NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.
1993-01-01
The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
Suzuki, Kazuyuki; Noda, Jun; Yanagisawa, Makio; Kawazu, Isao; Sera, Kouichiro; Fukui, Daisuke; Asakawa, Mitsuhiko; Yokota, Hiroshi
2012-12-01
The aim of this study was to evaluate the relationships between carapace parameters as indicators of age and plasma elements in 25 captive hawksbill sea turtles. Particle-induced X-ray emission allowed detection of 23 trace and major elements. There were significant but weak correlations between the virtual carapace surface area and plasma bromide (r = -0.552, P<0.01), phosphorus (r = 0.547, P<0.01), lead (r =-0.434, P<0.05) and strontium (r = 0.599, P<0.01), while there were no significant correlations with other elements. These results suggest that major and trace plasma elements in captive sea turtles show almost no variation with carapace parameters, suggesting that the increase in plasma elements seen in wild sea turtles might be the result of marine pollution.
Leventhal, Joel S.
1979-01-01
Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.
PIXE analysis of ancient Chinese Qing dynasty porcelain
NASA Astrophysics Data System (ADS)
Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua
1996-09-01
The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.
Minor elements in Keweenawan lavas, Michigan
Cornwall, H.R.; Rose, H.J.
1957-01-01
The distribution of minor elements in three basaltic flows of the Keweenawan series, of Michigan, is related to differentiation in the flows. Thus, nickel is most abundant in the early differentiates; nickel, chromium, and barium are generally deficient in the pegmatites, which formed late; whereas copper, vanadium, yttrium, and other minor elements are concentrated in the pegmatites. The minor-element content of individual minerals in the Greenstone flow varies markedly from one mineral to another and seems to depend primarily on the presence or absence in the minerals of major elements for which the minor elements can substitute. Minor elements have substituted most readily for those major elements with similar ionic radii. Valence and electronegativity also seem to influence the ease of substitution. The distribution of other minor elements in copper-bearing lodes of the Michigan copper district shows no apparent relation to copper mineralization. ?? 1957.
NASA Astrophysics Data System (ADS)
Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA
2018-03-01
The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
NASA Technical Reports Server (NTRS)
Vetter, Scott K.; Shervais, John W.
1993-01-01
Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.
Electrical power systems for Space Station
NASA Technical Reports Server (NTRS)
Simon, W. E.
1984-01-01
Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.
A Brief History of the Status of Transposable Elements: From Junk DNA to Major Players in Evolution
Biémont, Christian
2010-01-01
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as “transposable elements” in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. PMID:21156958
Major and trace element chemistry of Luna 24 samples from Mare Crisium
NASA Technical Reports Server (NTRS)
Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.
1978-01-01
Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.
Experimental evidence for mobility of Zr and other trace elements in soils
NASA Astrophysics Data System (ADS)
Hodson, Mark E.
2002-03-01
A Soxhlet extraction was carried out over a period of 27 d on a column comprising 3 cm of quartz overlain by 4 cm of soil from the B horizon and then 1 cm of soil from the A horizon of a granitic podzol. Major and trace elements were leached from the column and accumulated in a reservoir at the base of the column. Total loss of elements from the soil over the course of the experiment ranged from 0.002 to 1 wt% with major elements and the light and heavy rare earth elements (REE) showing the largest percentage losses. Zirconium (0.002%) and then Al (0.008%) showed the lowest percentage loss. The light REE were leached out of the soil preferentially to the mid REE. All elements showed accumulation, by a factor of 2 to 11, in the quartz layers at the base of the column, particularly in the upper first 1 cm of the quartz. Major elements were leached from the column at a rate of 0.02 to 0.59 μmol h-1 whereas Zr, Nd, Sm, Gd, Dy, Rb, and Sr were leached at the rate of 0.5 to 30 × 10-6 μmol h-1. Concentrations of other REE in the reservoir increased over the duration of the experiment, but they were poorly correlated with time, so leaching rates were not calculated. Normalization of the major element leaching rates to take into account the constant flushing of water through the column, the average annual rainfall in the Allt a'Mharcaidh catchment in Scotland from where the soil was sampled, and the cross-sectional area of the soil in the column, together with the temperature of the soil in the column (70°C) compared with the average annual temperature of the Allt a'Mharcaidh catchment (5.7°C), gave major element release rates from the soil of 0.002 to 0.97 mEq m-2 yr-1 (depending on the choice of Ea, the dissolution activation energy), which are generally less than those measured in the field of 0.1 to 40.9 mEq m-2 yr-1. Calculations showed that despite the redistribution and loss of Zr from the column, assumptions of Zr mobility would have had a negligible effect on calculated element release rates of Na, Ca, Fe, and Mg. However, significant underestimates of the release of K (5%), Ti (57%), Al (5%), and Si (10%) as well as some trace elements (e.g., Nd, 23%; Rb, 54%; Sr, 24%) would have occurred. Concentrations of Ca and Sr leached from the column correlated well (RSQ = 0.93, p < 0.01), supporting the idea of the use of Sr release as a proxy for Ca release in weathering rate calculations. The release rates and percentage loss of REE from the soil varied between elements indicating that REE distribution patterns of rocks and soils may not be preserved in drainage waters.
NASA Astrophysics Data System (ADS)
Park, Y.-R.; Kim, G.-Y.
2009-04-01
The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.
NASA Astrophysics Data System (ADS)
Dyar, M. Darby; Fassett, Caleb I.; Giguere, Stephen; Lepore, Kate; Byrne, Sarah; Boucher, Thomas; Carey, CJ; Mahadevan, Sridhar
2016-09-01
This study uses 1356 spectra from 452 geologically-diverse samples, the largest suite of LIBS rock spectra ever assembled, to compare the accuracy of elemental predictions in models that use only spectral regions thought to contain peaks arising from the element of interest versus those that use information in the entire spectrum. Results show that for the elements Si, Al, Ti, Fe, Mg, Ca, Na, K, Ni, Mn, Cr, Co, and Zn, univariate predictions based on single emission lines are by far the least accurate, no matter how carefully the region of channels/wavelengths is chosen and despite the prominence of the selected emission lines. An automated iterative algorithm was developed to sweep through all 5485 channels of data and select the single region that produces the optimal prediction accuracy for each element using univariate analysis. For the eight major elements, use of this technique results in a 35% improvement in prediction accuracy; for minors, the improvement is 13%. The best wavelength region choice for any given univariate analysis is likely to be an inherent property of the specific training set that cannot be generalized. In comparison, multivariate analysis using partial least-squares (PLS) almost universally outperforms univariate analysis. PLS using all the same wavelength regions from the univariate analysis produces results that improve in accuracy by 63% for major elements and 3% for minor element. This difference is likely a reflection of signal to noise ratios, which are far better for major elements than for minor elements, and likely limit their prediction accuracy by any technique. We also compare predictions using specific wavelength ranges for each element against those employing all channels. Masking out channels to focus on emission lines from a specific element that occurs decreases prediction accuracy for major elements but is useful for minor elements with low signals and proportionally much higher noise; use of PLS rather than univariate analysis is still recommended. Finally, we tested the generalizability of our results by analyzing a second data set from a different instrument. Overall prediction accuracies for the mixed data sets are higher than for either set alone for all major and minor elements except Ni, Cr, and Co, where results are roughly comparable.
Bulk Chemistry and Oxygen Isotopic Compositions of Lunar Meteorites Dhofar 025 and Dhofar 026
NASA Astrophysics Data System (ADS)
Taylor, L. A.; Nazarov, M. A.; Cohen, B. A.; Warren, P. H.; Barsukova, L. D.; Clayton, R. N.; Mayeda, T. K.
2001-03-01
The major- and trace-element composition of highlands meteorites Dh25 and Dh26 show that both are dominated by a FAN component. Incompatible element depletion and low Ti abundances suggest a farside origin. O-isotopes are typical for lunar meteorites.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis
2008-10-01
A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.
Crock, J.G.; Severson, R.C.; Gough, L.P.
1992-01-01
Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.
Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana
Czamanske, G.K.; Loferski, P.J.
1996-01-01
Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.
Exploring the read-write genome: mobile DNA and mammalian adaptation.
Shapiro, James A
2017-02-01
The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.
Leventhal, J.S.; Hosterman, J.W.
1982-01-01
Core samples of Devonian shales from five localities in the Appalachian basin have been analyzed chemically and mineralogically. The amounts of major elements are similar; however, the minor constituents, organic C, S, phosphate and carbonate show ten-fold variations in amounts. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As and Mn show variations in amounts that can be related to the minor constituents. All samples contain major amounts of quartz, illite, two types of mixed-layer clays, and chlorite in differing quantities. Pyrite, calcite, feldspar and kaolinite are also present in many samples in minor amounts. Dolomite, apatite, gypsum, barite, biotite and marcasite are present in a few samples in trace amounts. Trace elements listed above are strongly controlled by organic C with the exception of Mn which is associated with carbonate minerals. Amounts of organic C generally range from 3 to 6%, and S is in the range of 2-5%. Amounts of trace elements show the following general ranges in ppm (parts per million): Co, 20-40; Cu, 40-70; U, 10-40; As, 20-40; V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, and the organic C and sulfide S together created an environment that immobilized and preserved these trace elements. Closely spaced samples showing an abrupt transition in color also show changes in organic C, S and trace-element contents. Several associations exist between mineral and chemical content. Pyrite and marcasite are the only minerals found to contain sulfide-S. In general, the illite-chlorite mixed-layer clay mineral shows covariation with organic C if calcite is not present. The enriched trace elements are not related to the clay types, although the clay and organic matter are intimately associated as the bulk fabric of the rock. ?? 1982.
Two-lattice models of trace element behavior: A response
NASA Astrophysics Data System (ADS)
Ellison, Adam J. G.; Hess, Paul C.
1990-08-01
Two-lattice melt components of Bottinga and Weill (1972), Nielsen and Drake (1979), and Nielsen (1985) are applied to major and trace element partitioning between coexisting immiscible liquids studied by RYERSON and Hess (1978) and Watson (1976). The results show that (1) the set of components most successful in one system is not necessarily portable to another system; (2) solution non-ideality within a sublattice severely limits applicability of two-lattice models; (3) rigorous application of two-lattice melt components may yield effective partition coefficients for major element components with no physical interpretation; and (4) the distinction between network-forming and network-modifying components in the sense of the two-lattice models is not clear cut. The algebraic description of two-lattice models is such that they will most successfully limit the compositional dependence of major and trace element solution behavior when the effective partition coefficient of the component of interest is essentially the same as the bulk partition coefficient of all other components within its sublattice.
Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.
Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2018-04-01
Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo
2015-11-01
In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Peng; Hu, Qinhong; Ewing, Robert P.
2012-03-01
Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100 {micro}m scale in a 3-dimensional manner in a basalt sample collected from the Hanford 300 Area in south-central Washington State. A modified calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-dimensional maps (stacked 2-D contour layers, each measuring 2100 {micro}m x 2100 {micro}m) show relatively uniform concentration with depth formore » intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the rock surface, consistent with the site's release history of these pollutants. U and Cu show substantial heterogeneity in their concentration distributions in horizontal slices, while the intrinsic elements are essentially uniformly distributed. From measured U concentrations of this work and reported mass fractions, cobbles and gravels were estimated to contain from 0.6% to 7.5% of the contaminant U, implicating the coarse fraction as a long-term release source.« less
Peng, Sheng; Hu, Qinhong; Ewing, Robert P; Liu, Chongxuan; Zachara, John M
2012-02-21
Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100-μm scale in a 3-dimensional manner within a basaltic clast sample collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-Dimensional maps (stacked 2-D contour layers, each representing 2100 μm × 2100 μm) show relatively uniform concentration with depth for intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the sample surface, consistent with the site's release history of these contaminants. U and Cu show substantial heterogeneity in their concentration distributions within horizontal slices, while the intrinsic elements are essentially uniformly distributed. From these measured U concentrations and published grain size distributions, gravel and cobbles were estimated to contain about 1% of the contaminant U, implicating the coarse fraction as a long-term release source.
Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan
NASA Technical Reports Server (NTRS)
1983-01-01
An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua
2017-10-01
Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements (e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements (Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.
Bravo, Sandra; García-Ordiales, Efrén; García-Navarro, Francisco Jesús; Amorós, José Ángel; Pérez-de-Los-Reyes, Caridad; Jiménez-Ballesta, Raimundo; Esbrí, José María; García-Noguero, Eva María; Higueras, Pablo
2017-09-07
Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.
Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks
NASA Astrophysics Data System (ADS)
Xia, Qiong-Xia; Zhou, Li-Gang
2017-09-01
Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet-forming reactions and the property of metamorphic fluids or anatectic melts. Mineral inclusions not only present key clues to identify the different origins of garnet, but also serve as sound candidates for the temporal constraint on garnet growth.
NASA Astrophysics Data System (ADS)
D'Hondt, S. L.; Keller, G.; Stallard, R. F.
1987-03-01
The major element composition of microspherules from all three late Eocene stratigraphic layers was analyzed using an electron microprobe. The results indicate a major element compositional overlap beween individual microspherules of different microtektite layers or strewn fields. However, multivariate factor analysis shows that the microtektites of the three late Eocene layers follow recognizably different compositional trends. The microtektite population of the North American strewn field is characterized by high concentrations of SiO2, Al2O3, and TiO2; the microspherules of an older layer, the Gl. cerroazulensis Zone, are relatively enriched in FeO and MgO and impoverished in SiO2 and TiO2; while those of the oldest layer in the uppermost G. semiinvoluta Zone are relatively enriched in CaO and impoverished in Al2O3 and Na2O.
NASA Astrophysics Data System (ADS)
Panagopoulos, G.
2009-09-01
The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.
Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen
2008-06-02
Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania genome organization. Sequence characteristics, genomic distribution and evolutionarily conservation of SIDER2s are suggestive of relevant functions for these elements in Leishmania. Apart from a proved involvement in post-transcriptional mechanisms of gene regulation, SIDER2 elements could be involved in DNA amplification processes and, perhaps, in chromosome segregation as centromeric sequences.
Monaci, Fabrizio; Leidi, Eduardo O; Dolores, Mingorance Maria; Valdés, Benito Oliva; Rossini, Sabina Sabina; Bargagli, Roberto
2011-01-01
To assess the ecophysiological traits and the phytoremediation potential of the endemic heather Erica andevalensis, we determined the concentrations of major and trace elements in different plant parts and in rizosphere soils from Riotinto mining district (Huelva, Spain). The results showed that E. andevalensis may grow on substrates with very high As, Cu, Fe and Pb concentrations (up to 4114, 1050, 71900 and 15614 microg/g dry weight, respectively), very low availability of macro- and micronutrients and with pH values ranging from 3.3 to 4.9. In these harsh edaphic conditions E. andevalensis selectively absorbed and translocated essential nutrients and excludes potentially phytotoxic elements, which were accumulated in the root epidermis. The concentrations of major and trace elements in E. andevalensis aerial parts from the Riotinto mining district were in the normal range for plants; likewise other Erica species it accumulated Mn and only in a very polluted site we measured leaf concentrations of As and Pb within the excessive or toxic limits for plants. Differently from previous studies, which emphasized the soil pH and bioavailability of phytotoxic elements as the main stress factors, this study showed that in the Riotinto region, E. andevalensis can tolerate wide range of pH and toxic element concentrations; the harshest environments colonized by monospecific patches of this species were characterized above all by very low availability of nutrients. The extraordinary capability to adapt to these extreme habitats made E. andevalensis a priority species to promote the phytostabilization and the development of a self-sustaining vegetative cover on Riotinto mine tailings.
Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.
2006-01-01
Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.
Volatiles in melt inclusions from Icelandic magmas
NASA Astrophysics Data System (ADS)
Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.
2006-12-01
Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context. Their compositions will show how the melt has evolved, enabling the relative roles of degassing, crystallisation and assimilation in the volatile systematics to be examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.
The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less
Shaffer, Christopher D.; Chen, Elizabeth J.; Quisenberry, Thomas J.; Ko, Kevin; Braverman, John M.; Giarla, Thomas C.; Mortimer, Nathan T.; Reed, Laura K.; Smith, Sheryl T.; Robic, Srebrenka; McCartha, Shannon R.; Perry, Danielle R.; Prescod, Lindsay M.; Sheppard, Zenyth A.; Saville, Ken J.; McClish, Allison; Morlock, Emily A.; Sochor, Victoria R.; Stanton, Brittney; Veysey-White, Isaac C.; Revie, Dennis; Jimenez, Luis A.; Palomino, Jennifer J.; Patao, Melissa D.; Patao, Shane M.; Himelblau, Edward T.; Campbell, Jaclyn D.; Hertz, Alexandra L.; McEvilly, Maddison F.; Wagner, Allison R.; Youngblom, James; Bedi, Baljit; Bettincourt, Jeffery; Duso, Erin; Her, Maiye; Hilton, William; House, Samantha; Karimi, Masud; Kumimoto, Kevin; Lee, Rebekah; Lopez, Darryl; Odisho, George; Prasad, Ricky; Robbins, Holly Lyn; Sandhu, Tanveer; Selfridge, Tracy; Tsukashima, Kara; Yosif, Hani; Kokan, Nighat P.; Britt, Latia; Zoellner, Alycia; Spana, Eric P.; Chlebina, Ben T.; Chong, Insun; Friedman, Harrison; Mammo, Danny A.; Ng, Chun L.; Nikam, Vinayak S.; Schwartz, Nicholas U.; Xu, Thomas Q.; Burg, Martin G.; Batten, Spencer M.; Corbeill, Lindsay M.; Enoch, Erica; Ensign, Jesse J.; Franks, Mary E.; Haiker, Breanna; Ingles, Judith A.; Kirkland, Lyndsay D.; Lorenz-Guertin, Joshua M.; Matthews, Jordan; Mittig, Cody M.; Monsma, Nicholaus; Olson, Katherine J.; Perez-Aragon, Guillermo; Ramic, Alen; Ramirez, Jordan R.; Scheiber, Christopher; Schneider, Patrick A.; Schultz, Devon E.; Simon, Matthew; Spencer, Eric; Wernette, Adam C.; Wykle, Maxine E.; Zavala-Arellano, Elizabeth; McDonald, Mitchell J.; Ostby, Kristine; Wendland, Peter; DiAngelo, Justin R.; Ceasrine, Alexis M.; Cox, Amanda H.; Docherty, James E.B.; Gingras, Robert M.; Grieb, Stephanie M.; Pavia, Michael J.; Personius, Casey L.; Polak, Grzegorz L.; Beach, Dale L.; Cerritos, Heaven L.; Horansky, Edward A.; Sharif, Karim A.; Moran, Ryan; Parrish, Susan; Bickford, Kirsten; Bland, Jennifer; Broussard, Juliana; Campbell, Kerry; Deibel, Katelynn E.; Forka, Richard; Lemke, Monika C.; Nelson, Marlee B.; O'Keeffe, Catherine; Ramey, S. Mariel; Schmidt, Luke; Villegas, Paola; Jones, Christopher J.; Christ, Stephanie L.; Mamari, Sami; Rinaldi, Adam S.; Stity, Ghazal; Hark, Amy T.; Scheuerman, Mark; Silver Key, S. Catherine; McRae, Briana D.; Haberman, Adam S.; Asinof, Sam; Carrington, Harriette; Drumm, Kelly; Embry, Terrance; McGuire, Richard; Miller-Foreman, Drew; Rosen, Stella; Safa, Nadia; Schultz, Darrin; Segal, Matt; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Skuse, Gary; Paetkau, Don W.; Bridgman, Rachael K.; Brown, Charlotte M.; Carroll, Alicia R.; Gifford, Francesca M.; Gillespie, Julie Beth; Herman, Susan E.; Holtcamp, Krystal L.; Host, Misha A.; Hussey, Gabrielle; Kramer, Danielle M.; Lawrence, Joan Q.; Martin, Madeline M.; Niemiec, Ellen N.; O'Reilly, Ashleigh P.; Pahl, Olivia A.; Quintana, Guadalupe; Rettie, Elizabeth A.S.; Richardson, Torie L.; Rodriguez, Arianne E.; Rodriguez, Mona O.; Schiraldi, Laura; Smith, Joanna J.; Sugrue, Kelsey F.; Suriano, Lindsey J.; Takach, Kaitlyn E.; Vasquez, Arielle M.; Velez, Ximena; Villafuerte, Elizabeth J.; Vives, Laura T.; Zellmer, Victoria R.; Hauke, Jeanette; Hauser, Charles R.; Barker, Karolyn; Cannon, Laurie; Parsamian, Perouza; Parsons, Samantha; Wichman, Zachariah; Bazinet, Christopher W.; Johnson, Diana E.; Bangura, Abubakarr; Black, Jordan A.; Chevee, Victoria; Einsteen, Sarah A.; Hilton, Sarah K.; Kollmer, Max; Nadendla, Rahul; Stamm, Joyce; Fafara-Thompson, Antoinette E.; Gygi, Amber M.; Ogawa, Emmy E.; Van Camp, Matt; Kocsisova, Zuzana; Leatherman, Judith L.; Modahl, Cassie M.; Rubin, Michael R.; Apiz-Saab, Susana S.; Arias-Mejias, Suzette M.; Carrion-Ortiz, Carlos F.; Claudio-Vazquez, Patricia N.; Espada-Green, Debbie M.; Feliciano-Camacho, Marium; Gonzalez-Bonilla, Karina M.; Taboas-Arroyo, Mariela; Vargas-Franco, Dorianmarie; Montañez-Gonzalez, Raquel; Perez-Otero, Joseph; Rivera-Burgos, Myrielis; Rivera-Rosario, Francisco J.; Eisler, Heather L.; Alexander, Jackie; Begley, Samatha K.; Gabbard, Deana; Allen, Robert J.; Aung, Wint Yan; Barshop, William D.; Boozalis, Amanda; Chu, Vanessa P.; Davis, Jeremy S.; Duggal, Ryan N.; Franklin, Robert; Gavinski, Katherine; Gebreyesus, Heran; Gong, Henry Z.; Greenstein, Rachel A.; Guo, Averill D.; Hanson, Casey; Homa, Kaitlin E.; Hsu, Simon C.; Huang, Yi; Huo, Lucy; Jacobs, Sarah; Jia, Sasha; Jung, Kyle L.; Wai-Chee Kong, Sarah; Kroll, Matthew R.; Lee, Brandon M.; Lee, Paul F.; Levine, Kevin M.; Li, Amy S.; Liu, Chengyu; Liu, Max Mian; Lousararian, Adam P.; Lowery, Peter B.; Mallya, Allyson P.; Marcus, Joseph E.; Ng, Patrick C.; Nguyen, Hien P.; Patel, Ruchik; Precht, Hashini; Rastogi, Suchita; Sarezky, Jonathan M.; Schefkind, Adam; Schultz, Michael B.; Shen, Delia; Skorupa, Tara; Spies, Nicholas C.; Stancu, Gabriel; Vivian Tsang, Hiu Man; Turski, Alice L.; Venkat, Rohit; Waldman, Leah E.; Wang, Kaidi; Wang, Tracy; Wei, Jeffrey W.; Wu, Dennis Y.; Xiong, David D.; Yu, Jack; Zhou, Karen; McNeil, Gerard P.; Fernandez, Robert W.; Menzies, Patrick Gomez; Gu, Tingting; Buhler, Jeremy; Mardis, Elaine R.; Elgin, Sarah C.R.
2017-01-01
The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains. PMID:28667019
White, Eleanor; Kamieniarz-Gdula, Kinga; Dye, Michael J.; Proudfoot, Nick J.
2013-01-01
RNA Polymerase II (Pol II) termination is dependent on RNA processing signals as well as specific terminator elements located downstream of the poly(A) site. One of the two major terminator classes described so far is the Co-Transcriptional Cleavage (CoTC) element. We show that homopolymer A/T tracts within the human β-globin CoTC-mediated terminator element play a critical role in Pol II termination. These short A/T tracts, dispersed within seemingly random sequences, are strong terminator elements, and bioinformatics analysis confirms the presence of such sequences in 70% of the putative terminator regions (PTRs) genome-wide. PMID:23258704
NASA Astrophysics Data System (ADS)
Laubier, M.; Langmuir, C. H.
2008-12-01
On mid-ocean ridges, the influential work by Sobolev and Shimizu (Nature, 1993) and Sobolev (Petrology, 1996) has inferred fractional melting during polybaric upwelling by showing that olivine-hosted inclusions were formed over a range of pressures. However melt inclusion studies have often concerned single MORB samples and may be seen as anecdotal in the sense that they are neither repeated nor globally verified. Recent modeling and experimental results also suggest the importance of post-entrapment processes for major and trace elements. This study presents major and trace element data in 300 olivine-hosted melt inclusions from 11 samples from the FAMOUS segment on the Mid-Atlantic Ridge. Published data from Shimizu (Phys. Earth Planet. Int., 1998) and Kamenetsky (EPSL, 1996; spinel-hosted inclusions) are also reported. In parallel, major and trace element measurements were performed in 150 glasses of the segment in order to have consistent datasets. Melt inclusions, trapped in olivine phenocrysts Mg#85-92, display complex trends in major element plots and can be divided into three groups. Group 1, the largest, is characterized by high MgO (9.4-13.4 wt.%), intermediate SiO2 and Al2O3 contents. Group 2 displays distinctively high Al2O3 (up to 18.4 wt.%), low SiO2 (as low as 46.5 wt.%) and high MgO (10.5-12.8 wt.%) contents, along with low CaO and variable TiO2, K2O and incompatible element concentrations. Group 3 consists of the melt inclusions trapped in less primitive olivines (Mg#<88.5) and displays higher SiO2, CaO and trace element contents. In the lava population, two groups can be distinguished. A small subset, that shares many features with the group 2 melt inclusions, displays high MgO and Al2O3 and low SiO2 and incompatible element contents. This type of lava - high-Al, low-Si and high-Mg - has been previously reported for various mid-ocean ridges (e.g., le Roux et al., Contrib. Min. Petrol., 2002; Eason and Sinton, EPSL, 2008). The second group plots along liquid lines of descent at low pressure starting from the compositions of the group 1 melt inclusions. Modeling of continuous polybaric melting and crystallization shows that the different inclusion groups are derived from melts formed at various pressures in the melting column (~12-6 kbar). After segregation from the mantle, the three batches of melts are fractionated at distinct pressures. The group 2 melt inclusions are consistent with the highest pressure of melt formation and a major role of cpx+olivine fractionation at high pressure (8 kbar), whereas group 3 results indicate the lowest pressure of extraction and entrapment (1kbar). An important observation is that high-Al, low-Si lavas contain melt inclusions from both the low-Si, high-Al group 2 and normal compositions (groups 1 and 3). These lavas can be reproduced by mixing between these two populations of inclusions, followed by some extent of differentiation. Therefore, this study shows that lavas represent averages of melts differentiated from the melt inclusions, and that the major element variability among inclusions can be explained by the combined effects of polybaric melting and crystallization at variable pressure. Trace element compositions of group 1 and 2 melt inclusions show large variations; incompatible element ratios (Ba/La, Rb/Nb, etc) suggest local source heterogeneity. Further modeling will be carried out in order to distinguish between the effects of partial melting and source composition.
Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.
Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S
2016-02-01
Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.
NASA Astrophysics Data System (ADS)
González-García, Diego; Zezza, Angela; Behrens, Harald; Vetere, Francesco; Petrelli, Maurizio; Morgavi, Daniele; Perugini, Diego
2016-04-01
New melt injection into a shallow magma chamber is regarded as one of the potential triggers for explosive volcanic eruptions. Chemical diffusion occurring between the two mixing melts is a time-dependent process, and thus has the potential to shed light on the timescales involved in magma mixing events leading to an eruption. In order to achieve this, a complete database of diffusion coefficients in natural melts is a necessary prerequisite. We have carried out a set of 12 diffusion couple experiments in order to determine diffusion coefficients (D) of major and trace elements in two natural silicate melts. Two end-members from the Vulcano island (Aeolian archipelago, Italy) have been chosen for the experiments: a shoshonite (Vulcanello lava platform) and a rhyolitic obsidian (Pietre Cotte lava flow, La Fossa cone). Glasses from each end-member with added water contents of 0 wt%, 1 wt% and 2 wt% were produced in an Internally Heated Pressure Vessel (IHPV). Two glass cylinders with similar water content but different base composition are inserted in Au-Pd capsules and experiments are run in the IHPV at 1200° C with pressure from 0.5 to 3 kbar. Experiment capsules are rapidly quenched and analyzed by FTIR, EPMA and LA-ICP-MS for H2O, major and trace elements, respectively, along 2 mm linear profiles extending across the interface. A Boltzmann-Matano approach is used to obtain concentration-dependent diffusivities. The obtained concentration-distance profiles are asymmetric and extend deeper into the shoshonite relative to the rhyolite, indicating that diffusion is slower in the latter. Results show that diffusivities are notably accelerated by the presence of H2O in the melt. Experiments performed by using water-free glass show diffusivities one order of magnitude lower compared to glasses containing up to 2 wt% H2O. The effect of pressure, in the investigated range, is negligible and falls within measurement error. Among major elements, Si and Ti are the slowest diffusing components, while Na is the fastest. Uphill diffusion minima are observed in Al, Na and some trace elements (Y, Nb, Pb). In contrast to other trace elements, light REE show prominent minima next to the interface between the two melts, with the minimum depth diminishing towards HREE.
Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun
2016-06-01
Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, B.R.; Powell, M.A.; Fyfe, W.S.
The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less
Jaafar, Shoffian Amin; Latif, Mohd Talib; Chian, Chong Woan; Han, Wong Sook; Wahid, Nurul Bahiyah Abd; Razak, Intan Suraya; Khan, Md Firoz; Tahir, Norhayati Mohd
2014-07-15
This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.
The volcanic-plutonic connection unveiled
NASA Astrophysics Data System (ADS)
Hartung, E.; Caricchi, L.; Floess, D.; Wallis, S.; Harayama, S.
2017-12-01
Are upper crustal plutons solidified magma bodies or residues from extracted and erupted liquids? This remains one of the key questions to address to understand the construction and eruption of upper crustal magmatic systems. We have investigated the Takidani Pluton and contemporaneous volcanic deposits (Nyukawa PFD, Chayano Tuff and Ebisutoge PD) distributed around this crustal intrusion to understand whether they were sourced from this pluton. The Takidani Pluton is a good candidate because it contains petrographic and geochemical evidences for residual melt extraction, and pressure quenching associated with eruptive activity (Hartung et al., 2017). We analysed major and trace element concentrations of 18 plagioclase phenocrysts (core to rim) from the Takidani Pluton and Nyukawa-Chayano-Ebisutoge eruptions. Major elements were first analysed using an electron microprobe and trace elements were subsequently determined by laser ablation inductively coupled mass spectrometry in the same spot. Plagioclase chemistry shows that the Chayano and Ebisutoge rhyolitic deposits are not petrogenetically related to either the Takidani Pluton or the Nyukawa PFD. However, plagioclase of the Nyukawa PDF and the Takidani Pluton show indistinguishable REE patterns suggesting a common source domain for plagioclase from the two units. Ebisutoge plagioclase grains commonly contain xenocrystic cores that have major and trace element compositions comparable to the plagioclase grains observed in the Takidani Pluton and Nyukawa PFD. Our data show that the Nyukawa and Takidani plagioclase are geochemically indistinguishable, suggesting that the Takidani pluton was the magma reservoir that fed this large eruptive unit (400 km3, Oikawa, 2003). The Ebisutoge magma was not extracted directly from the pluton, but interacted with Takidani-Nyukawa when it was still molten. We have no evidence to suggest that the Takidani Pluton was the source of either the Chayano Tuff or the Ebisutoge PD.
Mora, Abrahan; Mahlknecht, Jürgen; Rosales-Lagarde, Laura; Hernández-Antonio, Arturo
2017-08-01
The Monterrey metropolitan area (MMA) is the third greatest urban area and the second largest economic city of Mexico. More than four million people living in this megacity use groundwater for drinking, industrial and household purposes. Thus, major ion and trace element content were assessed in order to investigate the main hydrochemical properties of groundwater and determine if groundwater of the area poses a threat to the MMA population. Hierarchical cluster analysis using all the groundwater chemical data showed five groups of water. The first two groups were classified as recharge waters (Ca-HCO 3 ) coming from the foothills of mountain belts. The third group was also of Ca-HCO 3 water type flowing through lutites and limestones. Transition zone waters of group four (Ca-HCO 3 -SO 4 ) flow through the valley of Monterrey, whereas discharge waters of group 5 (Ca-SO 4 ) were found toward the north and northeast of the MMA. Principal component analysis performed in groundwater data indicates four principal components (PCs). PC1 included major ions Si, Co, Se, and Zn, suggesting that these are derived by rock weathering. Other trace elements such as As, Mo, Mn, and U are coupled in PC2 because they show redox-sensitive properties. PC3 indicates that Pb and Cu could be the less mobile elements in groundwater. Although groundwater supplied to MMA showed a high-quality, high mineralized waters of group 5 have NO 3 - concentrations higher than the maximum value proposed by international guidelines and SO 4 2- , NO 3 - , and total dissolved solid concentrations higher than the maximum levels allowed by the Mexican normative.
Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho
Piper, D.Z.
2001-01-01
Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.
Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt
NASA Astrophysics Data System (ADS)
di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.
2009-04-01
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.
Chemistry of Martian Rock Esperance
2013-06-07
This triangle plot shows the relative concentrations of some of the major chemical elements in the Martian rock Esperance. The compositions of average Martian crust and of montmorillonite, a common clay mineral, are shown.
Igneous fractionation and subsolidus equilibration of diogenite meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.
1993-01-01
Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.
NASA Astrophysics Data System (ADS)
Schmitz, Birger; Andersson, Per; Dahl, Jeremy
1988-01-01
Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.
Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand
Houghton, Bruce F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.
1992-01-01
Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.
Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei
2016-06-01
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.
2012-01-01
Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).
Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi
2016-03-01
Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.
Investigation of drinking water quality in Kosovo.
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.
Trace Elements in River Waters
NASA Astrophysics Data System (ADS)
Gaillardet, J.; Viers, J.; Dupré, B.
2003-12-01
Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.
NASA Astrophysics Data System (ADS)
Yang, Panseok; Rivers, Toby
2000-04-01
Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.
