotephra deposits to aid their correlation and application. Protocols developed recently for the electron probe microanalysis of major elements in individual glass shards help to improve data quality and standardize reporting procedures. A narrow electron beam (diameter ∼3-5 μm) can now be used to analyze smaller glass shards than previously attainable. Reliable analyses of 'microshards' (defined here as glass shards <32 μm in diameter) using narrow beams are useful for fine-grained samples from distal or ultra-distal geographic locations, and for vesicular or microlite-rich glass shards or small melt inclusions. Caveats apply, however, in the microprobe analysis of very small microshards (≤∼5 μm in diameter), where particle geometry becomes important, and of microlite-rich glass shards where the potential problem of secondary fluorescence across phase boundaries needs to be recognised. Trace element analyses of individual glass shards using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), with crater diameters of 20 μm and 10 μm, are now effectively routine, giving detection limits well below 1 ppm. Smaller ablation craters (<10 μm) can be subject to significant element fractionation during analysis, but the systematic relationship of such fractionation with glass composition suggests that analyses for some elements at these resolutions may be quantifiable. In undertaking analyses, either by microprobe or LA-ICP-MS, reference material data acquired using the same procedure, and preferably from the same analytical session, should be presented alongside new analytical data. In part 2 of the review, we describe, critically assess, and recommend ways in which tephras or cryptotephras can be correlated (in conjunction with other information) using numerical or statistical analyses of compositional data. Statistical methods provide a less subjective means of dealing with analytical data pertaining to tephra components (usually glass or crystals/phenocrysts) than heuristic alternatives. They enable a better understanding of relationships among the data from multiple viewpoints to be developed and help quantify the degree of uncertainty in establishing correlations. In common with other scientific hypothesis testing, it is easier to infer using such analysis that two or more tephras are different rather than the same. Adding stratigraphic, chronological, spatial, or palaeoenvironmental data (i.e. multiple criteria) is usually necessary and allows for more robust correlations to be made. A two-stage approach is useful, the first focussed on differences in the mean composition of samples, or their range, which can be visualised graphically via scatterplot matrices or bivariate plots coupled with the use of statistical tools such as distance measures, similarity coefficients, hierarchical cluster analysis (informed by distance measures or similarity or cophenetic coefficients), and principal components analysis (PCA). Some statistical methods (cluster analysis, discriminant analysis) are referred to as 'machine learning' in the computing literature. The second stage examines sample variance and the degree of compositional similarity so that sample equivalence or otherwise can be established on a statistical basis. This stage may involve discriminant function analysis (DFA), support vector machines (SVMs), canonical variates analysis (CVA), and ANOVA or MANOVA (or its two-sample special case, the Hotelling two-sample T2 test). Randomization tests can be used where distributional assumptions such as multivariate normality underlying parametric tests are doubtful. Compositional data may be transformed and scaled before being subjected to multivariate statistical procedures including calculation of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may make the assumption of multivariate normality more appropriate. A sequential procedure using Mahalanobis distance and the Hotelling two-sample T2 test is illustrated using glass major element data from trachytic to phonolitic Kenyan tephras. All these methods require a broad range of high-quality compositional data which can be used to compare 'unknowns' with reference (training) sets that are sufficiently complete to account for all possible correlatives, including tephras with heterogeneous glasses that contain multiple compositional groups. Currently, incomplete databases are tending to limit correlation efficacy. The development of an open, online global database to facilitate progress towards integrated, high-quality tephrostratigraphic frameworks for different regions is encouraged.
Chemical composition of sedimentary rocks in California and Hawaii
Hill, Thelma P.
1981-01-01
A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of just two of the three major components or a mixture of these and a fourth component such as phosphate, gypsum, or iron oxide.
Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar
2012-01-01
The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629
Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.
Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun
2011-08-01
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
The 'North American shale composite' - Its compilation, major and trace element characteristics
NASA Technical Reports Server (NTRS)
Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.
1984-01-01
North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.
NASA Astrophysics Data System (ADS)
McLeod, C. L.; Brown, K.; Brydon, R.; Haley, M.; Hill, T.; Shaulis, B.; Tronnes, R. G.
2017-12-01
Advances in the capabilities of microanalysis over the past several decades have promoted a redefinition of traditional petrological terminology. This has allowed a more accurate evaluation of a samples petrogenetic history. For example, the term "phenocryst", specifically describes crystals that grew from the liquid that solidified into the groundmass. Evolving from this idea is the term xenocryst, referring to crystals that did not originate in the magma but were gathered by it, and antecrysts, which crystallized from a progenitor of the magma that solidified into the groundmass. Through identification of a magmas different, and distinct, crystal populations, the petrogenetic history of a magmatic rock can therefore be unraveled. This approach has been widely applied to terrestrial volcanic systems throughout the past several decades. This study presents results from a combined microimaging and in-situ microanalytical investigation of granitic magmas crystal cargoes in order to unravel how granitic batholiths are constructed. 27 lithological units from two granite batholiths in the Oslo Rift, Norway form the basis of this investigation. Micro X-Ray Fluorescence (µXRF) mapping of major elements and selected trace elements is used in order to chemically map each granitic unit, identify any characteristic growth zoning, and compare the crystal cargoes of the different units. Major and trace elemental abundances of the major phases (feldspars, biotite, amphibole) and minor phases (apatite and titanite) are to be quantified through electron microprobe analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) respectively. Through chemically fingerprinting the crystal cargoes of these Oslo Rift granitic magmas, the open vs. closed nature of granitic, intrusive, magmatic systems will be investigated. Within the context of the Oslo Rift, this study also offers an opportunity to evaluate the processes inherent to granitoid magmatism during continental rifting.
Luchetti, Andrea; Plazzi, Federico; Mantovani, Barbara
2017-06-01
Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3'-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
On the materials basis of modern society
Graedel, T. E.; Nassar, N. T.; Reck, Barbara K.
2015-01-01
It is indisputable that modern life is enabled by the use of materials in its technologies. Those technologies do many things very well, largely because each material is used for purposes to which it is exquisitely fitted. The result over time has been a steady increase in product performance. We show that this materials complexity has markedly increased in the past half-century and that elemental life cycle analyses characterize rates of recycling and loss. A further concern is that of possible scarcity of some of the elements as their use increases. Should materials availability constraints occur, the use of substitute materials comes to mind. We studied substitution potential by generating a comprehensive summary of potential substitutes for 62 different metals in all their major uses and of the performance of the substitutes in those applications. As we show herein, for a dozen different metals, the potential substitutes for their major uses are either inadequate or appear not to exist at all. Further, for not 1 of the 62 metals are exemplary substitutes available for all major uses. This situation largely decouples materials substitution from price, thereby forcing material design changes to be primarily transformative rather than incremental. As wealth and population increase worldwide in the next few decades, scientists will be increasingly challenged to maintain and improve product utility by designing new and better materials, but doing so under potential constraints in resource availability. PMID:24297915
Phylogenomic analyses reveal novel relationships among snake families.
Streicher, Jeffrey W; Wiens, John J
2016-07-01
Snakes are a diverse and important group of vertebrates. However, relationships among the major groups of snakes have remained highly uncertain, with recent studies hypothesizing very different (and typically weakly supported) relationships. Here, we address family-level snake relationships with new phylogenomic data from 3776 nuclear loci from ultraconserved elements (1.40million aligned base pairs, 52% missing data overall) sampled from 29 snake species that together represent almost all families, a dataset ∼100 times larger than used in previous studies. We found relatively strong support from species-tree analyses (NJst) for most relationships, including three largely novel clades: (1) a clade uniting the boas, pythons and their relatives, (2) a clade placing cylindrophiids and uropeltids with this clade, and (3) a clade uniting bolyeriids (Round Island boas) with pythonids and their relatives (xenopeltids and loxocemids). Relationships among families of advanced snakes (caenophidians) were also strongly supported. The results show the potential for phylogenomic analyses to resolve difficult groups, but also show a surprising sensitivity of the analyses to the inclusion or exclusion of outgroups. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krüger, Harald; Stephan, Thomas; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, Francois-Régis; Rynö, Jouni; Schulz, Rita; Silén, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin
2015-11-01
COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.
Development of a conceptual model of cancer caregiver health literacy.
Yuen, E Y N; Dodson, S; Batterham, R W; Knight, T; Chirgwin, J; Livingston, P M
2016-03-01
Caregivers play a vital role in caring for people diagnosed with cancer. However, little is understood about caregivers' capacity to find, understand, appraise and use information to improve health outcomes. The study aimed to develop a conceptual model that describes the elements of cancer caregiver health literacy. Six concept mapping workshops were conducted with 13 caregivers, 13 people with cancer and 11 healthcare providers/policymakers. An iterative, mixed methods approach was used to analyse and synthesise workshop data and to generate the conceptual model. Six major themes and 17 subthemes were identified from 279 statements generated by participants during concept mapping workshops. Major themes included: access to information, understanding of information, relationship with healthcare providers, relationship with the care recipient, managing challenges of caregiving and support systems. The study extends conceptualisations of health literacy by identifying factors specific to caregiving within the cancer context. The findings demonstrate that caregiver health literacy is multidimensional, includes a broad range of individual and interpersonal elements, and is influenced by broader healthcare system and community factors. These results provide guidance for the development of: caregiver health literacy measurement tools; strategies for improving health service delivery, and; interventions to improve caregiver health literacy. © 2015 John Wiley & Sons Ltd.
Al-Awadi, F M; Srikumar, T S
2001-08-01
Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.
Superelement Analysis of Tile-Reinforced Composite Armor
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
1998-01-01
Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.
NASA Astrophysics Data System (ADS)
Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.
2017-06-01
Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).
Li, Zhengyang; Wang, Zhitao; Yang, Li; Li, Xinyue; Sasaki, Yoko; Wang, Shuang; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa
2010-03-01
Bone sialoprotein (BSP) is a major non-collagenous, extracellular matrix glycoprotein associated with mineralized tissues. Fibroblast growth factor 2 (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of osteoblasts. We previously reported that FGF2 regulates BSP gene transcription through the FGF2 response element (FRE) and activator protein 1 (AP1) binding site overlapping with the glucocorticoid response element in the rat BSP gene promoter. In the present study, FGF2 (10 ng/ml) increased BSP and Runx2 mRNA levels at 6 h in MCF7 human breast cancer cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of MCF7 cells with FGF2 (10 ng/ml) increased the luciferase activity of the constructs between -84LUC and -927LUC. Gel mobility shift analyses showed that FGF2 increased the binding of AP1 and CRE2. The CRE2- and AP1-protein complexes were disrupted by antibodies against CREB1, c-Fos, c-Jun, Fra2, p300 and Runx2. These studies demonstrate that FGF2 stimulates BSP transcription in MCF7 human breast cancer cells by targeting the AP1 and CRE2 elements in the human BSP gene promoter.
Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter
2011-05-01
Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland
Devereux, Olivia H.; Prestegaard, Karen L.; Needelman, Brian A.; Gellis, Allen C.
2010-01-01
Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land-based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank-erosion measurements, sediment budget and other methods.
NASA Astrophysics Data System (ADS)
Aranha, R. S.; Layne, G. D.; Edinger, E.; Piercey, G.
2009-12-01
Stylasterids are one of the lesser known groups of deep sea corals, but appear to have potential to serve as viable geochemical archives for reconstructing temperature, salinity and nutrient regimes in the deep ocean. This group of hydrocorals are present in most, if not all of the world’s major oceans. Stylasterid species dominantly have aragonitic skeletons, with a small percentage of species having calcitic skeletons (1). A recent study on the biomineralization of a deep sea stylasterid (Errina dabneyi) has revealed that during the organism’s growth, a steady dissolution and reprecipitation of skeletal material occurs in the central canals of the skeleton. This skeletal modification likely alters the stable isotope and/or trace element profiles of these corals, making them potentially less reliable as geochemical archives, depending on the scale of sampling (2). Recent specimens of Stylaster venustus were collected in July, 2008 from the Olympic Coast National Marine sanctuary off the coast of Washington at depths of 200 - 350 m. We used a Cameca IMS 4f Secondary Ion Mass Spectrometer (SIMS) to perform high spatial resolution (<25 µm) spot analyses of Sr/Ca, Mg/Ca and Na/Ca in detailed traverses across the basal cross-sections from three of these specimens. We identified the remineralized material by remnant porous texture and/or a substantially different trace element composition. Spot analyses corresponding to the remineralized material were eliminated from the dataset. In all three specimens we observed a pronounced inverse correlation (r = -0.36) of Mg/Ca and Sr/Ca profiles throughout the length of the transects . A positive correlation (r =0.46) between Na/Ca and Mg/Ca profiles was also noted in two of the specimens analyzed. These correlations strongly imply that the coral skeleton is recording either cyclical or episodic variations in temperature, with possible overprinting from other environmental variation. The exact relationship between the visible banding in the skeletal cross-section and any cyclicity of trace element profiles is currently ambiguous. However, our analyses demonstrate that microanalytical techniques are a viable means of extracting trace element records from these corals. Further statistical analysis of the trace element transects, in combination with a variety of imaging analyses of the same samples, should help us elucidate what portion of the geochemical signal is temperature dependent and what magnitude of temperature change is actually being recorded. Correlating these trace element profiles with instrumental temperature records will help confirm that useful geochemical archives are preserved by stylasterid skeletons. References: (1) Cairns SD and Macintyre IG. 1992. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria:Hydrozoa).Palaios 7: 96-107. (2) Wisshak M, López Correa M, Zibrowius H, Jakobsen J & Freiwald. (in press). Skeletal reorganisation affects geochemical signals, exemplified in the stylasterid hydrocoral Errina dabneyi (Azores Archipelago). Marine Ecology Progress Series.
Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California
Herrera, P.A.; Closs, L.G.; Silberman, M.L.
1993-01-01
Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Gaji, Rajshekhar Y; Howe, Daniel K
2009-07-01
The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Exploring Learners’ Mental Health Profile: A study in Universiti Tun Hussein Onn Malaysia
NASA Astrophysics Data System (ADS)
Lee, M. F.; Lai, C. S.
2017-08-01
Mental health issue was a serious matter that was often neglected by people. This article will describe a study of the mental health profile among the learners of Malaysia Technical University (MTU) that focus on Universiti Tun Hussein Onn Malaysia (UTHM). A survey using DASS-21 inventory and self-developed questionnaire was used for this study to investigate learners’ mental health level in three elements and factors contribute towards mental health. A total number of 450 students from seven faculties in UTHM was strata randomly selected as sampel for this study. The relationships between factors of mental health and the elements of mental health was identified. Collected data was analysed using percentage, mean score, standard deviation and multiple linear regression. Findings showed that majority of students possess normal level but the percentage of severe and extremely severe level was increasing. The main factor highly significantly correlate to all the mental health elements was self-evaluation. Hence, it is highly recommended that mental health issue needs great attention and remedial action from higher learning institution, non-governmental organizations, parents, students themselves and other concerned bodies.
Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.
Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege
2012-01-01
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.
Nuclear microprobe imaging of gallium nitrate in cancer cells
NASA Astrophysics Data System (ADS)
Ortega, Richard; Suda, Asami; Devès, Guillaume
2003-09-01
Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.
Impact Histories of Vesta and Vestoids inferred from Howardites, Eucrites, and Diogenites
NASA Technical Reports Server (NTRS)
Scott, E. R. D.; Bogard, D. D.; Bottke, W. F.; Taylor, G. J.; Greenwood, R. C.; Franchi, I. A.; Keil, K.; Moskovitz, N. A.; Nesvorny, D.
2009-01-01
The parent body of the howardites, eucrites and diogenites (HEDs) is thought to be asteroid (4) Vesta [1]. However, several eucrites have now been recognized, like NWA 011 and Ibitira, with major element compositions and mineralogy like normal eucrites but with different oxygen isotope compositions and minor element concentrations suggesting they are not from the same body [2, 3]. The discoveries of abnormal eucrites and V-type asteroids that are probably not from Vesta [see 4] raise the question whether the HEDs with normal oxygen isotopes are coming from Vesta [3]. To address this issue and understand more about the evolution of Vesta in preparation for the arrival of the Dawn spacecraft, we integrate fresh insights from Ar-Ar dating and oxygen isotope analyses of HEDs, radiometric dating of differentiated meteorites, as well as dynamical and astronomical studies of Vesta, the Vesta asteroid family (i.e., the Vestoids), and other V-type asteroids.
Wilson, Reda J; O'Neil, M E; Ntekop, E; Zhang, Kevin; Ren, Y
2014-01-01
Calculating accurate estimates of cancer survival is important for various analyses of cancer patient care and prognosis. Current US survival rates are estimated based on data from the National Cancer Institute's (NCI's) Surveillance, Epidemiology, and End RESULTS (SEER) program, covering approximately 28 percent of the US population. The National Program of Cancer Registries (NPCR) covers about 96 percent of the US population. Using a population-based database with greater US population coverage to calculate survival rates at the national, state, and regional levels can further enhance the effective monitoring of cancer patient care and prognosis in the United States. The first step is to establish the coding completeness and coding quality of the NPCR data needed for calculating survival rates and conducting related validation analyses. Using data from the NPCR-Cancer Surveillance System (CSS) from 1995 through 2008, we assessed coding completeness and quality on 26 data elements that are needed to calculate cancer relative survival estimates and conduct related analyses. Data elements evaluated consisted of demographic, follow-up, prognostic, and cancer identification variables. Analyses were performed showing trends of these variables by diagnostic year, state of residence at diagnosis, and cancer site. Mean overall percent coding completeness by each NPCR central cancer registry averaged across all data elements and diagnosis years ranged from 92.3 percent to 100 percent. RESULTS showing the mean percent coding completeness for the relative survival-related variables in NPCR data are presented. All data elements but 1 have a mean coding completeness greater than 90 percent as was the mean completeness by data item group type. Statistically significant differences in coding completeness were found in the ICD revision number, cause of death, vital status, and date of last contact variables when comparing diagnosis years. The majority of data items had a coding quality greater than 90 percent, with exceptions found in cause of death, follow-up source, and the SEER Summary Stage 1977, and SEER Summary Stage 2000. Percent coding completeness and quality are very high for variables in the NPCR-CSS that are covariates to calculating relative survival. NPCR provides the opportunity to calculate relative survival that may be more generalizable to the US population.
Combined Non-invasive PIXE/PIGE Analyses of Mammoth Ivory from Aurignacian Archaeological Sites.
Reiche, Ina; Heckel, Claire; Müller, Katharina; Jöris, Olaf; Matthies, Tim; Conard, Nicholas J; Floss, Harald; White, Randall
2018-06-18
Among the earliest Homo sapiens societies in Eurasia, the Aurignacian phase of the Early Upper Paleolithic, approximately 40 000-30 000 years ago, mammoth ivory assumed great social and economic significance, and was used to create hundreds of personal ornaments as well as the earliest known works of three-dimensional figurative art in the world. This paper reports on the results of micro-PIXE/PIGE analyses of mammoth-ivory artifacts and debris from five major sites of Aurignacian ivory use. Patterns of variable fluorine content indicate regionally distinctive strategies of ivory procurement that correspond to apparent differences in human-mammoth interactions. Preserved trace elements (Br, Sr, Zn) indicate that differences at the regional level are applicable to sourcing Paleolithic ivory at the regional scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gose, W. A.
1973-01-01
The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.
John A. McLean; P. Laks; T.L. Shore
1983-01-01
Western spruce budworm were reared on three host foliages and artificial medium. Trace element analyses showed large differences in elemental concentrations between food sources and only minor differences between insect life stages. Discriminant analyses were carried out to test the distinctiveness of adult chemoprints from each rearing regime. Fe, Cu, and Zn were...
Comet or asteroid shower in the late Eocene?
Tagle, Roald; Claeys, Philippe
2004-07-23
The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S
Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.
NASA Astrophysics Data System (ADS)
Ricci, J.; Quidelleur, X.; Pallares, C.; Lahitte, P.
2017-10-01
For the first time in the Lesser Antilles volcanic arc, we combine for one island, 123 K-Ar ages, with 133 major and trace elements geochemical analyses, in order to better constrain the volcanic history of Basse-Terre Island. In this study, nine new ages have been obtained from the southern part of the island, and complemented with eighty-three new major and trace element analyses of samples collected across the island. The southern part of Basse-Terre Island has been the loci of volcanic activity since the last 200 kyr. It is characterized by the construction of the Grande-Découverte Volcanic Complex (GDVC) composed by the Grande-Découverte - Soufrière (GDS) and the Trois-Rivières Madeleine Field (TRMF). After the onset of construction at least at 205 ± 28 ka, the GDVC displays strikingly continuous activity between 140 ± 13 and 56 ± 3 ka, followed by a 30 kyr volcanic hiatus, which is coeval with the hiatus also observed for the TRMF activity. Two new ages of 125 ± 14 and 140 ± 13 ka obtained on a lava flow from the Grande-Découverte caldera wall suggest the presence of a depression, resulting of a major flank collapse and/or explosive event, before 140 ka. Finally, a new age of 9 ± 6 ka, obtained from outcrops exposed on the edge of the Class River, in the north of the GDVC, allows us to calculate channel incision rates between 11 and 56 mm/yr. These values are consistent with incision rates determined on other volcanic islands with similar climates. In a broad sense, the petrology and geochemistry of Basse-Terre Island rocks appear fairly homogeneous, with mainly andesite and basaltic-andesite rocks and typical features of volcanic-arc lavas. Nevertheless, in detail, various magmatic processes can be discerned. Most variations are principally controlled by crystal-melt fractionation-accumulation, but major and trace elements also highlight episodic magmatic recharge, involving magma mixing. There are also indications for assimilation of crustal rocks with continental affinity, as well as mantle input of slab-derived fluids. Trace element ratios suggest the presence of at least two different magmatic sources characterized by different partial melting rates and different continental contributions for Basse-Terre Island. Different massifs show a bimodal behavior, with the Basal Complex, the Axial Chain (Piton de Bouillante and Southern Axial Chain), the Monts-Caraïbes volcanoes and the Sans-Toucher volcano in the first group, and the Septentrional Chain, and the Grande-Découverte Volcanic Complex (GDS and TRMF) in the second. Given the unique amount of time-constrained geochemical data, this study provides a complete and detailed investigation of volcanic evolution in the central part of the Lesser Antilles active arc.
Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong
2017-03-01
The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.
Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico
NASA Astrophysics Data System (ADS)
Marquez, N.; Kasper, J.
2012-04-01
A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.
Close or not so close? Provenance studies of megalithic monuments from Alentejo (Portugal)
NASA Astrophysics Data System (ADS)
Boaventura, R.; Moita, P.
2012-04-01
There has been a significant amount of studies about megalithic tombs conducted in the Alentejo region. However the geological provenance of monoliths used in the construction of those tombs usually was not a priority among researchers with rare exceptions (Dehn, Kalb and Vortisch, 1991; Boaventura, 2000). Recent studies of dolmens (Oliveira, 1997 and 2006; Gonçalves, 2003) refer only to a brief characterization of rocks, such as "granite or schist slabs", highlighting certain types if the geological stratum is identical or not to the stone blocks. On the other hand, when the type of raw material appears to be similar with the bedrock, it is common and empirically assumed its local provenance. With the aim of testing and expand the knowledge about the provenance of the slabs used in the construction of megalithic tombs, several lithic samples from dolmen slabs and outcrops in their surroundings were collected for analysis and comparison. The samples were characterized by petrographic studies in thin section as well with a geochemical analyses performed by XRF that gives major elements as well some trace elements. The dolmens tested for this project are located roughly between the northeast to west of the town of Monforte (Upper region of Alentejo, Portugal) and are named, from south to north, as Serrinha, Rabuje group (1 to 5), Geodésico de Besteiros 3 and Velho. The field work and petrographic studies revealed that the slabs are constituted mainly by several types of granitoids (gnaissic, red, white, tonalitic), amphibolites and mottled schist shale. The comparison of chemical analyses between slabs and selected outcrops revealed that the provenances are in most of the cases from the nearby geological stratum. In fact, major elements (e.g. MgO, SiO2, CaO) as well trace elements (e.g. Sr, Y, Zr, Nb) compositions are similar on slab samples and in rocks from the outcrops. If in terms of major elements a similarity was already expectable, or easier to obtain, the trace elements (namely immobile elements such as Y or Nb) compositions corroborated that slabs and geological bedrock were alike. The capstone slab that covers the dolmen of Rabuje 1 group does not belong to the nearby geological stratum. Nevertheless, a probable matching source-outcrop was located sampled and characterized in terms of geochemistry and petrograpphy and compared with the megalithic capstone. This work allowed a better characterization of the rocks used in megalithic tombs as well as corroborat a pragmatic attitude of Neolithic populations in the search of the appropriate slabs for construction as proposed previously (Boaventura, 2000). When available, the megalithic stones were likely collected from the nearby stratum and therefore the distances traveled were small (in situ or less than 1-2 km). Nevertheless, when the type of stone needed was not available in the vicinity (e.g fracturing provided only smaller stones) it would be necessary to travel longer distances, up to 8 km (Boaventura, 2000), as in the case of the dolmen of Rabuje 1. Boaventura, R. (2000) - A geologia das Antas de Rabuje (Monforte, Alentejo), Revista Portuguesa de Arquelogia.Vol. 3;2.pp-15-23. Dehn, W. Kalb, P. and Vortich, W. (1991) - Geologisch-Petrographische Untersuchungen an Megalithgräbern Portugals. Madrider Mitteilungen, 32, p. 1-28. Oliveira, J. (1997) - Monumentos megalíticos da bacia hidrográfica do Rio Sever. Ibn Maruan. Castelo de Vide. Special Edition. Oliveira, J. (2006) - Património arqueológico da Coudelaria de Alter e as primeiras comunidades agropastoris. [Évora]: Colibri.
NASA Astrophysics Data System (ADS)
Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.
2002-06-01
Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2014-01-01
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Reheis, M.C.
1990-01-01
Soil chronosequences in the northern Bighorn basin permit the study of chronologic changes in the major-element chemistry and clay mineralogy of soils formed in different climates. Two chronosequences along Rock Creek in south-central Montana formed on granitic alluvium in humid and semiarid climates over the past two million years. A chronosequence at the Kane fans in north-central Wyoming formed on calcareous alluvium in an arid climate over the past 600,000 years. Detailed analyses of elemental chemistry indicate that the soils in all three areas gradually incorporated eolian dust that contained less zirconium, considered to be chemically immobile during weathering, than did the alluvium. B and C horizons of soils in the wettest of the chronosequences developed mainly at logarithmic rates, suggesting that leaching, initially rapid but decelerating, dominated the dust additions. In contrast, soils in the most arid of the chronosequences developed at linear rates that reflect progressive dust additions that were little affected by leaching. Both weathering and erosion may cause changes with time to appear logarithmic in A horizons of soils under the moist and semiarid climatic regimes. Clay minerals form with time in the basal B and C horizons and reflect climatic differences in the three areas. Vermiculite, mixed-layer illite-smectite, and smectite form in the soils of the moist-climate chronosequence; smectite forms in the semiarid-climate chronosequence; and smectite and palygorskite form in the arid-climate chronosequence. ?? 1990.
NASA Astrophysics Data System (ADS)
Sharifi, O.; Pourmand, A.
2010-12-01
West Asia, which extends from Iran and the Arabian Peninsula to eastern Mediterranean Sea, is one of the most climatically dynamic regions in the northern hemisphere. The interactions between the mid-latitude Westerlies, the Siberian Anticyclone (SA) and the Indian Ocean Summer Monsoon (IOSM) control precipitation and atmospheric dust content across West Asia. There is mounting evidence that rise and fall of some of the earliest human societies in the “Fertile Crescent” may be related to periods of abrupt climate change during the Holocene. Nevertheless, high-resolution records of climate variability are scarce from this region and the existing archives are, in part, contradictory; while pollen and planktonic abundances from lakes in central and east Turkey and western Iran suggest dry conditions during the early-middle Holocene, geochemical data indicate relatively wet conditions prevailed during this interval. In order to address these discrepancies and study the interplay between major synoptic regimes in West Asia, we propose a multi-proxy approach to reconstruct changes in moisture and atmospheric dust at interannual to decadal time-scales during the last glacial termination and the Holocene using peat records. X-ray florescent analyses of conservative lithogenic elements (e.g., Al, Zr, Ti) in a 772-cm peat core from Neor mire in NW Iran reveal periods of elevated dust input to this region since 14272 ± 372 cal yr B.P. The intensity patterns of redox-sensitive elements (e.g., Fe, K, Rb, Zn, Cu, Co, and V) are similar to refractory metals, which indicate an aeolian source for these elements. In addition, significant correlations between the intensity of potentially mobile elements, such as K and Rb, and Ti (K/Ti R2=0.85, Rb/Ti R2=0.95) confirm that ombrotrophic condition were sustained throughout the record. At least seven major episodes of enhanced dust deposition can be identified that may be related to southward expansion of the SA accompanied by weaker Westerlies. In contrast, stronger Westerlies and diminished IOSM may also explain delivery of dust to the region during these intervals, as evidenced by similar modern events. High-resolution radio carbon dating, discrete analyses of organic biomarkers, trace elements and stable, radiogenic isotopes, and high resolution 500µ intervals (approximately at seasonal level) XRF scanning in additional peat cores from NW Iran are underway to further investigate abrupt climate change in West Asia and its potential influence on human civilizations.