NASA Astrophysics Data System (ADS)
Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda
2017-10-01
The ∼1.88 km diameter Lonar impact crater formed ∼570 ka ago and is an almost circular depression hosted entirely in the Poladpur suite of the ∼65 Ma old basalts of the Deccan Traps. To understand the effects of impact cratering on basaltic targets, commonly found on the surfaces of inner Solar System planetary bodies, major and trace element concentrations as well as Nd and Sr isotopic compositions were determined on a suite of selected samples composed of: basalts, a red bole sample, which is a product of basalt alteration, impact breccia, and impact glasses, either in the form of spherules (<1 mm in diameter) or non-spherical impact glasses (>1 mm and <1 cm). These data include the first highly siderophile element (HSE) concentrations for the Lonar spherules. The chemical index of alteration (CIA) values for the basalts and impact breccia (36.4-42.7) are low while the red bole sample shows a high CIA value (55.6 in the acid-leached sample), consistent with its origin by aqueous alteration of the basalts. The Lonar spherules are classified into two main groups based on their CIA values. Most spherules show low CIA values (Group 1: 34.7-40.5) overlapping with the basalts and impact breccia, while seven spherules show significantly higher CIA values (Group 2: >43.0). The Group 1 spherules are further subdivided into Groups 1a and 1b, with Group 1a spherules showing higher Ni and mostly higher Cr compared to the Group 1b spherules. Iridium and Cr concentrations of the spherules are consistent with the admixture of 1-8 wt% of a chondritic impactor to the basaltic target rocks. The impactor contribution is most prominent in the Group 1a and Group 2 spherules, which show higher Ni/Co, Ni/Cr and Cr/Co ratios compared to the target basalts. In contrast, the Group 1b spherules show major and trace element compositions that overlap with those of the impact breccia and are characterized by high EFTh (Enrichment Factor for Th defined as the Nb-normalized concentration of Th relative to that of the average basalt) as well as fractionated La/Sm(N), and higher large ion lithophile element (LILE) concentrations compared to the basalts. The relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the impact breccia and non-spherical impact glasses compared to the target basalts are consistent with melting and mixing of the Precambrian basement beneath the Deccan basalt with up to 15 wt% contribution of the basement to these samples. Variations in the moderately siderophile element (MSE) concentration ratios of the impact breccia as well as all the spherules are best explained by contributions from three components - a chondritic impactor, the basaltic target rocks at Lonar and the basement underlying the Deccan basalts. The large variations in concentrations of volatile elements like Zn and Cu and correlated variations of EFCu-EFZn, EFPb-EFZn, EFK-EFZn and EFNa-EFZn, particularly in the Group 1a spherules, are best explained by evaporation-condensation effects during impact. While most spherules, irrespective of their general major and trace element composition, show a loss in volatile elements (e.g., Zn and Cu) relative to the target basalts, some spherules, mainly of Group 1, display enrichments in these elements that are interpreted to reflect the unique preservation of volatile-rich vapour condensates resulting from geochemical fractionation in a vertical direction within the vapour cloud.
Uncovering drug-responsive regulatory elements
Luizon, Marcelo R; Ahituv, Nadav
2015-01-01
Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
Major and trace element geochemistry and background concentrations for soils in Connecticut
Brown, Craig; Thomas, Margaret A.
2014-01-01
Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.
Binder, A B
1998-09-04
Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.
Lee, Jong Jin; Moon, Youngmin; Han, Jung Hyun; Jeong, Sungho
2017-04-01
The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser-induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca 2+ and Mg 2+ but lower intensities of Na + , Cl - and K + in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level. Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cui, Tao
2018-01-01
After exploring migration laws of major elements in Laowashan bauxite of northern Guizhou Province by geochemical methods, it was found that: 1) Si was negatively correlated to Al and Ti; Al showed significant negative correlations with Si and Fe; Al was positively correlated to Ti. 2) The content of Si and Fe was low in the middle part, high at the top and the highest at the bottom. The content of Al and Ti is the highest in the middle, followed by the content at the top and the bottom successively. 3) Karst depressions are favorable for groundwater discharge through leaching, leading to heavy loss of Fe in ZK-CS1.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.
2012-01-01
Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
An interlaboratory comparison study on the measurement of elements in PM10
NASA Astrophysics Data System (ADS)
Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna
2016-01-01
An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.
NASA Astrophysics Data System (ADS)
Curry, A. C.; Caricchi, L.; Lipman, P. W.
2017-12-01
A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.
A bacterium that can grow by using arsenic instead of phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe-Simon, F; Blum, J S; Kulp, T R
Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may havemore » profound evolutionary and geochemical significance.« less
A bacterium that can grow by using arsenic instead of phosphorus
Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.
2011-01-01
Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites
NASA Astrophysics Data System (ADS)
Sarafian, Adam R.; Hauri, Erik H.; McCubbin, Francis M.; Lapen, Thomas J.; Berger, Eve L.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Righter, Kevin; Sarafian, Emily
2017-04-01
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.
Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily
2017-05-28
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.
Steenstra, Edgar S; Lin, Yanhao; Dankers, Dian; Rai, Nachiketa; Berndt, Jasper; Matveev, Sergei; van Westrenen, Wim
2017-11-06
The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.
Justen, Gisele C; Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; Bergamasco, Rosangela
2012-01-01
In this work the analysis of elements concentration in groundwater was performed using the synchrotron radiation total-reflection X-ray fluorescence (SR-TXRF) technique. A set of nine tube-wells with serious risk of contamination was chosen to monitor the mean concentration of elements in groundwater from the North Serra Geral aquifer in Santa Helena, Brazil, during 1 year. Element concentrations were determined applying a SR-TXRF methodology. The accuracy of SR-TXRF technique was validated by analysis of a certified reference material. As the groundwater composition in the North Serra Geral aquifer showed heterogeneity in the spatial distribution of eight major elements, a hierarchical clustering to the data was performed. By a similarity in their compositions, two of the nine wells were grouped in a first cluster, while the other seven were grouped in a second cluster. Calcium was the major element in all wells, with higher Ca concentration in the second cluster than in the first cluster. However, concentrations of Ti, V, Cr in the first cluster are slightly higher than those in the second cluster. The findings of this study within a monitoring program of tube-wells could provide a useful assessment of controls over groundwater composition and support management at regional level.
NASA Astrophysics Data System (ADS)
Abrar, M.; Iqbal, T.; Fahad, M.; Andleeb, M.; Farooq, Z.; Afsheen, S.
2018-05-01
In the present work, the laser-induced breakdown spectroscopy technique is applied to explore the concentration of toxic elements present in cosmetic materials. The elemental analysis of chromium (Cr), magnesium (Mg), cadmium (Cd) and lead (Pb) are selected as major elements and manganese (Mn), sodium (Na), potassium (P), sulfur (S), silicon (Si) and titanium (Ti) as minor elements in cosmetic products. In this technique, a plasma plume is generated by using an Nd:YAG Laser of 532 nm wavelength and spectral lines for the respective samples are observed. Four different samples of cosmetic products are selected, i.e. two samples for lipstick and two for eyeshadow. The observed spectral lines of all major and minor elements are used to calculate their concentration in all samples through the intensity ratio method. Among selected lipstick and eyeshadow samples, one sample is branded, and one is collected from the local market. It is observed that chromium, magnesium and lead have strong spectral lines and consequently show high concentration. The calculated concentrations are then compared to permissible limits set by the Food and Drug Administration with regard to the cosmetics industry. The concentration of these toxic elements in selected local cosmetic samples exceeds the safe permissible limit for human use and could lead to serious health problems.
Bigfoot. a new family of MITE elements characterized from the Medicago genus.
Charrier, B; Foucher, F; Kondorosi, E; d'Aubenton-Carafa, Y; Thermes, C; Kondorosi, A; Ratet, P
1999-05-01
We have characterized from the legume plant Medicago a new family of miniature inverted-repeat transposable elements (MITE), called the Bigfoot transposable elements. Two of these insertion elements are present only in a single allele of two different M. sativa genes. Using a PCR strategy we have isolated 19 other Bigfoot elements from the M. sativa and M. truncatula genomes. They differ from the previously characterized MITEs by their sequence, a target site of 9 bp and a partially clustered genomic distribution. In addition, we show that they exhibit a significantly stable secondary structure. These elements may represent up to 0.1% of the genome of the outcrossing Medicago sativa but are present at a reduced copy number in the genome of the autogamous M. truncatula plant, revealing major differences in the genome organization of these two plants.
NASA Technical Reports Server (NTRS)
Fulton, C. R.; Rhodes, J. M.
1984-01-01
Thirty-eight ordinary chondrites (17 H, 20 L, and 1 LL) have been analyzed for major and selected trace elements. These data indicate that the lithophile elements Mg, Ca, Al, Cr, and V normalized to Si are in higher abundance in the H than in the L chondrites. The siderophile elements Ni, Co, and Fe show very good correlation within, as well as between, the two major ordinary chondrite groups. Twenty-four of the analyses are of Antarctic finds, while ten are samples of falls. Comparing the Antarctic data with the fall data reveals no evidence that any of the elements studied here have been mobilized by terrestrial weathering processes. Within the H and L chondrite groups there is little chemical variation, indicating that the source of these samples is remarkably homogeneous. Equilibrium condensate fractionation from a nebula of CI composition can result in the observed ordinary chondrite compositions. The fractionation of metal at about 1440 K (and 0.001 atm) into high and low iron groups, followed by a gas-solid fractionation at about 1380 K with the H group losing more solids than the L, will produce the observed H and L compositions and intragroup trends.
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Blanchard, D. P.; Korotev, R.; Jacobs, J. W.; Brannon, J. A.; Herrmann, A. G.
1974-01-01
Analytical data have been obtained for Co, Sc, Hf, Zn, Cr, Ga, Rb, Cs, Ni, major elements, and rare earth elements in eight samples from boulder 1. The data for trace elements were obtained by radiochemical neutron activation analysis. Major elements, except Na and Mn, were obtained by atomic absorption spectral photometry. Values for Na and Mn were obtained by neutron activation analysis of the same powder that was later dissolved to provide the atomic absorption analyses.
Dwarf Galaxies: Laboratories for Nucleosynthesis and Chemical Evolution
NASA Astrophysics Data System (ADS)
Kirby, Evan N.
2018-06-01
The dwarf galaxies in the Local Group are excellent laboratories for studying the creation of the elements (nucleosynthesis) and the build-up of those elements over time (chemical evolution). The galaxies' proximity permits spectroscopy of individual stars, from which detailed elemental abundances can be measured. Their small sizes and, in some cases, short star formation lifetimes imprinted chemical histories that are easy to interpret relative to larger, more complex galaxies, like the Milky Way.I will briefly review some techniques for measuring elemental abundances from medium-resolution spectroscopy of individual stars. I will show how the metallicity distributions of dwarf galaxies reflect their gas content at the time they were forming stars. Then, I will show how the ratio of alpha elements (for example, magnesium) to iron reveals the star formation history. Finally, I will use certain elements to tease out details of nucleosynthetic events. For example, low manganese and cobalt abundances indicate that the typical Type Ia supernova in dwarf galaxies was a low-density white dwarf, and the evolution of barium suggests that neutron star mergers were most likely responsible for the majority of neutron-capture elements in smaller dwarf galaxies.
Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.
Onwualu-John, J N
2016-08-01
Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.
Investigation of Drinking Water Quality in Kosovo
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472
Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.
Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric
2009-01-01
Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.
Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).
Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko
2010-02-01
GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.
Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder
2012-01-01
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083
Contemporary Issues in Science. Implementation Manual.
ERIC Educational Resources Information Center
Staten Island Continuum of Education, NY.
Contemporary Issues in Science Program (CIIS) is designed to provide teachers and students with the necessary tools and strategies for bringing contemporary scientific issues into the classroom. Provided in this document are discussions of the three major elements in the program, support elements, and major activities. Major elements include the…
Flipping chromosomes in deep-sea archaea
Catchpole, Ryan; Gadelle, Danièle; Marguet, Evelyne; Barbe, Valérie; Forterre, Patrick
2017-01-01
One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element. PMID:28628615
Evaluation of frictional melting on the basis of trace element analyses of fault rocks
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ujiie, K.
2016-12-01
Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or rarely preserved. Trace element analyses on clay-rich localized slipping zones shed light on this topic. References: Ujiie et al. (2007) J. Struct. Geol. 29, 599-613; Honda et al. (2011) GRL 38, L06310.
Bunburra Rockhole: Exploring the geology of a new differentiated asteroid
NASA Astrophysics Data System (ADS)
Benedix, G. K.; Bland, P. A.; Friedrich, J. M.; Mittlefehldt, D. W.; Sanborn, M. E.; Yin, Q.-Z.; Greenwood, R. C.; Franchi, I. A.; Bevan, A. W. R.; Towner, M. C.; Perrotta, G. C.; Mertzman, S. A.
2017-07-01
Bunburra Rockhole is the first recovered meteorite of the Desert Fireball Network. We expanded a bulk chemical study of the Bunburra Rockhole meteorite to include major, minor and trace element analyses, as well as oxygen and chromium isotopes, in several different pieces of the meteorite. This was to determine the extent of chemical heterogeneity and constrain the origin of the meteorite. Minor and trace element analyses in all pieces are exactly on the basaltic eucrite trend. Major element analyses show a slight deviation from basaltic eucrite compositions, but not in any systematic pattern. New oxygen isotope analyses on 23 pieces of Bunburra Rockhole shows large variation in both δ17O and δ18O, and both are well outside the HED parent body fractionation line. We present the first Cr isotope results of this rock, which are also distinct from HEDs. Detailed computed tomographic scanning and back-scattered electron mapping do not indicate the presence of any other meteoritic contaminant (contamination is also unlikely based on trace element chemistry). We therefore conclude that Bunburra Rockhole represents a sample of a new differentiated asteroid, one that may have more variable oxygen isotopic compositions than 4 Vesta. The fact that Bunburra Rockhole chemistry falls on the eucrite trend perhaps suggests that multiple objects with basaltic crusts accreted in a similar region of the Solar System.
NASA Astrophysics Data System (ADS)
Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.
2016-12-01
Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic processes.
Timing of pyroxenite formation in supra-subduction Josephine Ophiolite, Oregon.
NASA Astrophysics Data System (ADS)
Hough, T.; Le Roux, V.; Kurz, M. D.
2017-12-01
The Josephine ophiolite is a partly dismembered ophiolite located in southern Oregon and northwestern California (USA). It displays a large ( 640 km2) mantle section that is mostly composed of depleted spinel harzburgite and lherzolite re-equilibrated at temperatures of 900 °C. In addition, the peridotite section of the ophiolite contains minor dunites and pyroxenite veins ranging from orthopyroxenites to clinopyroxenites. Using field, petrological and geochemical data, previous studies have shown that the peridotite experienced 10-20% of hydrous flux melting. In addition, clinopyroxene and orthopyroxene in harzburgites show variable degrees of light rare-earth element (LREE) enrichment, which suggests percolation and re-equilibration with small fractions of boninite melt. Overall, the trace element concentrations of pyroxenes indicate that the harzburgites experienced particularly high degrees of melting in the mantle wedge. We collected a number of orthopyroxenite and clinopyroxenite veins in the mantle section of the Josephine Ophiolite. Here we present the major and rare-earth element (REE) contents of pyroxene in 4 orthopyroxenites and 2 clinopyroxenites and calculate the major element and REE closure temperatures for individual veins. We show that individual pyroxenites record drastic variations in their degree of REE depletion, indicating that multiple generations of melts percolated the peridotite. The pyroxenite veins also record higher REE closure temperatures (>1200 ºC) compared to the surrounding peridotite, potentially indicating rapid cooling after emplacement. REE closure temperatures are also higher than major element closure temperatures. In parallel, we analyzed Sr isotopes by MC-ICPMS in pyroxene separates from 4 veins. Results indicate that the maximum age of emplacement of orthopyroxenite veins corresponds to the age of exhumation. Some clinopyroxenites may have formed during earlier melt percolation events. This study supports the idea that the composition of melts that percolate the mantle wedge can be highly variable and that orthopyroxenites may be the last type of veins to form in those environments.
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).
NASA Astrophysics Data System (ADS)
Sandler, A.; Brenner, I. B.; Halicz, L.
1988-02-01
Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.
Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS
NASA Astrophysics Data System (ADS)
Hinz, E. A.; Kohn, M. J.
2009-12-01
Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates, consistent with a double-medium diffusion model in which microdomains with slow diffusivities are bounded by fast-diffusing pathways.
NASA Technical Reports Server (NTRS)
Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.
2003-01-01
The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.
Etchells, Edward; Ferrari, Michel; Kiss, Alex; Martyn, Nikki; Zinman, Deborah; Levinson, Wendy
2011-06-01
Prior studies show significant gaps in the informed decision-making process, a central goal of surgical care. These studies have been limited by their focus on low-risk decisions, single visits rather than entire consultations, or both. Our objectives were, first, to rate informed decision-making for major elective vascular surgery based on audiotapes of actual physician-patient conversations and, second, to compare ratings of informed decision-making for first visits to ratings for multiple visits by the same patient over time. We prospectively enrolled patients for whom vascular surgical treatment was a potential option at a tertiary care outpatient vascular surgery clinic. We audio-taped all surgeon-patient conversations, including multiple visits when necessary, until a decision was made. Using an existing method, we evaluated the transcripts for elements of decision-making, including basic elements (e.g., an explanation of the clinical condition), intermediate elements (e.g., risks and benefits) and complex elements (e.g., uncertainty around the decision). We analyzed 145 surgeon-patient consultations. Overall, 45% of consultations contained complex elements, whereas 23% did not contain the basic elements of decision-making. For the 67 consultations that involved multiple visits, ratings were significantly higher when evaluating all visits (50% complex elements) compared with evaluating only the first visit (33% complex elements, p < 0.001.) We found that 45% of consultations contained complex elements, which is higher than prior studies with similar methods. Analyzing decision-making over multiple visits yielded different results than analyzing decision-making for single visits.
Determination of element affinities by density fractionation of bulk coal samples
Querol, X.; Klika, Z.; Weiss, Z.; Finkelman, R.B.; Alastuey, A.; Juan, R.; Lopez-Soler, A.; Plana, F.; Kolker, A.; Chenery, S.R.N.
2001-01-01
A review has been made of the various methods of determining major and trace element affinities for different phases, both mineral and organic in coals, citing their various strengths and weaknesses. These include mathematical deconvolution of chemical analyses, direct microanalysis, sequential extraction procedures and density fractionation. A new methodology combining density fractionation with mathematical deconvolution of chemical analyses of whole coals and their density fractions has been evaluated. These coals formed part of the IEA-Coal Research project on the Modes of Occurrence of Trace Elements in Coal. Results were compared to a previously reported sequential extraction methodology and showed good agreement for most elements. For particular elements (Be, Mo, Cu, Se and REEs) in specific coals where disagreement was found, it was concluded that the occurrence of rare trace element bearing phases may account for the discrepancy, and modifications to the general procedure must be made to account for these.
Barnes, S.-J.; Cox, R.A.; Zientek, M.L.
2006-01-01
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. ?? Springer-Verlag 2006.
Concentrations of Selected Elements in Liver Tissue of Grey Wolves (Canis lupus) from Serbia.
Subotić, Srđan; Višnjić-Jeftić, Željka; Penezić, Aleksandra; Ćirović, Duško
2017-12-01
The grey wolf (Canis lupus) is a large carnivore species and a top predator in the ecosystems that it inhabits. Considering its role in food webs, wolves may be exposed to high concentrations of potentially harmful elements. Therefore liver samples from 28 legally hunted wolves were analyzed for concentrations of 16 elements using inductively coupled plasma optical emission spectrometry. The Mann-Whitney U test showed a significant difference between the genders only for Li, and there were no differences between individuals caught in different years. The majority of statistically significant correlations between element levels were positive, except for three cases. Compliance with several criteria for suitable bioindicator organisms imply that wolves may serve for monitoring environmental contamination.
Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro
2017-01-01
Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876
Geochemistry of South China Sea MORB and implications for deep geodynamics
NASA Astrophysics Data System (ADS)
Yu, X.; Liu, Z.; Chen, L.; Zeng, G.
2017-12-01
Mid-ocean ridge basalts (MORB) were sampled near fossil spreading centers of east subbasin (Site U1431) and southwest subbasin (Site U1433) from the South China Sea (SCS). These basalts record the history of oceanic crustal accretion and mechanism of deep dynamics at the end of SCS ridge spreading. For major elements, basalts from the above two sites show similarities in abundances. Wherein both of them show more depleted in SiO2 and MgO along with enriched Al2O3 than the present Pacific MORB and Indian MORB. In terms of trace elements, basalts from east subbasin are NMORB-like while basalts from southwest subbasin are EMORB-like. Diversity in trace elemental features indicates the difference in petrogenesis of SCS MORB. The good correlations between major elements, e.g., negative correlations between MgO and Al2O3, CaO, suggest that relative to the normal Pacific and Indian MORB, SCS MORB experienced much more complex magma chamber processes. The diversity in trace elemental ratios like Th/La and Ti/Gd, Eu/Eu* and Ti/Ti* further indicates that, besides of magma chamber processes, SCS MORB records the heterogeneities of asthenosphere. When in comparison with Pacific MORB and Indian MORB respectively, we found that basalts from east subbasin are Pacific MORB like while basalts from southwest subbasin are Indian MORB like. Therefore, it implies, at the time of Miocene, the east subbasin of SCS can be a part of the Pacific oceanic basin. However, the southwest subbasin should be the result of continental margin rifting of Indochina Block.
R-process Element Cosmic Rays from Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Komiya, Yutaka; Shigeyama, Toshikazu
2017-09-01
Neutron star mergers (NSMs) are one of the most plausible sources of r-process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r-process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.
R -process Element Cosmic Rays from Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komiya, Yutaka; Shigeyama, Toshikazu
Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnantsmore » (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.« less
Qian, Peng; Zheng, Xiang-min; Zhou, Li-min
2013-05-01
Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.
'Strong is the new skinny': A content analysis of #fitspiration images on Instagram.
Tiggemann, Marika; Zaccardo, Mia
2018-07-01
'Fitspiration' is an online trend designed to inspire viewers towards a healthier lifestyle by promoting exercise and healthy food. This study provides a content analysis of fitspiration imagery on the social networking site Instagram. A set of 600 images were coded for body type, activity, objectification and textual elements. Results showed that the majority of images of women contained only one body type: thin and toned. In addition, most images contained objectifying elements. Accordingly, while fitspiration images may be inspirational for viewers, they also contain a number of elements likely to have negative effects on the viewer's body image.
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia
2013-01-01
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
De Maria, Susanna; Rivelli, Anna Rita; Kuffner, Melanie; Sessitsch, Angela; Wenzel, Walter W.; Gorfer, Markus; Strauss, Joseph; Puschenreiter, Markus
2015-01-01
Although the beneficial effects on growth and trace element accumulation in Salix inoculated with microbes are well known, little information is available on the interactions among trace elements and major nutrients. The main purpose of this study was to assess the effect of inoculation with rhizobacteria Agromyces sp. AR33, Streptomyces sp. AR17, and the combination of each of them with the fungus Cadophora finlandica PRF15 on biomass production and the accumulation of selected trace elements and major nutrients (Cd, Zn, Fe, Ca, K and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces AR33. Microbial treatments differently affected the accumulation of Zn and Cd in plants. Both the inoculation with Streptomyces AR17 and the co-inoculation of C. finlandica with Agromyces AR33 were most efficient in enhancing the accumulation of Zn and Cd in leaves. These two treatments showed also a higher translocation factor from roots to the leaves for both Cd and Zn. Concentrations of major nutrients in shoots were generally increased in the treatments with the fungus compared to those without, except for K in plants inoculated with bacterial strain Streptomyces AR17. Co-inoculation of C. finlandica plus Agromyces AR33 resulted in a better accumulation of both Zn and Cd and Ca, K and Mg in shoots. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains. PMID:21612812
Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; ...
2015-01-20
The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide rangemore » of complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less
Fate of redox-sensitive elements in two different East-African wetland systems
NASA Astrophysics Data System (ADS)
Glasner, Björn; Fiedler, Sabine
2017-04-01
We expect that an intensified cropping alters soil pH and Eh, and negatively affects the production potential of wetlands. Therefore, we investigated the redox-conditions in combination with the fate of different redox-sensitive elements in two prototypical wetland systems that show a high potential for food production in East-Africa. While the floodplains (observed near Ifakara, Kilombero District/Tanzania) serve as major crop producing areas in the region, the Inland Valleys (observed in Namulonge, Central District/Uganda) show a high potential for future production. Both systems have been divided into three positions; the fringe near to the slope, the center near to the river and the middle in between these two positions. In order to get a better understanding of the two systems we installed continuously measuring redox-electrodes in three different positions within both systems. Additionally, the fate of mineral elements was measured using ion-exchange resins with an installation period of 3-4 months. At the Tanzanian field sites the Eh-potential shows one major dry period with moderately reducing to well drained conditions in all sampling depths (10, 30, and 50 cm below ground) in all three positions during the measuring period from March 2015 to Dec 2016. Starting with the rains the Eh-potential drops from 700 mV (in 10 and 30 cm depth) to reducing conditions at all three sites - with intermediate brakes in the middle and fringe positions, showing that there has been no rain during these periods. At the Ugandan field sites the Eh-potential shows more fluctuations during the measuring period, especially in the center position in 2015 ( 750 to -200 mV in 30 and 50 cm depth). Having just the Eh-potential from the first 30 cm below ground it is not really possible to differentiate between dry- and rainy-seasons at the sites. The fate of redox-sensitive elements (Fe, Mn, and P) does not always correlate with the overall Eh-conditions (median) of the installation period. Short time events may play a crucial role in the fate of these elements.
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey
2017-01-01
Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.
Otachi, Elick O; Plessl, Christof; Körner, Wilfried; Avenant-Oldewage, Annemariè; Jirsa, Franz
2015-09-01
This study presents the distribution of 17 major and trace elements in surface water, sediments and fish tissues from Lake Turkana, Kenya. Eight sediment and ten water samples from the west bank of the lake, as well as 34 specimens of the elongate tigerfish Hydrocynus forskahlii caught in that region were examined. It is the first report for Li, Rb, Sr, Mo from the lake and the first report on most of the trace elements for this fish species. The concentrations of elements in the water and sediments showed no sign of pollution. In fish muscle, Li, Zn and Cd showed relatively high abundances, with mean concentrations of 206, 427 and 0.56 mg/kg dw, respectively. The calculated target hazard quotient values for Li, Zn, Sr and Cd were 138.7, 1.9, 4.1 and 0.76, respectively; therefore the consumption of these fish poses a health risk to humans in the area.
The 'North American shale composite' - Its compilation, major and trace element characteristics
NASA Technical Reports Server (NTRS)
Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.
1984-01-01
North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.
The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.
Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel
2018-05-16
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Khan, Muhammad Tariq; Busch, Markus; Molina, Veronica Garcia; Emwas, Abdul-Hamid; Aubry, Cyril; Croue, Jean-Philippe
2014-08-01
To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea
NASA Astrophysics Data System (ADS)
Huang, S.; Conte, M. H.
2009-01-01
Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.
Distribution of trace elements in sediment and soil from river Vardar Basin, Macedonia/Greece.
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu
2016-01-01
A systematic study was carried out to investigate the distribution of 59 elements in the sediment and soil samples collected from the river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 28 sampling sites. Analyses were performed by inductively coupled plasma-mass spectrometry. R-mode factor analysis (FA) was used to identify and characterise element associations. Seven associations of elements were determined by the method of multivariate statistics. Every factor (Factors 1-3 and 6 and 7 as geogenic and Factors 4 and 5 as anthropogenic associations of elements) are examined and explained separately. The distribution of various elements showed that there is a presence of anthropogenic elements (Ag, Cd, Cu, Ge, Pb, Sn and Zn) introduced in the river sediments and soils from the mining, metallurgical, industrial and agricultural activities in Vardar River Basin, which covers most of the Republic of Macedonia and Central-northern part of Greece.
NASA Astrophysics Data System (ADS)
Lambart, Sarah; Laporte, Didier; Schiano, Pierre
2013-02-01
Based on previous and new results on partial melting experiments of pyroxenites at high pressure, we attempt to identify the major element signature of pyroxenite partial melts and to evaluate to what extent this signature can be transmitted to the basalts erupted at oceanic islands and mid-ocean ridges. Although peridotite is the dominant source lithology in the Earth's upper mantle, the ubiquity of pyroxenites in mantle xenoliths and in ultramafic massifs, and the isotopic and trace elements variability of oceanic basalts suggest that these lithologies could significantly contribute to the generation of basaltic magmas. The question is how and to what degree the melting of pyroxenites can impact the major-element composition of oceanic basalts. The review of experimental phase equilibria of pyroxenites shows that the thermal divide, defined by the aluminous pyroxene plane, separates silica-excess pyroxenites (SE pyroxenites) on the right side and silica-deficient pyroxenites (SD pyroxenites) on the left side. It therefore controls the melting phase relations of pyroxenites at high pressure but, the pressure at which the thermal divide becomes effective, depends on the bulk composition; partial melt compositions of pyroxenites are strongly influenced by non-CMAS elements (especially FeO, TiO2, Na2O and K2O) and show a progressive transition from the liquids derived from the most silica-deficient compositions to those derived from the most silica-excess compositions. Another important aspect for the identification of source lithology is that, at identical pressure and temperature conditions, many pyroxenites produce melts that are quite similar to peridotite-derived melts, making the determination of the presence of pyroxenite in the source regions of oceanic basalts difficult; only pyroxenites able to produce melts with low SiO2 and high FeO contents can be identified on the basis of the major-element compositions of basalts. In the case of oceanic island basalts, high CaO/Al2O3 ratios can also reveal the presence of pyroxenite in the source-regions. Experimental and thermodynamical observations also suggest that the interactions between pyroxenite-derived melts and host peridotites play a crucial role in the genesis of oceanic basalts by generating a wide range of pyroxenites in the upper mantle: partial melting of such secondary pyroxenites is able to reproduce the features of primitive basalts, especially their high MgO contents, and to impart, at least in some cases, the major-element signature of the original pyroxenite melt to the oceanic basalts. Finally, we highlight that the fact the very silica depleted compositions (SiO2 < 42 wt.%) and high TiO2 contents of some ocean island basalts seem to require the contribution of fluids (CO2 or H2O) through melting of either carbonated lithologies (peridotite or pyroxenite) or amphibole-rich veins.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy).
Zuzolo, Daniela; Cicchella, Domenico; Catani, Vittorio; Giaccio, Lucia; Guagliardi, Ilaria; Esposito, Libera; De Vivo, Benedetto
2017-06-01
The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km 2 . All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3-4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.
Highly siderophile element constraints on the genesis of Azorean lavas
NASA Astrophysics Data System (ADS)
Waters, C. L.; Watanabe, S.; Olson, K. M.; Walker, R. J.; Widom, E.; Hanan, B. B.; Day, J. M.
2013-12-01
Ocean island basalts (OIB) from the Azores archipelago show incompatible element and Sr-Nd-Hf-Pb isotopic heterogeneity both among different islands and within individual islands. This heterogeneity has commonly been attributed to the presence of a mantle plume delivering diverse recycled materials--including terrigenous sediments, metasomatized subcontinental lithosphere, and oceanic crust--to the melting region beneath the Azores (Turner et al., 1997; Widom and Shirey, 1996; Beier et al., 2007). Despite an abundance of datasets including major and trace element and Sr, Nd, Hf, and Pb isotopic compositions, the origin of elemental and isotopic heterogeneity in the Azores remains vigorously debated. We report new highly siderophile element (HSE: Os, Ir, Pd, Pt, Ru, Re) abundance data alongside major and trace element abundance and Nd-Hf-Os-Pb isotope data for a suite of high MgO (8-17 wt%) lavas from the islands of Sao Miguel, Pico, Faial, and Terceira. These lavas span most of the range of incompatible trace element and Nd-Hf-Pb isotopic heterogeneity observed for the Azores. Because HSEs are largely controlled by sulfide, they provide an alternative to the classic perspective of OIB petrogenesis derived from lithophile elements. The results show distinct fractionation patterns for HSEs from different islands at a similar range of MgO contents. Lavas from Pico and Faial have lower absolute HSE abundances (total HSE abundances ~0.001 × CI chondrite; Ir=0.014-0.133 ppb) and are generally more homogeneous than lavas from Terceira and Sao Miguel (total HSE = ~0.003 × CI chondrite; Ir=0.038-0.657 ppb)). Faial and Pico lavas (IrN* = 0.8×0.3, where IrN* = IrN/[(OsN+RuN)0.5] x 100) also commonly lack the positive relative enrichment in Ir observed in Terceira and Sao Miguel lavas (IrN* = 2.4 ×1.1). In contrast to previous studies of OIB in which HSEs are observed to positively correlate with MgO (e.g., Day, 2013), only Re correlates with MgO, as expected given its moderate incompatibility in silicate systems. All other HSEs show wide variability at similar MgO, broadly correlate with each other, yet do not correlate with Nd-Hf-Pb isotope compositions. Thus, we interpret HSE variability to reflect variations in mantle sulfide source composition and sulfide melting beneath different islands in the Azores hotspot.
PSD-95 is required to sustain the molecular organization of the postsynaptic density
Chen, Xiaobing; Nelson, Christopher D; Li, Xiang; Winters, Christine A.; Azzam, Rita; Sousa, Alioscka A.; Leapman, Richard D.; Gainer, Harold; Sheng, Morgan; Reese, Thomas S.
2011-01-01
PSD-95, a membrane-associated guanylate kinase (MAGUK), is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNAi knockdown of PSD-95 leads to loss of entire patches of PSD material, and EM tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA, but not NMDA receptor type structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD. PMID:21525273
Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS
NASA Astrophysics Data System (ADS)
Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.
2007-12-01
A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic rocks in the region indicate that 1) the enriched basalts have positive Ta-Nb anomalies, enriched relative to U, Th, and La 2) basalts have relatively high SiO2 abundances compared to the global average, 3) basalts show a HIMU isotopic signature, and 4) bulk major element abundances and mineral chemistry in mantle rocks indicate that they are among the most depleted,although variably refertilized, residual mantle assemblages sampled to date along MORs.We suggest that much of the regional variation in major and trace element data, as well as isotopic data and the unusual regional geology (multiple core complexes) can be explained by melting of a sub-axial mantle that contains two end members, one highly depleted and the other enriched. These components appear to involve ancient recycled ocean crust and lithospheric mantle.
Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang
2015-01-01
Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999
Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico
NASA Astrophysics Data System (ADS)
Marquez, N.; Kasper, J.
2012-04-01
A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad; Andersen, Jens; Arif, Mohammad
2017-10-01
Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (< 10), K/Ba ratios (20-40) and Hf-Ta-Th and FeO-MgO-Al2O3 discrimination diagrams. The compositional zoning in plagioclase and clinopyroxene, variation in olivine compositions and major elements oxide trends indicate a vital role of fractional crystallization in the evolution of dolerites, which also show depletion in rare earth elements (REEs) and other incompatible elements compared to the amphibolites. The equilibrium partial melting models from primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad; Andersen, Jens; Arif, Mohammad
2018-06-01
Rift related magmatism during Permian time in the northern margin of Indian plate is represented by basic dykes in several Himalayan terranes including north western Pakistan. The field relations, mineralogy and whole rock geochemistry of these basic dykes reveal significant textural, mineralogical and chemical variation between two major types (a) dolerite and (b) amphibolite. Intra-plate tectonic settings for both rock types have been interpreted on the basis of low Zr/Nb ratios (< 10), K/Ba ratios (20-40) and Hf-Ta-Th and FeO-MgO-Al2O3 discrimination diagrams. The compositional zoning in plagioclase and clinopyroxene, variation in olivine compositions and major elements oxide trends indicate a vital role of fractional crystallization in the evolution of dolerites, which also show depletion in rare earth elements (REEs) and other incompatible elements compared to the amphibolites. The equilibrium partial melting models from primitive mantle using Dy/Yb, La/Yb, Sm/Yb and La/Sm ratios show that amphibolite formed by smaller degrees (< 5%) of partial melting than the dolerites (< 10%). The trace elements ratios suggest the origination of dolerites from the subcontinental lithospheric mantle with some crustal contamination. This is consistent with a petrogenetic relationship with Panjal trap magmatism, reported from Kashmir and other parts of north western India. The amphibolites, in contrast, show affinity towards Ocean Island basalts (OIB) with a relatively deep asthenospheric mantle source and minimal crustal contribution and are geochemically similar to the High-Ti mafic dykes of southern Qiangtang, Tibet. These similarities combined with Permian tectonic restoration of Gondwana indicate the coeval origin for both dykes from distinct mantle source during continental rifting related to formation of the Neotethys Ocean.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav
2017-02-01
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.
NASA Astrophysics Data System (ADS)
Ogundele, Lasun T.; Olasinde, Roseline T.; Owoade, Oyediran K.; Olise, Felix S.
2018-05-01
This study presents the elemental compositions and concentrations of indoor dust and identifies the major sources in some selected indoor environments in Ile-Ife, Nigeria. The dust samples were collected from 16 indoor environments comprising offices, churches, residential and staff quarters using a cyclonic high power vacuum cleaner. The dust samples were analyzed for elemental concentrations using x-ray fluorescences. The data sets were analyzed for the possible sources and their contributions using Principal Component Factor Analysis (PCFA). The result showed that dust samples contained several elements: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Se, Zr, V, and Sc. The PCFA identified three factors with the percentage variance of 92, 77, 71 and 68%, for the office, church, residential, and staff quarters, respectively, for the combined elemental data of each of the site classes. The identified sources were track-in-soil, road and windblown soil dust, paint debris, household dust from personal care materials, cooking, and cleaning activities. The unintentional track-in-soil due to mobility of the occupants, structural materials, and outdoor air was the major sources contributing to the indoor dust.
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.
2017-09-01
Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.
The geochemistry of loess: Asian and North American deposits compared
Muhs, Daniel R.
2018-01-01
Loess is widely distributed over Asia and North America and constitutes one of the most important surficial deposits that serve as terrestrial records of the Quaternary. The oldest Pleistocene loess in China is likely ∼2.6 Ma, thus spanning much or all of the Pleistocene. In North America, most loess is no older than the penultimate glacial period, with the exception of Alaska, where the record may go back to ∼3.0 Ma. On both continents, loess deposits date primarily to glacial periods, and interglacial or interstadial periods are represented by paleosols. Both glacial and non-glacial sources of silts that comprise the bulk of loess deposits are found on both continents. Although loess has been considered to be representative of the average upper continental crust, there are regionally distinctive compositions of loess in both Asia and North America. Loess deposits in Asia from Yakutia, Tajikistan, and China have compositionally distinct major element compositions, due to varying abundances of silicate minerals, carbonate minerals, and clay minerals. In North America, loess in the Mississippi River valley, the Great Plains, and Alaska are also distinguishable with regard to major element composition that reflects highly diverse source sediments. Trace element geochemistry (Sc-Th-Zr and the rare earth elements) also shows regional diversity of loess bodies, in both Asia and North America. On both continents, most loess bodies show significant contributions from later-cycle, altered sedimentary rocks, as opposed to direct derivation from igneous rocks. Further, some loess bodies have detectable contributions from mafic igneous rocks as well as major contributions from average, upper-crustal, felsic rocks. Intercalated paleosols in loess sections show geochemical compositions that differ significantly from the underlying loess parent materials. Ratios of soluble-to-insoluble elements show depletions in paleosols due to chemical weathering losses of calcite, dolomite, plagioclase, mica, apatite, and smectite. In Asia and North America, the last interglacial paleosol is more weathered than equivalent modern soils, which could be due either to a climate that was warmer and more humid, a longer period of pedogenesis, or both. In Asia, early Pleistocene loess and paleosols are both more weathered than those from the middle and late Pleistocene, forming prior to a mid-Pleistocene aridification of Asia from uplift of the Tibetan Plateau. Understanding the geochemistry of loess and paleosols can tell us much about past atmospheric circulation, past temperature and moisture regimes, and even tectonic processes.
The geochemistry of loess: Asian and North American deposits compared
NASA Astrophysics Data System (ADS)
Muhs, Daniel R.
2018-04-01
Loess is widely distributed over Asia and North America and constitutes one of the most important surficial deposits that serve as terrestrial records of the Quaternary. The oldest Pleistocene loess in China is likely ∼2.6 Ma, thus spanning much or all of the Pleistocene. In North America, most loess is no older than the penultimate glacial period, with the exception of Alaska, where the record may go back to ∼3.0 Ma. On both continents, loess deposits date primarily to glacial periods, and interglacial or interstadial periods are represented by paleosols. Both glacial and non-glacial sources of silts that comprise the bulk of loess deposits are found on both continents. Although loess has been considered to be representative of the average upper continental crust, there are regionally distinctive compositions of loess in both Asia and North America. Loess deposits in Asia from Yakutia, Tajikistan, and China have compositionally distinct major element compositions, due to varying abundances of silicate minerals, carbonate minerals, and clay minerals. In North America, loess in the Mississippi River valley, the Great Plains, and Alaska are also distinguishable with regard to major element composition that reflects highly diverse source sediments. Trace element geochemistry (Sc-Th-Zr and the rare earth elements) also shows regional diversity of loess bodies, in both Asia and North America. On both continents, most loess bodies show significant contributions from later-cycle, altered sedimentary rocks, as opposed to direct derivation from igneous rocks. Further, some loess bodies have detectable contributions from mafic igneous rocks as well as major contributions from average, upper-crustal, felsic rocks. Intercalated paleosols in loess sections show geochemical compositions that differ significantly from the underlying loess parent materials. Ratios of soluble-to-insoluble elements show depletions in paleosols due to chemical weathering losses of calcite, dolomite, plagioclase, mica, apatite, and smectite. In Asia and North America, the last interglacial paleosol is more weathered than equivalent modern soils, which could be due either to a climate that was warmer and more humid, a longer period of pedogenesis, or both. In Asia, early Pleistocene loess and paleosols are both more weathered than those from the middle and late Pleistocene, forming prior to a mid-Pleistocene aridification of Asia from uplift of the Tibetan Plateau. Understanding the geochemistry of loess and paleosols can tell us much about past atmospheric circulation, past temperature and moisture regimes, and even tectonic processes.
Chemical composition of rocks and soils at Taurus-Littrow
NASA Technical Reports Server (NTRS)
Rose, H. J., Jr.; Cuttitta, F.; Berman, S.; Brown, F. W.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.
1974-01-01
Seventeen soils and seven rock samples were analyzed for major elements, minor elements, and trace elements. Unlike the soils at previous Apollo sites, which showed little difference in composition at each collection area, the soils at Taurus-Littrow vary widely. Three soil types are evident, representative of (1) the light mantle at the South Massif, (2) the dark mantle in the valley, and (3) the surface material at the North Massif. The dark-mantle soils are chemically similar to those at Tranquillitatis. Basalt samples from the dark mantle are chemically similar although they range from fine to coarse grained. It is suggested that they originated from the same source but crystallized at varying depths from the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuxuan; Bilheux, Jean -Christophe
ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-10-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3 > CO 3 > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-01-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965
Chotewutmontri, Prakitchai; Bruce, Barry D.
2015-01-01
Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915
Atypicality of Most Few-Body Observables
NASA Astrophysics Data System (ADS)
Hamazaki, Ryusuke; Ueda, Masahito
2018-02-01
The eigenstate thermalization hypothesis (ETH), which dictates that all diagonal matrix elements within a small energy shell be almost equal, is a major candidate to explain thermalization in isolated quantum systems. According to the typicality argument, the maximum variations of such matrix elements should decrease exponentially with increasing the size of the system, which implies the ETH. We show, however, that the typicality argument does not apply to most few-body observables for few-body Hamiltonians when the width of the energy shell decreases at most polynomially with increasing the size of the system.
Extraction of information from major element chemical analyses of lunar basalts
NASA Technical Reports Server (NTRS)
Butler, J. C.
1985-01-01
Major element chemical analyses often form the framework within which similarities and differences of analyzed specimens are noted and used to propose or devise models. When percentages are formed the ratios of pairs of components are preserved whereas many familiar statistical and geometrical descriptors are likely to exhibit major changes. This ratio preserving aspect forms the basis for a proposed framework. An analysis of compositional variability within the data set of 42 major element analyses of lunar reference samples was selected to investigate this proposal.
FARME DB: a functional antibiotic resistance element database
Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.
2017-01-01
Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567
NASA Astrophysics Data System (ADS)
Tesmer, M.; Möller, P.; Wieland, S.; Jahnke, C.; Voigt, H.; Pekdeger, A.
2007-11-01
Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca-Cl brines. Residual brines and leachates are identified by Br-/Cl- ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.
Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
NASA Technical Reports Server (NTRS)
Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst
1993-01-01
A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.
NASA Astrophysics Data System (ADS)
Jannot, S.; Schiano, P.; Boivin, P.; Clocchiatti, R.; Chazot, G.
2003-04-01
The Massif Central area, characterized by a typical intraplate alkaline serie, is the largest magmatic province of the West-European Rift system. Although it has been the subject of several studies, the nature of Massif Central sources is still a matter of debate and many hypotheses are proposed, including deep-rooted continental hotspot, metasomatised spinel lherzolites and an asthenospheric flow linked to the lithospheric root of the Alpine chain. The Chaîne des Puys is the last magmatic province of the French Massif Central and is composed of hundred young well-preserved volcanoes. The present work aims to supply information on the nature and the origin of the source chemistry of alkaline serie from the Chaîne des Puys, by characterizing the trace and major element composition of minute melts preserved as quenched glass inclusions inside olivines phenocrysts in scoria from the Beaunit Maar. Heating stage experiments performed at ambient pressure on partially crystallised primary melt inclusions suggest CO_2 oversaturation of the trapped melt, and an entrapment temperature around 1200^oC±10^oC. Daughter minerals analyses point to a Ti-and Ca-rich basaltic paragenesis, in good agreement with that of erupted basalts from the Chaîne des Puys. Major element compositions show that melts trapped in inclusions evolve by limited fractional crystallization. Inclusions trapped in the more primitive olivine phenocrysts (Fo85) have alkali-basalt compositions that fall on the primitive end of the compositional trend define by the lavas of the Chaîne des Puys. Their major element chemistry rules out the hypothesis of a mantle source in the spinel stability field and requires a garnet-bearing mantle source. Analyzed for trace-element composition by LA-ICP-MS, they display homogeneous, enriched patterns, similar to those characterizing oceanic island and continental basalts. They have high concentration of LILE and LREE/HREE ratios. Such trace-element feature are typical of OIB showing EM(1-2)-type isotopic signatures and thought to reflect the involvement of recycled continental and/or sedimentary components.
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.
2017-02-01
The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.
NASA Astrophysics Data System (ADS)
Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2016-04-01
In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
NASA Astrophysics Data System (ADS)
Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen
2015-09-01
Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Temperature effects on ash physical and chemical properties. A laboratory study.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Úbeda, Xavier; Martin, Deborah
2010-05-01
Fire temperatures have different impacts on ash physical and chemical properties that depend mainly of the specie affected and time of exposition. In a real prescribed or wildland fire, the temperatures produce ash with different characteristics. Know the impacts of a specific temperature or a gradient on a certain element and specie is very difficult in real fires, especially in wildland fires, where temperatures achieve higher values and the burning conditions are not controlled. Hence, laboratory studies revealed to be an excellent methodology to understand the effects of fire temperatures in ash physical and chemical. The aim of this study is study the effects of a temperature gradient (150, 200, 250, 300, 350, 400, 450, 500 and 550°C) on ash physical and chemical properties. For this study we collected litter of Quercus suber, Pinus pinea and Pinus pinaster in a plot located in Portugal. The selected species are the most common in the ecosystem. We submitted samples to the mentioned temperatures throughout a time of two hours and we analysed several parameters, namely, Loss on Ignition (LOI%), ash colour - through the Croma Value (CV) observed in Munsell color chart - CaCO3, Total Nitrogen (TN), Total Carbon (TC), C/N ratio, ash pH, Electrical Conductivity (EC), extractable Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+), Zinc (Zn2+), Total Phosphorous (TP), Sulphur (S) and Silica (SiO2). Since we considered many elements, in order to obtain a better explanation of all dataset, we applied a Factorial Analysis (FA), based on the correlation matrix and the Factors were extracted according to the Principle Components method. To obtain a better relation between the variables with a specific Factor we rotated the matrix according to the VARIMAX NORMALIZED method. FA identified 5 Factors that explained a total of 95% of the variance. We retained in each Factor the variables that presented an eigenvalue >0.7. Factor 1 explained the majority of the variance (60.05%). LOI(%), CV, CaCO3, pH, Na+, K+, S (these last tree elements only in both Pinus) and SiO2, showed positive loadings. Inversely, TC, C/N ratio, Al3+, Fe2+ (these last tree elements for Quercus suber and Pinus pinaster ash) and Mn2+ (In the case of Quercus suber) presented negative loadings. Factor 2 explained 19.89% of the variance and showed higher loadings in TN, Ca2+ and Mg2+ (in the case of the ions only in both Pinus). Factor 3 explains only 6.69% of the variance and we identified higher loadings in Mg2+, Na+ and K+ of Quercus suber. Factor 4 explains less then the last Factor, only 4.60% of the variance and presented negative loadings above -0.7 in TP of Quercus suber and Pinus pinea. Factor 5 explained 3.93% of the variance, less than all other Factors and showed in Al3+, Mn2+ and Zn2+ of Pinus pinea and in the case of the last element, also in Pinus pinaster. The observation of the scores matrix allowed us to understand the major concentration of these elements according the temperature of exposition. Hence, the elements that showed higher positive loadings in Factor 1, have a major concentration at 450, 500 and 550°C, and the ones with higher negative loadings presented higher concentration at 200 and 250°C. The nutrients that presented higher positive loadings in Factor 2 have higher concentrations at 400°C. The elements with higher positive loadings in Factor 3 have bigger amounts in the ash slurries produced at 350°C and the ones with higher negative loadings in the Factor 4 showed greater concentrations in the ash produced at 300°C. The elements with higher negative loadings in the Factor 5 showed higher amounts in the ash created at 150°C of exposition. The results obtained showed that nutrients concentration is a function of the burned specie and temperature reached in the considered exposure time. Micronutrients and TC and C/N showed higher values at lower temperatures, TN, Ca2+, Mg2+ and TP at temperatures between 300-400°C. The other variables in study have major concentrations at temperatures higher than 450°C. Some differences between species can be identified and this is a result of the different litter vulnerabilities to the same temperature, producing diverse fire severities. This and other reasons for this behaviour will be discussed in the communication.
NASA Astrophysics Data System (ADS)
Broder, Tanja; Biester, Harald
2017-04-01
Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.
Lim, Christopher; Donovan, Andrew M.; Naylor, Patti-Jean
2017-01-01
The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children’s play in nature have also been highlighted, but few studies have evaluated children’s access and exposure to nature for play on school grounds. This study examined children’s access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Results: Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended. PMID:29064430
Lim, Christopher; Donovan, Andrew M; Harper, Nevin J; Naylor, Patti-Jean
2017-10-24
The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children's play in nature have also been highlighted, but few studies have evaluated children's access and exposure to nature for play on school grounds. This study examined children's access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended.
Trace element and major ion composition of wet and dry depositon in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Kaya, Güven; Tuncel, Gürdal
Daily, wet-only precipitation samples collected over a two year period were analyzed for SO 42-, NO 3-, Cl -, NH 4+, H +, Ca, Mg, K, Na, Al, Cu, Cd, Cr, Zn, V and Ni. Weekly dry-deposition samples collected on petri-dishes over the same period were analyzed only for major ions. Concentrations of ions and elements in Ankara precipitation are comparable with concentrations reported in literature for other urban areas. However, the wet deposition fluxes are the lowest among literature values, owing to small annual precipitation in the region. Although, annual average pH in precipitation is 4.7, episodic rain events with fairly low pH's were observed. Approximately half of the acidity in Ankara precipitation is neutralized in the winter season, while the acidity is completely neutralized by airborne soil particles that are rich in CaCO 3 in the summer precipitation. The SO 42- and NO 3- contributes approximately equally on the free acidity in winter. Main forms of SO 42- and NO 3- in precipitation are CaSO 4 and Ca(NO 3) 2, respectively. Crustal elements and ions have higher concentrations during summer season, while anthropogenic ions and elements did not show well-defined seasonal cycles. The lack of industrial activity in Ankara has profound influence on the temporal behavior of elements and ions.
NASA Astrophysics Data System (ADS)
Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.
2017-12-01
The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.
NASA Astrophysics Data System (ADS)
Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun
2017-04-01
Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.
Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil.
Santos, Wagna Piler Carvalho; Ribeiro, Nubia Moura; Santos, Daniele Cristina Muniz Batista; Korn, Maria Graças Andrade; Lopes, Mariângela Vieira
2018-02-01
The objective of this study was to analyze the effect of heat treatment on the bioaccessibility of major (K, Ca, Mg, P) and trace elements (As, Ba, Cu, Fe, Mn, Cd, Cr, Hg, Mo, Ni, Pb, Se, Sb, Sn, and Zn) in three different pulse species: Vigna unguiculata L. Walp (cowpea beans), Cajanus cajan L. (pigeon pea) and Lablab purpureus L. Sweet (mangalo). Analyte concentrations were determined in the samples by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. The results showed that thermal processing can affect the concentrations of the elements investigated in pulse samples. The influence of the heat treatment can range between legume species and chemical elements, as well as with the type of heat treatment, dry, wet, conductive heating and using microwaves. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mission analysis data for inclined geosynchronous orbits, part 1
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Wang, K. C.
1980-01-01
Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity
Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.
1993-01-01
Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.
Information Summary, Area of Concern: Grand Calumet River, Indiana
1991-03-01
Indiana Harbor and Adjacent Lake Michigan (Source Rl, Table 4) 10 Concentrations of 26 Major, Minor and Trace Elements in Sediments from Indiana Harbor...2 Dec 84 (Source R39, Table 2) 68 Concentrations of Major, Minor , and Trace Elements in Fish and Crayfish from Indiana Harbor and Adjacent Lake...Table 21b) 71 Catch per Unit Effort in Crayfish Traps (Source Rl, Table 21c) 72 Concentratiors of Major, Minor , and Trace Elements in Periphyton and
NASA Astrophysics Data System (ADS)
Doucet, Luc-Serge; Ionov, Dmitri A.; Ashchepkov, Igor
2010-05-01
Peridotite xenoliths from the Udachnaya kimberlite pipe represent the major source of lithospheric mantle samples beneath central Siberian craton. An important problem with the availble data [1], however, is that the Udachnaya xenoliths, like many other kimberlite-hosted peridotite suites worldwide, are extensively altered due to interaction with host magma and post-eruption alteration. This alteration causes particular dificulties for whole-rock studies including microstructures, modal estimates and chemical compositions. We report petrographic data and major and trace element compositions for whole-rocks and minerals of some 30 unusually fresh peridotite xenolith from the Udachnaya-East kimberlite. Our study has two goals. The first is to present and discuss trace element data on rocks and minerals from Udachnaya, whose composition remains little known. The other one is to explore how the availability of the fresh peridotites improves our knowledge of petrology and geochemistry of cratonic mantle in relation to published data on altered samples [1]. The xenoliths are spinel, garnet-spinel and garnet facies peridotites including garnet- and cpx-rich lherzolites, garnet and spinel harzburgites and dunites. Thermobarometric estimates for garnet bearing rocks yield T = 800-1350°C and P = 20-70 kbar, low-T spinel facies rocks may originate from shallower levels. Thus, the suite represents a lithospheric profile from the sub-Moho mantle down to ~210 km. The deeper peridotites commonly have porphyroclastic microstructures with mainly neoblast olivine, opx porphyroclasts and cpx and garnet with broadly variable morphologies whereas rocks of shallow origin are commonly protogranular. Trace element compositions in bulk rocks appear to be affected by host magma contamination with enrichments in highly to moderately incompatible elements as well as in alkalis. Nevertheless, the kimberlite-related contamination cannot explain a combination of low Th and U and high Sr contents. The broad range of heavy REE appears to be controlled by the presence and the abundance of garnet and is also related to microstructures such that granular spinel harzburgites have lower HREE contents than "fertile" porphyroclastic garnet lherzolites. Trace elements in cpx and garnet have equilibrated patterns in porphyroclastic peridotites and complex sinusoidal shapes in granular peridotites. Bulk-rock major element compositions show important variations in Mg# (0.89 - 0.93), SiO2 (41.5 - 46.6%), Al2O3 (0.3 - 4%) and CaO (0.3 - 4%). As for compatible trace elements, the major element compositions appear to be related to microstructures. Calculated modal compositions show highly variable opx contents (4.5 - 24%), which are generally lower than in Kaapvaal peridotites but are similar to those from the North Atlantic craton [3]. Overall, modal compositions and the contents of low-mobility elements, are consistent with an origin by variable degrees of partial melting of fertile mantle [1-3]. The range in FeO contents (6-8.5%) may indicate either variable melting depths [2] or post-melting enrichments. Enrichments in SiO2 show some similarities to those in supra-subduction xenoliths [4]; enrichments in highly incompatible elements can be explained by metasomatism with possible involvement of subduction-related fluids. Strong correlations between chemical compositions and microstructures indicate the involvement of tectonic processes in melt percolation and metasomatism. We suggest that the cratonic lithosphere in Siberia was formed in three stages: (1) formation of proto-cratonic mantle by high-degree melting at variable depth, (2) accretion of the proto-craton domains in subduction-related settings, (3) metasomatism commonly accompanied by deformation. [1] Boyd et al (1997) Contrib. Mineral. Petrol. 128, 228-246. [2] Herzberg (2004) J. Petrol. 45, 2507-2530. [3] Wittig et al (2008) Lithos 71, 289-322. [4] Ionov (2009) J. Petrol. In press
Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.
1999-01-01
High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.
Genome-wide identification of the potato WRKY transcription factor family.
Zhang, Chao; Wang, Dongdong; Yang, Chenghui; Kong, Nana; Shi, Zheng; Zhao, Peng; Nan, Yunyou; Nie, Tengkun; Wang, Ruoqiu; Ma, Haoli; Chen, Qin
2017-01-01
WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research.
Genome-wide identification of the potato WRKY transcription factor family
Kong, Nana; Shi, Zheng; Zhao, Peng; Nan, Yunyou; Nie, Tengkun; Wang, Ruoqiu; Ma, Haoli
2017-01-01
WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research. PMID:28727761
Microanalysis study on ancient Wiangkalong Pottery
NASA Astrophysics Data System (ADS)
Won-in, K.; Tancharakorn, S.; Dararutana, P.
2017-09-01
Wiangkalong is one of major ceramic production cities in northern of Thailand, once colonized by the ancient Lanna Kingdom (1290 A.D.). Ancient Wiangkalong potteries were produced with shapes and designs as similar as those of the Chinese Yuan and Ming Dynasties. Due to the complex nature of materials and objects, extremely sensitive, spatially resolved, multi-elemental and versatile analytical instruments using non-destructive and non-sampling methods to analyze theirs composition are need. In this work, micro-beam X-ray fluorescence spectroscopy based on synchrotron radiation was firstly used to characterize the elemental composition of the ancient Wiangkalong pottery. The results showed the variations in elemental composition of the body matrix, the glaze and the underglaze painting, such as K, Ca, Ti, V, Cr, Mn and Fe.
ImagingReso: A Tool for Neutron Resonance Imaging
Zhang, Yuxuan; Bilheux, Jean -Christophe
2017-11-01
ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less
Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil
2018-01-01
Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.
Young Prehistoric Kilauea Lava Flows From Uwekahuna Bluff, Hawaii: Mixed Source or Hybrid Magmas?
NASA Astrophysics Data System (ADS)
Marske, J. P.; Pietruszka, A. J.; Garcia, M. O.; Norman, M. D.; Rhodes, J. M.
2004-12-01
For the last 350 kyr, nearly the entire known compositional range of subaerial and submarine Kilauea lavas lie within the range defined by the volcano's historical eruptions. In contrast, Rhodes et al. (1989) discovered that some Kilauea lavas have Mauna Loa-like major-and trace-element signatures and concluded that Mauna Loa magmas may periodically invade Kilauea's shallow plumbing system. Here, we present new major- and trace- element data for 25 sequential prehistoric lava flows (0.5 to <2 ka) from the upper 55 m of the north wall of Kilauea caldera at Uwekahuna Bluff (UB). Although historical Kilauea and Mauna Loa lavas have been compositionally distinct for most of the last 230 kyr, our results show that the UB lavas span the geochemical spectrum between these neighboring volcanoes. At a given MgO content, the abundances of major elements (e.g., SiO2, TiO2, or CaO) in the UB lavas typically plot between historical Mauna Loa and Kilauea values, suggesting that these lavas originated from compositionally intermediate parental magmas or from hybridization between historical Kilauea- and Mauna Loa-type magmas. In contrast to the major element abundances, ratios of highly to moderately incompatible elements (e.g., Nb/Y) in the UB lavas are mostly Mauna Loa-like. These incompatible trace element ratios reveal a rapid fluctuation of Kilauea's lava composition since prehistoric times: (1) two lava flows at the base of the suite record a decrease in Nb/Y from historical Kilauea- to historical Mauna Loa-type values, (2) a weathered hiatus near the middle of the flow sequence coincides with a gradual Nb/Y minimum and reversal, and (3) the top three lava flows transition back into historical Kilauea-type Nb/Y values with a smooth temporal connection to the oldest historical lavas from this volcano. The systematic variations of these UB trace-element ratios may result from gradual mixing between Kilauea- and Mauna Loa-type magmas within the summit reservoir and/or varying degrees of partial melting of a Mauna Loa-like mantle heterogeneity within Kilauea's source region. Highly incompatible element ratios (e.g., Rb/Nb), which are typically unaffected by variable melt fraction, indicate that changes in the degree of partial melting alone cannot explain these Mauna Loa-like lava flows. Pb, Sr and Nd isotopic ratios of the Uwekahuna Bluff lavas will be presented to differentiate mantle source and melting effects from magma chamber processes.
11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China
NASA Astrophysics Data System (ADS)
Li, Siyue; Ye, Chen; Zhang, Quanfa
2017-08-01
Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.
Particulate matter analysis at elementary schools in Curitiba, Brazil.
Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M
2008-06-01
The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.
Major to ultra trace elements in rainfall collected in suburban Tokyo
NASA Astrophysics Data System (ADS)
Shimamura, Tadashi; Iwashita, Masato; Iijima, Satoe; Shintani, Megumi; Takaku, Yuichi
Major to ultra trace elements such as rare earth elements (REEs), platinum group elements (PGEs) in 20 rainfall events from suburban Tokyo were determined by inductively coupled plasma mass spectrometry (ICP-MS). Anion species were also determined by an ion chromatography (IC). The concentrations of PGEs were so low that only Pt was detected in some rainfall events. Enrichment factors (EFs), refer to soil and sea salt components, were calculated for the measured elements (with Al and Na as references). Be, (Na), Mg, (Al), Si, Cl, K, Fe, Rb, Sr, REEs (except La, Gd), Ta, and U were mostly originated from natural materials (soil and sea salt). For Li, B, Ca, Mn, Sr, Ba, and Cs, the contribution of natural materials was significant. EFs for Cu, Zn, As, Se, Sb, Cd, Pb, Bi, Ag, Te, Au, Pt, SO 4-S and NO 3-N exceeded 100 indicating non-crustal, non-sea salt origin, presumably anthropogenic; however, contribution of volcanic gases could not be excluded for As, Se, Te and Bi. Pt seemed to be uniformly distributed worldwide and a catalyst for automobile emission control may be the main source. Au also showed uniform distribution. On the other hand, EFs for Zr, Nb, Hf and Th were less than unity. Probably these elements resided in acid resistant refractory fine minerals that did not decompose with acid treatment, and did not evaporate and ionize in the ICP. An alternative explanation is that the concentration of these elements was lower in the soil of the sampling area than the average crust. In the crust normalized REE pattern plot, La, Eu and Gd showed clear positive anomalies. La and Gd could have anthropogenic components. A possible source of La and Gd is cracking catalyst for petrol refining, but this source does not fully explain the anomaly. The source of Gd may also be Gd-DTPA (Gadolinium (III) diethyltriaminepentaacetic acid) used for Magnetic Resonance Imaging (MRI) contrast agents. The Eu origin may be soil with higher concentration than the crust average.
NASA Astrophysics Data System (ADS)
Adrião, Á.; Maia, M.; Hemond, C.; Kaczmarek, M. A.; Briais, A.; Vincent, C.; Brunelli, D.
2017-12-01
The St. Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four major faults separating three intra transform ridge axes. This region shows a transition from a transpressive, hot spot affected, regional-scale shear zone to the North to a region dominated by a particular oceanic core complex spreading to the South (Vincent et al., this congress). Samples collected in the region during the COLMEIA cruise (Maia et al., 2016) were studied for textures and whole-rock major and trace element contents. All samples experienced pervasive deformation at ductile to brittle conditions overprinted by late low-T alteration. Mylonitic and ultramylonitic rocks can be grouped in three main types: peridotitic, gabbroic and talc-chlorite schist. Peridotitic ultramylonites preserve few opx, cpx and sp porphyroclasts; they have homogeneous nano-micro grain size groundmass, banded foliation and late amphibole and sulfide crystallization. Locally S-C fabric overprints the mylonitic texture. Micro cracks, filled with serpentine, chlorite and oxides are common, as well fluid inclusions trails in olivine and plagioclase crystals of peridotite and gabbros respectively. Major and trace element content of the peridotitic mylonites plot in the depleted field of the abyssal peridotites; however, they present marked LREE enrichment and Eu positive anomaly. Gabbroic and talc-chlorite mylonites display REE-enriched patterns (up to 100x CI) and variable Eu anomalies. Major elements show a remarkable linear trend in the talc-chlorite group suggesting mixing of pure talc and chlorite end-members. These compositional characteristics suggest variable assimilation of MORB and E-MORB during mylonisis or early melt-rock interaction and hydrothermal evolution at variable metamorphic conditions. Vincent et al., 2017. Particular Oceanic Core Complex evolution …; this congress Maia et al., 2016. Extreme mantle uplift and exhumation ... Nat. Geo. doi:10.1038/ngeo2759
NASA Astrophysics Data System (ADS)
Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.; Gao, S.; Hu, Z.; Zhou, L.
2012-12-01
In order to understand the differentiation of the Earth and growth of continents through time, it is critical to have reliable estimates for the average composition of the continental crust. Attempts to develop average compositional models for the upper continental crust have often relied upon the analysis of sediments and sedimentary rocks, based on the assumption that these provide natural averages of large crustal areas. Shales are among the most frequently used proxies, although some workers have also studied loess. The advantage of loess, especially that which is derived from glacial processes, is that it is typically produced by physical weathering alone and should lack the elemental fractionation produced by chemical weathering. Glacial tillites should also provide this advantage, and in addition, they should lack element fractionation caused by eolian particle sorting that is observed in loess. Here, we present new major and trace element data for glacial tillites from the Neoproterozoic, collected in southern China and the eastern U.S. Samples were collected from tillites of the Marinoan(?) Nantuo and Sturtian Gucheng Formations in Hubei Province, China (n = 21), and the Sturtian Konnarock Formation in the Appalachians of southwestern Virginia (n = 11). Values for the chemical index of alteration (Al2O3/Al2O3+K2O+Na2O+CaO) for these rocks are low, between 60 and 70 for most of the Chinese samples and 53 and 60 for all of the American ones, reflecting derivation from material that has experienced very little chemical weathering. The individual samples from the two localities show remarkable homogeneity, but their average compositions are distinct. The Chinese tillites match more closely the average upper crust composition of Rudnick and Gao (2003) than the Virginia ones, but the former still show a few major differences. Select soluble elements, such as Sr, Tl, and U, are depleted by as great a factor as ten, whereas other soluble elements, such as Li, Rb, and Cs, are either enriched or similar to the upper crustal model. By contrast, the Virginia tillites show major enrichment in the high field strength elements and rare earth elements, and depletion in the first row transition metals associated with mafic minerals (e.g., Ni, Cr, Sc, V). These tillites also show a stronger negative Eu anomaly. The difference between the Chinese and Virginia Neoproterozoic tillites likely reflects the different provenance of the Virginia samples, but in detail, the implications of this observation are unclear. The Virginia tillite chemistry is similar to local Neoproterozoic A-type granites in the Appalachians, but is also similar to the regionally extensive Grenvillian basement. This is an important distinction, as it goes to the question of whether or not the till represents the integration of a large area, as opposed to being primarily locally derived. In the case of the Chinese tillites, published detrital zircon and whole-rock Nd isotopic data suggests the provenance encompassed a large crustal area, strengthening their legitimacy as a proxy for the average upper crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, J.W.; McGee, J.J.