Gemas: Geochemical mapping of the agricultural and grasing land soils of Europe
NASA Astrophysics Data System (ADS)
Reimann, Clemens; Fabian, Karl; Birke, Manfred; Demetriades, Alecos; Matschullat, Jörg; Gemas Project Team
2017-04-01
Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples)) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 42 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes, magnetic susceptibility and total C, N and S. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling, the two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soils) and for some further elements only in the mobile metal ion (MMI) extraction. For several trace elements deficiency issues are a larger threat to plant, animal and finally human health at the European scale than toxicity. Taking the famous step back to see the whole picture at the continental scale and to understand the relative importance of the processes leading to element enrichment/depletion in soil may hold unexpected promise for mineral exploration as well as for environmental sciences.
Biomedical applications of laser-induced breakdown spectroscopy (LIBS)
NASA Astrophysics Data System (ADS)
Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.
2015-03-01
LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.
NASA Astrophysics Data System (ADS)
Dyar, M. Darby; Fassett, Caleb I.; Giguere, Stephen; Lepore, Kate; Byrne, Sarah; Boucher, Thomas; Carey, CJ; Mahadevan, Sridhar
2016-09-01
This study uses 1356 spectra from 452 geologically-diverse samples, the largest suite of LIBS rock spectra ever assembled, to compare the accuracy of elemental predictions in models that use only spectral regions thought to contain peaks arising from the element of interest versus those that use information in the entire spectrum. Results show that for the elements Si, Al, Ti, Fe, Mg, Ca, Na, K, Ni, Mn, Cr, Co, and Zn, univariate predictions based on single emission lines are by far the least accurate, no matter how carefully the region of channels/wavelengths is chosen and despite the prominence of the selected emission lines. An automated iterative algorithm was developed to sweep through all 5485 channels of data and select the single region that produces the optimal prediction accuracy for each element using univariate analysis. For the eight major elements, use of this technique results in a 35% improvement in prediction accuracy; for minors, the improvement is 13%. The best wavelength region choice for any given univariate analysis is likely to be an inherent property of the specific training set that cannot be generalized. In comparison, multivariate analysis using partial least-squares (PLS) almost universally outperforms univariate analysis. PLS using all the same wavelength regions from the univariate analysis produces results that improve in accuracy by 63% for major elements and 3% for minor element. This difference is likely a reflection of signal to noise ratios, which are far better for major elements than for minor elements, and likely limit their prediction accuracy by any technique. We also compare predictions using specific wavelength ranges for each element against those employing all channels. Masking out channels to focus on emission lines from a specific element that occurs decreases prediction accuracy for major elements but is useful for minor elements with low signals and proportionally much higher noise; use of PLS rather than univariate analysis is still recommended. Finally, we tested the generalizability of our results by analyzing a second data set from a different instrument. Overall prediction accuracies for the mixed data sets are higher than for either set alone for all major and minor elements except Ni, Cr, and Co, where results are roughly comparable.
Albano, Maria Grazia; Jourdain, Patrick; De Andrade, Vincent; Domenke, Aukse; Desnos, Michel; d'Ivernois, Jean-François
2014-05-01
Therapeutic patient education programmes on heart failure have been widely proposed for many years for heart failure patients, but their efficiency remains questionable, partly because most articles lack a precise programme description, which makes comparative analysis of the studies difficult. To analyse the degree of precision in describing therapeutic patient education programmes in recent randomized controlled trials. Three major recent recommendations on therapeutic patient education in heart failure inspired us to compile a list of 23 relevant items that an 'ideal' description of a therapeutic patient education programme should contain. To discover the extent to which recent studies into therapeutic patient education in heart failure included these items, we analysed 19 randomized controlled trials among 448 articles published in this field from 2005 to 2012. The major elements required to describe a therapeutic patient education programme were present, but some other very important pieces of information were missing in most of the studies we analysed: the patient's educational needs, health literacy, projects, expectations regarding therapeutic patient education and psychosocial status; the educational methodology used; outcomes evaluation; and follow-up strategies. Research into how therapeutic patient education can help heart failure patients will be improved if more precise descriptions of patients, educational methodology and evaluation protocols are given by authors, ideally in a standardized format. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana
NASA Astrophysics Data System (ADS)
Schrauder, Marcus; Koeberl, Christian; Navon, Oded
1996-12-01
Fibrous diamonds from Botswana contain abundant micro-inclusions, which represent syngenetic mantle fluids under high pressure. The major element composition of the fluids within individual diamonds was found to be uniform, but a significant compositional variation exists between different diamond specimens. The composition of the fluids varies between a carbonatitic and a hydrous endmember. To constrain the composition of fluids in the mantle, the trace element contents of thirteen micro-inclusion-bearing fibrous diamonds from Botswana was studied using neutron activation analysis. The concentrations of incompatible elements (including K, Na, Br, Rb, Sr, Zr, Cs, Ba, Hf, Ta, Th, U, and the LREEs) in the fluids are higher than those of mantle-derived rocks and melt inclusions. The compatible elements (e.g., Cr, Co, Ni) have abundances that are similar to those of the primitive mantle. The concentrations of most trace elements decrease by a factor of two from the carbonate-rich fluids to the hydrous fluids. Several models may explain the observed elemental variations. Minerals in equilibrium with the fluid were most likely enriched in incompatible elements, which does not agree with derivation of the fluids by partial melting of common peridotites or eclogites. Fractional crystallization of a kimberlite-like magma at depth may yield carbonatitic fluids with low mg numbers (atomic ratio [Mg/(Mg+Fe)]) and high trace element contents. Fractionation of carbonates and additional phases (e.g., rutile, apatite, zircon) may, in general, explain the concentrations of incompatible elements in the fluids, which preferably partition into these phases. Alternatively, mixing of fluids with compositions similar to those of the two endmembers may explain the observed variation of the elemental contents. The fluids in fibrous diamonds might have equilibrated with mineral inclusions in eclogitic diamonds, while peridotitic diamonds do not show evidence of interaction with these fluids. The chemical composition of the fluids in fibrous diamonds indicates that, at p, T conditions that are characteristic for diamond formation, carbonatitic and hydrous fluids are efficient carriers of incompatible elements.
NASA Technical Reports Server (NTRS)
Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst
1993-01-01
A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.
Finite element analyses of railroad tank car head impacts
DOT National Transportation Integrated Search
2008-09-24
This paper describes engineering analyses of a railroad : tank car impacted at its head by a rigid punch. This type of : collision, referred to as a head impact, is examined using : dynamic, nonlinear finite element analysis (FEA). : Commercial softw...
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
NASA Astrophysics Data System (ADS)
Nielsen, R. L.; Ghiorso, M. S.; Trischman, T.
2015-12-01
The database traceDs is designed to provide a transparent and accessible resource of experimental partitioning data. It now includes ~ 90% of all the experimental trace element partitioning data (~4000 experiments) produced over the past 45 years, and is accessible through a web based interface (using the portal lepr.ofm-research.org). We set a minimum standard for inclusion, with the threshold criteria being the inclusion of: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without knowledge of composition of the phases, and the temperature and pressure of formation/equilibration. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. In the process of populating the database, we have learned a number of things about the existing published experimental partitioning data. Most important are: ~ 20% of the papers do not satisfy one or more of the threshold criteria. The standard format for presenting data is the average. This was developed as the standard during the time where there were space constraints for publication in spite of fact that all the information can now be published as electronic supplements. The uncertainties that are published with the compositional data are often not adequately explained (e.g. 1 or 2 sigma, standard deviation of the average, etc.). We propose a new set of publication standards for experimental data that include the minimum criteria described above, the publication of all analyses with error based on peak count rates and background, plus information on the structural state of the mineral (e.g. orthopyroxene vs. pigeonite).
Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.
2017-04-01
The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C / inorganic N in the rhizosphere). However, especially the elemental mapping requires more sophisticated computational approaches to evaluate (and quantify) the spatial heterogeneities of biogeochemical properties in intact soil systems.
Baseline Geochemical Data for Medical Researchers in Kentucky
NASA Astrophysics Data System (ADS)
Anderson, W.
2017-12-01
According to the Centers for Disease Control, Kentucky has the highest cancer incidence and death rates in the country. New efforts by geochemists and medical researchers are examining ways to diagnose the origin and sources of carcinogenesis. In an effort to determine if naturally occurring geochemical or mineral elements contributes to the cancer causation, the Kentucky Geological Survey has established a Minerals and Geochemical Database that is available to medical researchers for examination of baseline geochemistry and determine if naturally occurring mineral or chemical elements contribute to the high rate of cancers in the state. Cancer causation is complex, so if natural sources can be accounted for, then researchers can focus on the true causation. Naturally occurring minerals, metals and elements occur in many parts of the state, and their presence is valuable for evaluating causation. For example, some data in the database contain maps showing (a) statewide elemental geochemistry, (b) areas of black shale oxidation occurrence, which releases metals in soil and surface waters, (c) some clay deposits in the state that can contain high content of rare earth elements, and (d) site-specific uranium occurrences. Knowing the locations of major ore deposits in the state can also provide information related to mineral and chemical anomalies, such as for base metals and mercury. Radionuclide data in soil and water analyses are limited, so future research may involve obtaining more analyses to determine radon potential. This database also contains information on faulting and geology in the state. Although the metals content of trees may not seem relevant, the ash and humus content of degraded trees affects soil, stream sediment and water geochemistry. Many rural homes heat with wood, releasing metals into the surrounding biosphere. Stressed vegetation techniques can be used to explore for ore deposits and look for high metal contents in soils and rocks. These naturally occurring elements could be used for baseline information related to new collaborative research that integrates medicine, geology, forestry, and botany to predict metal contents of stream sediments, soil residuum, trees, plants, and forest cover and determine their relation to carcinogenesis.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Moisture contamination detection in adhesive layer using embedded fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Mieloszyk, Magdalena; Soman, Rohan; Bonilla Mora, Veronica; Ostachowicz, Wieslaw
2017-04-01
The paper presents an application of embedded fibre Bragg grating (FBG) sensors for moisture contamination detection in an adhesive layer between composite elements. Due to their high corrosion resistance as well as their small size and weight, FBG sensors are a great tool for Structural Health Monitoring of composite structures. Adhesive bonds are very popular in many industrial sectors (e.g. automotive, aerospace). One of the major problems limiting the use of adhesive joints is their sensitivity to moisture from its surroundings. Even 1% of moisture can negatively affect the adhesive bond layer. The experimental and numerical investigations were performed on two rectangular samples of two glass fibre reinforced composite elements bonded together using an adhesive commonly used in the bonding or repair of aircraft elements. Moisture contamination due to diffusion process changes the volumetric properties of the material induced strain. This strain was measured by FBG sensors embedded in the adhesive layer parallel to the main axis of the sample. The behaviour of the adhesive layer in the analysed sample was also modelled using the finite element commercial code ABAQUS. Numerical and experimental results confirm the utility of FBG sensors for moisture detection in the adhesive layer even when the amount of moisture is around 2% of the sample weight.
The Boring Billion, a slingshot for Complex Life on Earth.
Mukherjee, Indrani; Large, Ross R; Corkrey, Ross; Danyushevsky, Leonid V
2018-03-13
The period 1800 to 800 Ma ("Boring Billion") is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800-1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the "Boring Billion" was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.
Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David
2012-11-01
According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Geochemical Databases GEOROC and GeoReM - What's New?
NASA Astrophysics Data System (ADS)
Sarbas, B.; Jochum, K. P.; Nohl, U.; Weis, U.
2017-12-01
The geochemical databases GEOROC (http: georoc.mpch-mainz.gwdg.de) and GeoReM (http: georem.mpch-mainz.gwdg.de) are maintained by the Max Planck Institute for Chemistry in Mainz, Germany. Both online databases became crucial tools for geoscientists from different research areas. They are regularly upgraded by new tools and new data from recent publications obtained from a wide range of international journals. GEOROC is a collection of published analyses of volcanic rocks and mantle xenoliths. Since recently, data for plutonic rocks are added. The analyses include major and trace element concentrations, radiogenic and non-radiogenic isotope ratios as well as analytical ages for whole rocks, glasses, minerals and inclusions. Samples come from eleven geological settings and span the whole geological age scale from Archean to Recent. Metadata include, among others, geographic location, rock class and rock type, geological age, degree of alteration, analytical method, laboratory, and reference. The GEOROC web page allows selection of samples by geological setting, geography, chemical criteria, rock or sample name, and bibliographic criteria. In addition, it provides a large number of precompiled files for individual locations, minerals and rock classes. GeoReM is a database collecting information about reference materials of geological and environmental interest, such as rock powders, synthetic and natural glasses as well as mineral, isotopic, biological, river water and seawater reference materials. It contains published data and compilation values (major and trace element concentrations and mass fractions, radiogenic and stable isotope ratios). Metadata comprise, among others, uncertainty, analytical method and laboratory. Reference materials are important for calibration, method validation, quality control and to establish metrological traceability. GeoReM offers six different search strategies: samples or materials (published values), samples (GeoReM preferred values), chemical criteria, chemical criteria based on bibliography, bibliography, as well as methods and institutions.
Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes
Vitte, C.; Estep, M. C.; Leebens-Mack, J.; Bennetzen, J. L.
2013-01-01
Background and Aims Although monocotyledonous plants comprise one of the two major groups of angiosperms and include >65 000 species, comprehensive genome analysis has been focused mainly on the Poaceae (grass) family. Due to this bias, most of the conclusions that have been drawn for monocot genome evolution are based on grasses. It is not known whether these conclusions apply to many other monocots. Methods To extend our understanding of genome evolution in the monocots, Asparagales genomic sequence data were acquired and the structural properties of asparagus and onion genomes were analysed. Specifically, several available onion and asparagus bacterial artificial chromosomes (BACs) with contig sizes >35 kb were annotated and analysed, with a particular focus on the characterization of long terminal repeat (LTR) retrotransposons. Key Results The results reveal that LTR retrotransposons are the major components of the onion and garden asparagus genomes. These elements are mostly intact (i.e. with two LTRs), have mainly inserted within the past 6 million years and are piled up into nested structures. Analysis of shotgun genomic sequence data and the observation of two copies for some transposable elements (TEs) in annotated BACs indicates that some families have become particularly abundant, as high as 4–5 % (asparagus) or 3–4 % (onion) of the genome for the most abundant families, as also seen in large grass genomes such as wheat and maize. Conclusions Although previous annotations of contiguous genomic sequences have suggested that LTR retrotransposons were highly fragmented in these two Asparagales genomes, the results presented here show that this was largely due to the methodology used. In contrast, this current work indicates an ensemble of genomic features similar to those observed in the Poaceae. PMID:23887091
Effect of cryogenic treatment on nickel-titanium endodontic instruments
Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.