1998-09-01
Most of the Moon`s highland crust comprises Fe-rich anorthosites with calcic plagioclase compositions. Subsequent evolution of the highland crust was dominated by troctolites, anorthosites, and norites of the Mg-suite. This plutonic series is characterized by calcic plagioclase, and mafic minerals with high mg{number_sign} (=100{sup *}Mg/[Mg + Fe]). In an effort to distinguish the origin of this important lunar rock series, the authors have analyzed the REE content of primary cumulus phases in ten Mg-suite cumulates using SIMS, along with their major and minor element compositions by electron microprobe analysis. Nine of these samples have high mg{number_sign}s, consistent with their formationmore » from the most primitive parent melts of the Mg-suite. The data presented here show that Mg-suite troctolites and anorthosites preserve major and trace element characteristics acquired during their formation as igneous cumulate rocks and that these characteristics can be used to reconstruct related aspects of the parent magma composition. Data show that primitive cumulates of the Mg-suite crystallized from magmas with REE contents similar to high-K KREEP in both concentration and relative abundance. The highly enriched nature of this parent magma contrasts with its primitive major element characteristics, as pointed out by previous workers. This enigma is best explained by the mixing of residual magma ocean urKREEP melts with ultramagnesian komatiitic partial melts from the deep lunar interior. The data do not support earlier models that invoke crustal metasomatism to enrich the Mg-suite cumulates after formation, or models which call for a superKREEP parent for the troctolites and anorthosites.« less
NASA Astrophysics Data System (ADS)
Nedjimi, Bouzid
2018-05-01
The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.
Li, Peimiao; Gao, Xuelu
2014-11-01
One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.
Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny
2015-08-01
Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene-associated repetitive elements in the human genome. Our data showed distinct genes associated with different kinds of repetitive element and implied such combination may shape the function of these genes. Aside from the conventional view of these elements in genome evolution, results from this study offer a systemic review to facilitate exploitation of these elements in genome function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Major and trace element abundances in volcanic rocks of orogenic areas.
NASA Technical Reports Server (NTRS)
Jakes, P.; White, A. J. R.
1972-01-01
The composition of recent island-arc volcanic rocks in relation to their geographic and stratigraphic relations is discussed. The differences in composition between volcanic rocks and those in continental margins are pointed out. Trace elements and major elements are shown to suggest a continuous gradational sequence from tholeiites through calc-alkaline rocks to shoshonites.
Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China
Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.
2010-01-01
The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia
Afifi, A.M.
1990-01-01
Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
Kimura-Yoshida, Chiharu; Yan, Kuo; Bormuth, Olga; Ding, Qiong; Nakanishi, Akiko; Sasaki, Takeshi; Hirakawa, Mika; Sumiyama, Kenta; Furuta, Yasuhide; Tarabykin, Victor; Matsuo, Isao; Okada, Norihiro
2016-01-01
Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution. PMID:27741242
Ten Thousand Years of Environment Assessment Using Synchrotron Radiation Micro Beam
NASA Astrophysics Data System (ADS)
Shirasawa, K.; Ide-Ektessabi, A.; Koizumi, A.; Azechi, M.
2003-08-01
The environment surrounding human has changed through civilization and industrialization, and through these developments, problems including the pollution from heavy metals such as lead and mercury have arisen. In this study, we analyzed major and trace elements in modern and prehistoric teeth by x-ray fluorescence (XRF) analysis using synchrotron radiation micro beam, in order to assess the changes of the environment through the civilization and the industrialization and their affects to the human. It is suggested that teeth accumulate elements in the mineral phase, hydroxiapatite, during their formation, and because there are no significant turnovers, teeth are concerned to be indicators of the environment of the donor. We first analyzed the elements on the surface of tooth from modern individual and tooth from human remains of Jomon period to assess the heavy metal concentration and effect of the diagenesis. The adhering ground elements on the prehistoric teeth showed high amount of Ti, Fe, Mn and other metallic elements.
An Integrated Encyclopedia of DNA Elements in the Human Genome
2012-01-01
Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research. PMID:22955616
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
Chen, Xue-Bin; Yang, Ping-Heng; Lan, Jia-Cheng; Mo, Xue; Shi, Yang
2014-01-01
Chemical dynamics of Qingmuguan karst groundwater system were continuously monitored during the rainfall events. A series of high-resolution concentrations data on trace elements, such as barium, strontium, iron, manganese, aluminum, and other major elements were acquired. Correlation analysis and analysis of concentration curve were employed to identify the sources and migration path of the trace elements. And the formation process of trace elements in groundwater was discussed with the geological background of underground river basin. Research shows that barium and strontium derived from carbonate dissolution appeared to be stored in features such as fissures and pores. These two ions were recharged into the underground river by diffusion during precipitation, which resulted in small changes in the their concentration. However total iron, total manganese and aluminum derived from soil erosion varied relatively widely with strong response to rainfall, attributing to the migration of total iron and aluminum with overland flow to recharge the subterranean river directly via sinkholes while total manganese via soil-rock porous media. The results showed that concentrations of all the five trace elements were below 1 mg x L(-1), and the highest concentrations of total iron, total manganese and aluminum exceeded the limit of drinking water. To some extent, the concentrations of total iron and aluminum may be an indicator for soil erosion and water quality.
Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad
2010-11-01
Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Panda, Sasmita; Kar, Sarita; Sharma, Savitri; Singh, Durg V
2016-09-01
This study aimed to determine the presence of antibiotic resistance genes (ARGs), SCCmec elements and genetic relatedness among Staphylococcus haemolyticus isolated from patients with a variety of eye infections (n=11) and from healthy conjunctiva (n=7). Minimum inhibitory concentrations were determined for 14 antimicrobials according to BSAC guidelines. PCR was used to identify the presence of mecA, mecC, SCCmec type and ARGs. Sequencing was used to determine mutations in gyrA, gyrB, topoisomerase IVA and IVB genes. Genetic relatedness was determined by PFGE. Of the 18 isolates, 17 showed resistance to at least one antibiotic, but none showed resistance to vancomycin or rifampicin. Ten isolates were oxacillin-resistant and carried the mecA gene, eight of which belonged to SCCmec type V. The presence of non-mec SCC elements in two meticillin-susceptible isolates and untypeable SCC elements in meticillin-resistant isolates suggests the involvement of S. haemolyticus in the diversification of SCC elements. Sequence analysis revealed point mutations in gyrA (Ser-84→Leu) and topoisomerase IVA genes (Ser-80→Leu) in 13 isolates, and additional variation in the QRDR (Asp-84→Asn) of two isolates, showing good correlation between mutations in gyrA and topoisomerase IV genes and the level of resistance to fluoroquinolones. PFGE analysis showed distinct pulsotypes forming two major clusters, indicating the existence of diversity among isolates, irrespective of the source of isolation. This study suggests that S. haemolyticus isolates from infected eyes and healthy conjunctivae invariably carried ARGs and SCCmec elements and showed diversity in their genomic content, irrespective of the source of isolation. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
Catry, Teresa; Figueira, Paula; Carvalho, Lina; Monteiro, Rui; Coelho, Pedro; Lourenço, Pedro Miguel; Catry, Paulo; Tchantchalam, Quintino; Catry, Inês; Botelho, Maria J; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2017-11-01
Shellfish harvesting in intertidal areas is a widespread and economically important activity in many countries across West Africa. However, in some areas, there is virtually no information concerning the levels of contaminants (and other elements related to nutritional aspects) in the harvested species. We collected sediments and several individuals of the West African bloody cockle Senilia senilis and of the razor clam Tagelus adansoni during the dry season of 2015 nearby three islands in the Bijagós archipelago, Guinea-Bissau. Aluminium, Ca, Fe, Mg, As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn were determined in sediments and whole soft tissues of the two bivalves. Sediments showed uniformly low trace element concentrations, pointing to an ecosystem with low levels of trace element contamination. T. adansoni presented higher concentrations of most elements than S. senilis, with the exception of Cd that showed up to 40 times higher values in S. senilis than in T. adansoni from the same sites. Furthermore, Cd concentrations (25±8.7 mg kg -1 , dw) in S. senilis are clearly above the maximum level established for human consumption. Future studies should clarify whether biological factors are the major responsible for this unusual situation.
Publications - PDF 96-18 | Alaska Division of Geological & Geophysical
content DGGS PDF 96-18 Publication Details Title: Major and trace element analyses of Cretaceous plutonic Bibliographic Reference Newberry, R.J., 1996, Major and trace element analyses of Cretaceous plutonic rocks in pdf1996_018.pdf (571.0 K) Keywords Geochemistry; Geology; Igneous Rocks; Major Oxides; Plutonic Rocks
Krachler, M; Irgolic, K J
1999-11-01
The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.
Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea
Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
2016-01-01
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982
Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).
Aksoy, Laçine; Sözbilir, Nalan Bayşu
2015-10-01
The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.
Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz
2014-06-01
This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.
Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga
2016-04-15
Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.
Major element chemistry of glasses in Apollo 14 soil 14156.
NASA Technical Reports Server (NTRS)
Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Jakes, P.
1973-01-01
Glasses in a soil sample (14156) from the middle layer of the trench at the Fra Mauro landing site show a wide range of compositions clustered around certain preferred compositions. Ninety per cent of the glasses are of two major types - Fra Mauro basalt (63%) with high K and 17 wt % Al2O3 and Highland basalt or anorthositic gabbro (27%) with low K and 25 to 26 wt % Al2O3. The glass population is almost identical with that of the comprehensive soil 14259.
Minor Elements in Nakhlite Pyroxenes: Cr in MIL00346
NASA Technical Reports Server (NTRS)
McKay, G. A.; Schwandt, C.; Le, L.; Makishima, J.; Kurihara, T.
2006-01-01
Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998
Recycling of trace elements required for humans in CELSS.
Ashida, A
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Recycling of trace elements required for humans in CELSS
NASA Astrophysics Data System (ADS)
Ashida, A.
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico
NASA Astrophysics Data System (ADS)
Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo
2017-04-01
The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Tonya M; Stewart, Brian W; Capo, Rosemary C
2013-05-01
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope resultsmore » from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.« less
Loch, Carolina; Swain, Michael V; Fraser, Sara J; Gordon, Keith C; Kieser, Jules A; Fordyce, R Ewan
2014-01-01
Dolphins show increased tooth number and simplified tooth shape compared to most mammals, together with a simpler ultrastructural organization and less demanding biomechanical function. However, it is unknown if these factors are also reflected in the chemical composition of their teeth. Here, the bulk chemical composition and elemental distribution in enamel and dentine of extant dolphins were characterized and interpreted using X-ray and spectroscopy techniques. Teeth of 10 species of Delphinida were analyzed by WDX, EDX and Raman spectroscopy. For most of the species sampled, the mineral content was higher in enamel than in dentine, increasing from inner towards outer enamel. The transition from dentine to enamel was marked by an increase in concentration of the major components Ca and P, but also in Na and Cl. Mg decreased from dentine to enamel. Concentrations of Sr and F were often low and below detection limits, but F peaked at the outer enamel region for some species. Raman spectroscopy analyzes showed characteristics similar to carbonated hydroxyapatite, with the strongest peak for the phosphate PO4(3-) stretching mode at 960-961cm(-1). Dentine samples revealed a higher diversity of peaks representative of organic components and proteins than enamel. The similar distribution pattern and small variation in average concentration of major and minor elements in dentine and enamel of dolphins suggest that they are subject to strong physiological control. A clear trend of the elemental variations for all dolphin species sampled suggests that the general pattern of tooth chemistry is conserved among the Mammalia. Copyright © 2013 Elsevier Inc. All rights reserved.
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
Alaimo, M G; Dongarrà, G; La Rosa, A; Tamburo, E; Vasquez, G; Varrica, D
2018-08-15
The aim of this study was to determine and compare the content of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V and Zn) in fruiting bodies of Boletus aereus Bull. and Clitopilus prunulus P. Kumm collected from eleven unpolluted sites of Sicily (Italy) and, also to relate the abundance of chemical elements in soil with their concentration in mushrooms. Median concentrations of the most abundant elements in Boletus aereus ranged from 31,290 μg/g (K) to 107 μg/g (Zn) in caps and from 24,009 μg/g (K) to 57 μg/g (Zn) in stalks with the following abundance order: K > Na > Ca > Mg > Fe > Al > Rb > Zn. The same elements, in the whole fruiting body of Clitopilus prunulus samples, varied in the range 54,073-92 μg/g following the abundance order: K > Na > Mg > Ca > Fe > Al > Rb > Zn. Metal contents in Boletus aereus and in the whole fruiting body of Clitopilus prunulus, collected from the same sampling sites, showed statistically significant differences for most elements. In particular, Clitopilus prunulus contained around two to four times more Co, Cr, Fe, Mg, Mo, Pb, U and V than caps and stalks of Boletus aereus species which, in turn, was from two to four times more enriched in Cu, Se and Tl. Thus, the elemental content of Boletus aereus and Clitopilus prunulus appeared to be species-dependent. The distribution of chemical elements in Boletus aereus was not uniform throughout the whole fruiting body as most elements were significantly bioconcentrated in caps. Furthermore, the fruit bodies of Boletus aereus from the volcanic soil differed both in major and minor elements concentrations from those collected from sedimentary soils. Cadmium and lead concentrations were below the threshold limits for wild mushrooms proposed by EU Directives (2008 and 2015). The elemental content was not significantly influenced by soil pH. Copyright © 2018 Elsevier Inc. All rights reserved.
On the materials basis of modern society
Graedel, T. E.; Nassar, N. T.; Reck, Barbara K.
2015-01-01
It is indisputable that modern life is enabled by the use of materials in its technologies. Those technologies do many things very well, largely because each material is used for purposes to which it is exquisitely fitted. The result over time has been a steady increase in product performance. We show that this materials complexity has markedly increased in the past half-century and that elemental life cycle analyses characterize rates of recycling and loss. A further concern is that of possible scarcity of some of the elements as their use increases. Should materials availability constraints occur, the use of substitute materials comes to mind. We studied substitution potential by generating a comprehensive summary of potential substitutes for 62 different metals in all their major uses and of the performance of the substitutes in those applications. As we show herein, for a dozen different metals, the potential substitutes for their major uses are either inadequate or appear not to exist at all. Further, for not 1 of the 62 metals are exemplary substitutes available for all major uses. This situation largely decouples materials substitution from price, thereby forcing material design changes to be primarily transformative rather than incremental. As wealth and population increase worldwide in the next few decades, scientists will be increasingly challenged to maintain and improve product utility by designing new and better materials, but doing so under potential constraints in resource availability. PMID:24297915
Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis
NASA Technical Reports Server (NTRS)
Meyer, C., Jr.
1978-01-01
Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.
NASA Astrophysics Data System (ADS)
Xiao, Xin; Zhou, Tao-fa; White, Noel C.; Zhang, Le-jun; Fan, Yu; Wang, Fang-yue; Chen, Xue-feng
2018-03-01
Xinqiao is a large copper-gold deposit and consists of two major mineralization types: stratabound and skarn. The skarn occurs along the contact between a quartz diorite intrusion and Carboniferous-Triassic limestone. Xinqiao has a strongly developed skarn zone, including endoskarn and exoskarn; the exoskarn is divided into proximal and distal exoskarn. We present systematic major, trace and rare earth element (REE) concentrations for garnets from the skarn zone, discuss the factors controlling the incorporation of trace elements into the garnets, and constrain the formation and evolution of the garnet from skarn zone in Xinqiao deposit. Grossular (Adr20-44Grs56-80) mostly occurs in endoskarn and has typical HREE-enriched and LREE-depleted patterns, with small Eu anomalies and low ∑REE. Garnets from the exoskarn show complex textures and chemical compositions. The composition of garnets range from Al-rich andradite (Adr63-81Grs19-47) to andradite (Adr67-98Grs2-33). Garnet in endoskarn has typical HREE-enriched and LREE-depleted patterns. Al-rich andradite in proximal skarn has small Eu anomalies and moderate ∑REE. Andradite from distal exoskarn shows strong positive Eu anomalies and has variable ∑REE. The U, Y, Fe and Al relationship with ∑REE shows that two mechanisms controlled incorporation of REE into the garnets: crystal chemistry (substitution and interstitial solid solution) mainly controlled in the endoskarn garnet (grossular) and the proximal exoskarn (Al-rich andradite), and fluid and rock chemistry (surface adsorption and occlusion) controlled REEs in the distal exoskarn. Furthermore, Al has a negative relationship with ∑REE indicating that REE3+ did not follow a coupled, YAG-type substitution into the garnets. Variations in textures and trace and rare earth elements of garnets suggest that the garnets in the endoskarn formed by slow crystal growth at low W/R ratios and near-neutral pH in a closed system during periods of diffusive metasomatism. The garnets in the exoskarn formed rapidly from externally derived fluids during advective metasomatism, and adsorption had a major control on the REE patterns in distal exoskarn. With the end of water-rock reaction, the contents of REE decreased in the hydrothermal fluid, and the system became nearly closed.
Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.
2008-01-01
The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.
2009-05-01
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.
NASA Astrophysics Data System (ADS)
Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.
2016-08-01
Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Dasgupta, R.
2008-12-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Astrophysics Data System (ADS)
Jackson, Matthew G.; Dasgupta, Rajdeep
2008-11-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Technical Reports Server (NTRS)
McKay, G.; Schwandt, C.; Le, L.; Mikouchi, T.
2007-01-01
Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ujiie, K.
2017-12-01
Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages. These results demonstrate that trace element and isotope analyses are useful not only to detect preexistence of pseudotachylytes but also to evaluate the frictional melting in subduction zone faults quantitatively.
Galaxy Formation through Winds, Infall and Merger: Learning from Galactic Archaeology
NASA Astrophysics Data System (ADS)
Tsujimoto, T.
2010-06-01
Here we show how we can dig the information on the prominent processes in galaxy evolution out of stellar records. Two studies are presented. First, the observed indication that the elemental abundance gradient evolves with cosmic time in the Milky Way disk is shown to be evidence of large-scale winds that once enriched the whole disk, which set up the steep abundance gradient in the inner disk several Gyr ago. Secondly, we show that evidence of a major merger in the SMC is imprinted in its age-metallicity relation as a dip in [Fe/H]. Our theoretical models predict that the major merger with a mass ratio of 1:1 to 1:4 occurred at ~7.5 Gyr ago in the SMC.
Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341
NASA Astrophysics Data System (ADS)
Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.
2016-12-01
In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bea, F.
1991-07-01
A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less
Detrital and oceanic dysoxia influence on OAE2 sediment geochemistry from Tarfaya, SW Morocco
NASA Astrophysics Data System (ADS)
Turgeon, S. C.; Kolonic, S.; Brumsack, H.-J.; Wagner, T.
2003-04-01
The Cretaceous "greenhouse" world's stratigraphic record is punctuated by several important organic-rich intervals representing quasi-global "Oceanic Anoxic Events" (OAEs). This study focuses on sediments from Tarfaya in SW Morocco deposited during the Cenomanian-Turonian Boundary Event (CTBE or OAE2 at 93.5 Ma). These sediments consist of distinctly laminated, carbonate-rich black shales alternating with lighter coloured structureless intervals and sporadic chert lenses. Sediments from three sites representing proximal to distal settings were studied. Samples were analysed for Ctot, Corg, Stot, as well as several major-, minor- and trace elements using XRF and ICP-MS. These sediments are characterised by high Corg, Stot, and CaCO3 contents and consist of a simple two component mixing system ("average shale"-CaCO3). Major element concentrations are low, except for Ca and P, owing in part to the carbonate dilution effect. Most elements plot along "average shale" lines. Elements such as Si, Ti, Fe, K, Rb, and Zr show positive relationships with Al2O3, pointing to homogeneous source area material. Several Al-normalised elements (As, Ba, Cr, Cu, Ni, Sr, U, V, Y, Zn), many of them redox-sensitive or sulphide-residing, are enriched in the sediments indicating an oxygen-depleted environment and potential availability of hydrogen sulfide in the water column at the time of deposition. High Zn concentrations suggest increased submarine volcanism and/or hydrothermal activity during this time interval. High Ba concentrations are possibly indicative of high regional paleoproductivity, which is further supported by the elevated P concentrations hinting at nutrient availability. Basinward trends in the geochemical distribution of some elements are apparent and probably reflect the decreasing influence of terrestrial sediments away from the shoreline.
Lamsal, Ram P; Beauchemin, Diane
2015-03-31
A previously developed, efficient and simple on-line leaching method was used to assess the maximum bio-accessible fraction (assuming no synergistic effect from other food and beverage) of potentially toxic elements (Cr, As, Cd and Pb) in whole wheat brown and white bread samples. Artificial saliva, gastric juice and intestinal juice were successively pumped into a mini-column, packed with bread (maintained at 37 °C) connected on-line to the nebulizer of an inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with a collision-reaction interface (CRI) using hydrogen as reaction gas to minimize carbon- and chlorine-based polyatomic interferences. In contrast to the conventional batch method to which it was compared, this approach provides real-time monitoring of potentially toxic elements that are continuously released during leaching. Mass balance for both methods was verified at the 95% confidence level. Results obtained from the whole wheat brown and white bread showed that the majority of Cr, Cd and Pb was leached by gastric juice but, in contrast, the majority of As was leached by saliva. While there was higher total content for elements in whole wheat bread than in white bread, a higher percentage of elements were bio-accessible in white bread than in whole wheat bread. Both the on-line and batch methods indicate that 40-98% of toxic elements in bread samples are bio-accessible. While comparison of total analyte concentrations with provisional tolerable daily intake values may indicate some serious health concern for children, when accounting for the bio-accessibility of these elements, bread consumption is found to be safe for all ages. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...
2017-02-01
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karayigit, A.I.; Bulut, Y.; Karayigit, G.
A total of 48 samples, feed coals (FCs), fly ashes (FAs) and bottom ashes (BAs), which were systematically collected once a week over an eight-week period from boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity from Soma power plant, have been evaluated for major and trace elements (Al, Ca, Fe, K, Mg, Mn, Na, Ti, S, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Cs, Ga, Ge, Hf, Hg, Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, Tl, U, V, Y, Zn, Zr, and REEs) to get information onmore » behavior during coal combustion. This study indicates that some elements such as Hg, Bi, Cd, As, Pb, Ge, Tl, Sn, Zn, Sb, B show enrichments in FAs relative to the BAs in both group boiler units. In addition to these, Cs, Lu, Tm, and Ga in Units B1-4 and S in Units B5-6 also have enrichments in FAs. Elements showing enrichments in BAs in both group boiler units are Ta, Mn, Nb. In addition to these, Se, Ca, Mg, Na, Fe in Units B1-4 and Cu in Units B5-6 also have enrichments in BAs. The remaining elements investigated in this study have no clear segregation between FAs and BAs. Mass balance calculations with the two methods show that some elements, S, Ta, Hg, Se, Zn, Na, Ca in Units B1-4, and Hg, S, Ta, Se, P in Units B5-6, have volatile behavior during coal combustion in the Soma power plant. This study also implies that some elements, Sb and Tb in Units B1-4 and Sb in Units B5-6, have relatively high retention effects in the combustion residues from the Soma power plant.« less
NASA Astrophysics Data System (ADS)
Talarmin, Agathe; Lomas, Michael W.; Bozec, Yann; Savoye, Nicolas; Frigstad, Helene; Karl, David M.; Martiny, Adam C.
2016-11-01
What is the temporal variability of the elemental stoichiometry of marine microbial communities across ocean regions? To answer this question, we present an analysis of environmental conditions, particulate organic carbon, nitrogen, and phosphorus concentrations and their ratios across 20 time series (3-25 years duration) representing estuarine, coastal, and open ocean environments. The majority of stations showed significant seasonal oscillations in particulate organic elemental concentrations and ratios. However, shorter-term changes contributed most to overall variance in particulate organic matter concentrations and ratios. We found a correlation between the seasonal oscillations of environmental conditions and elemental ratios at many coastal but not open ocean and estuarine stations. C:N peaked near the seasonal temperature minimum and nutrient maximum, but some stations showed other seasonal links. C:N ratios declined with time over the respective observation periods at all open ocean and estuarine stations as well as at five coastal station but increased at the nine other coastal stations. C:P (but not N:P) declined slightly at Bermuda Atlantic Time-series Study but showed large significant increases at Hawaii Ocean Time-series and Arendal stations. The relationships between long-term changes in environmental conditions and particulate organic matter concentrations or ratios were ambiguous, but interactions between changes in temperature and nutrient availability were important. Overall, our analysis demonstrates significant changes in elemental ratios at long-term and seasonal time scales across regions, but the underlying mechanisms are currently unclear. Thus, we need to better understand the detailed mechanisms driving the elemental composition of marine microbial ecosystems in order to predict how oceans will respond to environmental changes.
Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.
2017-01-01
Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356
USDA-ARS?s Scientific Manuscript database
Rhamnose-binding lectins (RBLs) are crucial elements associated with innate immune responses to infections and have been characterized from a variety of teleost fishes. Our previous work highlighted a major role of a RBL (IpRBL1a) in mediating F. columnare adhesion and IpRBL1a showed higher expressi...
NASA Technical Reports Server (NTRS)
Yuan, D. W.
1984-01-01
Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.
Gulf War Air Power Survey. Volume 4. Weapons, Tactics, and Training and Space Operations
1993-01-01
situation within their sectors. The socs were the critical element of the integrated battle management system.’" [ DE - LETED]. The Soc personnel...sys- tem. Figure 4 illustrates SAM and radar coverage. Priority was given to the areas critical to the survival of the regime. Figure 5 shows the de ...runways of over 3,659 meters. Figure 7 shows the location of the major Iraqi air bases and de - ployment/dispersal fields as of December 1991. Iraqi air
Multi-channel probes to understand fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosby, Shea Morgan
2016-04-15
Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less
Environmental assessment of Al-Hammar Marsh, Southern Iraq.
Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim
2017-02-01
(a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results compatible with multivariate statistical techniques findings. Analysis of heavy metals in plant samples revealed that there is no pollution in plants in Al-Hammar Marsh. However, the concentrations of heavy metals in fish samples showed that all samples were contaminated by Pb, Mn, and Ni, while some samples were contaminated by Pb, Mn, and Ni. Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.
2013-01-01
Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275
Distribution of Major and trace elements in Koppunuru area, Guntur district, Andhra Pradesh, India.
Arumugam, K; Srinivasalu, S; Purvaja, R; Ramesh, R
2018-06-01
From koppunuru study area totally 58 samples were collected in 7 different boreholes, minimum depth of 28 m and Maximum depth of 157.7 m. The borehole samples geochemical analysis (major and trace elements) was carried out at Atomic Minerals Directorate for Exploration & Research (AMD), Hyderabad, India. Major and trace element studies have been conducted on the Neoproterozoic Palnad sub-basin Andhra Pradesh, South India, to determine their Geochemistry, Uranium mineralization and provenance characteristics. Geochemically, this sedimentary basin has a different litho - unit like as gritty quartzite, conglomerate, and Shale. This study area mainly dominated by Uranium deposited and radioactive elements are predominately deposit. Strong positive correlation between Uranium and Lead ( r = 0.887) suggested radiogenic nature of this system.
In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1
NASA Technical Reports Server (NTRS)
Jeffcoat, C. R.; Kerekgyarto, A.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.
2014-01-01
Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb.
NASA Astrophysics Data System (ADS)
Pineda-Vargas, C. A.; Eisa, M. E.; Chikte, U. M. E.; Conradie, J. L.
2004-10-01
The process of demineralisation in tooth erosion due to exposure to acidic media was investigated in a group of test and control healthy human molar teeth. Analysis by micro-PIXE and proton-backscattering showed that the levels of trace elements were enriched and/or depleted according to experimental treatment. The atomic ratios of major constituents in the matrix were characteristic of test or controls with typical ratios: O 5P 1Ca 3F 1 for tests and O 6P 0.5Ca 3F 0.5 for controls. The correlation between maps of Ca and Zn in and around the interface between dentine and enamel in control samples showed two kinds of correlation strengths (for enamel and dentine). The strongest correlation was related to the enamel area.
NASA Astrophysics Data System (ADS)
Lu, Hsueh-Yu
2014-04-01
In this paper, water chemistry is successfully applied to elucidate hydrological processes through the use of natural tracers in a hydrological system. The concept of a natural tracer is principally based on water-rock interaction. In this case, a volcanic watershed in the Tatun Volcano Group is examined with the hydrochemistry of the Peihuang Creek system analyzed in terms of acidic hydrothermal water. The application of principal component analysis demonstrates that the hydrochemistry of Peihuang Creek is dominated by mixing among three end members, Lujiaoken seep water, Matsao seep water and shallow circulated water. Conservative ions, such as halogens, reveal that recharge of shallow circulated water with low ionic concentration is dominant in the mountain area and gradually becomes insignificant in the plains area. Rare earth elements also confirm this derivation. In addition, rare earth elements demonstrate parallel pattern along the tributaries, which implies that the fractionation of rare earth elements is not considerable and dilution is the major factor attenuating the concentrations of rare earth elements. Therefore, the constant slope of REE pattern allows for semi-quantitative estimation of mixing proportion of the two major tributaries. The results show that Lujiaoken Creek supplies about 50% of waters to the downstream Peihuang Creek. Comparing commonly used nature tracers, such as Cl- and environmental isotopes, this study demonstrates that rare earth elements have the advantage of very low background concentrations and easily defined sources if fractionation is not considerable. Under this circumstance, the calculation of water mixing is applicable.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
NASA Astrophysics Data System (ADS)
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.
Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong
2013-04-15
The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nuclear microscopy in trace-element biology — from cellular studies to the clinic
NASA Astrophysics Data System (ADS)
Lindh, Ulf
1993-05-01
The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.
Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.
2007-01-01
Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.
Barium as a potential indicator of phosphorus in agricultural runoff.
Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats
2012-01-01
In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Technical Reports Server (NTRS)
Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.
2016-01-01
The Icing Research Tunnel at NASA Glenn has recently switched from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to peform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element Sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison. Ultimately these tests showed that in the IRT, the multi-wire is a better instrument for measuring cloud liquid water content than the blade.
Kausar, Rubina; Ahmad, Zulfiqar
2009-10-01
The present study deals with the ground water quality assessment in Kahuta Industrial Triangle Islamabad, Pakistan. The objective of the study was to assess ground water quality against the drinking water standards for various toxic inorganic elements. Representative groundwater samples were collected and analyzed in the Water Quality Laboratory of Pakistan Council of Research in Water Resources (PCRWR) at Islamabad, Pakistan. The samples were run on ICP-MS (Inductively coupled plasma mass spectrometry), which has the capability to separate and quantify 70 elements at a time. One of the finding of study is that ICP-MS is a very good tool to analyze broad range of toxic inorganic elements to the level of parts per billion (ppb). World Health Organization drinking water standards shows that these toxic inorganic elements such as heavy metals even at this concentration level (ppb) are injurious to human health. This analysis indicated pollution of various toxic elements including Selenium. Vertical leachate through industrial waste septic tanks is identified as major cause of groundwater pollution in the Industrial Triangle. Monitoring of the septic tanks and groundwater quality in study area is suggested along with remedial measures.
BioMetals: a historical and personal perspective.
Silver, Simon
2011-06-01
Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.
Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas
2015-01-01
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. PMID:25577199
Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas
2015-01-09
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744
NASA Astrophysics Data System (ADS)
Kent, Jeremy J.; Brandon, Alan D.; Joy, Katherine H.; Peslier, Anne H.; Lapen, Thomas J.; Irving, Anthony J.; Coleff, Daniel M.
2017-09-01
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first-discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg-suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact-related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact-induced shock.
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2015-12-01
Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
The Treatment of Entrepreneurship in Principles of Economics Textbooks.
ERIC Educational Resources Information Center
Kent, Calvin A.
1989-01-01
Identifies the 6 major elements of entrepreneurship, and examines the treatment of each element by 15 major introductory economics textbooks. Results indicate that entrepreneurship is not adequately covered, causing students to miss important understandings about the workings of the market economy. Recommends that teachers provide supplementary…
Massive horizontal transfer of transposable elements in insects
Peccoud, Jean; Loiseau, Vincent; Cordaux, Richard
2017-01-01
Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution. PMID:28416702
Lan, Susan; Kamel, Wael; Punga, Tanel; Akusjärvi, Göran
2017-02-28
The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.
2012-04-01
Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation, position of ecosystems in the landscape (lateral migration) and types of bedrocks [2]. The results allow better understanding of the coupling between biogeochemical cycles of carbon and major and trace elements in peat soils in order to predict the future changes in both concentrations and stocks of chemical elements in the Western Siberia peat bog systems under climate warming.
NASA Astrophysics Data System (ADS)
Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo
2017-04-01
The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.
NASA Astrophysics Data System (ADS)
Dave, Eshan V.
Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Sprague, M. A.; Jonkman, J.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less
Processing and Mechanical Characterization of Polyurea Aerogels
2011-01-01
PROCESSING AND MECHANICAL CHARACTERIZATION OF POLYUREA AEROGELS by JARED MICHAEL LOEBS A THESIS Presented to the Faculty of the Graduate School of...SUBTITLE Processing and Mechanical Characterization of Polyurea Aerogels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...suggest otherwise. This thesis outlines the processing and major mechanical properties of a relatively new type of aerogel, polyurea aerogel, that shows
Electronic Measurement of Rock Stress
atomic resonances that are pressure-sensitive. Nuclear quadrupole resonance ( NQR ) appeared clearly applicable, since no magnetic aligning field is needed...there are several common NQR -active nuclear species in major rock-forming minerals, and rf magnetic fields between 0.3 and 3 megahertz (the resonant...comprehensive literature search has been completed on NQR in minerals, which shows that aluminum-27 and a few other elements in feldspars are promising
Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing
2017-03-15
Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupre, B.; Rousseau, D.; Gaillardet, J.
The Congo river Basin is the second largest drainage basin in the world, after the Amazon. The materials carried by its main rivers provide the opportunity to study the products of denudation of a large fraction of the upper continental crust of the African continent. This paper presents the chemical composition of the different phases carried in the Congo rivers and is followed by a companion paper, devoted to the modelling of major and trace elements. The Congo river between Bangui and Brazzaville as well as its main tributaries, including a few organic-rich rivers, also called Black Rivers, were sampledmore » during the 1989 high water stage. The three main phases (suspended load, dissolved load, and bedload) were analysed for twenty-five major and trace elements. Concentrations normalized to the upper continental crust show that in each river, suspended sediments and dissolved load are chemical complements for the most soluble elements (Ca, Na, Sr, K, Ba, Rb, and U). While these elements are enriched in the dissolved loads, they are considerably depleted in the corresponding suspended sediments. This is consistent with their high mobility during weathering. Another type of complementarity is observed for Zr and Hf between suspended sediments and bedload, related to the differential velocity of suspended sediments and zircons which are concentrated in bedloads. Compared to other rivers, absolute dissolved concentrations of Ca, Na, Sr, K, Ba, Rb, and U are remarkably low. Surprisingly, high dissolved concentrations are found in the Congo waters for other trace elements (e.g., REEs), especially in the Black rivers. On a world scale, these concentrations are among the highest measured in rivers and are shown to be pH dependent for a number of dissolved trace elements. The dissolved loads are systematically normalized to the suspended loads for each river, in order to remove the variations of the element abundances owing to source rock variations.« less
Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine
2008-01-01
Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.
Scaling and functional morphology in strigiform hind limbs
Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.
2017-01-01
Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549
Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift
NASA Astrophysics Data System (ADS)
Byerly, Benjamin L.; Lassiter, John C.
2012-11-01
Seismic tomography beneath the Central Rio Grande Rift (RGR) at ˜34°N shows a low P and S wave velocity zone in the mantle that extends up the base of the Moho. This low-velocity region has been interpreted by (Gao et al., 2004) to be the result of convective removal of a portion of the once >100 km thick Proterozoic lithosphere. The amount of extension in the central RGR is thought to be low (˜25%) and thus cannot account for the amount of lithosphere thinning suggested by seismic tomography. We measured whole rock and mineral major element, trace element, and isotopic compositions of spinel-peridotite xenoliths erupted along the central axis of the rift (Elephant Butte) and the eastern margin of the Colorado Plateau (Cerro Chato) to determine their depth of origin and mantle provenance and to test the delamination hypothesis. If lithosphere removal has not occurred and the low P and S wave velocities are instead the result of hydration or melt infiltration in the lithosphere, then xenoliths erupted on the rift axis should have geochemical compositions similar to Proterozoic sub-continental lithospheric mantle (SCLM). At Cerro Chato, on the margin of the Colorado Plateau, xenoliths were derived from ˜60 km depth and have geochemical signatures similar to Proterozoic sub-continental lithospheric mantle (e.g. refractory major element compositions, LREE-enrichment, enriched Sr and Nd isotopes, unradiogenic Os isotopes). At Elephant Butte, along the central rift axis, two distinct groups of xenoliths are present. The majority of xenoliths from Elephant Butte are LREE-depleted and have fertile major element compositions. Additionally, these xenoliths have isotopic signatures similar to the range for DMM (e.g. 87Sr/86Sr ranging from 0.7018 to 0.7023, ɛNd ranging from 7 to 21, and 187Os/188Os ranging from 0.122 to 0.130). We interpret this group of xenoliths to be derived from asthenospheric mantle. A less-abundant group of xenoliths at Elephant Butte are LREE enriched, have refractory major element compositions, enriched Sr, Nd, and Pb isotopes, and unradiogenic Os isotopes. These are characteristic of Proterozoic SCLM. Both groups of xenoliths from Elephant Butte are derived from ˜45 km depth. We interpret the suite of xenoliths at Elephant Butte to have sampled what was recently the base of the Proterozoic SCLM. We conclude that a portion of the mantle lithosphere has been removed which allowed modern convecting mantle (DMM) to be emplaced at the base of the pre-existing SCLM.
Wang, Bronwen; Owens, Victoria; Bailey, Elizabeth; Lee, Greg
2011-01-01
We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska. Reported parameters include pH, conductivity, water temperature, major cation and anion concentrations, and trace-element concentrations. We collected the samples as part of a multiyear U.S. Geological Survey project entitled "Geologic and Mineral Deposit Data for Alaskan Economic Development." Data presented here are from samples collected in June and August 2008. Minimal interpretation accompanies this data release. This is the fourth release of aqueous geochemical data from this project; data from samples collected in 2004, 2005, and 2006 were published previously. The data in this report augment but do not duplicate or supersede the previous data releases. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample sites were selected on the basis of landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the study area is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry of these samples ranges from Ca2+-Mg2+ dominated to a mix of Ca2+-Mg2+-Na++K2+. In most cases, analysis of duplicate samples showed good agreement for the major cation and major anions with the exception of the duplicate samples at site 08TA565. At site 08TA565, Ca, Mg, Cl, and CaCO3 exceeded 25 percent and the concentrations of trace elements As, Fe and Mn also exceeded 25 percent in this duplicate pair. Chloride concentration varied by more than 25 percent in 5 of the 11 duplicated samples. Trace-element concentrations in these samples generally were at or near the detection limit for the method used and, except for Co at site 08TA565, generally good agreement was determined between duplicate samples for elements with detectable concentrations. Major-ion concentrations were below detection limits in all field blanks, and the trace-element concentrations also were generally below detection limits; however, Co, Mn, Na, Zn, Cl, and Hg were detected in one or more field blank samples.
Major Elements and Issues in Performance Management System: A Literature Review
ERIC Educational Resources Information Center
Bae, Eul-Kyoo
2006-01-01
Due to rapidly changing business environment, HRD practitioners are unprecedentedly demanded to actively participate in improving organizational effectiveness as performance management specialist. The purpose of this study was to examine and discuss major elements and issues in performance management system through an extensive literature review…
The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.
2018-03-01
The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum coupon was studied by plane-strain compression finite element modeling. Two point correlation function (2PCF) was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis of simulation shows that the interparticle spacing shrinks along the normal direction. The number of major peaks of 2PCF along NDmore » decreases after large reduction. The locations of major peaks indicate the inter-stringer distances.« less
Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal
2016-12-01
A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.
2011-01-01
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity. PMID:21943072
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
NASA Astrophysics Data System (ADS)
McDonald, Iain; Hughes, Hannah S. R.; Butler, Ian B.; Harris, Jeffrey W.; Muir, Duncan
2017-11-01
Base metal sulphide (BMS) inclusions in diamonds provide a unique insight into the chalcophile and highly siderophile element composition of the mantle. Entombed within their diamond hosts, these provide a more robust (closed system) sample, from which to determine the trace element, Re-Os and S-isotopic compositions of the mantle than mantle xenoliths or orogenic peridotites, as they are shielded from alteration during ascent to the Earth's crust and subsequent surface weathering. However, at temperatures below 1100 °C some BMS inclusions undergo subsolidus re-equilibration from an original monosulphide solid solution (Mss) and this causes fractionation of the major and trace elements within the inclusions. Thus to study the subjects noted above, current techniques require the entire BMS inclusion to be extracted for analyses. Unfortunately, 'flaking' of inclusions during break-out is a frequent occurrence and hence the risk of accidentally under-sampling a portion of the BMS inclusion is inherent in current practices. This loss may have significant implications for Re-Os isotope analyses where incomplete sampling of a Re-rich phase, such as chalcopyrite that typically occurs at the outer margins of BMS inclusions, may induce significant bias in the Re-Os and 187Os/188Os measurements and resulting model and isochron ages. We have developed a method for the homogenisation of BMS inclusions in diamond prior to their break-out from the host stone. Diamonds are heated to 1100 °C and then quenched to chemically homogenise any sulphide inclusions for both major and trace elements. Using X-ray Computed Microtomography (μCT) we determine the shape and spatial setting of multiple inclusions within a host stone and crucially show that the volume of a BMS inclusion is the same both before and after homogenisation. We show that the homogenisation process significantly reduces the inherent variability of in situ analysis when compared with unhomogenised BMS, thereby widening the scope for multiple methods for quantitative analysis, even on 'flakes' of single BMS inclusions. Finally we show that the trace elements present in peridotite (P-type) and eclogitic (E-type) BMS are distinct, with P-type diamonds having systematically higher total platinum-group element (particularly Os, Ir, Ru) and Te and As concentrations. These distinctions suggest that the PGE and semi-metal budgets of mantle-derived partial melts will be significantly dependent upon the type(s) and proportions of sulphides present in the mantle source.
A new Mantle Source Tapped During Episode 55 of the Pu'u O'o Eruption From Kilauea Volcano
NASA Astrophysics Data System (ADS)
Marske, J. P.; Pietruszka, A. J.; Garcia, M. O.; Rhodes, J. M.
2005-12-01
Over 22 years of continuous geochemical monitoring of lavas from the current Pu'u O'o eruption allows us to probe the mantle and crustal processes beneath Kilauea Volcano in unparalleled detail. Episode 55 (1997-present) marks the longest and most voluminous Pu'u O'o eruptive interval. Here we present new Pb, Sr, and Nd isotopic ratios and major- and trace-element abundances for the most recent lavas (1999-2005). MgO variation diagrams show that most of the major-element variations are related to olivine fractionation. However, Pu'u O'o lavas display longer-term systematic decreases in their TiO2, K2O, P2O5 and CaO abundances (at a given MgO) due to changes in the parental magma composition. Incompatible element ratios (K2O/TiO2, Nb/Y, Nb/Zr) and MgO-normalized abundances (Sr, Rb, K) in episode 55 lavas delimit the lowest values observed during the Pu'u O'o eruption. Earlier Pu'u O'o lavas displayed a temporal decrease in highly over moderately incompatible trace-element ratios, near constant SiO2 contents, and a gradual increase in 87Sr/86Sr. However, episode 55 lavas (between days 5500-6500) record an increase in MgO-normalized SiO2 contents and even higher 87Sr/86Sr with near constant incompatible trace-element ratios. Neither a single mantle source composition nor a change in partial melting conditions can explain these observations. Based on 226Ra-230Th-238U disequilibria and partial melting modeling of trace elements, we conclude that Pu'u O'o lavas originate from at least two distinct mantle source components: (1) a recently depleted component that was subsequently remelted to explain the overall decreases of incompatible major- and trace-element ratios and abundances, and (2) a compositionally and isotopically distinct mantle component that was not previously melted within the Hawaiian plume to explain the temporal increase in 87Sr/86Sr and SiO2 abundances and the flattening trend of incompatible trace-element ratios. This second component lies within typical Pb, Sr and Nd isotopic space for Kilauea, but represents a new source composition for the Pu'u O'o eruption. These results can be explained by a recent (1999) change in the size or location of Pu'u O'o's melting region, which allowed this new source to be tapped.
NASA Astrophysics Data System (ADS)
Thompson, R. N.; Dickin, A. P.; Gibson, I. L.; Morrison, M. A.
1982-06-01
One of the major puzzles presented by the geochemistry of the Palaeocene plateau lavas of Skye and Mull (N.W. Scotland) is that, although a very strong case can be made that the magmas are variably isotopically contaminated by Archaean Lewisian continental crust, little evidence has been gleaned to date from their major- and trace-element compositions to illuminate this hypothetical process. The combined results of published Sr-, Nd- and Pb-isotope studies of these lavas allow the basalts and hawaiites to be divided into three broad groups: essentially uncontaminated; contaminated with granulite-facies Archaean crust; contaminated with amphibolite-facies Archaean crust. Members of each group show distinctive chondrite-normalised incompatible-element patterns. The processes which gave rise to isotopic contamination of these lavas also affected the abundances and ratios of Ba, Rb, Th, K, Sr and light REE in the magmas, whilst having negligible effects on their abundances and ratios of Nb, Ta, P, Zr, Hf, Ti, Y and middle-heavy REE. Because such a wide range of elements were affected by the contamination process, it is postulated that the contaminant was a silicate melt of one or more distinctive crustal rock types, rather than an aqueous or similar fluid causing selective elemental movements from wall rocks into the magmas. As previous experimental and isotopic studies have shown that the Skye and Mull basic magmas were not constrained by cotectic equilibria at the time when they interacted with sial, the compositions of the contaminated lavas have been modelled in terms of simple magma-crust mixtures. Very close approximations to both the abundances and ratios of incompatible elements in the two groups of contaminated basalts may be obtained by adding 15% to 20% of Lewisian leucogneisses to uncontaminated Palaeocene basalt. Nevertheless, major-element constraints suggest that the maximum amount of granitic contaminant which has been added to these magmas lies between 5% and 10%. These estimates may be reconciled by postulating that the contaminants were large-fraction cotectic partial melts of Lewisian leucogneisses, leaving plagioclase residua. A corollary of this hypothesis is that it is necessary to postulate that the “magma chambers” where the sialic contamination occurred were, in fact, dykes or (more probably) sills. The very large surface-to-volume ratios of such magmas bodies would permit the systematic stripping, by partial melting, of the most-easily-fusible leucogneisses and pegmatites from the Lewisian crust, whilst failing to melt its major rock types. A present-day analogue to this situation may be the extensive sill-like magma bodies detected by geophysical methods within the continental crust beneath the Rio Grande Rift, southwestern U.S.A.
Kinnevey, Peter M.; Shore, Anna C.; Brennan, Grainne I.; Sullivan, Derek J.; Ehricht, Ralf; Monecke, Stefan; Slickers, Peter
2013-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods. PMID:23147725
Solutions to problems of weathering in Antarctic eucrites
NASA Technical Reports Server (NTRS)
Strait, Melissa M.
1990-01-01
Neutron activation analysis was performed for major and trace elements on a suite of eucrites from both Antarctic and non-Antarctic sources. The chemistry was examined to see if there was an easy way to distinguish Antarctic eucrites that had been disturbed in their trace elements systematics from those that had normal abundances relative to non-Antarctic eucrites. There was no simple correlation found, and identifying the disturbed meteorites still remains a problem. In addition, a set of mineral separates from an eucrite were analyzed. The results showed no abnormalities in the chemistry and provides a possible way to use Antarctic eucrites that were disturbed in modelling of the eucrite parent body.
Chemistry of Apollo 11 low-K mare basalts
NASA Technical Reports Server (NTRS)
Rhodes, J. M.; Blanchard, D. P.
1980-01-01
A reexamination of the bulk major and trace element geochemistry of Apollo 11 low-K mare basalts is presented. New analyses are given for seven previously unanalyzed samples (10003, 10020, 10044, 10047, 10050, 10058, and 10062) and for two low-K basalts (10029 and 10092) and one high-K basalt (10071) for which comprehensive compositional data were previously lacking. The data show that three distinct magma types have been sampled, as proposed by Beaty and Albee (1978), and that these magma types are unrelated by near-surface crystal fractionation. Each magma type is characterized by distinctive magmaphile element ratios, which enable previously unclassified samples (10050 and 10062) to be assigned to an appropriate magma type.
NASA Astrophysics Data System (ADS)
Periasamy, V.; Venkateshwarlu, M.
2017-06-01
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.
Wen, Zhensong; Sertil, Odeniel; Cheng, Yongxin; Zhang, Shanshan; Liu, Xue; Wang, Wen-Ching
2015-01-01
Streptococcus pneumoniae is a major bacterial pathogen in humans. Its polysaccharide capsule is a key virulence factor that promotes bacterial evasion of human phagocytic killing. While S. pneumoniae produces at least 94 antigenically different types of capsule, the genes for biosynthesis of almost all capsular types are arranged in the same locus. The transcription of the capsular polysaccharide (cps) locus is not well understood. This study determined the transcriptional features of the cps locus in the type 2 virulent strain D39. The initial analysis revealed that the cps genes are cotranscribed from a major transcription start site at the −25 nucleotide (G) upstream of cps2A, the first gene in the locus. Using unmarked chromosomal truncations and a luciferase-based transcriptional reporter, we showed that the full transcription of the cps genes not only depends on the core promoter immediately upstream of cps2A, but also requires additional elements upstream of the core promoter, particularly a 59-bp sequence immediately upstream of the core promoter. Unmarked deletions of these promoter elements in the D39 genome also led to significant reduction in CPS production and virulence in mice. Lastly, common cps gene (cps2ABCD) mutants did not show significant abnormality in cps transcription, although they produced significantly less CPS, indicating that the CpsABCD proteins are involved in the encapsulation of S. pneumoniae in a posttranscriptional manner. This study has yielded important information on the transcriptional characteristics of the cps locus in S. pneumoniae. PMID:25733517
Instrument technology for remote-surface exploration, prospecting and assaying, part 2
NASA Technical Reports Server (NTRS)
Brereton, R. G.
1977-01-01
The capability to specify new instrument/mechanism technology needs, for effective remote surface exploration, prospecting and assaying (EPA), requires first, an understanding of the functions or major elements of such a task, and second an understanding of the scientific instruments and support mechanisms that may be involved. An analog or task model was developed from which the various functions, operational procedures, scientific instruments, and support mechanisms for an automated mission could be derived. The task model led to the definition of nine major functions or categories of discrete operational elements that may have to be accomplished on a mission of this type. Each major function may stand alone as an element of an EPA mission, but more probably a major function will require the support of other functions, so they are inter-related.
Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman
1985-01-01
A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652
Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E
2007-10-01
The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.
Computing element evolution towards Exascale and its impact on legacy simulation codes
NASA Astrophysics Data System (ADS)
Colin de Verdière, Guillaume J. L.
2015-12-01
In the light of the current race towards the Exascale, this article highlights the main features of the forthcoming computing elements that will be at the core of next generations of supercomputers. The market analysis, underlying this work, shows that computers are facing a major evolution in terms of architecture. As a consequence, it is important to understand the impacts of those evolutions on legacy codes or programming methods. The problems of dissipated power and memory access are discussed and will lead to a vision of what should be an exascale system. To survive, programming languages had to respond to the hardware evolutions either by evolving or with the creation of new ones. From the previous elements, we elaborate why vectorization, multithreading, data locality awareness and hybrid programming will be the key to reach the exascale, implying that it is time to start rewriting codes.
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
1993-04-01
An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.
Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.
Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz
2017-06-01
Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.
Suga, N; O'Neill, W E; Manabe, T
1978-05-19
The auditory cortex of the mustache bat, Pteronotus parnellii rubiginosus, is composed of functional divisions which are differently organized to be suited for processing the elements of its biosonar signal according to their biological significance. Unlike the Doppler-shifted-CF (constant frequency) processing area, the area processing the frequency-modulated components does not show clear tonotopic and amplitopic representations, but consists of several clusters of neurons, each of which is sensitive to a particular combination (or combinations) of information-bearing elements of the biosonar signal and echoes. The response properties of neurons in the major clusters indicate that processing of information carried by the frequency-modulated components of echoes is facilitated by the first harmonic of the emitted biosonar signal. The properties of some of these neurons suggest that they are tuned to a target which has a particular cross-sectional area and which is located at a particular distance.
Comparison of the properties of some synthetic crudes with petroleum crudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1979-01-01
Physical properties and chemical compositions of six synthetic crudes were determined. The results were compared to those of typical petroleum crudes, with the interest being the feasibility of making jet fuels from oil shale and coal syncrudes. The specific gravity, viscosity, and pour point were measured, showing that these crudes would be described as heavier rather than lighter crudes. The boiling range distribution of the crudes was determined by distillation and by gas chromatography. In addition, gel permeation chromatograms were obtained, giving a unique molecular weight distribution profile for each crude. Analyses for carbon, hydrogen, nitrogen and sulfur concentrations were performed, as well as for hydrocarbon group type and trace element concentrations. It was found that the range in concentration of vanadium, an element whose presence in turbine fuels is of major concern, was lower than that of petroleum crudes. Sodium and potassium, other elements of concern, were present in comparatively high concentrations.
Finite element analysis on a medical implant.
Semenescu, Augustin; Radu-Ioniță, Florentina; Mateș, Ileana Mariana; Bădică, Petre; Batalu, Nicolae Dan; Negoita, Olivia Doina; Purcarea, Victor Lorin
2016-01-01
Several studies have shown a tight connection between several ocular pathologies and an increased risk of hip fractures due to falling, especially among elderly patients. The total replacement of the hip joint is a major surgical intervention that aims to restore the function of the affected hip by various factors, such as arthritis, injures, and others. A corkscrew-like femoral stem was designed in order to preserve the bone stock and to prevent the occurrence of iatrogenic fractures during the hammering of the implant. In this paper, the finite element analysis for the proposed design was applied, considering different loads and three types of materials. A finite element analysis is a powerful tool to simulate, optimize, design, and select suitable materials for new medical implants. The results showed that the best scenario was for Ti6Al4V alloy, although Ti and 316L stainless steel had a reasonable high safety factor.
Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia
NASA Astrophysics Data System (ADS)
Deka, Pratibha; Hoque, Raza Rafiqul
2015-05-01
Biomass fuel smoke particles (BFSPs) of rural kitchens collected during dry and wet seasons were characterized for elements, anions and carbon. The BFSPs of kitchens using varied biomass fuel types viz. cow dung stick, mixed biomass, cow-dung stick-mixed biomass and sugarcane bagasse were chosen for the study. The BFSPs from cow dung fuel stick showed higher levels of elements, anions and particulate carbon than other BFSPs. Calcium, K, Fe and Mg were the major elements found in all BFSPs, which did not vary much between the seasons. Sulphate was found to be the dominant anion present in all BFSPs followed by Clˉ and PO43-. Seasonal variation was pronounced in the case of abundance of anions and particulate carbon. The ratio OC/EC, often used as source signature of biomass burning, was found to be within 1.89-7.41 and 1.72-6.19 during dry and wet seasons respectively.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1993-01-01
An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2008-01-01
AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.
Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico
Wilson, Jennifer T.; Van Metre, Peter C.
2000-01-01
Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.
NASA Astrophysics Data System (ADS)
Bourillot, Eric; Vitry, Pauline; Optasanu, Virgil; Plassard, Cédric; Lacroute, Yvon; Montessin, Tony; Lesniewska, Eric
A general challenge in metallic components is the need for materials research to improve the service lifetime of the structural tanks or tubes subjected to harsh environments or the storage medium for the products. One major problem is the formation of lightest chemical elements bubbles or different chemical association, which can have a significant impact on the mechanical properties and structural stability of materials. The high migration mobility of these light chemical elements in solids presents a challenge for experimental characterization. Here, we present work relating to an original non-destructive, with high spatial resolution, tomographic technique based on Scanning Microwave Microscopy (SMM), which is used to visualize in-depth chemical composition of solid solution of a light chemical element in a metal. The experiments showed the capacity of SMM to detect volume. Measurements realized at different frequencies give access to a tomographic study of the sample.
Saitanis, C J; Frontasyeva, M V; Steinnes, E; Palmer, M W; Ostrovnaya, T M; Gundorina, S F
2013-01-01
The well-known moss bags technique was applied in the heavily polluted Thriasion Plain region, Attica, Greece, in order to study the spatiotemporal distribution, in the atmosphere, of the following 32 elements: Na, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Sr, Mo, Sb, I, Ba, La, Ce, Sm, Tb, Dy, Yb, Hf, Ta, Hg, Th, and U. The moss bags were constituted of Sphagnum girgensohnii materials. The bags were exposed to ambient air in a network of 12 monitoring stations scattered throughout the monitoring area. In order to explore the temporal variation of the pollutants, four sets of moss bags were exposed for 3, 6, 9, and 12 months. Instrumental neutral activation analysis was used for the determinations of the elements. The data were analyzed using the Pearson correlations, the partial redundancy analysis, and the biplot statistical methods. Some pairs of elements were highly correlated indicating a probable common source of origin. The levels of the measured pollutants were unevenly distributed throughout the area and different pollutants exhibited different spatial patterns. In general, higher loads were observed in the stations close to and within the industrial zone. Most of the measured elements (e.g., Al, Ca, Ni, I, Zn, Cr, and As) exhibited a monotonic accumulation trend over time. Some elements exhibited different dynamics. The elements Mn, Mo, and Hg showed a decreasing trend, probably due to leaching and/or volatilization processes over time. Na and Br initially showed an increasing trend during the winter and early spring periods but decreased drastically during the late warm period. The results further suggest that the moss bags technique would be considered valuable for the majority of elements but should be used with caution in the cases of elements vulnerable to leaching and/or volatilization. It also suggests that the timing and the duration of the exposure of moss materials should be considered in the interpretation of the results.
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE
Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.
1997-01-01
The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
The Origin of Fibrous Calcite Veins: Aragonite?
NASA Astrophysics Data System (ADS)
Elburg, M. A.; Bons, P. D.
2005-12-01
Truly fibrous calcite veins occur mainly in carbonaceous shales and are characterised by high length:width ratios of their fibres (>10). Previous studies on their Sr isotopic geochemistry (Elburg et al., 2002: Geol. Soc. London Spec. Publ. 200, 103-118; Hilgers and Sindern, 2005: Geofluids, in press) have shown that some of the material could be derived from the local wall rock. These studies also showed that the veins were always enriched in Sr compared to the calcite in the host rocks. Aragonite can contain significantly more Sr than calcite, while it also tends to have a fibrous crystal habit. It is therefore possible that the fibrous habit of these veins, which now consist of calcite, are a reflection of their initial aragonitic mineralogy, rather than of any special tectonic regime during their formation. This idea was investigated by analysing the major and trace element geochemistry of selected fibrous and non-fibrous calcite veins from Arkaroola (northern Flinders Ranges, Australia). The fibrous vein analysed for major elements contains less than 1% MgCO3, whereas calcite in the host rock, with which it is in Sr isotopic equilibrium, contains 18% MgCO3. Calcite can contain significant Mg, whereas the aragonitic structure cannot accomodate this ion, so this result is consistent with the idea of an original aragonitic mineralogy of the veins. The fibrous veins show an enrichment in the middle rare earth elements (REE) compared to the calcite in the host rock and blocky veins. In a Post-Archean Average Shale normalised diagram, Eu is more strongly enriched compared to its neighbouring elements in the fibrous veins, but not in the host calcite, blocky veins, or in the silicate fraction of the host rock, suggesting more reducing conditions during fibrous vein formation. This data cannot be used as direct evidence for the fibrous veins' aragonitic mineralogy. It does, however, show that significant differences exist between calcite in host rocks, blocky and fibrous calcite veins, and this data should be incorporated in any model explaining the origin of fibrous veins.
NASA Astrophysics Data System (ADS)
Soens, B.; Goderis, S.; Greenwood, R. C.; McKibbin, S.; Van Ginneken, M.; Vanhaecke, F.; Debaille, V.; Franchi, I. A.; Claeys, Ph.
2017-07-01
We present new major, trace element concentration (LA-ICP-MS) and triple-oxygen isotope (LF-IRMS) data for G- and I-type cosmic spherules. This study suggests that both types of micrometeorites may originate from ordinary chondrite parent bodies.
NASA Technical Reports Server (NTRS)
Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.
2002-01-01
Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
NASA Astrophysics Data System (ADS)
Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo
2010-11-01
Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.
NASA Astrophysics Data System (ADS)
Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco
2014-05-01
Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.
NASA Astrophysics Data System (ADS)
Briqueu, Louis; Lancelot, Joël R.
1984-03-01
Since the Santorini Volcano (Aegean arc, eastern Mediterranean Sea) collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 800 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. We present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different stages of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (1971) for rock samples collected in the same lava flows. If we take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.
Highlights: Black-Right-Pointing-Pointer Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. Black-Right-Pointing-Pointer Identified novel 3 Prime UTR cis-acting element that destabilizes a reporter mRNA. Black-Right-Pointing-Pointer Show exosome subunits are required for cis-acting element-mediated mRNA instability. Black-Right-Pointing-Pointer Define precise sequence requirements of novel cis-acting element. Black-Right-Pointing-Pointer Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3 Prime -5 Prime exoribonuclease and endoribonuclease. Although itmore » is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3 Prime untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi
Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less
SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks
NASA Astrophysics Data System (ADS)
Hertogen, Jan; Mareels, Joyce
2016-07-01
A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a number of questions about the petrogenetic relationships among parental magmas of nearly coeval granitic units emplaced in close proximity.
NASA Astrophysics Data System (ADS)
Varekamp, J. C.
2007-12-01
Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values <1, high concentrations of volcanogenic elements (S, Cl, F, As, B) and the main rock forming elements (Ca, Al, Mg, K, Na, P). Sulfur isotope data and Silica thermometry from such fluids sampled over a ten year period from the Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase into the system. In summary, if these fluids are broadly similar to fluids from dehydrating subducted sediments, they tend to transport preferently the LILE, LREE, U as well as Th, while the HFSE are left behind.
Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.
2002-01-01
Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, S.; Han, C.; Shin, D.; Hur, S. D.; Jun, S. J.; Kim, Y. T.; Hong, S.
2016-12-01
East Asia, especially China, has become a major anthropogenic source region of trace elements due to the rapid industrialization and urbanization in the past decades. Numerous studies reported that anthropogenic pollutants from East Asia are transported by westerly winds during winter to spring across the Pacific to North America and beyond. Here we report elemental concentrations and Pb isotope ratios in airborne particles from Ieodo Ocean Research Station (IORS) located in the middle of the East China Sea (32.07o N, 125.10o E). A total of 30 aerosol samples (PM2.5-10) were collected between 18 June and 30 October 2015 and analyzed for trace elements (Zn, As, Mo, Cd, Sb, Ba, Tl, and Pb) and Pb isotopes using ICP-SFMS and TIMS, respectively. The mean concentrations of trace elements ranged from 0.06 ng m-3 for Tl to 10.1 ng m-3 for Zn. These values are much lower (up to several orders) than those at unban sites in East Asia, confirming a low level of air pollution at IORS due to the remoteness of the site from major sources of anthropogenic pollutants. On the other hand, the mean crustal enrichment factors, calculated using Ba as a conservative crustal element, are much higher than unity (84 for Tl, 100 for Mo, 140 for Pb, 166 for Zn, 262 for As, 526 for Cd, and 570 for Sb, respectively), indicating that these elements are of anthropogenic origin. Combining the Pb isotope ratios and the HYSPLIT model 5-day backward trajectory analysis, we have identified episodic long-range transport of air pollutants from diverse source regions of China, Korea, Japan and Taiwan to the site in summer (June to August). By comparison, an increasing long-range transport of pollution from China was observed in autumn (September and October). Finally, our study shows that IORS is an ideal background site for monitoring levels of concentrations and source origins of atmospheric trace elements in East Asia.
Geochemistry of sediments in the Northern and Central Adriatic Sea
NASA Astrophysics Data System (ADS)
De Lazzari, A.; Rampazzo, G.; Pavoni, B.
2004-03-01
Major, minor and trace elements, loss of ignition, specific surface area, quantities of calcite and dolomite, qualitative mineralogical composition, grain-size distribution and organic micropollutants (PAH, PCB, DDT) were determined on surficial marine sediments sampled during the 1990 ASCOP (Adriatic Scientific Cooperative Program) cruise. Mineralogical composition and carbonate content of the samples were found to be comparable with data previously reported in the literature, whereas geochemical composition and distribution of major, minor and trace elements for samples in international waters and in the central basin have never been reported before. The large amount of information contained in the variables of different origin has been processed by means of a comprehensive approach which establishes the relations among the components through the mathematical-statistical calculation of principal components (factors). These account for the major part of data variance loosing only marginal parts of information and are independent from the units of measure. The sample descriptors concerning natural components and contamination load are discussed by means of a statistical model based on an R-mode Factor analysis calculating four significant factors which explain 86.8% of the total variance, and represent important relationships between grain size, mineralogy, geochemistry and organic micropollutants. A description and an interpretation of factor composition is discussed on the basis of pollution inputs, basin geology and hydrodynamics. The areal distribution of the factors showed that it is the fine grain-size fraction, with oxides and hydroxides of colloidal origin, which are the main means of transport and thus the principal link between chemical, physical and granulometric elements in the Adriatic.
Rare Earth Element Concentration of Wyoming Thermal Waters Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quillinan, Scott; Nye, Charles; Neupane, Hari
Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
NASA Astrophysics Data System (ADS)
Hauri, Erik H.; Kurz, Mark D.
1997-12-01
We have determined the major element, trace element, and Os isotopic compositions of a stratigraphic suite of tholeiitic basalts spanning >30,000 years of the eruptive history of Mauna Loa volcano. Good correlations are observed between Os isotopes and the isotopes of Sr, Nd, Pb and He. In addition, the isotopes correlate with fractionation-corrected major element abundances within this single volcano, and provide a record of increased melting of mafic material with time at Mauna Loa. Chromatographic element fractionation during melt transport is shown to be negligible based on the good correlations of the isotopes of the compatible element Os with the other incompatible element tracers. The temporal variation at Mauna Loa is best described by the translation of the volcano over a Hawaiian plume which is radially zoned in composition. The radial zonation is a predicted consequence of thermal entrainment during flow in a mantle plume conduit.
Preliminary examination of the Yamato-86032 lunar meteorite. II - Major and trace element chemistry
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Warren, Paul H.; Lindstrom, Marilyn M.; Spettel, Bernhard; Fukuoka, Takaaki
1989-01-01
Results of the chemical composition analysis of Yamato-86032, found in Antarctica in 1986, are summarized. The meteorite may be classified as an anorthositic breccia, but its trace element composition is different from the composition of the other known lunar meteorites. The major element chemistry of Y-86032 is similar to the other lunar meteorites, except for the iron content, which is lower by a factor of about 1.4. The abundances of incompatible and lithophile elements such as Zr, Hf, Ta, Th, or the REEs are very low and comparable to Y-82192/3. Other elements, in particular Fe, Ti, Sc, Cr, Mn, and Co, have lower abundances in Y-86032 than in Y-82192/3. Variations between individual analysis demonstrate that the rock itself is heterogeneous.
Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Proteomics technique opens new frontiers in mobilome research.