2005-01-01
Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471
Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.
Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier
2015-08-01
The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions.
Streicher, Jeffrey W; Wiens, John J
2017-09-01
Squamate reptiles (lizards and snakes) are the most diverse group of terrestrial vertebrates, with more than 10 000 species. Despite considerable effort to resolve relationships among major squamates clades, some branches have remained difficult. Among the most vexing has been the placement of snakes among lizard families, with most studies yielding only weak support for the position of snakes. Furthermore, the placement of iguanian lizards has remained controversial. Here we used targeted sequence capture to obtain data from 4178 nuclear loci from ultraconserved elements from 32 squamate taxa (and five outgroups) including representatives of all major squamate groups. Using both concatenated and species-tree methods, we recover strong support for a sister relationship between iguanian and anguimorph lizards, with snakes strongly supported as the sister group of these two clades. These analyses strongly resolve the difficult placement of snakes within squamates and show overwhelming support for the contentious position of iguanians. More generally, we provide a strongly supported hypothesis of higher-level relationships in the most species-rich tetrapod clade using coalescent-based species-tree methods and approximately 100 times more loci than previous estimates. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.
2017-06-01
The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.
Milićević, Tijana; Aničić Urošević, Mira; Vuković, Gordana; Škrivanj, Sandra; Relić, Dubravka; Frontasyeva, Marina V; Popović, Aleksandar
2017-10-01
Since the methodological parameters of moss bag biomonitoring have rarely been investigated for the application in agricultural areas, two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring genus) and Hypnum cupressiforme (commonly available), were verified in a vineyard ambient. The moss bags were exposed along transects in six vineyard parcels during the grapevine season (March‒September 2015). To select an appropriate period for the reliable 'signal' of the element enrichment in the mosses, the bags were simultaneously exposed during five periods (3 × 2 months, 1 × 4 months, and 1 × 6 months). Assuming that vineyard is susceptible to contamination originated from different agricultural treatments, a wide range of elements (41) were determined in the moss and topsoil samples. The mosses were significantly enriched by the elements during the 2-month bag exposure which gradually increasing up to 6 months, but Cu and Ni exhibited the noticeable fluctuations during the grapevine season. However, the 6-month exposure of moss bags could be recommended for comparative studies among different vineyards because it reflects the ambient pollution comprising unpredictable treatments of grapevine applied during the whole season. Although higher element concentrations were determined in S. girgensohnii than H. cupressiforme, both species reflected the spatio-temporal changes in the ambient element content. Moreover, the significant correlation of the element (Cr, Cu, Sb, and Ti) concentrations between the mosses, and the same pairs of the elements correlated within the species, imply the comparable use of S. girgensohnii and H. cupressiforme in the vineyard (agricultural) ambient. Finally, both the moss bags and the soil analyses suggest that vineyard represents a dominant diffuse pollution source of As, Cr, Cu, Ni, Fe, and V. Copyright © 2017 Elsevier Inc. All rights reserved.
Software For Three-Dimensional Stress And Thermal Analyses
NASA Technical Reports Server (NTRS)
Banerjee, P. K.; Wilson, R. B.; Hopkins, D. A.
1994-01-01
BEST3D is advanced engineering software system for three-dimensional thermal and stress analyses, particularly of components of hot sections of gas-turbine engines. Utilizes boundary element method, offering, in many situations, more accuracy, efficiency, and ease of use than finite element method. Performs engineering analyses of following types: elastic, heat transfer, plastic, forced vibration, free vibration, and transient elastodynamic. Written in FORTRAN 77.
Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry
Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.
2008-01-01
Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample catalog. This is followed by an explanation of the categories of sample information (column headers) in Tables 1 and 2. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of 2004?7 Mount St. Helens dome samples in table 3. Intra-laboratory results for the USGS AGV-2 standard are presented (tables 4 and 5), which demonstrate the compatibility of chemical data from different sources.
X-ray Fluorescence Spectroscopy of Pre-Federal American Currency
NASA Astrophysics Data System (ADS)
Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis
2017-09-01
X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).
Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia.
Sim, Siong Fong; Ling, Teck Yee; Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu; Bakeh, Tomy
2014-01-01
This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization.
Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia
Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu
2014-01-01
This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization. PMID:27437493
Suzuki, Kazuyuki; Noda, Jun; Yanagisawa, Makio; Kawazu, Isao; Sera, Kouichiro; Fukui, Daisuke; Asakawa, Mitsuhiko; Yokota, Hiroshi
2012-12-01
The aim of this study was to evaluate the relationships between carapace parameters as indicators of age and plasma elements in 25 captive hawksbill sea turtles. Particle-induced X-ray emission allowed detection of 23 trace and major elements. There were significant but weak correlations between the virtual carapace surface area and plasma bromide (r = -0.552, P<0.01), phosphorus (r = 0.547, P<0.01), lead (r =-0.434, P<0.05) and strontium (r = 0.599, P<0.01), while there were no significant correlations with other elements. These results suggest that major and trace plasma elements in captive sea turtles show almost no variation with carapace parameters, suggesting that the increase in plasma elements seen in wild sea turtles might be the result of marine pollution.
Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.
1999-01-01
This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X-ray diffraction was used to determine clay mineralogy. Trace-metal concentrations were best correlated when normalized with respect to sediment aluminum concentrations. Normalizations indicate that most major and trace-metal concentrations fall within 95% prediction limits of the expected value. This finding suggests that little significant metal contamination occurred within this system prior to 1994 sediment sampling. Exceptions include lead, mercury, copper, zinc, potassium, and phosphorous. Lead and mercury are elements that generally enter this watershed through atmospheric deposition; thus, anomalous levels of these metals are not necessarily associated with activities within the watershed of the Steinhatchee River estuary. Anomalous concentrations of other metals such as zinc, copper, and phosphorous probably do originate within the Steinhatchee watershed. Copper failed to correlate well with any geochemical or granulometric normalizer, and this condition was not limited to a single facies or area within the estuary. This finding may indicate copper contamination in the system. Increased zinc and copper levels may be attributed to marine paints. Phosphorous levels also appeared to be elevated in a few locations in the two marsh facies sampled. This may be due to nutrient loading from two small communities, Jena and Steinhatchee, or from the application of this element in fertilizer to reduce moisture stress to young planted pines on tree farms within the watershed.The Florida Geological Survey/US Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. The data are intended to provide a benchmark for comparison with metal concentration data measurements. Seventy nine short cores were collected from 66 sample locations and analyzed. Metal concentrations were normalized against geochemical reference elements and against total weight percen
Information Summary, Area of Concern: Grand Calumet River, Indiana
1991-03-01
Indiana Harbor and Adjacent Lake Michigan (Source Rl, Table 4) 10 Concentrations of 26 Major, Minor and Trace Elements in Sediments from Indiana Harbor...2 Dec 84 (Source R39, Table 2) 68 Concentrations of Major, Minor , and Trace Elements in Fish and Crayfish from Indiana Harbor and Adjacent Lake...Table 21b) 71 Catch per Unit Effort in Crayfish Traps (Source Rl, Table 21c) 72 Concentratiors of Major, Minor , and Trace Elements in Periphyton and
Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.
2015-01-01
Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050
Geochemistry of the Arbuckle-Simpson Aquifer
Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.
2009-01-01
The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.
Tykot, Robert H
2016-01-01
Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Domínguez-Rué, Emma; Mrotzek, Maximilian
2012-10-01
Many interpretations of Shakespearean tragedy have been conducted, mostly following the principles of interpretation in literary study. In our paper, four tragedies by William Shakespeare - Hamlet, King Lear, Othello, and Macbeth - were analysed systemically to find out whether they inhabit a common structure. Using the plot structure as the basis for our analysis, we identified the most important system elements, their connections, and interactive behaviour using causal loop diagrams (CLDs). Our results revealed that all four tragedies basically conform to Senge's archetypal structure 'shifting the burden', adding the action of the heroine or villain and the characters' boundaries of perception. The results suggest that, even though characters and settings vary highly, these tragedies have similar structures and archetypal solutions exist to overcome the problem. Furthermore, we propose that CLDs and systems archetypes are a reasonable hermeneutic tool to analyse not only Shakespearean tragedies but also other literary works.
Building a Data Science capability for USGS water research and communication
NASA Astrophysics Data System (ADS)
Appling, A.; Read, E. K.
2015-12-01
Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.
Steuerwald, Amy J.; Parsons, Patrick J.; Arnason, John G.; Chen, Zhen; Peterson, C. Matthew; Louis, Germaine M. Buck
2013-01-01
Analysis of human urine is commonly used in biomonitoring studies to assess exposure to essential (e.g., Cu, Zn, Se) and non-essential (Pb, Cd, Pt) trace elements. These data are also used in epidemiological studies to evaluate potential associations between trace element exposure and various health outcomes within a population. Today most trace element analyses are typically performed using quadrupole-based inductively coupled plasma mass spectrometry (Q-ICP-MS). However, there is always the potential for spectral interferences with Q-ICP-MS instrumentation, especially when analyzing human specimens that may contain medications and other exogenous substances. Moreover, such xenobiotics may be unknown to the investigators. In a recent study focusing on environmental exposures and endometriosis: Endometriosis: Natural History, Diagnosis, and Outcomes (ENDO Study), urine specimens (n=619) were collected from participating women upon enrollment into the study or prior to surgery or pelvic magnetic resonance imaging (MRI), and analyzed for 21 trace elements by Q-ICP-MS. Here we report on some anomalous results observed for Se and Pt with elevated concentrations up to several orders of magnitude greater than what might be expected based on established reference intervals. Further investigations using Sector Field (SF-) ICP-MS instrumentation led to identification of doubly charged and polyatomic gadolinium (Gd) species traced to a Gd-based contrast agent that was administered to some subjects just prior to urine collection. Specifically, interferences from Gd2+ and several minor polyatomics were identified as interferences on all of the major isotopes of Se including 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se. While trace amounts of Pt were present in the urine, a number of Gd-containing polyatomic species were also evident as major interferences on all isotopes of Pt (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt), including Gd-chlorides, Gd-argides, and Gd-oxides. These observations underscore the importance of considering potential isobaric interferences when interpreting unusual trace element results for clinical specimens. PMID:27397951
NASA Astrophysics Data System (ADS)
Beard, Charles; van Hinsberg, Vincent; Stix, John; Wilke, Max
2017-04-01
Sodic clinopyroxene is a key fractionating phase in alkaline magmatic systems but its impact on metal enrichment processes, and the formation of REE + HFSE mineralizations in particular, is not fully understood. Sodic pyroxenes appear to more readily incorporate REE than their calcic equivalents1. Despite this, melts in evolved alkaline systems can attain high REE contents, even up to economic levels (e.g. the Nechalacho layered suite in Canada2). To constrain the control of pyroxene on REE + HFSE behaviour in alkaline magmas, a series of internally heated pressure vessel experiments was performed to determine pyroxene-melt element partitioning systematics. Synthetic trachy-andesite to phonolite compositions were run water saturated at 650-825°C with fO2 buffered by ca. 1 bar of H2 (QFM + 1) or by Hm-Mt (QFM +5). Fluorine was added to selected experiments (0.3 to 2.5 wt %) to ascertain its effect on element partitioning. Run products were analysed by EMP for major elements and LA-ICP-MS for trace elements. Mineral and glass compositions bracket the compositions of natural alkaline systems, allowing for direct application of our experimental results to nature. Our results indicate that REE partitioning systematics vary strongly with pyroxene composition: Diopside-rich pyroxenes (Aeg5-25) prefer the MREE, medium aegirine pyroxenes (Aeg25-50) preferentially incorporate the LREE, whereas high aegirine pyroxenes (Aeg55-95) strongly prefer HREE. REE partitioning coefficients are 0.3-40, typically 2-6, with minima for high aegirine pyroxenes. Melt composition (e.g. (Na+K)/Al) also impacts partitioning although to a lesser extent, except for the F-content, which shows no impact at all. The composition of fractionating pyroxene has a major impact on the REE pattern of the residual melt, and thus on the ability of a system to develop economic concentrations of the REE. Element partitioning systematics suggest that late-crystallising aegirine-rich cumulates would be HREE-rich, in accord with the composition of mineralised intrusions, such as Nechalacho2. 1 - Marks, M., Halama, R., Wenzel, T. & Markl, G., 2004. Chem. Geol. 211, 185-215. 2 - Möller, V. & Williams-Jones, A. E., 2016. J. Petrology 57, 229-276.
,
1994-01-01
In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.
Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance
NASA Astrophysics Data System (ADS)
Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.
2016-06-01
The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.
Multielement geochemical dataset of surficial materials for the northern Great Basin
Coombs, Mary Jane; Kotlyar, Boris B.; Ludington, Steve; Folger, Helen W.; Mossotti, Victor G.
2002-01-01
This report presents geochemical data generated during mineral and environmental assessments for the Bureau of Land Management in northern Nevada, northeastern California, southeastern Oregon, and southwestern Idaho, along with metadata and map representations of selected elements. The dataset presented here is a compilation of chemical analyses of over 10,200 stream-sediment and soil samples originally collected during the National Uranium Resource Evaluation's (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the Department of Energy and its predecessors and reanalyzed to support a series of mineral-resource assessments by the U.S. Geological Survey (USGS). The dataset also includes the analyses of additional samples collected by the USGS in 1992. The sample sites are in southeastern Oregon, southwestern Idaho, northeastern California, and, primarily, in northern Nevada. These samples were collected from 1977 to 1983, before the development of most of the present-day large-scale mining infrastructure in northern Nevada. As such, these data may serve as an important baseline for current and future geoenvironmental studies. Largely because of the very diverse analytical methods used by the NURE HSSR program, the original NURE analyses in this area yielded little useful geochemical information. The Humboldt, Malheur-Jordan-Andrews, and Winnemucca-Surprise studies were designed to provide useful geochemical data via improved analytical methods (lower detection levels and higher precision) and, in the Malheur-Jordan-Andrews and Winnemucca Surprise areas, to collect additional stream-sediment samples to increase sampling coverage. The data are provided in *.xls (Microsoft Excel) and *.csv (comma-separated-value) format. We also present graphically 35 elements, interpolated ("gridded") in a geographic information system (GIS) and overlain by major geologic trends, so that users may view the variation in elemental concentrations over the landscape and reach their own conclusions regarding correlation among geochemistry, geologic features, and known mineral deposits. Quality-control issues are discussed for the grids and data.