Davidson, Andrew D; Matthews, David A; Maringer, Kevin
2017-01-01
A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.
Publications - RDF 2005-5 | Alaska Division of Geological & Geophysical
content DGGS RDF 2005-5 Publication Details Title: Major-oxide, minor-oxide, and trace-element geochemical ., and Lessard, R.R., 2005, Major-oxide, minor-oxide, and trace-element geochemical data from rocks ; Zinc; Zirconium Top of Page Department of Natural Resources, Division of Geological & Geophysical
Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H.
2010-01-01
In Brazil economically important coal deposits occur in the southern part of the Paran?? Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Paran?? Basin.In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapu??, Barro Branco and Treviso seams).Seam thicknesses range from 1.70 to 2.39. m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapu?? seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapu?? seam has the highest inertinite content (33.8. vol%). Liptinite mean values range from 7.8. vol% (Barro Branco seam) to 22.5. vol% (Irapu?? seam).Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (>50wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the predominance of quartz and kaolinite (also pyrite). Gypsum, gibbsite, jarosite and calcite were also identified in some samples. Feldspar was noted but is rare. The major element distribution in the three seams (coal basis) is dominated by SiO2 (31.3wt.%, mean value), Al2O3 (14.5wt.%, mean value) and Fe2O3 (6.9 wt.%, mean value). Considering the concentrations of trace elements that are of potential environmental hazards the Barro Branco, Bonito and Irapu?? seams (coal base) are significantly enriched in Co (15.7ppm), Cr (54.5ppm), Li (59.3ppm), Mn (150.4ppm), Pb (58.0ppm) and V (99.6ppm), when compared to average trace elements contents reported for U. S. coals.Hierarchical cluster analysis identified, based on similarity levels, three groups of major elements and seven groups of trace elements. Applying discriminant analyses using trace and major element distribution, it could be demonstrated that the three seams from Santa Catarina show distinct populations in the discriminant analyses plots, and also differ from the coals of Rio Grande do Sul analyzed in a previous study. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gao, Yunchuan; Yang, Chao; Ma, Jin; Yin, Meixue
2018-02-01
Fifty-five snow samples were collected from 11 cities in east-central China. These sampling sites cover the areas with the most snowfall in 2014, there were only two snowfalls from June 2013 to May 2014 in east-central China. Twenty-three trace elements in the filtered snow samples were measured with inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis of the results show that the total concentrations of elements in the samples from different cities are in the order of SJZ > LZ > XA > ZZ > GD > NJ > QD > JX > WH > HZ > LA, which are closely related to the levels of AQI, PM2.5 and PM10 in these cities, and their correlation coefficients are 0.93, 0.76 and 0.93. The concentration of elements in snow samples is highly correlated with air pollution and reflects the magnitude of the local atmospheric deposition. The concentrations of Fe, Al, Zn, Ba, and P are over 10.0 μg/L, the concentrations of Mn, Cu, Pb, As, Br and I are between 1.0 μg/L to 10.0 μg/L, the concentrations of V, Cr, Co, Ni, Se, Mo, Cd and Sb are less than 1.0 μg/L in snow samples in east-central China, and Rh, Pd, Pt, Hg were not detected. Iodine and bromine species in all samples and arsenic species (As(III), As(V), dimethylarsinic acid (DMA) and monomethyl arsenic (MMA)) in some samples were separated and measured successfully by HPLC-ICP-MS. The majority of arsenic in the snow samples is inorganic arsenic, and the concentration of As(III) (0.104-1.400 μg/L) is higher than that of As(V) (0.012-0.180 μg/L), while methyl arsenicals, such as DMA and MMA, were almost not detected. The concentration of I- (Br-) is much higher than that of IO3- (BrO3-). The mean concentration of soluble organic iodine (SOI) (1.64 μg/L) is higher than that of I- (1.27 μg/L), however the concentration of Br- (5.58 μg/L) is higher than that of soluble organic bromine (SOBr) (2.90 μg/L). The data presented here shows that SOI is the most abundant species and the majority of the total bromine is bromide in snow sampled at east-central China. Using Fe as the reference element to calculate the EFs, the enrichment factors of V, Cr, Co, Ni, Mn, Ba and P are between 12.3 and 82.8, and the enrichment factors of Cu, Pb, Mo, Zn, Cd, As, Sb, Br, I and Se are between 189.4 and 27667.9, indicating that these elements are contributed by artificial sources. Results of principal component analysis (PCA) on the elements showed that most of trace elements (e.g. V, Cr, Mn, Co, Ni, Cu, As, Mo, Sb, Se, Br, I, Ba and P)were from the combustion of fossil fuels, traffic and ocean sources and some other elements (e.g. Zn, Cd and Pb) were mainly originated from industrial activities.
Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments
NASA Astrophysics Data System (ADS)
Basaham, A. S.; El-Sayed, M. A.
1998-02-01
Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.
NASA Astrophysics Data System (ADS)
Shim, M.; Swarzenski, P. W.; Shiller, A. M.
2010-12-01
The Mississippi River (MR) plays an important role as a major fluvial source of dissolved and particulate materials for the Gulf of Mexico (GOM). This region is periodically disturbed by tropical weather systems including major hurricanes. Such storms have the potential to stir up the normally stratified water column of the Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of seasonal bottom water hypoxia. Additionally, strong tropical systems can cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, two major hurricanes, Katrina and Rita, passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we participated in a survey of the waters of the Mississippi River delta outflow, examining the distributions of trace elements (including Ba, Co, Cr, Cs, Cu, Fe, Mn, Ni, Re, U, V, and Zn) in a comparison with previous results in this area. We indeed observed that there was limited stratification on the shelf and that bottom waters were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 µm) from colloidal (0.02 - 0.45 µm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
Plazzi, Federico; Mantovani, Barbara
2017-01-01
Abstract Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3′-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. PMID:28505260
Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P
2015-12-01
Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohamed, Sameera; van der Merwe, Elizabet M; Altermann, Wladyslaw; Doucet, Frédéric J
2016-04-01
Mine tailings can represent untapped secondary resources of non-ferrous, ferrous, precious, rare and trace metals. Continuous research is conducted to identify opportunities for the utilisation of these materials. This preliminary study investigated the possibility of extracting major elements from South African tailings associated with the mining of Platinum Group Metals (PGM) at the Two Rivers mine operations. These PGM tailings typically contain four major elements (11% Al2O3; 12% MgO; 22% Fe2O3; 34% Cr2O3), with lesser amounts of SiO2 (18%) and CaO (2%). Extraction was achieved via thermochemical treatment followed by aqueous dissolution, as an alternative to conventional hydrometallurgical processes. The thermochemical treatment step used ammonium sulphate, a widely available, low-cost, recyclable chemical agent. Quantification of the efficiency of the thermochemical process required the development and optimisation of the dissolution technique. Dissolution in water promoted the formation of secondary iron precipitates, which could be prevented by leaching thermochemically-treated tailings in 0.6M HNO3 solution. The best extraction efficiencies were achieved for aluminium (ca. 60%) and calcium (ca. 80%). 35% iron and 32% silicon were also extracted, alongside chromium (27%) and magnesium (25%). Thermochemical treatment using ammonium sulphate may therefore represent a promising technology for extracting valuable elements from PGM tailings, which could be subsequently converted to value-added products. However, it is not element-selective, and major elements were found to compete with the reagent to form water-soluble sulphate-metal species. Further development of this integrated process, which aims at achieving the full potential of utilisation of PGM tailings, is currently underway. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karri, Naveen K.; Mo, Changki
2018-06-01
Structural reliability of thermoelectric generation (TEG) systems still remains an issue, especially for applications such as large-scale industrial or automobile exhaust heat recovery, in which TEG systems are subject to dynamic loads and thermal cycling. Traditional thermoelectric (TE) system design and optimization techniques, focused on performance alone, could result in designs that may fail during operation as the geometric requirements for optimal performance (especially the power) are often in conflict with the requirements for mechanical reliability. This study focused on reducing the thermomechanical stresses in a TEG system without compromising the optimized system performance. Finite element simulations were carried out to study the effect of TE element (leg) geometry such as leg length and cross-sectional shape under constrained material volume requirements. Results indicated that the element length has a major influence on the element stresses whereas regular cross-sectional shapes have minor influence. The impact of TE element stresses on the mechanical reliability is evaluated using brittle material failure theory based on Weibull analysis. An alternate couple configuration that relies on the industry practice of redundant element design is investigated. Results showed that the alternate configuration considerably reduced the TE element and metallization stresses, thereby enhancing the structural reliability, with little trade-off in the optimized performance. The proposed alternate configuration could serve as a potential design modification for improving the reliability of systems optimized for thermoelectric performance.
NASA Astrophysics Data System (ADS)
Socorro, J.; Maurrasse, F. J.
2016-12-01
The results of a 13.77 m section studied at the El Pujal site integrates RSTEs, TIC, TOC, petrographic, major elements, and biomarkers. The data reveal at least 6 episodes of RSTEs enrichment (ppm) of [V (61), Ni (96), Co (3), U (1.1), Cr (90), Cu (11), Mo (5), Th (4)] at 1.47 m, 3.68 m, 5.82 m, 7.67 m, 9.78 m and 12.2 m, respectively, with the highest values between 4.38 - 6.82 m. Maximum values in ppm range for Fe (10456 - 15918), P (229 - 396), Al (23721 - 40501), Si (64569 - 106869). TOC values follow much the same fluctuating pattern with sharp increases in weight % of 1.42, 1.49. 1.68, 1.26, 1.11, and 1.34, respectively. In contrast, TIC values range between 62.03% - 79.84% with 6 distinct dips below background average (72.28%) in an inverse pattern relative to the previous proxies with values of 72.15%, 72.12%, 62.03%, 67.13%, 67.38%, and 65.33%, respectively. Similarly, density counts of benthic foraminifera and echinoid fragments show fluctuations contrary to those of RSTEs, major elements and TOC. These opposite patterns suggest the presence of at least 6 dysoxic phases in relation to OAE1a. N-alkanes results reveal a bimodal distribution with predominance of autochthonous marine components (≤ nC19) and macrophytes (nC20 - nC25), with some allochthonous land derived input (>nC25), thus indicating a mixed source of OM. Mean terrestrial/aquatic ratios TARs (nC27+nC29+nC31)/(nC15+nC17+nC19) of 0.21 taken as the background level further corroborates a significant input of terrestrial OM. TAR values during the most pronounced dysoxic interval ( 4.38m to 6.82m) show an inverse relationship relative to RSTEs, TOC and major elements, with decreasing values relative to background levels (0.21). This may be attributed to a dilution effect due to the higher input of land derived, biolimiting nutrients (P, Fe) into the basin, fueling primary production and increasing the input of OM from shorter chain n-alkanes (≤ nC19), hence decreasing the TAR values.
NASA Astrophysics Data System (ADS)
Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.
2017-06-01
Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).
Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.; Bundtzen, Tom K.; Hudson, Travis L.
2006-01-01
The data consist of major- and minor-element concentrations for rock samples collected during 2005 by the U.S. Geological Survey. Samples were analyzed by fire assay (Au, Pd, Pt), cold vapor atomic absorption spectroscopy (Hg), and the inductively coupled plasma mass spectrometry (ICPMS) 10 and 42 element methods. For details of sample preparation and analytical techniques see USGS Open File Report 02-0223 (Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey), available at .
Characterizing the Effect of Shock on Isotopic Ages I: Ferroan Anorthosite Major Elements
NASA Technical Reports Server (NTRS)
Edmunson, J.; Cohen, B. A.; Spilde, M. N.
2009-01-01
A study underway at Marshall Space Flight Center is further characterizing the effects of shock on isotopic ages. The study was inspired by the work of L. Nyquist et al. [1, 2], but goes beyond their work by investigating the spatial distribution of elements in lunar ferroan anorthosites (FANs) and magnesium-suite (Mg-suite) rocks in order to understand the processes that may influence the radioisotope ages obtained on early lunar samples. This paper discusses the first data set (major elements) obtained on FANs 62236 and 67075.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
Methods and circuitry for reconfigurable SEU/SET tolerance
NASA Technical Reports Server (NTRS)
Shuler, Jr., Robert L. (Inventor)
2010-01-01
A device is disclosed in one embodiment that has multiple identical sets of programmable functional elements, programmable routing resources, and majority voters that correct errors. The voters accept a mode input for a redundancy mode and a split mode. In the redundancy mode, the programmable functional elements are identical and are programmed identically so the voters produce an output corresponding to the majority of inputs that agree. In a split mode, each voter selects a particular programmable functional element output as the output of the voter. Therefore, in the split mode, the programmable functional elements can perform different functions, operate independently, and/or be connected together to process different parts of the same problem.
Trace geochemistry of lunar material
NASA Technical Reports Server (NTRS)
Morrison, G. H.
1974-01-01
The lunar samples from the Apollo 16 and 17 flights which were analyzed include soil, igneous rock, anorthositic gabbro, orange soil, subfloor basalt, and norite breccia. Up to 57 elements including majors, minors, rare earths and other trace elements were determined in the lunar samples. The analytical techniques used were spark source mass spectrometry and neutron activation analysis. The latter was done either instrumentally or with group radiochemical separations. The differences in abundances of the elements in lunar soils at the various sites are discussed. With regard to the major elements only Si is about the same at all the sites. A detailed analysis which was performed on a sample of the Allende meteorite is summarized.
NASA Astrophysics Data System (ADS)
Melchiorre, Massimiliano; Coltorti, Massimo; Gregoire, Michel; Benoit, Mathieu
2015-05-01
Anhydrous mantle xenoliths equilibrated at 1003-1040 °C from Estancia Sol de Mayo (ESM, Central Patagonia, Argentina) and entrained in post-plateau alkaline lavas belonging to Meseta Lago Buenos Aires have been investigated aiming at reconstructing the depletion and enrichment processes that affected this portion of the Patagonia lithospheric mantle. Xenoliths are characterized by a coarse-grained protogranular texture and are devoid of evident modal metasomatism. They show two texturally different clinopyroxenes: protogranular (cpx1) and texturally related to spinel (cpx2). Three different types of orthopyroxenes are also recognized: large protogranular crystals with exsolution lamellae (opx1); small clean and undeformed grains without exsolution lamellae (opx2) and small grains arranged in a vein (opx3). Major element composition of clinopyroxenes and orthopyroxenes highlights two different trends characterized by i) a high Al2O3 content at almost constant mg# and ii) a slight increase in Al2O3 content with decreasing mg#. Clinopyroxenes are enriched in LREE and are characterized by prominent to slightly negative Nb, Zr and Ti anomalies. No geochemical differences are observed between cpx1 and cpx2, while a discrimination can be observed between opx1 and opx2 (LREE-depleted; prominent to slightly negative Ti and Zr anomalies) and opx3 (prominent positive Zr anomaly). Partial melting modeling using both major and trace elements indicates a melting degree between ~ 5% and ~ 13% (up to ~ 23% according to major element modeling) for lherzolites and between ~ 20% and ~ 30% for harzburgites (down to ~ 5% according to trace element modeling). La/Yb and Al2O3, as well as Sr and Al2O3 negative correlations in clinopyroxenes point to a refertilization event affecting this lithospheric mantle. The agent was most probably a transitional alkaline/subalkaline melt, as indicated by the presence of orthopyroxene in the vein and the similar geochemical features of ESM clinopyroxenes and those from Northern Patagonia pyroxenites which are derived from transitional alkaline/subalkaline lavas.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Clegg, S. M.; Frydenvang, J.
2015-12-01
One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.
Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.
2015-01-01
This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010
Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu
2018-04-15
Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake emphasizes the importance of interactions between hydrological change and pollutant loads in determining floodplain lake ecosystem state. Copyright © 2017 Elsevier B.V. All rights reserved.
Element distributions in metallic fractions of ordinary chondrites
NASA Astrophysics Data System (ADS)
Kong, P.; Ebihara, M.; Endo, K.
1994-07-01
Kamacite and taenite are the major metallic phases in ordinary chondrite, in individual grains of pure alloy. Wood interpreted the concentration gradients of Ni found in two metal phases as a result of exsolution of kamacite from taenite followed by sluggish diffusion of Ni into the taenite crystals upon cooling through approximately 500 C. A selective chemical dissolution method was developed to separated taenite from kamacite and this method was applied to several ordinary chondrites. Based on Instrumental Neutron Activation Analysis (INAA) data and Mossbauer spectra for the metal separates, we evaluated the distribution of various elements between taenite and kamacite. The magnetic fraction separated from ALH 77231 (L6) was boiled in HF for 2 min and named M-1. The M-1 fraction was further treated for 5, 10, and 15 min and the remaining fractions were designed as M-2, M-3, and M-4 respectively. Mossbauer spectrum showed that M-1 was composed almost of alpha-phase kamacite. Mossbauer spectra of the M-2, M-3, and M-4 showed each having similar intensities of kamacite, taenite, and tetrataenite. On the basis of different leaching rate with concentrated HF acid between kamacite and taenite, we can determine element distributions in these different fractions. INAA analyses show that the M-1 is composed of 10% Ni. Contents of Ni in the M-2, M-3, and M-4 show that these three metal fractions are mainly composed of Ni-rich metals with a mean value of 36% Ni. Based on different proportions of kamacite and taenite in these metal fractions, we calculated siderophile-element contents in taenite and kamacite.
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
Transport of particle-associated elements in two agriculture-dominated boreal river systems.
Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn
2013-09-01
Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abraham, J. A.; Grenón, M. S.; Sánchez, H. J.; Valentinuzzi, M. C.; Perez, C. A.
2007-07-01
Hard dental tissues like dentine and cementum with calcified deposits (dental calculi) were studied in several human dental pieces of adult individuals from the same geographic region. A couple of cross cuts were performed at dental root level resulting in a planar slice with calculus and dental tissue exposed for analysis. The elemental content along a linear path crossing the dentine-cementum-tartar interfaces and also all over a surface was measured by X-ray fluorescence microanalysis using synchrotron radiation (μSRXRF). The concentration of elemental traces like K, V, Cu, Zn, As, Br and Sr showed different features on the analyzed regions. The possible connections with the dynamic of mineralization and biological implications are discussed. The concentrations of major elements Ca and P were also determined and the measured Ca/P molar ratio was used to estimate the average composition of calcium phosphate phases in the measured points. A deeper knowledge of the variations of the elemental compositions and the changes of the different phases will help to a better understanding of the scarcely known mechanism of calculus growing.
Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S
2017-12-15
Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akinlade, Grace O; Olaniyi, Hezekiah B; Olise, Felix S; Owoade, Oyediran K; Almeida, Susana M; Almeida-Silva, Marina; Hopke, Philip K
2015-08-01
Spatial and temporal variation of suspended particulate matter was measured in Ibadan, Nigeria during the raining and dry months of 2013 and 2014, respectively. Six different locations were considered, reflecting city-spread, population density, lifestyle, and vehicular- and industrial-related activities. Elemental characterisation of the samples were carried out using energy dispersive x-ray fluorescence (ED-XRF) spectroscopy, while the black carbon content was determined using an optical transmissometer. Backward trajectory analysis indicated that most air mass was of maritime origin except on few occasions that suggested the Sahara desert origin. Average PM2.5/PM10 ratio for the entire sampling period was 0.32 ± 0.04. This is slightly lower than the reported values in the coastal city of Lagos, partly because of more adequately paved and better road networks resulting in lower dust re-suspension and/or there are relatively finer fraction particulates from other sources, which might include marine, industrial, and secondary emission-related sources. Black carbon showed predominance in the fine fractions and was, majorly, of traffic origin. Major enriched elements of concern are S, Zn, As, and Pb aside from those of sea origin. Refuse burning was observed to be the principal source of Pb and Zn in all the sites except one, which showed major industrial-related activities source. This study will provide data for future measurement and modelling works as well as providing a benchmark for relevant agencies for policy making on setting emission standards for the country.
Lee, Wonjae; Lee, Yoonje; Kim, Changsun; Choi, Hyuk Joong; Kang, Bossng; Lim, Tae Ho; Oh, Jaehoon; Kang, Hyunggoo; Shin, Junghun
2017-01-01
Objective We aimed to describe electrocardiographic (ECG) findings in spontaneous pneumothorax patients before and after closed thoracostomy. Methods This is a retrospective study which included patients with spontaneous pneumothorax who presented to an emergency department of a tertiary urban hospital from February 2005 to March 2015. The primary outcome was a difference in ECG findings between before and after closed thoracostomy. We specifically investigated the following ECG elements: PR, QRS, QTc, axis, ST segments, and R waves in each lead. The secondary outcomes were change in ST segment in any lead and change in axis after closed thoracostomy. Results There were two ECG elements which showed statistically significant difference after thoracostomy. With right pneumothorax volume of greater than 80%, QTc and the R waves in aVF and V5 significantly changed after thoracostomy. With left pneumothorax volume between 31% and 80%, the ST segment in V2 and the R wave in V1 significantly changed after thoracostomy. However, majority of ECG elements did not show statistically significant alteration after thoracostomy. Conclusion We found only minor changes in ECG after closed thoracostomy in spontaneous pneumothorax patients. PMID:28435901
Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.
2009-01-01
Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
NASA Technical Reports Server (NTRS)
Butler, J. K.; Ettenberg, M.; Ackley, D. E.
1985-01-01
The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.
Nuclear microscopy in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Makjanic, Jagoda; Watt, Frank
1999-04-01
The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.
LA-ICP-MS of magnetite: Methods and reference materials
Nadoll, P.; Koenig, A.E.
2011-01-01
Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.
NASA Astrophysics Data System (ADS)
Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.
2017-10-01
Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.
1989-01-01
Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).
The NASA role in major areas of human concern: Communication
NASA Technical Reports Server (NTRS)
1973-01-01
After introducing some of the general factors that have affected progress in the area of communication, NASA program elements are examined to illustrate relevant points of contact. Interpretive steps are taken throughout the report to show a few of the more important ways people's lives have been affected as a result of the work of NASA and other organizations functioning in this area. The principal documents used and interviews conducted are identified.
An assessment of athrombogenic properties of electret polyethylene film.
Lowkis, B; Szymonowicz, M
1998-01-01
This paper shows the results of an investigation into the effect of an electric charge on blood platelet adhesion. All of the experiments were made on a polyethylene film. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed microscopically. It was found out that an electric charge plays a major role in the process of adhesion of blood morphological elements.
Islam, Md Rabiul; Islam, Md Reazul; Shalahuddin Qusar, M M A; Islam, Mohammad Safiqul; Kabir, Md Humayun; Mustafizur Rahman, G K M; Islam, Md Saiful; Hasnat, Abul
2018-04-10
Major depressive disorder (MDD) is a mixed disorder with the highly irregular course, inconsistent response to treatment and has no well-known mechanism for the pathophysiology. Major causes of depression are genetic, neurobiological, and environmental. However, over the past few years, altered serum levels of macro-minerals (MM) and trace elements (TE) have been recognized as major causative factors to the pathogenesis of many mental disorders. The purpose of this study was to determine the serum levels of MM (calcium and magnesium) and TE (copper, iron, manganese, selenium, and zinc) in MDD patients and find out their associations with depression risk. This prospective case-control study recruited 247 patients and 248 healthy volunteers matched by age and sex. The serum levels of MM and TE were analyzed by atomic absorption spectroscopy (AAS). Statistical analysis was performed with independent sample t-tests and Pearson's correlation test. We found significantly decreased concentrations of calcium and magnesium, iron, manganese, selenium, and zinc in MDD patients compared with control subjects (p < 0.05). But the concentration of copper was significantly increased in the patients than control subjects (p < 0.05). Data obtained from different inter-element relations in MDD patients and control subjects strongly suggest that there is a disturbance in the element homeostasis. Our study suggests that altered serum concentrations of MM and TE are major contributing factors for the pathogenesis of MDD. Alterations of these elements in serum levels of MDD patients arise independently and they may provide a prognostic tool for the assessment of depression risk.
[Dynamic analysis of mineral elements during growth and development stage of the Kirilowii plant].
Ma, Zhao; Wei, Min; Cui, Xu-Sheng; Guo, Yu-Hai
2013-03-01
ICP-AES technology was used to determine the major mineral elements content and analyze the dynamic and cumulative amount of the main absorption during the growth and development stage of the Kinlowii organs plant. The result showed as follows: (1)The mineral elements were changing in the different stage. The highest mineral element accumulation of K, P, Ca, Mg, Fe, Mn, Zn, Cu and Mo occured in October, their values are 3,695.90, 445.88, 9,649.32, 2,652.10 mg per plant, 324,398.29, 40,188.65, 22,383.13, 36,054.58 and 61.95 microg per plant separately. But the highest value of B occured in September and the value was 8 690.97 microg per plant. (2) the distribution of mineral element in the kirilowii plant was not even, the contents of K and P were highest in kirilowii peel, they can reach 27.65 and 2.63 mg.g-1. The contents of Ca and Mg were highest in kirilowii leaves, they can reach 33.28 and 5.73 mg .g-1. The contents of Fe, Mn, B were highest in kirilowii roots, they can reach: 4,069.74, 127.73, 24.75 microg.g-1. The contents of Zn and Mo were highest in kirilowii seeds, they can reach 68. 61 and 1.07 microg.g-1. (3) the cumulation dynamic of mineral elements in kirilowii plant during the whole stages was S-type, and the plant showed rapid growth from the mid-July to mid-Spetember. The information of this study will supply a scientific data for the quality assessment and rational fertilization of kirilowii plant and harvestment.
Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
chan, S.
2013-12-01
The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources will be evaluated by more trace elements, such as rare earth elements.
Geochemical databases: minding the pitfalls to avoid the pratfalls
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Hofmann, A. W.
2011-12-01
The field of geochemistry has been revolutionized in recent years by the advent of databases (PetDB, GEOROC, NAVDAT, etc). A decade ago, a geochemical synthesis required major time investments in order to compile relatively small amounts of fragmented data from large numbers of publications, Now virtually all of the published data on nearly any solid Earth topic can be downloaded to nearly any desktop computer with a few mouse clicks. Most solid Earth talks at international meetings show data compilations from these databases. Applications of the data are playing an increasingly important role in shaping our thinking about the Earth. They have changed some fundamental ideas about the compositional structure of the Earth (for example, showing that the Earth's "trace element depleted upper mantle" is not so depleted in trace elements). This abundance of riches also poses new risks. Until recently, important details associated with data publication (adequate metadata and quality control information) were given low priority, even in major journals. The online databases preserve whatever has been published, irrespective of quality. "Bad data" arises from many causes, here are a few. Some are associated with sample processing, including incomplete dissolution of refractory trace minerals, or inhomogeneous powders, or contamination of key elements during preparation (for example, this was a problem for lead when gasoline was leaded, and for niobium when tungsten-carbide mills were used to powder samples). Poor analytical quality is a continual problem (for example, when elemental abundances are at near background levels for an analytical method). Errors in published data tables (more common than you think) become bad data in the databases. The accepted values of interlaboratory standards change with time, while the published data based on old values stay the same. Thus the pitfalls associated with the new data accessibility are dangerous in the hands of the inexperienced users (for example, a student of mine took the initiative to write a paper showing very creative insights, based on some neodymium isotope data on oceanic volcanics; unfortunately the uniqueness of the data reflected the normalization procedures used by different labs). Many syntheses assume random sampling even though we know that oversampled regions are over-represented. We will show examples where raw downloads of data from databases without extensive screening can yield data collections where the garbage swamps the useful information. We will also show impressive but meaningless correlations (e.g. upper-mantle temperature versus atmospheric temperature). In order to avoid the pratfalls, screening of database output is necessary. In order to generate better data consistency, new standards for reporting geochemical data are necessary.
Final-Year Projects as a Major Element in the IE Curriculum
ERIC Educational Resources Information Center
Vitner, G.; Rozenes, S.
2009-01-01
This paper presents a multi-perspective view of the final-year project of an industrial engineering and management (IEM) department. The final year project is a major element of a 4-year curriculum within any engineering discipline. Such a project gives the student an opportunity to use and implement methods, techniques and tools that he or she…
Andrew Fowler
2015-04-01
Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
Andrew Fowler
2015-05-01
Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
NASA Astrophysics Data System (ADS)
Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.
2012-04-01
About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba
Valdespino-Castillo, Patricia M.; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M.; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A.; Holman, Hoi-Ying; Falcón, Luisa I.
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. PMID:29666607
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba.
Valdespino-Castillo, Patricia M; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A; Holman, Hoi-Ying; Falcón, Luisa I
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (C org ), nitrogen and C org :Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.
NASA Astrophysics Data System (ADS)
Cooperdock, Emily H. G.; Raia, Natalie H.; Barnes, Jaime D.; Stockli, Daniel F.; Schwarzenbach, Esther M.
2018-01-01
This study combines whole rock trace and major element geochemistry, and stable isotope (δD and δ18O) analyses with petrographic observations to deduce the origin and tectonic setting of serpentinization of ultramafic blocks from the exhumed HP/LT Aegean subduction complex on Syros, Greece. Samples are completely serpentinized and are characterized by mineral assemblages that consist of variable amounts of serpentine, talc, chlorite, and magnetite. δD and δ18O values of bulk rock serpentinite powders and chips (δD = - 64 to - 33‰ and δ18O = + 5.2 to + 9.0‰) reflect hydration by seawater at temperatures < 250 °C in an oceanic setting pre-subduction, or by fluids derived from dehydrating altered oceanic crust during subduction. Fluid-mobile elements corroborate the possibility of initial serpentinization by seawater, followed by secondary fluid-rock interactions with a sedimentary source pre- or syn-subduction. Whole rock major element, trace element, and REE analyses record limited melt extraction, exhibit flat REE patterns, and do not show pronounced Eu anomalies. The geochemical signatures preserved in these serpentinites argue against a mantle wedge source, as has been previously speculated for ultramafic rocks on Syros. Rather, the data are consistent with derivation from abyssal peridotites in a hyper-extended margin setting or mid-ocean ridge and fracture zone environment. In either case, the data suggest an extensional and/or oceanic origin associated with the Cretaceous opening of the Pindos Ocean and not a subduction-related derivation from the mantle wedge.
Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada
NASA Astrophysics Data System (ADS)
Kopylova, Maya G.; Russell, James K.
2000-08-01
We describe the mineralogical and chemical composition of the Northern Slave mantle as deduced from xenoliths of peridotite within the Jericho kimberlite, Northwest Territories. Our data set includes modal, major, trace and rare earth element compositions of bulk samples of spinel peridotite, low-T and high-T garnet peridotite and minor pyroxenite. Compared to primitive upper mantle, Jericho peridotite shows depletion in the major elements and enrichment in incompatible elements (except for HREE). The Slave mantle is also uniquely stratified. Older, depleted spinel peridotite extends to a depth of 80-100 km and is underlain by garnet peridotite which shows a gradual decrease in Mg# with depth to 200 km. The youngest layer of fertile garnet peridotite, enriched in clinopyroxene and garnet, is underlain by a pyroxenite-rich horizon at the base of the petrological lithosphere. The Northern Slave is further distinguished from the Kaapvaal and Siberian upper mantle by a marked vertical stratification in Mg#, lower abundances of orthopyroxene and higher abundances of clinopyroxene. In addition, a deeper layer of garnet peridotite below Jericho shows less depletion than low-T peridotite from other cratons. The Northern Slave peridotite results from a series of chemical events that include: (i) high-degree melting of pyrolite at P>3 Gpa for low-T peridotite and lower pressure melting for high-T peridotite, (ii) enrichment of low-T spinel peridotite in orthopyroxene, and (iii) pervasive metasomatic enrichment in alkali and LREE's by kimberlite-related fluids. The chemical stratification described for two of the three lithospheric domains of the Slave craton makes this craton an exception among cratons with commonly unstratified lithospheres. The gradual increase in fertility with depth below the Slave craton is related to age stratification and may have formed by incremental downward growth of mantle lithosphere with time, and/or later re-fertilization of deeper mantle horizons.
NASA Astrophysics Data System (ADS)
Iveson, A. A.; Webster, J. D.; Rowe, M. C.; Neill, O. K.
2016-12-01
New experimental data for crystal-melt partitioning behaviour of a suite of trace-elements are presented. Hydrous rhyo-dacitic starting glasses from Mt. Usu, Japan, were doped with Li, Sc, Cr, Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Nb, Mo, Ba, W, and Pb. Aqueous solutions were added such that the volatile phase(s) coexisting with amphibole, plagioclase, and clinopyroxene at run conditions buffered the S, F, and Cl contents of the melts. Internally-heated pressure vessel experiments were conducted at 750-850 °C, 1.0-4.0 Kbar, and ƒO2 ≈ NNO-NNO+2 log units. Major- and minor-element concentrations in the phenocrysts and glasses were analysed by EPMA, and trace-element contents by SIMS and/or LA-ICP-MS. The long run durations, homogeneous glasses, and minimal compositional zonation of crystals suggest that near-equilibrium conditions were achieved. Results of multiple phenocryst and glass analyses show that Nernst-type crystal-melt partition coefficients for these elements range from strongly incompatible e.g. Dmineral/melt ≈ 0 for Nb into plagioclase, to moderately incompatible e.g. Dmineral/melt ≈ 0.75 for Ga into amphibole, to strongly compatible e.g. Dmineral/melt > 50 for Ni into amphibole and clinopyroxene. Furthermore, unlike other elements investigated, partitioning of Li between phenocrysts and melt is similar for all three phases, with average DLicpx/melt ≈ 0.26 > DLiplag/melt ≈ 0.24 > DLiamph/melt ≈ 0.19. Relative to major-element composition of crystalline phases, the temperature, pressure, and ƒO2 conditions do not appear to strongly affect this behaviour. The incorporation of F and Cl into amphiboles is also consistent with the Fe-F and Mg-Cl crystallographic avoidance principles. Importantly, across two orders of magnitude in concentration, partitioning behaviours of all analysed trace-elements appear to obey Henry's Law. The experimental data are integrated with new amphibole, plagioclase, and pyroxene analyses from eruptive products of Augustine and Mt. St. Helens volcanoes. The results are applicable to understanding processes governing melt evolution during shallow magma storage and formation of economic metal deposits, where the crystallisation of porphyry-type magmas leads to fluid exsolution, and enrichment and transport of such trace- and ore-elements.
Insertion and deletion polymorphisms of the ancient AluS family in the human genome.
Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M
2017-01-01
Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion, thus suggesting that some AluS elements have been more active recently than previously thought, or that fixation of AluS insertion alleles remains incomplete. These data expand the potential significance of polymorphic AluS elements in contributing to structural variation in the human genome. Future discovery efforts focusing on polymorphic AluS elements are likely to identify more such polymorphisms, and approaches tailored to identify deletion alleles may be warranted.
Luo, Liqiang; Chu, Binbin; Liu, Ying; Wang, Xiaofang; Xu, Tao; Bo, Ying
2014-01-01
Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind.Highlights• Mining activities generated heavy metal pollution in fields around a Pb-Zn mine• The elements from water and soils are strongly correlated• Anglesite and cerussite are evidence of galena transformation into secondary minerals• Particulate matter is an important transport carrier of pollution.
NASA Astrophysics Data System (ADS)
Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj; Holm, Paul Martin; Garbe-Schönberg, Dieter
2018-06-01
We present major and trace element compositions of melt inclusions from three alkali basalts from the Río Colorado volcanic field in the Payenia backarc province, Argentina. Modeling of diffusion profiles around the inclusions showed that most inclusions equilibrated <14 days after formation, indicating a short crustal residence time for the magmas and nearly direct ascent through the crust. Despite overlapping host rock isotopic compositions, the inclusions show a large variation in their degree of enrichment, and display trends that we interpret as mixing between asthenospheric OIB-type low K2O-high Nb/U melts and enriched high K2O-low Nb/U lithospheric mantle melts similar in composition to alkaline lamprophyres. The low Nb/U magmas are excessively enriched in the elements Cs, Rb, Ba, Th, U, K, Pb and Cl relative to Nb, Ta and REEs. The enriched low Nb/U components are interpreted to have formed by percolative fractional crystallization of asthenospheric high Nb/U melts in the lithospheric mantle involving crystallization of clinopyroxene, apatite and rutile. The residual fluid-rich melts either mixed directly with new batches of high Nb/U melts or metasomatized and veined the lithospheric mantle which later re-melted during continued volcanism. The major element compositions of the high K2O-low Nb/U components are distinct for the whole rocks and melt inclusions, and most enriched inclusions have lower SiO2 and higher TiO2 contents indicating derivation by melting of amphibole-bearing veins. In contrast, most whole rock low Nb/U basalts have higher SiO2 and lower TiO2 and were most likely formed by melting of pyroxenitic veins or peridotitic metasomatized lithospheric mantle.
Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H
2013-01-01
The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martín, Francisco; Diez, María; García, Inés; Simón, Mariano; Dorronsoro, Carlos; Iriarte, Angel; Aguilar, José
2007-05-25
In the present work, soil profiles were sampled 40 days and three years after an accidental pyrite tailing spill from the Aznalcóllar mine (S Spain) in order to figure out the effects of the acidic solution draining from the tailing. The composition of the acidic solution, the mineralogy, and the total and soluble content of the major elements were analysed at varying depths. The results show a weathering process of carbonates and of primary silicates. Calcium released is leached or reacts with the sulphate ions to form gypsum. Magnesium, aluminium and potassium tend to leach from the uppermost millimetres of the soil, accumulating where the pH>/=5.0; also the iron, probably forming more or less complex hydroxysulphates, precipitate in the upper 5 cm. The strong releasing of soluble salts increases the electrical conductivity, while the soluble potassium tends to decrease in the uppermost part of the soil due to the neoformation of jarosite. Iron is soluble only where the pH=2.3, and aluminium where the pH=5.5.
Samsahl, K; Wester, P O
1977-09-01
A chemical procedure for studying trace metals leached from metallic cooking utensils and preserving cans used in the preparation and storage of food has been developed. The method consists in the destruction of the major part of organic matter with HNO3-vapour followed by a complete mineralization of residues with small amounts of HNO3 in Teflon bombs at 150-160 degrees C under a pressure of 3-12 kg/cm2, depending on the amount and composition of the samples. Subsequently, an ion-exchange step removes major components and concentrates the trace elements in a dilute HNO3-solution, suitable for analysis. The ion-exchange separation, which is performed with an automatic ion-exchange separator, is practically free from blank level problems, e.g., typically a mean of less than 2 per cent of the sample levels of the elements being determined. Preliminary results show that large amounts of aluminium are released from vessels to the water during boiling at the same pH-range which exist for most drinking water in Sweden.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.
1983-01-01
The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th
Water-quality data for selected stations in the East Everglades, Florida
Waller, Bradley G.
1981-01-01
The results of water-quality samples collected from April 1978 through April 1980 from three canal stations, four marsh stations, and two ground-water stations within the East Everglades, Dade County, Florida, are tabulated in 37 tables. The major categories of parameters analyzed are field measurements, physical characteristics, macronutrients (carbon, nitrogen, and phosphorus), major ions, trace elements, and algae. Chemical data for bulk-precipitation stations within and adjacent to the East Everglades are also given. The parameters analyzed include macronutrients, major ions, and trace elements. The period of record for these stations is October 1977 through April 1980. Bottom material at the canal and marsh stations was collected twice during the investigation. These data include analyses for macronutrients, trace elements, and chlorinated-hydrocarbon insecticides. (USGS)
Trace element geochemistry of Archean volcanic rocks
NASA Technical Reports Server (NTRS)
Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.
1974-01-01
The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2018-04-13
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
Quality of ground water used for selected municipal water supplies in Iowa, 1982-96 water years
Schaap, B.D.; Linhart, S.M.
1998-01-01
Maps show the general location of wells that have been sampled in the various aquifers. Other maps show the location of wells where sulfate and nitrite plus nitrate concentrations exceed the respective Maximum Contaminant Levels and wells where concentrations of the pesticides alachlor, atrazine, or cyanazine exceeded the respective minimum reporting levels. The compact disc included with this report has information about water-quality properties and concentrations of dissolved solids, major ions, nutrients, trace elements, radionuclides, total organic carbon, pesticides, and synthetic organic compounds for water years 1982 through 1996.
NASA Technical Reports Server (NTRS)
Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John W.
2003-01-01
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is important in understanding (a) developing waste separation technologies, (b) decision-making on how these elements can be recovered for reuse in space habitats, and (c) to developing the processors for waste management. Though considerable literature exists on these elements, there is a lack of understanding and often conflicting data. Two major reasons for these problems include the lack of controlled experimental protocols and the inherently large variations between human subjects (Parker and Gallagher, 1988). We have used the existing knowledge of human nutrition and waste from the available literature and NASA documentation to build towards a consensus to typify and chemically characterize the various human wastes. It is our belief, that this could be a building block towards integrating a human life support and waste processing in a closed system.
NASA Astrophysics Data System (ADS)
Aubert, D.; Probst, A.; Stille, P.
2003-04-01
Physical and chemical weathering of rocks and minerals lead to soil formation and allow the removal of chemical elements from these systems to ground- or surface waters. But most of the time the determination of element concentrations in soils is not sufficient to estimate whether they are being accumulated or what is their ability to be released in the environment. Thus, the distribution and chemical binding for a given element is very important because it determines its mobility and potential bioavailability throughout a soil profile. Heavy metals and REE (Rare Earth Elements) are particularly of environmental concern because of their potential toxicity. For most of them, their chemical form strongly depends on the evolution of physico-chemical parameters like pH or redox conditions that will induce adsorption-desorption, complexation or co-precipitation phenomena in the material. The purpose of this study is to determine the distribution of several major and trace elements (especially REE, Th and U) in an acidic forested podzolic soil profile from the Vosges Mountains (France). To achieve this goal we use a 7 step sequential extraction procedure that allows determining precisely the origin and the behaviour of particular elements in the environment (Leleyter et al., 1999). In addition we performed leaching experiments using very dilute acetic and hydrochloric acid in order to establish the origin of REE in this soil. The results of the sequential extraction indicate that most of the metals, Th and U are mainly bound to Fe oxides. Organic matter appears also to be a great carrier of P, Ca, Fe and REE even if its content is very low in the deep horizons of the soil. Moreover, we show that in each soil horizon, middle REE (MREE) to heavy REE (HREE) are more labile than light REE (LREE). Leaching experiments using dilute acid solution further suggest that in the shallowest horizons REE largely derive from atmospheric deposition whereas at greater depth, weathering and particularly phosphate mineral weathering (apatite) is the main contributor to labile REE in the soil.
Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California
Herrera, P.A.; Closs, L.G.; Silberman, M.L.
1993-01-01
Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.
NASA Astrophysics Data System (ADS)
Rasmussen, D. J.; Kyle, P. R.; Wallace, P. J.
2013-12-01
Melt inclusions (MI) provide a means for measuring the dissolved volatile (H2O, CO2, S, Cl, F), major and trace element compositions of magmas at depth. Such data are valuable for assessing the physical and chemical conditions within a magmatic system by providing snapshots of magma compositions during ascent and evolution. Here we examine MI in 9 samples of rapidly quenched basanitic ash and hyaloclastite from three locations (Hut Point, Mt. Terror, Mt. Bird) on Ross Island, Antarctica, which radially surround the active, phonolitic Erebus volcano. Ross Island is an intraplate volcanic center located at the southern end of the Terror Rift, an area of active continental extension. Geophysical data show that below the 19-27 km thick crust is a localized region of anomalously hot upwelling mantle. We analyzed volatiles and major elements in 93 olivine-hosted (Fo 78.2-88.3) MI using FTIR spectroscopy and electron microprobe analysis, and all compositions were corrected for the effects of post-entrapment olivine crystallization. Preliminary results show the MI have a range of basanite compositions (SiO2 39.1-45.2 wt.%; Mg# 50.1-66.5). The MI major element trends further suggest the 9 samples are genetically related and may have a common low degree partial melt parental magma. CO2 contents range from ~0.1 to 0.85 wt.%, which are amongst the highest ever measured in MI. H2O contents are ~1 to 1.9 wt.%. The MI also have high concentrations of S, Cl, and F with maximum values of 0.27, 0.22, and 0.14 wt.%, respectively. The H2O and CO2 concentrations require entrapment pressures between ~250 and 600 MPa. Thus, the MI record a magmatic history that begins at near-Moho depths and is exceptionally CO2-rich. Because of its low solubility in magmas CO2 must be the major volatile driving the eruption of these alkalic magmas. More evolved Erebus MI (SiO2 43.4-53.6 wt.%; Mg# 32.9-55.1) from an earlier study [1] have consistently lower H2O concentrations. [1] Oppenheimer et al. (2011) EPSL. 306, 261-271.
Przedlacki, J; Buczyńska-Chyl, J; Koźmiński, P; Niemczyk, E; Wojtaszek, E; Gieglis, E; Żebrowski, P; Podgórzak, A; Wściślak, J; Wieliczko, M; Matuszkiewicz-Rowińska, J
2018-05-01
We assessed the FRAX® method in 718 hemodialyzed patients in estimating increased risk of bone major and hip fractures. Over two prospective years, statistical analysis showed that FRAX® enables a better assessment of bone major fracture risk in these patients than any of its components and other risk factors considered in the analysis. Despite the generally increased risk of bone fractures among patients with end-stage renal disease, no prediction models for identifying individuals at particular risk have been developed to date. The goal of this prospective, multicenter observational study was to assess the usefulness of the FRAX® method in comparison to all its elements considered separately, selected factors associated with renal disease and the history of falls, in estimating increased risk of low-energy major bone and hip fractures in patients undergoing chronic hemodialysis. The study included a total of 1068 hemodialysis patients, who were followed for 2 years, and finally, 718 of them were analyzed. The risk analysis included the Polish version of the FRAX® calculator (without bone mineral density), dialysis vintage, mineral metabolism disorders (serum calcium, phosphate, and parathyroid hormone), and the number of falls during the last year before the study. Over 2 years, low-energy 30 major bone fractures were diagnosed and 13 of hip fractures among them. Area under the curve for FRAX® was 0.76 (95% CI 0.69-0.84) for major fractures and 0.70 (95% CI 0.563-0.832) for hip fractures. The AUC for major bone fractures was significantly higher than for all elements of the FRAX® calculator. In logistic regression analysis FRAX® was the strongest independent risk factor of assessment of the major bone fracture risk. FRAX® enables a better assessment of major bone fracture risk in ESRD patients undergoing hemodialysis than any of its components and other risk factors considered in the analysis.
NASA Astrophysics Data System (ADS)
Dehbandi, Reza; Moore, Farid; Keshavarzi, Behnam
2017-05-01
The concentration of fluorine, major, trace and rare earth elements (REEs) were used to estimate the probable sources and provenance of fluorine in the soils of an endemic fluorosis belt in central Iran. Total fluorine (TF) in soils varied from 146 to 406 mg/kg with a mean of 277.5 mg/kg. Calculated enrichment factor (EF) and single factor pollution index (SFPI) revealed that the majority of soil samples were moderately contaminated by fluorine. The very strong positive correlation of TF with weathering indices and soil's fine sized fractions indicated that chemical weathering and alteration of parent rocks/soils are the main controlling factors of fluorine behavior in soils. Fluorine affinity to immobile transition trace elements and REEs suggested the role of heavy minerals as the potential F host phases. Modal mineralogy along with SEM-EDX analysis indicated that apatite, fluorapophyllite, epidote, biotite, muscovite and chlorite, as well as, clay minerals are the main F-bearing minerals in the studied soils. Discriminant, bivariate and ternary diagrams of elemental compositions displayed similar geochemical signature of soils to intermediate-acidic rocks and local shales. Based on the weathering indices, soils were immature and showed a non-steady state weathering trend from upper continental crust (UCC), acidic and intermediate igneous source rocks towards shale composition possibly due to mixing of moderately weathered and un-weathered sources of different primary compositions.
Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales
NASA Astrophysics Data System (ADS)
Bhérer, Claude; Campbell, Christopher L.; Auton, Adam
2017-04-01
In humans, males have lower recombination rates than females over the majority of the genome, but the opposite is usually true near the telomeres. These broad-scale differences have been known for decades, yet little is known about differences at the fine scale. By combining data sets, we have collected recombination events from over 100,000 meioses and have constructed sex-specific genetic maps at a previously unachievable resolution. Here we show that, although a substantial fraction of the genome shows some degree of sexually dimorphic recombination, the vast majority of hotspots are shared between the sexes, with only a small number of putative sex-specific hotspots. Wavelet analysis indicates that most of the differences can be attributed to the fine scale, and that variation in rate between the sexes can mostly be explained by differences in hotspot magnitude, rather than location. Nonetheless, known recombination-associated genomic features, such as THE1B repeat elements, show systematic differences between the sexes.
NASA Astrophysics Data System (ADS)
Rusz, Ján; Lubk, Axel; Spiegelberg, Jakob; Tyutyunnikov, Dmitry
2017-12-01
The complex interplay of elastic and inelastic scattering amenable to different levels of approximation constitutes the major challenge for the computation and hence interpretation of TEM-based spectroscopical methods. The two major approaches to calculate inelastic scattering cross sections of fast electrons on crystals—Yoshioka-equations-based forward propagation and the reciprocal wave method—are founded in two conceptually differing schemes—a numerical forward integration of each inelastically scattered wave function, yielding the exit density matrix, and a computation of inelastic scattering matrix elements using elastically scattered initial and final states (double channeling). Here, we compare both approaches and show that the latter is computationally competitive to the former by exploiting analytical integration schemes over multiple excited states. Moreover, we show how to include full nonlocality of the inelastic scattering event, neglected in the forward propagation approaches, at no additional computing costs in the reciprocal wave method. Detailed simulations show in some cases significant errors due to the z -locality approximation and hence pitfalls in the interpretation of spectroscopical TEM results.
Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen
2016-06-07
Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.
Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong
2013-01-01
Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464
NASA Astrophysics Data System (ADS)
Um, I. K.; Choi, M. S.
2017-12-01
The central South Sea mud (CSSM) is located between the Heuksan mud belt (HMB) in the Yellow Sea and Korea Strait shelf mud (KSSM) in the East Sea and developed along the eastward transport pathway in the South Sea. Major elements (Al, Fe, Mg, and Ti), trace elements (Li, Cs, Sc, and Rb), and rare earth elements (REEs) in the fine-grained sediments (<15 μm) of thirty-two surface sediment samples on the CSSM were analyzed to determine the fine-grained sediment provenance. The spatial distribution of the analyzed elements showed a clear separation of the western (W-CSSM) and eastern (E-CSSM) regions of the CSSM. Concentrations of Fe, Ti, Mg, Sc, and REEs were higher in the W-CSSM, whereas concentrations of Al, Cs, Li, and Rb were higher in the E-CSSM. The ratios of trace metals ((Cs+Sc)/Li and Rb/Li) can be successfully used as a provenance indicator in the study area but REEs compositions could not be used to track the provenance of fine-grained sediments because of a grain size effect. The mixing relationships of the provenance indicators showed that the fine-grained sediments of the CSSM comprise a mixture of the sediments discharged from the Seomjin River (SRS) and sediments eroded and transported from the Heuksan mud belt (HMBS) area by the Korean coastal current. Sediments originating from the HMB were deposited mostly in the W-CSSM, whereas those from the Seomjin River were deposited mostly in the E-CSSM
Trace elements levels in centenarian 'dodgers'.
Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo
2016-05-01
Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, P<0.001), but higher Fe (1.3 (0.4, 4.7) vs 1.1 (0.5, 8.4)μg/mL, P=0.003) and Se (85.7 (43.0, 256.7) vs 77.8 (24.3, 143.8)ng/mL, P=0.002) values compared with elderly controls. The logistic regression analysis identified the combination of Cu and Se as significant predictor variables associated with successful aging (P=0.001), while receiver operating characteristic (ROC) analysis confirmed that Cu and Se (either alone or in combination) were independent variables associated with healthy aging. An 'improved' trace element profile (reduced Cu and elevated Se, which are involved in key physiological processes) could play a role in the resistance to disease showed by centenarian 'dodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jung, Chang-Hwan; Osako, Masahiro
2009-05-01
In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.
Damage and removal of the coating on the first lens of the MegaCam wide-field corrector
NASA Astrophysics Data System (ADS)
Barrick, Gregory; Benedict, Tom; Salmon, Derrick
2016-08-01
The coating on the exposed surface of the 810 mm diameter first element of the MegaCam wide-field corrector at the Canada-France-Hawaii Telescope (CFHT) was found to be degraded in the fall of 2014. An investigation showed that the coating was, in fact, damaged over a large part of the exposed surface and was causing major scattering, severely degrading the performance of the instrument. The coating was subsequently removed from the lens by CFHT, restoring the majority of the instrument performance. The investigation of the degradation and the procedure used to remove the coating will be described in this paper.
New Design for an Adjustable Cise Space Maintainer
2018-01-01
Objective The aim of this study is to present a new adjustable Cise space maintainer for preventive orthodontic applications. Methods Stainless steel based new design consists of six main components. In order to understand the major displacement and stress fields, structural analysis for the design is considered by using finite element method. Results Similar to major displacement at y-axis, critical stresses σx and τxy possess a linear distribution with constant increasing. Additionally, strain energy density (SED) plays an important role to determine critical biting load capacity. Conclusion Structural analysis shows that the space maintainer is stable and is used for maintaining and/or regaining the space which arouses early loss of molar tooth. PMID:29854764
NASA Astrophysics Data System (ADS)
Diskin, Sorcha; Wendorff, Marek; Lasarwe, Reneilwe
2010-05-01
The Karoo Supergroup of Botswana unconformably overlies Archaean and Proterozoic rocks. They are however, poorly exposed being in turn overlain by up to 200m of Kalahari Beds. This Carboniferous - Jurassic succession comprises sequences of sedimentary and volcanic rocks which are spread across southern Africa. In Botswana, rock complexes have been correlated between widely spaced boreholes based on macroscopically similar appearance and similar position in the succession. In neighbouring South Africa and Namibia these rocks are well exposed and the lithostratigraphy is well constrained by the fossil record. The Karoo units of Botswana have been correlated with these more precisely defined successions on the basis of lithostratigraphy only and are unsupported by other criteria and as such are limited; especially considering the different depositional settings between Botswana and South Africa. Here we present the results of a study of the heavy whole rock geochemistry in an attempt to provide additional, chemostratigraphic criteria for the lower and middle part of the Karoo suite, the Dwyka and Ecca Groups. Analysis of 60 samples for major and trace (including REE) element composition shows a close relation between the geochemical characteristics and stratigraphy. Major elements show that the deltaic material of the Kweneng Formation and Boritse Formation was sourced from recycled continental crust. The basinal mudstone and siltstone below and above fall into an intermediate-mafic igneous field. Most samples have distinct negative europium anomalies (Eu/Eu*=0.49-1.27; av. = 0. 75) and most values are characteristic of sediments of cratonic derivation. A clear shift in (Gd/Yb)N in the basinal pro-delta shales (the Bori Formation) is generally 2.0 or greater, which is typical of an Archean signature, whereas post-Archean rocks usually have (Gd/Yb)N 1.0 - 2.0 as seen for the strata above the delta mouth bars and channels (average 1.6). In a diagram in which (La/Yb)N plotted against CeN shows a relationship between REE fractionation and provenance, the samples from the Ecca's lacustrine Kwetla Formation and Bori Formation fall into the Intermediate Igneous Provenance Field along with data from the Dwyka, whereas the deltaic Kweneng and Boritse Formation belong to the quartzose provenance field. This agrees with indicators from the major element discriminators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew
Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experimentsmore » with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1992-01-01
Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.
NASA Astrophysics Data System (ADS)
Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.
2003-11-01
Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.
High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean
NASA Astrophysics Data System (ADS)
Snow, J. E.; Feig, S. T.
2014-12-01
Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge. We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O/TiO2 in Lena and Gakkel basalts shows that water systematics in these rocks are completely governed by source composition, with little or no modification by mantle melting dynamics or crystal fractionation. The geochemical influence of the WVZ enriched mantle source declines with distance from Lena Trough along Gakkel Ridge.
NASA Astrophysics Data System (ADS)
Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki
2014-05-01
Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt sediment at 13m depth which is just above the upper aquifer. This potential mobility may pose a threat to upper aquifer and riverbed aquatic system. The overall geochemical analysis revealed that the dissolution of Fe-Mn oxide is the most effective mechanism for As, Pb in groundwater however the mobility of Cd is mainly carbonate bound. In the present study, the pollution level is much below from leaching environmental standards (0.01 mg/L) for all three elements and the total content is within the natural abundance of As, Pb and Cd in sediment. The potential mobility of these elements in oxidized fine silty sediment and the possible further effect to the aquifer suggest that shallow groundwater abstraction should be restricted to protect seasonal groundwater fluctuation. Moreover marine sediment containing high total toxic element contents and mobility tendency at changing oxidation and reduction environments requires proper management when sediments are excavated for construction purpose.
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Nelms, M.; Breves, E. A.
2012-12-01
Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and other light elements are directly measured are nearly nonexistent in the 1-2 g quantities needed for LIBS analyses. For this study, we have obtained two sample suites that provide calibrations needed for accurate analyses of H, O, B, Be, and Li in geological samples. The first suite of 11 samples was analyzed for oxygen by fast neutron activation analysis. The second suite includes 11 gem-quality minerals representing the major rock-forming species for B, Li, and Be-rich parageneses. Light elements were directly analyzed using a combination of EMPA, XRF, ion microprobe, uranium extraction, proton-induced gamma-ray emission (PIGE), and prompt gamma-ray neutron activation analysis (PGNAA). LIBS spectra were acquired at Mount Holyoke College under air, vacuum, and CO2 to simulate terrestrial, lunar, and martian environments. Spectra were then used to develop three separate calibration models (one for each environment), enabling LIBS characterization of light elements using multivariate analyses. Results show that when direct analyses of H, O, Li, B, and Be are used rather than LOI results, inferred, or indirectly calculated values, optimal root mean squared errors of prediction result. We are actively adding samples to these calibration suites, and we expect that prediction errors (accuracies) of <1wt% for these elements are possible.
Prevention of congenital abnormalities by periconceptional multivitamin supplementation.
Czeizel, A E
1993-01-01
OBJECTIVE--To study the effect of periconceptional multivitamin supplementation on neural tube defects and other congenital abnormality entities. DESIGN--Randomised controlled trial of supplementation with multivitamins and trace elements. SETTING--Hungarian family planning programme. SUBJECTS--4156 pregnancies with known outcome and 3713 infants evaluated in the eighth month of life. INTERVENTIONS--A single tablet of a multivitamin including 0.8 mg of folic acid or trace elements supplement daily for at least one month before conception and at least two months after conception. MAIN OUTCOME MEASURES--Number of major and mild congenital abnormalities. RESULTS--The rate of all major congenital abnormalities was significantly lower in the group given vitamins than in the group given trace elements and this difference cannot be explained totally by the significant reduction of neural tube defects. The rate of major congenital abnormalities other than neural tube defects and genetic syndromes was 9.0/1000 in pregnancies with known outcome in the vitamin group and 16.6/1000 in the trace element group; relative risk 1.85 (95% confidence interval 1.02 to 3.38); difference, 7.6/1000. The rate of all major congenital abnormalities other than neural tube defects and genetic syndromes diagnosed up to the eighth month of life was 14.7/1000 informative pregnancies in the vitamin group and 28.3/1000 in the trace element group; relative risk 1.95 (1.23 to 3.09); difference, 13.6/1000. The rate of some congenital abnormalities was lower in the vitamin group than in the trace element group but the differences for each group of abnormalities were not significant. CONCLUSIONS--Periconceptional multivitamin supplementation can reduce not only the rate of neural tube defects but also the rate of other major non-genetic syndromatic congenital abnormalities. Further studies are needed to differentiate the chance effect and vitamin dependent effect. PMID:8324432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less
NASA Astrophysics Data System (ADS)
Berhe, Asmeret Asefaw; Barnes, Rebecca T.; Six, Johan; Marín-Spiotta, Erika
2018-05-01
Most of Earth's terrestrial surface is made up of sloping landscapes. The lateral distribution of topsoil by erosion controls the availability, stock, and persistence of essential elements in the terrestrial ecosystem. Over the last two decades, the role of soil erosion in biogeochemical cycling of essential elements has gained considerable interest from the climate, global change, and biogeochemistry communities after soil erosion and terrestrial sedimentation were found to induce a previously unaccounted terrestrial sink for atmospheric carbon dioxide. More recent studies have highlighted the role of erosion in the persistence of organic matter in soil and in the biogeochemical cycling of elements beyond carbon . Here we synthesize available knowledge and data on how erosion serves as a major driver of biogeochemical cycling of essential elements. We address implications of erosion-driven changes in biogeochemical cycles on the availability of essential elements for primary production, on the magnitude of elemental exports downstream, and on the exchange of greenhouse gases from the terrestrial ecosystem to the atmosphere. Furthermore, we explore fates of eroded material and how terrestrial mass movement events play major roles in modifying Earth's climate.
NASA Technical Reports Server (NTRS)
Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1997-01-01
Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.
Major and trace elements in igneous rocks from Apollo 15.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.
1973-01-01
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.
Demandite, lunar materials and space industrialization
NASA Technical Reports Server (NTRS)
Criswell, D. R.
1977-01-01
Terrestrial industry consumes a wide range of elements in producing the outputs which support and make industrial societies possible. 'Demandite' is a conceptual or synthetic molecule which is composed of the weight fractions of the major elements consumed by industry. Demandite needed for mature industrial activities in space will differ from the terrestrial composition because solar energy must replace hydrocarbon-energy, lunar and asteroidal bulk compositions are different from mineral deposits on the earth, and the major bulk processing in space will be the creation of radiation shielding for human habitats to provide real estate in space complete with water, atmosphere and life-stock elements. Demandite cost may be dominated by earth to deep space transport cost of minor elemental constituents depleted in the lunar soils unless careful attention is given to substitution of materials, searches of the moon (polar regions) and asteroids for the depleted elements, and continuing lowering of earth to deep space transport costs.
Classifying unresolved objects from simulated space data.
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Hyde, P. D.
1973-01-01
A multispectral scanner data set gathered at a flight altitude of 10,000 ft. over an agricultural area was modified to simulate the spatial resolution of the spacecraft scanners. Signatures were obtained for several major crops and their proportions were estimated over a large area. For each crop, a map was generated to show its approximate proportion in each resolution element, and hence its distribution over the area of interest. A statistical criterion was developed to identify data points that may not represent a mixture of the specified crops. This allows for great reduction in the effect of unknown or alien objects on the estimated proportions. This criterion can be used to locate special features, such as roads or farm houses. Preliminary analysis indicates a high level of consistency between estimated proportions and available ground truth. Large concentrations of major crops show up especially well on the maps.
Tsegga, Tibebu M; Britt, Jennifer D; Ellwanger, Aragon R
2015-03-01
Pleomorphic adenoma is the most common tumor of the major and minor salivary glands. Rarely is it found evolving from an ectopic location of major salivary glandular tissue in the mid cheek. A healthy 56-year-old woman presented to our institution with a 20-year duration of a slowly growing right cheek soft tissue mass that was causing facial asymmetry. No significant functional or neurosensory dysfunction was appreciated. Radiologic examination showed a heterogeneous, hyperintense, well-delineated mass within the region of the right buccal fat pad. Fine-needle aspiration biopsy showed benign salivary gland elements consistent with pleomorphic adenoma. The decision was made to perform intraoral extracapsular dissection for removal. Discussion of the clinical assessment and magnetic resonance imaging evaluation with an emphasis on intraoral extracapsular dissection for definitive surgical therapy of longstanding benign salivary gland tumors is emphasized. Published by Elsevier Inc.
Luchetti, Andrea; Plazzi, Federico; Mantovani, Barbara
2017-06-01
Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3'-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Mechanics of graben formation in crustal rocks - A finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Williams, C. A., Jr.
1989-01-01
The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.
The NASA role in major areas of human concern: Environmental quality
NASA Technical Reports Server (NTRS)
1973-01-01
After introducing some of the general factors that have affected progress in the area of environmental quality, NASA program elements are examined to illustrate relevant points of contact. Interpretive steps are taken throughout the report to show a few of the more important ways people's lives have been affected as a result of the work of NASA and other organizations functioning in this area. The principal documents used and interviews conducted are identified.
Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina
2017-05-01
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.
2001-01-01
Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000-2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79-472 A.D.), Medieval Formation (472-1139 A.D.) and Recent interplinian activity (1631-1944 A.D.) belong to the third group of activity (79-1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr= 0.70711-0.70810, Ancient Historic 87Sr/86Sr=0.70665-0.70729, and Medieval 87Sr/86Sr=0.70685-0.70803. Neodymium isotopic compositions in the interplinian rocks show a tendency to become slightly more radiogenic with age, from the Protohistoric (143Nd/144Nd=0.51240-0.51247) to Ancient Historic (143Nd/144Nd=0.51245-0.51251). Medieval interplinian activity (143Nd/144Nd: 0.51250-0.51241) lacks meaningful internal trends. All the interplinian rocks have virtually homogeneous compositions of 207Pb/204Pb and 208Pb/204Pb in acid-leached residues (207Pb/204Pb ???15.633 to 15.687, 208Pb/204Pb ???38.947 to 39.181). Values of 206Pb/204Pb are very distinctive, however, and discriminate among the three interplinian cycles of activity (Protohistoric: 18.929-18.971, Ancient Historic: 19.018-19.088, Medieval: 18.964-19.053). Compositional trends of major, trace element and isotopic compositions clearly demonstrate strong temporal variations of the magma types feeding the Somma-Vesuvius activity. These different trends are unlikely to be related only to low pressure evolutionary processes, and reveal variations of parental melt composition. Geochemical data suggest a three component mixing scheme for the interplinian activity. These involve HIMU-type and DMM-type mantle and Calabrian-type lower crust. Interaction between these components has taken place in the source; however, additional quantitative constraints must be acquired in order to better discriminate between magma characteristics inherited from the sources and those acquired during shallow level evolution.
Allometry and apparent paradoxes in human limb proportions: Implications for scaling factors.
Auerbach, Benjamin M; Sylvester, Adam D
2011-03-01
It has been consistently demonstrated that human proximal limb elements exhibit negative allometry, while distal elements scale with positive allometry. Such scaling implies that longer limbs will have higher intralimb indices, a phenomenon not borne out by empirical analyses. This, therefore, creates a paradox within the limb allometry literature. This study shows that these apparently conflicting results are the product of two separate phenomena. First, the use of the geometric mean of limb elements produces allometry coefficients that are not independent, and that when using ordinary least squares regression must yield an average slope of one. This phenomenon argues against using the geometric mean as a size variable when examining limb allometry. While the employment of relevant dimensions independent of those under analysis to calculate the geometric mean--as suggested by Coleman (Am J Phys Anthropol 135 (2008) 404-415)--may be a partial method for resolving the problem, an empirically determined, independent and biologically relevant size variable is advocated. If stature is used instead of the geometric mean as an independent size variable, all major limb elements scale with positive allometry. Second, while limb allometry coefficients do indicate differential allometry in limb elements, and thus should lead to some intralimb index allometry, this pattern appears to be attenuated by other sources of limb element length variation. Copyright © 2010 Wiley-Liss, Inc.
Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria
Lowe, Craig B.; Clarke, Julia A.; Baker, Allan J.; Haussler, David; Edwards, Scott V.
2015-01-01
The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. PMID:25415961
Zhang, Yong; Gao, Xuelu; Arthur Chen, Chen-Tung
2014-07-01
Surface sediments from intertidal Bohai Bay were assessed using a four-step sequential extraction procedure to determine their concentrations of rare earth elements (REEs) and the chemical forms in which those elements were present. The normalized ratios La/Gd and La/Yb showed that LREE contents were not significantly higher than the middle REEs or HREE contents. A negative Ce anomaly and positive Eu were observed in sand and silty sand sediments, whereas no significant Ce or Eu anomaly was found in clayey silt sediments. Residual fraction of REEs accounted for the majority of their total concentrations. Middle REEs were more easily leached than other REEs, especially in clayey silt sediment. REEs contents in the surface sediment from the intertidal Bohai Sea were consistent with data from the upper continental crust and China shallow sea sediments, indicating that they were generally unaffected by heavily anthropogenic effects from adjacent areas. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, J.; Kaplan, G.; Racaniello, V.R.