Late Holocene sedimentation in coastal areas of the northwestern Ross Sea (Antarctica)
NASA Astrophysics Data System (ADS)
Colizza, Ester; Finocchiaro, Furio; Kuhn, Gerhard; Langone, Leonardo; Melis, Romana; Mezgec, Karin; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Stenni, Barbara; Braida, Martina
2013-04-01
Sediment cores and box cores collected in two coastal areas of the northwestern Ross Sea (Antarctica) highlight the possibility of studying the Late Holocene period in detail. In this work we propose a study on two box cores and two gravity cores collected in the Cape Hallett and Wood Bay areas during the 2005 PNRA oceanographic cruise. The two sites are feed by Eastern Antarctic Ice Shelf (EAIS) and previous studies have highlighted a complex postglacial sedimentary sequence, also influenced by local morphology. This study is performed within the framework of the PNRA-ESF PolarCLIMATE HOLOCLIP (Holocene climate variability at high-southern latitudes: an integrated perspective) Project. The data set includes: magnetic susceptibility, X-ray analyses, 210Pb, 14C dating, diatoms and foraminifera assemblages, organic carbon, and grain-size analyses. Furthermore XRF core scanner analyses, colour analysis from digital images, and major, minor and trace element concentration analyses (ICP-AES) are performed. Data show that the box core and upper core sediments represent a very recent sedimentation in which it is possible to observe the parameter variability probably linked to climate variability/changes: these variation will be compared with isotopic record form ice cores collected form the same Antarctic sector.
Gebhardt, J S; Nierzwicki-Bauer, S A
1991-01-01
Symbiotically associated cyanobacteria from Azolla mexicana and Azolla pinnata were isolated and cultured in a free-living state. Morphological analyses revealed differences between the free-living isolates and their symbiotic counterparts, as did restriction fragment length polymorphism (RFLP) analyses with both single-copy glnA and rbcS gene probes and a multicopy psbA gene probe. RFLP analyses with Anabaena sp. strain PCC 7120 nifD excision element probes, including an xisA gene probe, detected homologous sequences in DNA extracted from the free-living isolates. Sequences homologous to these probes were not detected in DNA from the symbiotically associated cyanobacteria. These analyses indicated that the isolates were not identical to the major cyanobacterial symbiont species residing in leaf cavities of Azolla spp. Nevertheless, striking similarities between several free-living isolates were observed. In every instance, the isolate from A. pinnata displayed banding patterns virtually identical to those of free-living cultures previously isolated from Azolla caroliniana and Azolla filiculoides. These results suggest the ubiquitous presence of a culturable minor cyanobacterial symbiont in at least three species of Azolla. Images PMID:1685078
Drew, L.J.; Grunsky, E.C.; Sutphin, D.M.; Woodruff, L.G.
2010-01-01
Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy. ?? 2010.
Examination of the constructional processes of submarine Cerro Azul and the Galapagos Platform
NASA Astrophysics Data System (ADS)
Lambert, M. K.; Harpp, K. S.; Geist, D. J.; Fornari, D. J.; Kurz, M. D.; Koleszar, A. M.; Rollins, N. A.
2004-05-01
One of the primary goals of the 2001 Drift04 cruise was to examine the constructional processes responsible for the Galapagos platform and to investigate the relationship between the platform and the overlying volcanoes. Cerro Azul volcano is located above the steep escarpment that marks the southwestern limit of the Galapagos platform, at the leading edge of the hotspot. This area is of particular interest in light of a recent seismic tomography experiment by Toomey, Hooft, et al., which suggests that the root of the Galapagos plume is centered between Cerro Azul and adjacent Fernandina Island. During the Drift04 cruise, detailed bathymetric and sidescan sonar studies were carried out across the submarine sector of Cerro Azul and 14 dredges were collected from the same area. Major element analyses of the submarine lavas indicate that the lavas from the platform edge and the subaerial Cerro Azul lavas constitute a suite of petrologically-related lavas. The dredged glasses of the Drift04 cruise have MgO contents of <7.5% and are indistinguishable from published data on Cerro Azul. Whole rock analyses include a highly primitive sample (20 wt% MgO), which probably contains accumulated olivine. All the submarine and subaerial lavas define coherent trends in major element space that are consistent with variable amounts of olivine and olivine+cpx fractionation. Incompatible trace element (ITE) ratios indicate that the mantle source for the submarine platform flows is intermediate in composition between the magmas supplying Fernandina and Cerro Azul. Previous researchers have proposed that two mantle endmembers are interacting across the leading edge of the plume, one focused at Fernandina and the other at Floreana Island. The intermediate ITE ratios of the submarine and subaerial Cerro Azul lavas are consistent both geographically and compositionally with this hypothesis. Naumann and co-workers concluded that the lavas erupted at Cerro Azul were stored in small, ephemeral magma chambers, which formed as the result of a low magma supply to the edge of the platform. We propose that the lavas of the western edge of the Galapagos Platform originate from either the same or a similar network of magma chambers as those responsible for Cerro Azul volcano.
DOT National Transportation Integrated Search
1979-09-01
Volume 1 of Theoretical Studies of Microstrip Antennas deals with general techniques and analyses of single and coupled radiating elements. Specifically, we review and then employ an important equivalence theorem that allows a pair of vector potentia...
Davenport, M.S.
1993-01-01
Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.
Demeter, Sandor J
2016-12-21
Health care providers (HCP) and clinical scientists (CS) are generally most comfortable using evidence-based rational decision-making models. They become very frustrated when policymakers make decisions that, on the surface, seem irrational and unreasonable. However, such decisions usually make sense when analysed properly. The goal of this paper to provide a basic theoretical understanding of major policy models, to illustrate which models are most prevalent in publicly funded health care systems, and to propose a policy analysis framework to better understand the elements that drive policy decision-making. The proposed policy framework will also assist HCP and CS achieve greater success with their own proposals.
Genetic heterogeneity in autism: From single gene to a pathway perspective.
An, Joon Yong; Claudianos, Charles
2016-09-01
The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barzi, E.; Bossert, M.; Gallo, G.; ...
2011-12-21
A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb 3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.
RNA-Seq Analysis to Measure the Expression of SINE Retroelements.
Román, Ángel Carlos; Morales-Hernández, Antonio; Fernández-Salguero, Pedro M
2016-01-01
The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.
NASA Technical Reports Server (NTRS)
Adelman, Saul J.
1988-01-01
Changes in chromium, manganese, and nickel abundances derived from singly ionized lines are incorporated into the elemental abundance of Adelman and Hill (1987) in order to provide more accurate gf values and damping constants for several atomic species. An improved agreement with the values from neutral lines of the same element is found. In the second part, the method is applied to an elemental abundance analysis of three mercury-manganese stars, and correlations are found between the derived abundances and the effective temperature.
Hehir-Kwa, Jayne Y; Marschall, Tobias; Kloosterman, Wigard P; Francioli, Laurent C; Baaijens, Jasmijn A; Dijkstra, Louis J; Abdellaoui, Abdel; Koval, Vyacheslav; Thung, Djie Tjwan; Wardenaar, René; Renkens, Ivo; Coe, Bradley P; Deelen, Patrick; de Ligt, Joep; Lameijer, Eric-Wubbo; van Dijk, Freerk; Hormozdiari, Fereydoun; Uitterlinden, André G; van Duijn, Cornelia M; Eichler, Evan E; de Bakker, Paul I W; Swertz, Morris A; Wijmenga, Cisca; van Ommen, Gert-Jan B; Slagboom, P Eline; Boomsma, Dorret I; Schönhuth, Alexander; Ye, Kai; Guryev, Victor
2016-10-06
Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.
NASA Technical Reports Server (NTRS)
1973-01-01
Results are reported from a study made to determine engineering and cost analyses regarding the elements of space transportation systems. Specifically, a tug turnaround cost and abort modes and effects analyses were made. Study approach and objectives for both elements are given.
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740
Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.
1983-01-01
The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.
2016-03-01
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.
Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements
Mezzacappa, A.; Melikechi, N.; Cousin, A.; ...
2016-04-04
Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. Previously, we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expandedmore » set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO 2, Al 2O 3, CaO, FeOT, Na 2O, K 2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. But, for MgO the method does not provide improvements while for TiO 2, it yields inconsistent results. Additionally, we observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.« less
NASA Astrophysics Data System (ADS)
Manzotti, Paola; Rubatto, Daniela; Darling, James; Zucali, Michele; Cenki-Tok, Bénédicte; Engi, Martin
2012-08-01
Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic histories, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallisation at HT conditions; ages scatter from 263 to 294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.
Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-01
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Major and trace element abundances in volcanic rocks of orogenic areas.
NASA Technical Reports Server (NTRS)
Jakes, P.; White, A. J. R.
1972-01-01
The composition of recent island-arc volcanic rocks in relation to their geographic and stratigraphic relations is discussed. The differences in composition between volcanic rocks and those in continental margins are pointed out. Trace elements and major elements are shown to suggest a continuous gradational sequence from tholeiites through calc-alkaline rocks to shoshonites.
ERIC Educational Resources Information Center
Ma, T. S.; Gutterson, Milton
1980-01-01
Reviews general developments in computerization and data processing of organic elemental analyses; carbon, hydrogen, and nitrogen analyzers; procedures for determining oxygen, sulfur, and halogens, as well as other nometallic elements and organometallics. Selected papers on trace analysis of nonmetals and determination of metallic elements are…
Late development of hagfish vertebral elements.
Ota, Kinya G; Fujimoto, Satoko; Oisi, Yasuhiro; Kuratani, Shigeru
2013-05-01
It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the hagfish sclerotome truly differentiates into cartilage, because access to late-stage embryos and information about the cartilaginous extracellular matrix (ECM) are lacking for these animals. Here we investigated the expression patterns of the biglycan/decorin (BGN/DCN) gene in the inshore hagfish, Eptatretus burgeri. The homologue of this gene encodes the major noncollagenous component of the cartilaginous ECM among gnathostomes. We clearly identified the expression of this gene in adult vertebral tissues and in embryonic mesenchymal cells on the ventral aspect of the notochord. Taking into account that the sclerotome in the gnathostomes expresses BGN/DCN gene during the chondrogenesis, it is highly expected the hagfish BGN/DCN-positive mesenchymal cells are derived from the sclerotomes. We propose that hagfishes and gnathostomes share conserved developmental mechanisms not only in their somite differentiation, but also in chondrogenesis of their vertebral elements. Copyright © 2013 Wiley Periodicals, Inc.
Screening of MITF and SOX10 Regulatory Regions in Waardenburg Syndrome Type 2
Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege
2012-01-01
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy. PMID:22848661
Using computer graphics to design Space Station Freedom viewing
NASA Technical Reports Server (NTRS)
Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.
1993-01-01
Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.
Australian seafood compositional profiles: A pilot study. Vitamin D and mercury content.
Padula, David; Greenfield, Heather; Cunningham, Judy; Kiermeier, Andreas; McLeod, Catherine
2016-02-15
Given the scarcity of comprehensive nutritional data for Australia's >400 commercially produced seafood species a pilot study was undertaken to collect and analyse 22 species of wild and aquaculture seafood in order to develop a model for future comprehensive surveys. The species analysed were: Atlantic salmon, Australian sardine, prawn (six species), barramundi, abalone (three species), blue sprat, burrowing blackfish, gummy shark, oyster (four species), ocean trout and yellowtail kingfish. The analyses undertaken in this pilot study were: moisture, protein, total fat, cholesterol, fatty acids, vitamin C, vitamins A and D, and 21 mineral elements (including total mercury and methyl mercury). The data reported here are for vitamin D and mercury only. Comprehensive data have already been published elsewhere. Issues identified that should be addressed prior to undertaking a more extensive and representative study of the remaining major edible commercial Australian seafood species include: choice of samples and nutrients for analysis, facilities for sample handling and storage, data management and scrutiny, and laboratory quality control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Esnault, Caroline; Graça, Paula; Higuet, Dominique; Bonnivard, Eric
2013-01-01
Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a “domino days spreading” branching process in which successive amplifications may interact positively. PMID:23469217
Regulation of expression of transgenes in developing fish.
Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B
1993-05-01
The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.
Aksoy, Laçine; Sözbilir, Nalan Bayşu
2015-10-01
The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
da Conceição, Fabiano Tomazini; dos Santos, Carolina Mathias; de Souza Sardinha, Diego; Navarro, Guillermo Rafael Beltran; Godoy, Letícia Hirata
2015-03-01
The chemical weathering rate and atmospheric/soil CO2 consumption of Paraná flood basalts in the Preto Stream basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. Surface and rain water samples were collected in 2006, and analyses were performed to assess pH, temperature, dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS), including SO42-, NO3-, PO43 -, HCO3-, Cl-, SiO2, Ca2 +, Mg2 +, Na+ and K+. Fresh rocks and C horizon samples were also collected, taking into account their geological context, abundance and spatial distribution, to analyze major elements and mineralogy. The Preto Stream, downstream from the city of Ribeirão Preto, receives several elements/compounds as a result of anthropogenic activities, with only sulfate yielding negative flux values. The negative flux of SO42 - can be attributed to atmospheric loading that is mainly related to anthropogenic inputs. After corrections were made for atmospheric inputs, the riverine transport of dissolved material was found to be 30 t km- 2 y- 1, with the majority of the dissolved material transported during the summer (wet) months. The chemical weathering rate and atmospheric/soil CO2 consumption were 6 m/Ma and 0.4 · 106 mol km- 2 y- 1, respectively. The chemical weathering rate falls within the lower range of Paraná flood basalt denudation rates between 135 and 35 Ma previously inferred from chronological studies. This comparison suggests that rates of basalt weathering in Brazil's present-day tropical climate differ by at most one order of magnitude from those prevalent at the time of hothouse Earth. The main weathering process is the monosiallitization of anorthoclase, augite, anorthite and microcline. Magnetite is not weathered and thus remains in the soil profile.
Horowitz, A.J.; Stephens, V.C.
2008-01-01
In 1991, the U.S. Geological Survey (USGS) began the first cycle of its National Water Quality Assessment (NAWQA) Program. The Program encompassed 51 river basins that collectively accounted for more than 70% of the total water use (excluding power generation), and 50% of the drinking water supply in the U.S. The basins represented a variety of hydrologic settings, rock types (geology), land-use categories, and population densities. One aspect of the first cycle included bed sediment sampling; sites were chosen to represent baseline and important land-use categories (e.g., agriculture, urban) in each basin. In total, over 1200 bed sediment samples were collected. All samples were size-limited (< 63????m) to facilitate spatial and/or temporal comparisons, and subsequently analyzed for a variety of chemical constituents including major (e.g., Fe, Al,) and trace elements (e.g., Cu, Zn, Cd), nutrients (e.g., P), and carbon. The analyses yielded total (??? 95% of the concentrations present), rather than total-recoverable chemical data. Land-use percentages, upstream underlying geology, and population density were determined for each site and evaluated to asses their relative influence on sediment chemistry. Baseline concentrations for the entire U.S. also were generated from a subset of all the samples, and are based on material collected from low population (??? 27??p km- 2) density, low percent urban (??? 5%), agricultural or undeveloped areas. The NAWQA baseline values are similar to those found in other national and global datasets. Further, it appears that upstream/underlying rock type has only a limited effect (mostly major elements) on sediment chemistry. The only land-use category that appears to substantially affect sediment chemistry is percent urban, and this result is mirrored by population density; in fact, the latter appears more consistent than the former.
NASA Astrophysics Data System (ADS)
Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson
2017-05-01
Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.
Ebqa'ai, Mohammad; Ibrahim, Bashar
2017-12-01
This study aims to analyse the heavy metal pollutants in Jeddah, the second largest city in the Gulf Cooperation Council with a population exceeding 3.5 million, and many vehicles. Ninety-eight street dust samples were collected seasonally from the six major roads as well as the Jeddah Beach, and subsequently digested using modified Leeds Public Analyst method. The heavy metals (Fe, Zn, Mn, Cu, Cd, and Pb) were extracted from the ash using methyl isobutyl ketone as solvent extraction and eventually analysed by atomic absorption spectroscopy. Multivariate statistical techniques, principal component analysis (PCA), and hierarchical cluster analysis were applied to these data. Heavy metal concentrations were ranked according to the following descending order: Fe > Zn > Mn > Cu > Pb > Cd. In order to study the pollution and health risk from these heavy metals as well as estimating their effect on the environment, pollution indices, integrated pollution index, enrichment factor, daily dose average, hazard quotient, and hazard index were all analysed. The PCA showed high levels of Zn, Fe, and Cd in Al Kurnish road, while these elements were consistently detected on King Abdulaziz and Al Madina roads. The study indicates that high levels of Zn and Pb pollution were recorded for major roads in Jeddah. Six out of seven roads had high pollution indices. This study is the first step towards further investigations into current health problems in Jeddah, such as anaemia and asthma.
Yarkovsky-Schach effect on space debris motion
NASA Astrophysics Data System (ADS)
Murawiecka, M.; Lemaitre, A.
2018-02-01
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.
Weird Project: E-Health Service Improvement Using WiMAX
NASA Astrophysics Data System (ADS)
Cimmino, Antonio; Casali, Fulvio; Mambretti, Cinzia
Today the major obstacle to massive deployment of telemedicine applications are the security issues related to the exchange of real time information between different elements that are not at fixed locations. WiMAX, the new standard for wireless communications, is one of the most promising technologies for broadband access in a fixed and mobile environment and it is expected to overcome the above mentioned obstacle. The FP6-WEIRD [1] (WiMax Extension to Isolated Remote Data networks) project has: analysed how this technology can guarantee secure real time data transmission between mobile elements, built some successful demonstrations and paved the way to future commercial applications. This paper in particular describes: main promising e-health applications that WiMax would enable; the technological highlights and the main challenges that WiMax has to face in e-health applications such as accounting, privacy, security, data integrity; the way in which the WEIRD project 0 has studied the wireless access to medical communities and equipment in remote or impervious areas. 0 0; some envisaged implementations.
The relationship between alloying elements and biologically produced ennoblement in natural waters.
Eashwar, M; Lakshman Kumar, A; Hariharasuthan, R; Sreedhar, G
2015-01-01
A range of stainless steels, nickel-chromium and nickel-chromium-molybdenum alloys were exposed to coastal seawater from Mandapam (Indian Ocean) and freshwater from a perennial pond. Biofilms from both test waters produced an ennoblement of the open circuit potential (OCP) on all alloys as expected, which was slower but substantially larger in freshwater. In both waters an interesting relationship was perceived between the plateau OCP (Emax) and the mass percentage of the major alloying elements. In particular, iron exhibited strong positive correlations with Emax (r(2) ≥ 0.77; p < 0.0005), while the sum of chromium, nickel and molybdenum presented significant negative correlations (r(2) ≤ -0.81; p = 0.0002). Consistent with the regression analyses, Euclidean distance clustering yielded patterns where Inconel-600 and the nickel-chromium-molybdenum alloys had the smallest similarities of OCP with other alloys. The results emphatically reinforce a key role for surface passive films in the ennoblement phenomenon in natural waters.
Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan
2016-01-01
DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761
Evaluation of trace elements in selected foods and dietary intake by young children in Thailand.
Nookabkaew, S; Rangkadilok, N; Akib, C A; Tuntiwigit, N; Saehun, J; Satayavivad, J
2013-01-01
Elemental concentrations in rice, animal products, eggs, vegetables, fruits, infant formulas and drinking water were determined in 667 food samples randomly collected from local markets, big supermarkets and grocery stores in Bangkok, Thailand, during the period October 2005-August 2008. Samples were digested with nitric acid and analysed by inductively coupled plasma-mass spectrometry. Arsenic and cadmium levels in most foods were below the maximum levels as set by international organisations. Filtered and bottled drinking water, rice, vegetables and banana contained low concentrations of arsenic, cadmium and lead. Non-polished rice had higher magnesium, calcium, manganese, iron and selenium concentrations than polished rice. Banana was a major source for manganese and selenium. Pig kidney and liver contained high levels of arsenic and cadmium. Manganese, cadmium, lead and aluminium concentrations in soybean milk could also be of concern. With respect to food safety for children, the amounts of arsenic and cadmium ingested with poultry, pig liver or rice corresponded to high weekly or monthly intake.
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Sigurdsson, Haraldur
1992-01-01
Detailed element analyses were carried out on 12 black and seven yellow glasses from the K/T boundary section at Beloc (Haiti), and of three samples from smectite mantles around black glasses. The results obtained for bulk black and yellow glasses show differences between these, confirming the results of Sigurdsson et al. (1991) and Izett (1991), and the results obtained on individual spherules and shards are in agreement with bulk data. The present data also demonstrate, for the first time, the existence of yellow glass samples with high CaO but low S contents, which might have formed by fusion of various proportions of carbonates and evaporites or carbonates alone. One of the black glasses was found to have higher than average SiO2 and K2O abundances but lower concentrations of all other major elements. This suggests the existence of a third glass type, named the high Si-K variety (HSi,K) glass.
Petrogenesis of mare basalts - A record of lunar volcanism
NASA Astrophysics Data System (ADS)
Neal, Clive R.; Taylor, Lawrence A.
1992-06-01
The classification, sources, and overall petrogenesis of mare basalts are reviewed. All mare basalt analyses are used to define a sixfold classification scheme using TiO2 contents as the primary division. A secondary division is made using Al2O3 contents, and a tertiary division is defined using K contents. Such divisions and subdivisions yield a classification containing 12 categories, of which six are accounted for by the existing Apollo and Luna collections. A variety of postmagma-generation such as fractional crystallization, either alone or combined with wallrock assimilation, are invoked to explain the compositional ranges of the various mare basalt suites. High-Ti mare basalts are found at Apollo 1 and Apollo 17 sites; the A-11 basalts contain lower TiO2 abundances, a considerably larger range in trace-element contents, and the only occurrence of high-Ti/high-K mare basalts. The low-Ti basalts exhibit a wide range of major-and trace-element compositions and require source heterogeneity, fractional crystallization, and some assimilation.
Preschool children's performance on Profiling Elements of Prosody in Speech-Communication (PEPS-C).
Gibbon, Fiona E; Smyth, Heather
2013-07-01
Profiling Elements of Prosody in Speech-Communication (PEPS-C) has not been used widely to assess prosodic abilities of preschool children. This study was therefore aimed at investigating typically developing 4-year-olds' performance on PEPS-C. PEPS-C was presented to 30 typically developing 4-year-olds recruited in southern Ireland. Children were judged to have completed the test if they produced analysable responses to >95% of the items. The children's scores were compared with data from typically developing 5-6-year-olds. The majority (83%) of 4-year-olds were able to complete the test. The children scored at chance or weak ability levels on all subtests. The 4-year-olds had lower scores than 5-6-year-olds in all subtests, apart from one, with the difference reaching statistical significance in 8 out of 12 subtests. The results indicate that PEPS-C could be a valuable tool for assessing prosody in young children with typical development and some groups of young children with communication disorders.
Minor Elements in Nakhlite Pyroxenes: Cr in MIL00346
NASA Technical Reports Server (NTRS)
McKay, G. A.; Schwandt, C.; Le, L.; Makishima, J.; Kurihara, T.
2006-01-01
Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998
Recycling of trace elements required for humans in CELSS.
Ashida, A
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Recycling of trace elements required for humans in CELSS
NASA Astrophysics Data System (ADS)
Ashida, A.
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Analysis of concrete beams using applied element method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.
Finite element analysis of a composite crash box subjected to low velocity impact
NASA Astrophysics Data System (ADS)
Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.
2017-03-01
In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.
NASA Astrophysics Data System (ADS)
Carpentier, Marion; Sigmarsson, Olgeir; Larsen, Gudrun
2014-05-01
The nature of future eruptions of active volcanoes is hard to predict. Improved understanding of the past volcanic activity is probably the best way to infer future eruptive scenarios. The most active volcano in Iceland, Grímsvötn, last erupted in 2011 with consequences for habitants living close to the volcano and aviation in the North-Atlantic. In an effort to better understand the magmatic system of the volcano, we have investigated the compositions of 23 selected tephra layers representing the last 8 centuries of volcanic activity at Grímsvötn. The tephra was collected in the ablation area of outlet glaciers from Vatnajökull ice cap. The ice-conserved tephra are less prone to alteration than those exposed in soil sections. Major element analyses are indistinguishable and of quartz-normative tholeiite composition, and Sr and Nd isotope ratios are constant. In contrast, both trace element concentrations (Th range from 0.875 ppm to 1.37 ppm and Ni from 28.5 ppm to 56.6 ppm) in the basalts and Pb isotopes show small but significant variations. The high-precision analyses of Pb isotope ratios allow the identification of tephra samples (3 in total) with more radiogenic ratios than the bulk of the samples. The tephra of constant isotope ratios show linear increase in incompatible element concentrations with time. The rate of increasing concentrations permits exploring possible future scenarios assuming that the magmatic system beneath the volcano follows the established historical evolution. Assuming similar future behaviour of the magma system beneath Grímsvötn volcano, the linear increase in e.g. Th concentration suggests that the volcano is likely to principally produce basalts for the next 500-1000 years. Evolution of water concentration will most likely follow those of incompatible elements with consequent increases in explosiveness of future Grímsvötn eruptions.
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger
2018-04-19
Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.
Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.
Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores
2007-11-02
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.
Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.
NASA Astrophysics Data System (ADS)
Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur
1999-10-01
Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.
NASA Astrophysics Data System (ADS)
Peters, Daniel; Pettke, Thomas
2016-04-01
An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can rarely still be resolved analytically. Matrix effects are demonstrated for PPP analysis of diverse rock compositions and basalt glass analysis when externally calibrated based on SRM 610 and SRM 612 glasses; employing basalt glass GSD-1G or BCR-2G for external standardisation basically eliminates these problems. Perhaps the most prominent progress of the LA-ICP-MS PPP analytical procedure presented here is the fact that trace elements not commonly analysed, i.e. new, unconventional geochemical tracers, can be measured straightforwardly, including volatile elements, the flux elements Li and B, the chalcophile elements As, Sb, Tl, Bi, and elements that alloy with metal containers employed in conventional glass production approaches. The method presented here thus overcomes many common problems and limitations in analytical geochemistry and is shown to be an efficient alternative for bulk rock trace elements analysis.
NASA Astrophysics Data System (ADS)
Muthusamy, Prakasam; Gupta, Anil K.; Saini, Naresh K.
2013-04-01
The Indian monsoon is one of the most interesting climatic features on Earth impacting most populous countries of South and East Asia. It is marked by seasonal reversals of wind direction with southwesterly winds in summer (June-September) and northeasterly winds in winter (December-February). The monsoon not only impacts socioeconomic conditions of Asia but also brings important changes in fauna and flora, ocean upwelling and primary productivity in the Arabian Sea. The Himalaya has undergone several phases of rapid uplift and exhumation since the early Miocene which led to major intensification of the Indian monsoon. The monsoon is driven by the thermal contrast between land and sea, and is intimately linked with the latitudinal movement of the Inter-Tropical Convergence Zone (ITCZ). The effect of Indian monsoon variability and the Himalayan uplift can be seen in numerous proxy records across the region. In this study we discussed about the Indian monsoon intensification and the Himalayan uplift since the early Miocene based on multi proxy records such as planktic foraminiferal relative abundances (Globigerina bulloides, Globigerinita glutinata and mixed layer species), total organic carbon (TOC), CaCO3 and elemental data from ODP Hole 722B (2028 mbsf), northwestern Arabian Sea. The TOC, CaCO3 and elemental variations of the ODP Hole 722B suggest multi phase of monsoonal intensification and Himalayan uplifts. Our results suggest that in the early Miocene (23.03 Ma) to ~15Ma, the wind strength and productivity were low. A major change is observed at ~15 Ma, during which time numerous proxies show abrupt changes. TOC, CaCO3 and Elemental analyses results reveal that a major change in the productivity, wind strength and chemical weathering starts around 15 Ma and extends up to 10 Ma. This suggests that a major Himalayan uplift occurred during ~15-10 Ma that drove Indian monsoon intensification. A similar change is also observed during 5 to 1 Ma. These long-term paleoclimatic trends correlated to Himalayan uplift. Major peaks in various proxy records correspond with enhanced monsoonal strength and the Himalayan uplift. Keywords: Indian monsoon; Himalayan uplift; Arabian Sea; Productivity; Planktic foraminifera; Total Organic Carbon
NASA Technical Reports Server (NTRS)
Hulka, J. R.
2010-01-01
Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion stability analyses of several of the configurations. This paper presents test data and analyses of combustion stability from the recent PCAD-funded test programs at the NASA MSFC. These test programs used swirl coaxial element injectors with liquid oxygen and liquid methane propellants. Oxygen was injected conventionally in the center of the coaxial element, and swirl was provided by tangential entry slots. Injectors with 28-element and 40-element patterns were tested with several configurations of combustion chambers, including ablative and calorimeter spool sections, and several configurations of fuel injection design. Low frequency combustion instability (chug) occurred with both injectors, and high-frequency combustion instability occurred at the first tangential (1T) transverse mode with the 40-element injector. In most tests, a transition between high-amplitude chug with gaseous methane flow and low-amplitude chug with liquid methane flow was readily observed. Chug analyses of both conditions were conducted using techniques from Wenzel and Szuch and from the Rocket Combustor Interactive Design and Analysis (ROCCID) code. The 1T mode instability occurred in several tests and was apparent by high-frequency pressure measurements as well as dramatic increases in calorimeter-measured heat flux throughout the chamber. Analyses of the transverse mode were conducted with ROCCID and empirical methods such as Hewitt d/V. This paper describes the test hardware configurations, test data, analysis methods, and presents results of the various analyses.
A higher-order theory for geometrically nonlinear analysis of composite laminates
NASA Technical Reports Server (NTRS)
Reddy, J. N.; Liu, C. F.
1987-01-01
A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials.
Belkin, H.E.; Luo, K.
2008-01-01
The Ni-Mo Huangjiawan mine, Guizhou Province, People's Republic of China, occurs in Lower Cambrian black shale (stone coal) in an area where other mines have recently extracted ore from the same horizon. Detailed electron microprobe (EMPA) and scanning electron microscope (SEM) analyses of representative thin sections have revealed a complex assemblage of sulfides and sulfarsenides. Early sulfidic and phosphatic nodules and host matrix have been lithified, somewhat fractured, and then mineralized with later-stage sulfides and sulfarsenides. Gersdorffite, millerite, polydymite, pyrite, sphalerite, chalcopyrite, galena, and clausthalite have been recognized. EMPA data are given for the major phases. Pyrite trace-element distributions and coeval Ni-, As-sulfides indicate that in the main ore layer, the last sulfide deposition was Ni-As-Co-rich. Mo and V deposition were early in the petrogenesis of these rocks. The assemblages gersdorffite-millerite-polydymite (pyrite) and millerite-gersdorffite (pyrite) and the composition of gersdorffite indicate a formation temperature of between 200?? and 300??C suggesting that the last solutions to infiltrate and mineralize the samples were related to hydrothermal processes. Environmentally sensitive elements such as As, Cd, and Se are hosted by sulfides and sulfarsenides and are the main source of these elements to residual soil. Crops grown on them are enriched in these elements, and they may be hazardous for animal and human consumption. ?? Springer-Verlag 2007.
de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph
2009-10-01
Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
Bandu, Raju; Lee, Hyun Jeong; Lee, Hyeong Min; Ha, Tae Hyon; Lee, Heon-Jeong; Kim, Se Joo; Ha, Kyooseob; Kim, Kwang Pyo
2018-05-01
Liquid chromatography-mass spectrometry (LC-MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17-item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC-MS. We identified 19 metabolites and elucidated their structures using LC-tandem MS (LC-MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects. Copyright © 2018 John Wiley & Sons, Ltd.
Minor elements in Keweenawan lavas, Michigan
Cornwall, H.R.; Rose, H.J.
1957-01-01
The distribution of minor elements in three basaltic flows of the Keweenawan series, of Michigan, is related to differentiation in the flows. Thus, nickel is most abundant in the early differentiates; nickel, chromium, and barium are generally deficient in the pegmatites, which formed late; whereas copper, vanadium, yttrium, and other minor elements are concentrated in the pegmatites. The minor-element content of individual minerals in the Greenstone flow varies markedly from one mineral to another and seems to depend primarily on the presence or absence in the minerals of major elements for which the minor elements can substitute. Minor elements have substituted most readily for those major elements with similar ionic radii. Valence and electronegativity also seem to influence the ease of substitution. The distribution of other minor elements in copper-bearing lodes of the Michigan copper district shows no apparent relation to copper mineralization. ?? 1957.
Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
Wu, J Z; Herzog, W; Epstein, M
1998-02-01
The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.
Deep sea authigenic clays as a sink for seawater Mg through the Cenozoic
NASA Astrophysics Data System (ADS)
Dunlea, A. G.; Murray, R. W.; Ramos, D. S.; Higgins, J. A.
2016-12-01
The most enigmatic sink of many elements in the global ocean is the formation of authigenic aluminosilicates. Pelagic clays cover 40% of the seafloor and "reverse weathering" type reactions within this lithology have the potential to be a large sink of seawater Mg and affect carbon cycling in the ocean. We use pelagic clays from Integrated Ocean Drilling Program Expedition 329 Site U1366 in the South Pacific Gyre to track authigenic aluminosilicates with two complementary methods: (1) Mg isotopic analyses, and (2) bulk sediment geochemistry with provenance modeling. Mg isotopic analyses of the bulk, unleached clay samples reveal isotopic values significantly heavier than average continental crust (δ26Mg = -0.1 to -0.3%o) indicating significant authigenic uptake. The bulk sediment geochemistry (i.e., major, trace, rare earth element concentrations) and multivariate statistical models of provenance determine the mass fraction of six different sediment sources that mixed to create the sediments: Fe/Mn-oxyhydroxides, apatite, excess Si, dust, and two altered volcanic ashes. A significant correlation between the mass fraction of one of the specific altered ash end-member and the δ26Mg signature allows us to characterize and track the abundance of the authigenic aluminosilicate component downcore. Trends in the provenance models suggest that the elements that compose the authigenic aluminosilicates may originate from volcanic ash, biogenic Si, and/or hydrothermal plume deposits. We examine variations in the spatial and temporal contributions of each of these sources and assess how these variations may have affected the amount of Mg authigenically consumed by deep sea authigenic clays through the Cenozoic. If the authigenic aluminosilicates are created by "reverse weathering" reactions, their formation also has important implications for carbon cycling in the global ocean.
Monitoring of trace elements in breast milk sampling and measurement procedures.
Spĕvácková, V; Rychlík, S; Cejchanová, M; Spĕvácek, V
2005-06-01
The aims of this study were to test analytical procedures for the determination of Cd, Cu, Mn, Pb, Se and Zn in breast milk and to establish optimum sampling conditions for monitoring purposes. Two population groups were analysed: (1) Seven women from Prague whose breast milk was sampled on days 1,2, 3, 4, 10, 20 and 30 after delivery; (2) 200 women from four (two industrial and two rural) regions whose breast milk was sampled at defined intervals. All samples were mineralised in a microwave oven in the mixture of HNO3 + H2O2 and analysed by atomic absorption spectrometry. Conditions for the measurement of the elements under study (i.e. those for the electrothermal atomisation for Cd, Mn and Pb, flame technique for Cu and Zn, and hydride generation technique for Se) were optimized. Using optimized parameters the analysis was performed and the following conclusion has been made: the concentrations of zinc and manganese decreased very sharply over the first days, that of copper slightly increased within the first two days and then slightly decreased, that of selenium did not change significantly. Partial "stabilisation" was achieved after the second decade. No correlation among the elements was found. A significant difference between whole and skim milk was only found for selenium (26% rel. higher in whole milk). The majority concentrations of cadmium and lead were below the detection limit of the method (0.3 microg x l(-1) and 8.2 microg x l(-1), respectively, as calculated for the original sample). To provide biological monitoring, the maintenance of sampling conditions and especially the time of sampling is crucial.
Detection of the actinides and cesium from environmental samples
NASA Astrophysics Data System (ADS)
Snow, Mathew Spencer
Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).
NASA Astrophysics Data System (ADS)
Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA
2018-03-01
The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming
Wentz, Dennis A.; Steele, Timothy Doak
1980-01-01
Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)
Levy, Jonathan I.; Diez, David; Dou, Yiping; Barr, Christopher D.; Dominici, Francesca
2012-01-01
Health risk assessments of particulate matter less than 2.5 μm in diameter (PM2.5) often assume that all constituents of PM2.5 are equally toxic. While investigators in previous epidemiologic studies have evaluated health risks from various PM2.5 constituents, few have conducted the analyses needed to directly inform risk assessments. In this study, the authors performed a literature review and conducted a multisite time-series analysis of hospital admissions and exposure to PM2.5 constituents (elemental carbon, organic carbon matter, sulfate, and nitrate) in a population of 12 million US Medicare enrollees for the period 2000–2008. The literature review illustrated a general lack of multiconstituent models or insight about probabilities of differential impacts per unit of concentration change. Consistent with previous results, the multisite time-series analysis found statistically significant associations between short-term changes in elemental carbon and cardiovascular hospital admissions. Posterior probabilities from multiconstituent models provided evidence that some individual constituents were more toxic than others, and posterior parameter estimates coupled with correlations among these estimates provided necessary information for risk assessment. Ratios of constituent toxicities, commonly used in risk assessment to describe differential toxicity, were extremely uncertain for all comparisons. These analyses emphasize the subtlety of the statistical techniques and epidemiologic studies necessary to inform risk assessments of particle constituents. PMID:22510275
Farooq, Sabiha; Mazhar, Wardah; Siddiqui, Amna Jabbar; Ansari, Saqib Hussain; Musharraf, Syed Ghulam
2018-01-31
β-Thalassemia is one of the most common inherited disorders and is widely distributed throughout the world. Owing to severe deficiencies in red blood cell production, blood transfusion is required to correct anemia for normal growth and development but causes additional complications owing to iron overload. The aim of this study is to quantify the biometal dysregulations in β-thalassemia patients as compared with healthy controls. A total of 17 elements were analyzed in serum samples of β-thalassemia patients and healthy controls using ICP-MS followed by chemometric analyses. Out of these analyzed elements, 14 showed a significant difference between healthy and disease groups at p < 0.05 and fold change >3. A PLS-DA model revealed an excellent separation with 89.8% sensitivity and 97.2% specificity and the overall accuracy of the model was 92.2%. This metallomic study revealed that there is major difference in metallomic profiling of β-thalassemia patients specifically in Co, Mn, Ni, V and Ba, whereas the fold changes in Co, Mn, V and Ba were found to be greater than that in Fe, providing evidence that, in addition to Fe, other metals are also altered significantly and therefore chelation therapy for other metals may also needed in β-thalassemia patients. Copyright © 2018 John Wiley & Sons, Ltd.
Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa.
Karlsen, Christian; Hjerde, Erik; Klemetsen, Terje; Willassen, Nils Peder
2017-04-20
Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.
Finite element analyses of wood laminated composite poles
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2005-01-01
Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Dasgupta, R.
2008-12-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Astrophysics Data System (ADS)
Jackson, Matthew G.; Dasgupta, Rajdeep
2008-11-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Technical Reports Server (NTRS)
McKay, G.; Schwandt, C.; Le, L.; Mikouchi, T.
2007-01-01
Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998
The distribution of trace elements in Turkish lignites in Western Anatolia and the Thrace Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, C.A.; Tuncali, E.; Finkelman, R.
1999-07-01
The United States Geological Survey (USGS) and the General Directorate of Mineral Research and Exploration in Turkey (Maden Tetkik ve Arama:MTA) are working together to provide a more complete understanding of the chemical properties of lignites from major Turkish lignite producing areas. The project is a part of the USGS effort to produce an international coal database and is part of the ``Technological and Chemical properties of Turkish Lignite Inventory Project'' being conducted by the MTA General Directorate. The lignites in Turkey formed in several different depositional environments at different geologic times and have differing chemical properties. The Eocene lignitesmore » are limited to northern Turkey. Oligocene lignites, in the Trace Basin of northwestern Turkey, are intercalated with marine sediments. Miocene lignites are generally located in western Turkey. These coal deposits have relatively abundant reserves, with limnic characteristics. The Pliocene-Pleistocene lignites are found in the eastern part of Turkey. Most of these lignites have low calorific values, high moisture and high ash contents. The majority of the lignite extraction is worked in open-pit mines. Turkish lignite production is used mainly by power plants; small amounts are used by households and in industry. All the samples in this study were collected as channel samples of the beds. Analyses of 71 coal samples (mostly lignites) have been completed for 54 elements using various analytical techniques including inductively coupled plasma emission and mass spectrometry, instrumental neutron activation analysis and various single element techniques. Many of these lignites have elemental concentrations similar to those of US lignites. However, maximum or mean concentrations of B, Cr, Cs, Ni, As, Br, Sb, Cs and U in Turkey were higher than the corresponding maximum or mean found in either of the Fort Union or Gulf Coast basins, the two most productive lignite basins in the U.S.« less
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
Search for a meteoritic component at the Beaverhead impact structure, Montana
NASA Technical Reports Server (NTRS)
Lee, Pascal; Kay, Robert W.
1992-01-01
The Beaverhead impact structure, in southwestern Montana, was identified recently by the presence of shatter cones and impactites in outcrops of Proterozoic sandstones of the Belt Supergroup. The cones occur over an area greater than 100 sq km. Because the geologic and tectonic history of this region is long and complex, the outline of the original impact crater is no longer identifiable. The extent of the area over which shatter cones occur suggests, however, that the feature may have been at least 60 km in diameter. The absence of shatter cones in younger sedimentary units suggests that the impact event occurred in late Precambrian or early Paleozoic time. We have collected samples of shocked sandstone from the so-called 'Main Site' of dark-matrix breccias, and of impact breccias and melts from the south end of Island Butte. The melts, occurring often as veins through brecciated sandstone, exhibit a distinctive fluidal texture, a greenish color, and a cryptocrystalline matrix, with small inclusions of deformed sandstone. Samples of the same type, along with country rock, were analyzed previously for major- and trace-element abundances. It was found that, although the major-element composition as relatively uniform, trace-element composition showed variations between the melt material and the adjacent sandstone. These variations were attributed to extensive weathering and hydrothermal alteration. In a more specific search for a possible meteoritic signature in the breccia and the melt material we have conducted a new series of trace-element analyses on powders of our own samples by thermal neutron activation analysis. Our results indicate that Ir abundances in the breccia, the melts, and the adjacent sandstone clasts are no greater than about 0.1 ppb, suggesting no Ir enrichment of the breccia or the melts relative to the country rock. However, both the breccia and the melt material exhibit notable enrichments in Cr (8- and 10-fold), in U (9- and 5-fold), and in the heavy REE's (1.5- and 3-fold), respectively.
NASA Technical Reports Server (NTRS)
Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.
1992-01-01
An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.
NASA Astrophysics Data System (ADS)
Schmidt, Alexander; Weyer, Stefan; John, Timm; Brey, Gerhard P.
2009-01-01
The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D; Charles Shick, C
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Geochemical Comparison of Four Cores from the Manson Impact Structure
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.
1996-01-01
Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.
Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package
NASA Technical Reports Server (NTRS)
Lee, H.-P.; Jackson, C. E., Jr.
1974-01-01
The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.
Map showing landslide susceptibility in Prince Georges County, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, J.S.
1989-01-01
Prince Georges County was identified during a statewide investigation of landslide susceptibility (MF-2048) as the county with the most serious slope-stability problems. This map uses a ranking system ranging from 1 (nil to very low susceptibility) to 4 (moderate to severe susceptibility). Geologic factors and precipitation are major elements in the initiation of landslides in the county. The Potomac Group and the Marlboro Clay are the most slideprone units. This map should enable users to make a rapid, generalized evaluation of the potential for mass movement. Planners, engineers, soil scientists, geologist, university faculty, and elected officials should find it usefulmore » in the assessment of slope hazards for county-wide analyses.« less
Safety evaluation methodology for advanced coal extraction systems
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.
1981-01-01
Qualitative and quantitative evaluation methods for coal extraction systems were developed. The analysis examines the soundness of the design, whether or not the major hazards have been eliminated or reduced, and how the reduction would be accomplished. The quantitative methodology establishes the approximate impact of hazards on injury levels. The results are weighted by peculiar geological elements, specialized safety training, peculiar mine environmental aspects, and reductions in labor force. The outcome is compared with injury level requirements based on similar, safer industries to get a measure of the new system's success in reducing injuries. This approach provides a more detailed and comprehensive analysis of hazards and their effects than existing safety analyses.
Redesign of solid rocket booster/external tank attachment ring for the space transportation system
NASA Technical Reports Server (NTRS)
Mccomb, Harvey G., Jr. (Compiler)
1987-01-01
An improved design concept is presented for the Space Shuttle solid rocket booster (SRB)/external tank (ET) attachment ring structural component. This component picks up three struts which attach the aft end of each SRB to the ET. The concept is a partial ring with carefully tapered ends to distribute fastener loads safely into the SRB. Extensive design studies and analyses were performed to arrive at the concept. Experiments on structural elements were performed to determine material strength and stiffness characteristics. Materials and fabrication studies were conducted to determine acceptable tolerances for the design concept. An overview is provided of the work along with conclusions and major recommendations.
Novel Repair Concept for Composite Materials by Repetitive Geometrical Interlock Elements
Hufenbach, Werner; Adam, Frank; Heber, Thomas; Weckend, Nico; Bach, Friedrich-Wilhelm; Hassel, Thomas; Zaremba, David
2011-01-01
Material adapted repair technologies for fiber-reinforced polymers with thermosetting matrix systems are currently characterized by requiring major efforts for repair preparation and accomplishment in all industrial areas of application. In order to allow for a uniform distribution of material and geometrical parameters over the repair zone, a novel composite interlock repair concept is introduced, which is based on a repair zone with undercuts prepared by water-jet technology. The presented numerical and experimental sensitivity analyses make a contribution to the systematic development of the interlock repair technology with respect to material and geometrical factors of influence. The results show the ability of the novel concept for a reproducible and automatable composite repair. PMID:28824134
Moyle, Phillip R.; Causey, J. Douglas
2001-01-01
This report provides chemical analyses for 31 samples collected from various phosphate mine sites in southeastern Idaho (25), northern Utah (2), and western Wyoming (4). The sampling effort was undertaken as a reconnaissance and does not constitute a characterization of mine wastes. Twenty-five samples were collected from waste rock dumps, 2 from stockpiles, and 1 each from slag, tailings, mill shale, and an outcrop. All samples were analyzed for a suite of major, minor, and trace elements. Although the analytical data set for the 31 samples is too small for detailed statistical analysis, a summary of general observations is made.
Ferromagnetic and superparamagnetic contamination in pulverized coal
Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Finkelman, R.B.
1982-01-01
Although no significant major-element contamination is introduced by grinding coal in a steel pulverizer, abraded steel particles can conceivably affect the magnetic properties of pulverized coal. Magnetic and scanning-electron-microscope analyses of pulverized coal and coal fragments from the Herrin No. 6 seam in Illinois showed ferromagnetic and superparamagnetic contamination from the grinder. Significant changes in the magnetic properties of the coal were noted, indicating a total steel contamination of approximately 0.02 wt%. When coal samples were vibrated in the magnetic field of the vibrating-sample magnetometer, the superparamagnetic steel particles moved through the pulverized coal, and participated in the formation of multidomain clusters that in turn substantially affected the magnetization of the coal. ?? 1982.
DAMAGE ASSESSMENT OF RC BEAMS BY NONLINEAR FINITE ELEMENT ANALYSES
NASA Astrophysics Data System (ADS)
Saito, Shigehiko; Maki, Takeshi; Tsuchiya, Satoshi; Watanabe, Tadatomo
This paper presents damage assessment schemes by using 2-dimensional nonlinear finite element analyses. The second strain invariant of deviatoric strain tensor and consumed strain energy are calculated by local strain at each integration po int of finite elements. Those scalar values are averaged over certain region. The produced nonlocal values are used for indices to verify structural safety by confirming which the ultimate limit state for failure is reached or not. Flexural and shear failure of reinforced concrete beams are estimated by us ing the proposed indices.
Ryan, Patrick H; Brokamp, Cole; Fan, Zhi-Hua; Rao, M B
2015-12-01
The complex mixture of chemicals and elements that constitute particulate matter (PM*) varies by season and geographic location because source contributors differ over time and place. The composition of PM having an aerodynamic diameter < 2.5 μm (PM2.5) is hypothesized to be responsible, in part, for its toxicity. Epidemiologic studies have identified specific components and sources of PM2.5 that are associated with adverse health outcomes. The majority of these studies use measures of outdoor concentrations obtained from one or a few central monitoring sites as a surrogate for measures of personal exposure. Personal PM2.5 (and its elemental composition), however, may be different from the PM2.5 measured at stationary outdoor sites. The objectives of this study were (1) to describe the relationships between the concentrations of various elements in indoor, outdoor, and personal PM2.5 samples, (2) to identify groups of individuals with similar exposures to mixtures of elements in personal PM2.5 and to examine personal and home characteristics of these groups, and (3) to evaluate whether concentrations of elements from outdoor PM2.5 samples are appropriate surrogates for personal exposure to PM2.5 and its elements and whether indoor PM2.5 concentrations and information about home characteristics improve the prediction of personal exposure. The objectives of the study were addressed using data collected as part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. The RIOPA study has previously measured the mass concentrations of PM2.5 and its elemental constituents during 48-hour concurrent indoor, outdoor (directly outside the home), and personal samplings in three urban areas (Los Angeles, California; Houston, Texas; and Elizabeth, New Jersey). The resulting data and information about personal and home characteristics (including air-conditioning use, nearby emission sources, time spent indoors, census-tract geography, air-exchange rates, and other information) for each RIOPA participant were downloaded from the RIOPA study database. We performed three sets of analyses to address the study aims. First, we conducted descriptive analyses to describe the relationships between elemental concentrations in the concurrently gathered indoor, outdoor, and personal air samples. We assessed the correlation between personal exposure and indoor concentrations as well as personal exposure and outdoor concentrations of each element and calculated ratios between them. In addition, we performed principal component analysis (PCA) and calculated principal component scores (PCSs) to examine the heterogeneity of the elemental composition and then tested whether the mixture of elements in indoor, outdoor, and personal PM2.5 was significantly different within each study site and across study sites. Secondly, we performed model-based clustering analysis to group RIOPA participants with similar exposures to mixtures of elements in personal PM2.5. We examined the association between cluster membership and the concentrations of elements in indoor and outdoor PM2.5 samples and personal and home characteristics. Finally, we developed a series of linear regression models and random forest models to examine the association between personal exposure to elements in PM2.5 and (1) outdoor measurements, (2) outdoor and indoor measurements, and (3) outdoor and indoor measurements and home characteristics. As we developed each model, the improvement in prediction of personal exposure when including additional information was assessed. Personal exposures to PM2.5 and to most elements were significantly correlated with both indoor and outdoor concentrations, although concentrations in personal samples frequently exceeded those of indoor and outdoor samples. In general, for most PM2.5 elements indoor concentrations were more highly correlated with personal exposure than were outdoor concentrations. PCA showed that the mixture of elements in indoor, outdoor, and personal PM2.5 varied significantly across sample types within each study site and also across study sites within each sample type. Using model-based clustering, we identified seven clusters of RIOPA participants whose personal PM2.5 samples had similar patterns of elemental composition. Using this approach, subsets of RIOPA participants were identified whose personal exposures to PM2.5 (and its elements) were significantly higher than their indoor and outdoor concentrations (and vice versa). The results of linear and random forest regression models were consistent with our correlation analyses and demonstrated that (1) indoor concentrations were more significantly associated with personal exposure than were outdoor concentrations and (2) participant reports of time spent at their home significantly modified many of the associations between indoor and personal concentrations. In linear regression models, the inclusion of indoor concentrations significantly improved the prediction of personal exposures to Ba, Ca, Cl, Cu, K, Sn, Sr, V, and Zn compared with the use of outdoor elemental concentrations alone. Including additional information on personal and home characteristics improved the prediction for only one element, Pb. Our results support the use of outdoor monitoring sites as surrogates of personal exposure for a limited number of individual elements associated with long-range transport and with a few local or indoor sources. Based on our PCA and clustering analyses, we concluded that the overall elemental composition of PM2.5 obtained at outdoor monitoring sites may not accurately represent the elemental composition of personal PM2.5. Although the data used in these analyses compared outdoor PM2.5 composition collected at the home with indoor and personal samples, our results imply that studies examining the complete elemental composition of PM2.5 should be cautious about using data from central outdoor monitoring sites because of the potential for exposure misclassification. The inclusion of personal and home characteristics only marginally improved the prediction of personal exposure for a small number of elements in PM2.5. We concluded that the additional cost and burden of indoor and personal sampling may be justified for studies examining elements because neither outdoor monitoring nor questionnaire data on home and personal characteristics were able to represent adequately the overall elemental composition of personal PM2.5.
NASA Astrophysics Data System (ADS)
Hamblock, J.; Anthony, E.; Omenda, P.; Chesley, J.
2003-04-01
We report chemical analyses for tholeiites from the axial region of the EARS and tholeiites and basanites from the Chyulu Hills Volcanic Province (CHVP), located on the SE flank of the Kenya Rift. The purpose of the study is to: i) explore contrasts in lithospheric composition from the axial region, where seismic velocities imply high temperatures and presence of melt at shallow depths, to the flanks, where geophysical studies indicate thick lithosphere and a zone of partial melt centered under the CHVP (Ritter and Kaspar, 1997, Tectonophysics 278, 149-169). ii) investigate plume components and plume-lithosphere interactions in the different settings. This study complements the characterization of lithosphere along the axis of the Rift by MacDonald et al. (2001, J. Petrol. 42, 877-900) and the study of temporal evolution of the CHVP by Späth et al. (2001, J. Petrol. 42, 765-787). Basanites within the CHVP are similar to OIB in their trace-element patterns, but with a pronounced negative K-anomaly. Späth et al. attribute this anomaly to melting of a lithospheric mantle source containing amphibole. They postulate, based on radiogenic isotopes (Sr, Pb, Nd), recent metasomatism due to interaction of the lithosphere with the EARS plume. High La/Yb suggests a source within the garnet-peridotite field. Tholeiites from the CHVP are distinct in trace-element chemistry from basanites, with flatter multi-element patterns and generally lower elemental concentrations. The CHVP tholeiites have La/Yb indicative of a spinel peridotite source. The role of crustal contamination for tholeiites remains open; however, substantial evidence exists for lithospheric heterogeneity beneath the CHVP. Axial lavas show similar elemental behavior as the CHVP: basanites have negative K-anomalies (MacDonald et al., 2001), whereas tholeiites do not. Tholeiites have flat multi-element patterns with low overall concentrations, similar to those from the CHVP, with one significant difference tholeiites from the axial region have variable and high concentrations of Ba, K, and Ta, which may represent a more pervasive plume component. The Mg-number of lavas from the axial region are significantly lower than lavas in the CHVP, suggesting greater degrees of crystal fractionation and potentially longer residence times in crustal magma chambers. In conclusion, evidence exists in both areas for lithospheric mantle heterogeneity, but in both areas the elemental signature is highly correlated to silica saturation. For a given group of lavas of similar silica saturation, the elemental patterns are similar from the axis to the flank. This observation implies that there are not strong lateral contrasts in lithospheric composition across the EARS.
Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.
Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang
2013-04-01
Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.
NASA Astrophysics Data System (ADS)
Marguí, E.; Queralt, I.; García-Ruiz, E.; García-González, E.; Rello, L.; Resano, M.
2018-01-01
Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients. In this sense, dried blood spots (DBS) are proposed as a non-invasive and even self-administered alternative to sampling whole venous blood. This contribution explores the potential of energy dispersive X-ray fluorescence spectrometry for the simultaneous and direct determination of some major (S, Cl, K, Na), minor (P, Fe) and trace (Ca, Cu, Zn) elements in blood, after its deposition onto clinical filter papers, thus giving rise to DBS. For quantification purposes the best strategy was to use matrix-matched blood samples of known analyte concentrations. The accuracy and precision of the method were evaluated by analysis of a blood reference material (Seronorm™ trace elements whole blood L3). Quantitative results were obtained for the determination of P, S, Cl, K and Fe, and limits of detection for these elements were adequate, taking into account their typical concentrations in real blood samples. Determination of Na, Ca, Cu and Zn was hampered by the occurrence of high sample support (Na, Ca) and instrumental blanks (Cu, Zn). Therefore, the quantitative determination of these elements at the levels expected in blood samples was not feasible. The methodology developed was applied to the analysis of several blood samples and the results obtained were compared with those reported by standard techniques. Overall, the performance of the method developed is promising and it could be used to determine the aforementioned elements in blood samples in a simple, fast and economic way. Furthermore, its non-destructive nature enables further analyses by means of complementary techniques to be carried out.
The Prompt Gamma Neutron Activation Analysis Facility at ICN—Pitesti
NASA Astrophysics Data System (ADS)
Bǎrbos, D.; Pǎunoiu, C.; Mladin, M.; Cosma, C.
2008-08-01
PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performace of INAA method. A facility has been developed at Institute for Nuclear Research—Piteşti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA—facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system. Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φscd = 1.106 n/cm2/s with a cadmium ratio of:80. The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90° with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.
Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.
2008-01-01
Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892