1988-03-01
Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, the authors determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. They found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element mapsmore » between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. They also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.« less
Factors influencing perceived angular velocity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes
NASA Astrophysics Data System (ADS)
Barrat, J. A.; Zanda, B.; Moynier, F.; Bollinger, C.; Liorzou, C.; Bayon, G.
2012-04-01
In order to check the heterogeneity of the CI chondrites and determine the average composition of this group of meteorites, we analyzed a series of six large chips (weighing between 0.6 and 1.2 g) of Orgueil prepared from five different stones. In addition, one sample from each of Ivuna and Alais was analyzed. Although the sizes of the chips used in this study were “large”, our results show evidence for minor chemical heterogeneity in Orgueil, particularly for alkali elements and U. After removal of one outlier sample, the spread of the results is considerably reduced. For most of the 46 elements analyzed in this study, the average composition calculated for Orgueil is in very good agreement with previous CI estimates. This average, obtained with a “large” mass of samples, is analytically homogeneous and is suitable for normalization purposes. Finally, the Cu and Zn isotopic ratios are homogeneously distributed within the CI parent body with a spread of less than 100 ppm per atomic mass unit (amu).
A selfish genetic element confers non-Mendelian inheritance in rice.
Yu, Xiaowen; Zhao, Zhigang; Zheng, Xiaoming; Zhou, Jiawu; Kong, Weiyi; Wang, Peiran; Bai, Wenting; Zheng, Hai; Zhang, Huan; Li, Jing; Liu, Jiafan; Wang, Qiming; Zhang, Long; Liu, Kai; Yu, Yang; Guo, Xiuping; Wang, Jiulin; Lin, Qibing; Wu, Fuqing; Ren, Yulong; Zhu, Shanshan; Zhang, Xin; Cheng, Zhijun; Lei, Cailin; Liu, Shijia; Liu, Xi; Tian, Yunlu; Jiang, Ling; Ge, Song; Wu, Chuanyin; Tao, Dayun; Wang, Haiyang; Wan, Jianmin
2018-06-08
Selfish genetic elements are pervasive in eukaryote genomes, but their role remains controversial. We show that qHMS7 , a major quantitative genetic locus for hybrid male sterility between wild rice ( Oryza meridionalis ) and Asian cultivated rice ( O. sativa ), contains two tightly linked genes [ Open Reading Frame 2 ( ORF2 ) and ORF3 ]. ORF2 encodes a toxic genetic element that aborts pollen in a sporophytic manner, whereas ORF3 encodes an antidote that protects pollen in a gametophytic manner. Pollens lacking ORF3 are selectively eliminated, leading to segregation distortion in the progeny. Analysis of the genetic sequence suggests that ORF3 arose first, followed by gradual functionalization of ORF2 Furthermore, this toxin-antidote system may have promoted the differentiation and/or maintained the genome stability of wild and cultivated rice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Accurate Modeling of X-ray Extinction by Interstellar Grains
NASA Astrophysics Data System (ADS)
Hoffman, John; Draine, B. T.
2016-02-01
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
Breulman, G; Markert, B; Weckert, V; Herpin, U; Yoneda, R; Ogino, K
2002-02-21
Leaf samples of tropical trees, i.e. Dryobalanops lanceolata (Kapur paji), Dipterocarpaceae and Macaranga spp. (Mahang), Euphorbiaceae were analyzed for 21 chemical elements. The pioneer Macaranga spp. exhibited higher concentrations for the majority of elements compared to the emergent species of Dryobalanops lanceolata, which was attributed to the higher physiological activity of the fast growing pioneer species compared to emergent trees. Lead showed rather high concentrations in several samples from the Bakam re-forestation site. This is suggested to be caused by emissions through brick manufacturing and related activities in the vicinity. A comparison of Dryobalanops lanceolata samples collected in 1993, 1995 and 1997 in the Lambir Hills National Park revealed that certain heavy metals, i.e. Co, Cu, Mn, Ni, Pb and Ti showed higher values in 1997 compared to the previous years, which could indicate an atmospheric input from the haze caused by the extensive forest fires raging in Borneo and other parts of Southeast Asia.
Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha
NASA Astrophysics Data System (ADS)
Mahapatra, Parth Sarathi; Ray, Sanak; Das, Namrata; Mohanty, Ayusman; Ramulu, T. S.; Das, Trupti; Chaudhury, G. Roy; Das, S. N.
2013-04-01
Acid- and water-soluble component of suspended particulate matter was studied from January 2009 to December 2009 at Bhubaneshwar, an urban coastal location of eastern India, by high-volume sampler, environmental dust monitor using GRIMM®, and scanning electron microscope and energy dispersive X-ray spectrometer. The water-soluble components accounted for 30-45 % of the total suspended particulate matter, and the major elements were observed to be ammonium and nitrate as the cationic and anionic species, respectively. The acid-soluble component like copper, nickel, cobalt, iron, and lead accounted for 5-15 % of the total particulate matter concentration. The composition of particulate matter shows a clear seasonal variation in relation to wind speed, wind direction, and trajectories of the air mass movement. The GRIMM spectrometer analysis shows higher concentration of fine particulate matter. Source apportionment and enrichment factor analysis indicated that except sodium and chloride, all other elements have emerged from different sources such as crustal as well as anthropogenic.
Chaffee, M.A.
1976-01-01
There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.
Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn
NASA Astrophysics Data System (ADS)
Kang, Shichang; Zhang, Qianggong; Kaspari, Susan; Qin, Dahe; Cong, Zhiyuan; Ren, Jiawen; Mayewski, Paul A.
In May 2005, a total of 14 surface snow (0-10 cm) samples were collected along the climbing route from the advanced base camp to the summit (6500-8844 m a.s.l.) on the northern slope of Mt. Everest (Qomolangma). A 108 m firn/ice core was retrieved from the col of the East Rongbuk Glacier (28.03°N, 86.96°E, 6518 m a.s.l.) on the north eastern saddle of Mt. Everest in September 2002. Surface snow and the upper 3.5 m firn samples from the core were analyzed for major and trace elements by inductively coupled plasma mass spectroscopy (ICP-MS). Measurements show that crustal elements dominated both surface snow and the firn core, suggesting that Everest snow chemistry is mainly influenced by crustal aerosols from local rock or prevalent spring dust storms over southern/central Asia. There are no clear trends for element variations with elevation due to local crustal aerosol inputs or redistribution of surface snow by strong winds during the spring. Seasonal variability in snow/firn elements show that high elemental concentrations occur during the non-monsoon season and low values during the monsoon season. Ca, Cr, Cs, and Sr display the most distinct seasonal variations. Elemental concentrations (especially for heavy metals) at Mt. Everest are comparable with polar sites, generally lower than in suburban areas, and far lower than in large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Everest atmospheric environment. Everest firn core REE concentrations are the first reported in the region and seem to be comparable with those measured in modern and Last Glacial Maximum snow/ice samples from Greenland and Antarctica, and with precipitation samples from Japan and the East China Sea. This suggests that REE concentrations measured at Everest are representative of the background atmospheric environment.
Miao, Ziheng; Nihat, Hakan; McMillan, Andrew Lee; Brusseau, Mark L.
2013-01-01
The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site. PMID:24357895
Leaching mechanisms of constituents from fly ash under the influence of humic acid.
Zhao, Shengxin; Chen, Zhonglin; Shen, Jimin; Kang, Jing; Zhang, Jin; Shen, Yanqing
2017-01-05
As a low-cost material for adsorption, FA is one of the most efficient adsorbents of HA. However, the leaching of elements from FA is problematic during utilization in water treatment. In this investigation, the potential leaching behaviors of Calcium, Arsenic, Born, Chromium, and other elements from FA in HA solution were studied via batch test. The data show that HA had an effect on the leaching of each element of FA, depending on the pH, the initial concentration of HA and the addition of calcium oxide (CaO). The Langmuir isotherm could better fit the equilibrium data in different initial concentrations of HA from 10 to 100mg/L. Because of the interaction between HA and the FA leaching elements, multi-layer adsorption occurred when the initial concentration of HA was more than 100mg/L. The pH and free CaO content played major roles in HA adsorption and FA leaching. Using SEM and XRD to characterize the solid of FA being mixed with CaO treated in solution, the results demonstrated that the reaction between FA and CaO could generate crystal minerals, such as portlandite, gismondine, ettringite (AFt) and calcite, which effectively restrained the leaching of elements, reduced secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K
2016-04-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.
Zhang, Chaosheng
2006-08-01
Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.
Proteomics technique opens new frontiers in mobilome research
Davidson, Andrew D.; Matthews, David A.
2017-01-01
ABSTRACT A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the “mobilome,” which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the “domestication” of transposon proteins for cellular functions. Although ‘omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called “proteomics informed by transcriptomics” (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease. PMID:28932623
Assessing trace element diffusion models in fossil and sub-fossil bone
NASA Astrophysics Data System (ADS)
Suarez, C. A.; Kohn, M. J.
2012-12-01
Three different diffusion models have been proposed to explain trace element uptake during fossilization of bone: diffusion-adsorption (DA), diffusion-recrystallization (DR), and double-medium diffusion (DMD). Theoretically, differences in trace element profiles, particularly the rare earth elements (REE) and U, can discriminate among these possibilities. In this study, we tested which model best explains natural samples by analyzing trace element profiles in natural bone using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Fossil bones ranging in age from a few ka to over 100 Ma were analyzed along traverses from the outer cortical edge to the inner marrow cavity margin. Forty major, minor and trace elements were analyzed, notably Ca, P, transition metals, Sr, Ba, REE, U, Th and Pb. Spatial and analytical resolutions were ~10 μm and ~100 ppb respectively. Many specimens show commonly observed exponential decreases in REE from the outer edge and marrow cavity, with relatively homogeneous U distributions. Yet, most significantly, specimens from American Falls (last interglacial) and Duck Point (last glacial maximum) show distinctive U plateaus adjacent to the outer and inner cortical bone margins. Whereas exponential profiles can be produced by different uptake processes, such plateaus are diagnostic of a DR mechanism. Our work is consistent with recent investigation of trace element diffusivities in modern fresh and deproteinated bone. These studies show similar diffusion rates for REE and U, so the profound disparity in U vs. REE profiles in most fossils cannot result solely from differences in volume diffusion within the context of DA and DMD. Rather, as a recrystallization front propagates into bone, the bone appears to encode changing soil water compositions with earlier vs. later compositions reflected in the bone margin vs. interior. Soil water U concentrations apparently remain nearly fixed during fossilization, whereas REE are rapidly stripped from the surrounding matrix, leading to nearly homogeneous U vs. steep REE profiles. However in our Pleistocene bones (American Falls and Duck Point), changes to U concentrations on the bone margin reveal more complex changes to boundary compositions, and eliminate both DA and DMD (alone) as the dominant mechanisms of trace element uptake. Our work reconciles disparate zoning patterns observed in fossil bone, and simplifies interpretations of soil or sediment water chemistry, but complicates U-series dating of fossils.
An expert system for spectroscopic analysis of rocket engine plumes
NASA Technical Reports Server (NTRS)
Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy
1991-01-01
The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.
Learning basic programming using CLIS through gamification
NASA Astrophysics Data System (ADS)
Prabawa, H. W.; Sutarno, H.; Kusnendar, J.; Rahmah, F.
2018-05-01
The difficulty of understanding programming concept is a major problem in basic programming lessons. Based on the results of preliminary studies, 60% of students reveal the monotonous of learning process caused by the limited number of media. Children Learning in Science (CLIS) method was chosen as solution because CLIS has facilitated students’ initial knowledge to be optimized into conceptual knowledge. Technological involvement in CLIS (gamification) helped students to understand basic programming concept. This research developed a media using CLIS method with gamification elements to increase the excitement of learning process. This research declared that multimedia is considered good by students, especially regarding the mechanical aspects of multimedia, multimedia elements and aspects of multimedia information structure. Multimedia gamification learning with the CLIS model showed increased number of students’ concept understanding.
Rare-earth abundances in chondritic meteorites
NASA Technical Reports Server (NTRS)
Evensen, N. M.; Hamilton, P. J.; Onions, R. K.
1978-01-01
Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.
Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas
2017-03-01
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.
Lindsköld, Lars; Wintell, Mikael; Edgren, Lars; Aspelin, Peter; Lundberg, Nina
2013-07-01
Challenges related to the cross-organizational access of accurate and timely information about a patient's condition has become a critical issue in healthcare. Interoperability of different local sources is necessary. To identify and present missing and semantically incorrect data elements of metadata in the radiology enterprise service that supports cross-organizational sharing of dynamic information about patients' visits, in the Region Västra Götaland, Sweden. Quantitative data elements of metadata were collected yearly from the first Wednesday in March from 2006 to 2011 from the 24 in-house radiology departments in Region Västra Götaland. These radiology departments were organized into four hospital groups and three stand-alone hospitals. Included data elements of metadata were the patient name, patient ID, institutional department name, referring physician's name, and examination description. The majority of missing data elements of metadata was related to the institutional department name for Hospital 2, from 87% in 2007 to 25% in 2011. All data elements of metadata except the patient ID contained semantic errors. For example, for the data element "patient name", only three names out of 3537 were semantically correct. This study shows that the semantics of metadata elements are poorly structured and inconsistently used. Although a cross-organizational solution may technically be fully functional, semantic errors may prevent it from serving as an information infrastructure for collaboration between all departments and hospitals in the region. For interoperability, it is important that the agreed semantic models are implemented in vendor systems using the information infrastructure.
NASA Astrophysics Data System (ADS)
Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.
2018-07-01
Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.
Petrology of the Western Highland Province: Ancient crust formation at the Apollo 14 site
NASA Astrophysics Data System (ADS)
Shervais, John W.; McGee, James J.
1999-03-01
Plutonic rocks found at the Apollo 14 site comprise four lithologic suites: the magnesian suite, the alkali suite, evolved lithologies, and the ferroan anorthosite suite (FAN). Rocks of the magnesian suite include troctolite, anorthosite, norite, dunite, and harzburgite; they are characterized by plagioclase ~An95 and mafic minerals with mg#s 82-92. Alkali suite rocks and evolved rocks generally have plagioclase ~An90 to ~An40, and mafic minerals with mg#s 82-40. Lithologies include anorthosite, norite, quartz monzodiorite, granite, and felsite. Ferroan anorthosites have plagioclase ~An96 and mafic minerals with mg#s 45-70. Whole rock geochemical data show that most magnesian suite samples and all alkali anorthosites are cumulates with little or no trapped liquid component. Norites may contain significant trapped liquid component, and some alkali norites may represent cumulate-enriched, near-liquid compositions, similar to KREEP basalt 15386. Evolved lithologies include evolved partial cumulates related to alkali suite fractionation (quartz monzodiorite), immiscible melts derived from these evolved magmas (granites), and impact melts of preexisting granite (felsite). Plots of whole rock mg# versus whole rock Ca/(Ca+Na+K) show a distinct gap between rocks of the magnesian suite and rocks of the alkali suite, suggesting either distinct parent magmas or distinct physical processes of formation. Chondrite-normalized rare earth element (REE) patterns show that rocks of both the magnesian suite and alkali suite have similar ranges, despite the large difference in major element chemistry. Current models for the origin of the magnesian suite call for a komatiitic parent magma derived from early magma ocean cumulates; these melts must assimilate plagiophile elements to form troctolites at low pressures and must assimilate a highly enriched KREEP component so that the resulting mixture has REE concentrations similar to high-K KREEP. There are as yet no plausible scenarios that can explain these unusual requirements. We propose that partial melting of a primitive lunar interior and buffering of these melts by ultramagnesian early magma ocean cumulates provides a more reasonable pathway to form magnesian troctolites. Alkali anorthosites and norites formed by crystallization of a parent magma with major element compositions similar to KREEP basalt 15386. If the parent magma of the alkali suite and evolved rocks is related to the magnesian suite, then that magma must have evolved through combined assimilation-fractional crystallization processes to form the alkali suite cumulates.
Vecchi, R; Bernardoni, V; Valentini, S; Piazzalunga, A; Fermo, P; Valli, G
2018-02-01
In this paper, results from receptor modelling performed on a well-characterised PM 1 dataset were combined to chemical light extinction data (b ext ) with the aim of assessing the impact of different PM 1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM 1 components and major sources. PM 1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (b ext,aer ) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada
Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.
1989-01-01
The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled by first mixing primitive arc magma with enriched basaltic liquid derived either from garnet peridotite or metasomatized mantle, followed by fractionation of olivine, pyroxenes, plagioclase and spinel. ?? 1989.
The fate of minor alkali elements in the chemical evolution of salt lakes
2011-01-01
Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434
Miklius, Asta; Flower, M.F.J.; Huijsmans, J.P.P.; Mukasa, S.B.; Castillo, P.
1991-01-01
Taal lava series can be distinguished from each other by differences in major and trace element trends and trace element ratios, indicating multiple magmatic systems associated with discrete centers in time and space. On Volcano Island, contemporaneous lava series range from typically calc-alkaline to iron-enriched. Major and trace element variation in these series can be modelled by fractionation of similar assemblages, with early fractionation of titano-magnetite in less iron-enriched series. However, phase compositional and petrographic evidence of mineral-liquid disequilibrium suggests that magma mixing played an important role in the evolution of these series. -from Authors
The petrogenesis of L-6 chondrites - Insights from the chemistry of minerals
NASA Technical Reports Server (NTRS)
Curtis, D. B.; Schmitt, R. A.
1979-01-01
Measurements of the major, minor and trace element abundances of the major minerals of the L-6 chondrites Alfianello, Colby (WI) and Leedey are used to investigate the formation mechanisms of L-6 chondrites. Electron microprobe analysis was performed on individual grains of each mineral, and separated minerals were analyzed by instrumental and radiochemical neutron activation analysis. The compositions of the three meteorites are observed to be generally uniform, however different abundances and distributions of rare earth elements and Co and Ni indicate that the meteorites have different petrogenetic histories. Alkali element distributions are found to be incompatible with internal equilibration of a closed system.
Salem, Nida’ M.; Miller, W. Allen; Rowhani, Adib; Golino, Deborah A.; Moyne, Anne-Laure; Falk, Bryce W.
2015-01-01
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5′- and 3′-RACE showed the RSDaV genomic RNA to be 5,808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3′-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5′ ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5′ end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3′ cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae. PMID:18329064
Salem, Nida' M; Miller, W Allen; Rowhani, Adib; Golino, Deborah A; Moyne, Anne-Laure; Falk, Bryce W
2008-06-05
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5'- and 3'-RACE showed the RSDaV genomic RNA to be 5808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3'-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5' ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5' end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3' cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae.
Temporal and local variations in biochemical composition of Crassostrea gigas shells
NASA Astrophysics Data System (ADS)
Almeida, Maria J.; Machado, Jorge; Moura, Gabriela; Azevedo, Manuela; Coimbra, João
1998-12-01
The objective of this work was to find relations between organic and inorganic shell components. Crassostrea gigas shells were analysed from live specimens collected at five different stations: the Lima estuary (1), the Ria de Aveiro (2, 3), and the Mondego estuary (4, 5), Portugal. About 30% of the oysters, from stations 1, 2 and 3 had shell-thickness-index values ≤10, indicating a severe thickening. Oysters from the Mondego estuary contained mud blisters due to Polydora infestations. Oysters from station 3 had thicker shells and showed a higher Pb content in shell and tissues than oysters from the other stations. Amino-acid composition changed mainly according to the modified protein (jelly-like substance) probably produced by the presence of TBT (tributyltin) in the water; in particular, we observed an increase in glutamic acid and threonine and a decrease in major amino acids such as aspartic acid, serine and glycine. Elemental shell composition was mainly associated with environmental conditions: shells from stations in open areas had higher Li, Cd, Cr and Ca and lower Mn levels than those from semi-enclosed areas (fish farms). Discriminant analyses against the three kinds of shell observed (normal, thick and infested), using chemical elements and amino acids as discriminant variables, showed the infested group to have the biggest differences. There was no correlation between amino-acid and chemical-element patterns in shell composition. Observed changes in amino-acid pattern, probably due to TBT, did not imply a simultaneous change of elemental composition.
Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong
2017-03-01
The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.
Williams, Kelly P.
2003-01-01
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3′ end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3′ end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3′ end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed. PMID:12533482
Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv
2015-06-01
Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.
NASA Astrophysics Data System (ADS)
Cameron, Maryellen; Bagby, William C.; Cameron, Kenneth L.
1980-10-01
The mid-Tertiary ignimbrites of the Sierra Madre Occidental of western Mexico constitute the largest continuous rhyolitic province in the world. The rhyolites appear to represent part of a continental magmatic arc that was emplaced when an eastward-dipping subduction zone was located beneath western Mexico. In the Batopilas region of the northern Sierra Madre Occidental the mid-Tertiary Upper Volcanic sequence is composed predominantly of rhyolitic ignimbrites, but volumetrically minor lava flows as mafic as basaltic andesite are also present. The basaltic andesite to rhyolite series is calc-alkalic and contains ˜1% K2O at 60% SiO2. Trace element abundances of a typical ignimbrite with 73% SiO2 are Sr ˜ 225 ppm, Rb ˜130 ppm, Y ˜32 ppm, Th ˜12 ppm, Zr ˜200 ppm, and Nb ˜15 ppm. The entire series plots as coherent and continuous trends on variation diagrams involving major and trace elements, and the trends are distinct from those of geographicallyassociated rocks of other suites. We interpret these and other geochemical variations to indicate that the rocks are comagmatic. Mineral chemistry, Sr isotopic data, and REE modelling support this interpretation. Least squares calculations show that the major element variations are consistent with formation of the basaltic andesite to rhyolite series by crystal fractionation of observed phenocryst phases in approximate modal proportions. In addition, calculations modelling the behavior of Sr with the incompatible trace element Th favor a fractional crystallization origin over a crustal anatexis origin for the rock series. The fractionating minerals included plagioclase (> 50%), and lesser amounts of Fe-Ti oxides, pyroxenes, and/or hornblende. The voluminous ignimbrites represent no more than 20% of the original mass of a mantle-derived mafic parental magma.
Granulite-facies rocks in the Whatley Mill gneiss, Pine Mountain basement massif, Eastern Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniell, N.; Salpas, P.A.
1993-03-01
The Pine Mountain basement massif is a granulite terrane exposed in a tectonic window through the Inner Piedmont of western Georgia and eastern Alabama. Investigations of the westernmost extent of the massif, the Whatley Mill Gneiss, have revealed four distinct lithologies: (1) an augen gneiss, the type lithology; (2) mylonite that develops in the shear zones cutting the unit; (3) a phaneritic rock showing weak to no foliation; (4) enclaves of biotite gneiss within the weakly-foliated rock. Additionally, the weakly-foliated rock comprises two distinct phases which are in sharp contact along curved and undulating boundaries: phase 1 is a coarser-grainedmore » rock; phase 2 is a finer-grained rock of the same mineralogy as phase 1 except it contains rare hypersthene. This first recorded observation of hypersthene unequivocally confirms the granulite-facies origin of the unit. Major and trace element compositions of the phase 1 rock are identical to those of the augen gneiss. The phase 2 rock, has a distinct composition with higher SiO[sub 2] and lower incompatible trace elements than the phase 1 rock. The enclaves display a range in major elements but higher incompatible elements than the other lithologies. Geochemical and petrologic relationships leads one to interpret: (1) the weakly-foliated rock retains many of its primary igneous features including its two phases and enclaves; (2) the two phases of the weakly-foliated rock arose as a result of injection of one magma (phase 2) into a cooler, crystal mush solidifying from another magma (phase 1); (3) the enclaves represent either autoliths of xenoliths; (4) the augen gneiss arose by isochemical deformation of the phase 1 rock.« less
Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos
2018-03-01
Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lawter, Amanda R; Qafoku, Nikolla P; Asmussen, R Matthew; Kukkadapu, Ravi K; Qafoku, Odeta; Bacon, Diana H; Brown, Christopher F
2018-04-01
Despite the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO 2 -acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2 -reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2 -laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; ...
2018-01-04
In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less
Muhs, D.R.; Budahn, J.R.
2009-01-01
The origin of red or reddish-brown, clay-rich, "terra rossa" soils on limestone has been debated for decades. A traditional qualitative explanation for their formation has been the accumulation of insoluble residues as the limestone is progressively dissolved over time. However, this mode of formation often requires unrealistic or impossible amounts of carbonate dissolution. Therefore, where this mechanism is not viable and where local fluvial or colluvial inputs can be ruled out, an external source or sources must be involved in soil formation. On the north coast of the Caribbean island of Jamaica, we studied a sequence of terra rossa soils developed on emergent limestones thought to be of Quaternary age. The soils become progressively thicker, redder, more Fe- and Al-rich and Si-poor with elevation. Furthermore, although kaolinite is found in all the soils, the highest and oldest soils also contain boehmite. Major and trace element geochemistry shows that the host limestones and local igneous rocks are not likely source materials for the soils. Other trace elements, including the rare earth elements (REE), show that tephra from Central American volcanoes is not a likely source either. However, trace element geochemistry shows that airborne dust from Africa plus tephra from the Lesser Antilles island arc are possible source materials for the clay-rich soils. A third, as yet unidentified, source may also contribute to the soils. We hypothesize that older, more chemically mature Jamaican bauxites may have had a similar origin. The results add to the growing body of evidence of the importance of multiple parent materials, including far-traveled dust, to soil genesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew
In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less
Bolanca, Ivan; Obhodas, Jasmina; Ljiljak, Dejan; Matjacic, Lidija; Kuna, Krunoslav
2016-01-01
We have observed that sperm quality parameters indicative of spermatozoa hyperactivation such are lower “linearity” and “straightness”, and as showed by this research “elongation”, were more pronounced in patients with normal spermiogram compared to the group of men with reduced sperm motility who were undergoing routine in vitro fertilisation. The research encompassed 97 men diagnosed with normozoospermia (n = 20), asthenozoospermia (n = 54) and oligoasthenozoospermia (n = 23). The findings indicate that sperm quality of patients with normal spermiogram diagnosed according to WHO criteria, may be compromised by showing premature spontaneous hyperactivation which can decrease the chances of natural conception. We assessed synergistic effects of multiple chemical elements in ejaculated semen to find if premature spontaneous hyperactivation of spermatozoa can be a sign of imbalanced semen composition especially of elements K, Ca, Cu and Zn. Human semen samples showing low or high baseline status of chemical elements concentrations were found in samples from all three diagnostic groups. However, correlation of K/Ca and Cu/Zn ratios, taking into account samples from all three groups of men, were negative at statistical significance level p = 0.01. We tested if the negative correlation between K/Ca and Cu/Zn ratio works for greater number of semen samples. We found the negative correlation to be valid for 175 semen samples at statistical significance of p = 0.00002. The ratio of K/Ca and Cu/Zn, i.e. increased concentrations of K and Zn in comparison to concentrations of Ca and Cu, were associated with a decrease of “straightness” in the group of men with normal spermiogram and pronounced spontaneous hyperactivation of spermatozoa, implying that these elements act in synergy and that the balance of elements and not their absolute concentrations plays the major role in premature spermatozoa hyperactivation in ejaculated semen. PMID:27031102
Phase transitions in MgSiO3 post-perovskite in super-Earth mantles
NASA Astrophysics Data System (ADS)
Umemoto, Koichiro; Wentzcovitch, Renata M.; Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-11-01
The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2 and MgO as the ultimate aggregation form at ∼3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth's mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.
Isolation and characterization of active LINE and SINEs from the eel.
Kajikawa, Masaki; Ichiyanagi, Kenji; Tanaka, Nozomu; Okada, Norihiro
2005-03-01
Long interspersed elements (LINEs) and short interspersed elements (SINEs) are retrotransposons. These elements can mobilize by the "copy-and-paste" mechanism, in which their own RNA is reverse-transcribed into complementary DNA (cDNA). LINEs and SINEs not only are components of eukaryotic genomes but also drivers of genomic evolution. Thus, studies of the amplification mechanism of LINEs and SINEs are important for understanding eukaryotic genome evolution. Here we report the characterization of one LINE family (UnaL2) and two SINE families (UnaSINE1 and UnaSINE2) from the eel (Anguilla japonica) genome. UnaL2 is approximately 3.6 kilobases (kb) and encodes only one open reading frame (ORF). UnaL2 belongs to the stringent type--thought to be a major group of LINEs--and can mobilize in HeLa cells. We also show that UnaL2 and the two UnaSINEs have similar 3' tails, and that both UnaSINE1 and UnaSINE2 can be mobilized by UnaL2 in HeLa cells. These elements are thus useful for delineating the amplification mechanism of stringent type LINEs as well as that of SINEs.
The impact of dissociation on transposon-mediated disease control strategies.
Marshall, John M
2008-03-01
Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.
Geotourism products industry element: A community approach
NASA Astrophysics Data System (ADS)
Basi Arjana, I. W.; Ernawati, N. M.; Astawa, I. K.
2018-01-01
The ability of a tourism area to provide products that could satisfy the needs and desires of tourists is the key to success in developing tourism. Geotourists are a niche market that has specific needs. This study aims to identify the needs of geotourists, which is undertaken by evaluating the perceptions of geotourists with respect to 6 elements which are the industrial aspects of community-based tourism products, using a qualitative approach. In-depth interview technique is used as data collection method. These products are as follows: there are five major categories of geotourism commercial elements, which include: travel services, accommodation, transportation, food and beverage, souvenir and packaging. The research results show that there are various products which are the output of the industry elements desired by tourists in Batur representing the needs of different market segments and accommodating the sustainability of nature. These needs are arised and inspired by local culture. The necessity to offer an assortment of products packages is indicated to provide plentiful options for tourists, to lengthen tourist’s stay, and also to introduce various product components available in Batur. The research output could be used and contribute in providing a reference in developing geotourism products.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Yoshinori; Korenaga, Jun
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less
Adelman, Zach N; Jasinskiene, Nijole; Vally, K J M; Peek, Corrie; Travanty, Emily A; Olson, Ken E; Brown, Susan E; Stephens, Janice L; Knudson, Dennis L; Coates, Craig J; James, Anthony A
2004-10-01
The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15-30% of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, Jorge E.; Ullrich, Paul A.
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Miyazaki, Yoshinori; Korenaga, Jun
2017-11-01
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.
Mineral elements and essential oil contents of Scutellaria luteo-caerulea Bornm. & Snit
Nikbin, Mohammad; Kazemipour, Nasrin; Maghsoodlou, Malek Taher; Valizadeh, Jafar; Sepehrimanesh, Masood; Davarimanesh, Amene
2014-01-01
Objective: Scutellaria luteo-caerulea Bornm. & Snit. is one of the species of genus Scutellaria, within the family of the Lamiaceae, that is used for immune system stimulation and antibacterial effects in traditional medicine in Iran. The aims of this study were to analyze essential oils and mineral element contents of leaves of S. luteo-caerulea in flowering stage of development. Materials and Methods: The essential oils were obtained by hydrodistillation of the leaves of S. luteo-caerulea and were analyzed by gas chromatography mass spectrometry (GC/MS). Moreover, microwave digestion with atomic absorption spectrophotometry were used for the mineral elements assay. Results: Ninety-seven constituents were detected. Between them, the major components were trans-caryophyllene (25.4%), D-germacrene (7.9%), and linalool (7.4%). Determination of mineral elements showed that the highest minerals were Ca2+ (65.14±1.95 µg/ml) and K+ (64.67±3.10 µg/ml). Conclusion: Presence of different essential oils and rich sources of Ca2+ and K+ candidate this plant as an auxiliary medication in different diseases, but more complementary researches are needed about its potency and side effects. PMID:25050316
NASA Astrophysics Data System (ADS)
Urrutia-Fucugauchi, J.; Perez-Cruz, L.; Zhao, X.; Rebolledo-Vieyra, M.; Rodriguez, A.
2012-04-01
We present the preliminary results of geochemical, stable isotopes and rock magnetic studies of a stalagmite from a cave in eastern Quintana Roo, northern Yucatan peninsula. In the past years, there has been increased interest in understanding the paleoclimatic and paleoenvironmental evolution of the Yucatan peninsula and northern Central America, investigating the relationships between climate variations and the development of the Maya civilization. In particular, the variations in regional precipitation and occurrence of several drought periods, which might have been related to the collapse of the Classic Maya period. Stable isotope data on speleothems from different sites in Yucatan and Central America have provided evidence on changes in precipitation, which have affected the Maya region. The stalagmite is ~47 cm long and about 4-5 cm wide at its base. It was collected from the Hilariós Well cave in Tulum, Quintana Roo. Magnetic susceptibility and geochemical analyses have been completed as part of the initial characterization of the stalagmite, with measurements taken every centimeter. Geochemical analyses have been carried out for x-ray fluorescence, with a Niton XRF analyzer. Magnetic susceptibility was determined with a Bartington MS2 instrument using the high resolution surface probe. Additional rock magnetic analyses include magnetic hysteresis loops and isothermal remanent magnetization (IRM) acquisition, and saturation IRM demagnetization, which have been measured with a MicroMag instrument. Hysteresis loops are diamagnetic, with small varying low-coercivity ferromagnetic components. The elemental compositions of major oxides and trace elements vary with depth. Calcium is the major element and displays a pattern of small amplitude fluctuations with a trend to lower values at the bottom, which are also shown in other elements such as barium. Silica and elements such as titanium and strontium are positively correlated and show an apparent cyclic pattern, with a trend to higher values towards the bottom.
NASA Astrophysics Data System (ADS)
Ringrose, S.; Harris, C.; Huntsman-Mapila, P.; Vink, B. W.; Diskins, S.; Vanderpost, C.; Matheson, W.
2009-07-01
Trace elements together with some O and C isotope analysis were undertaken on duricrust strandline deposits in the palaeo-Makgadikgadi sub-basin (PMSB) to provide insight into palaeo-climatic conditions through the interpretation of calcrete, silcrete-calcrete intergrade and silcrete deposits. Trace element content and relative abundance suggest that the duricrust origins are associated with the long-term weathering of the Karoo Large Igneous Province which underlies the PMSB. This work shows that duricrust origins are related to Ca 2+ and Si (and associated trace elements) being transported mainly through the groundwater and then subsequently precipitated at different strandline elevations over time. Local groundwater feeding in towards the pan margin and accumulating in near-neutral pan-marginal pools, appears to facilitate Si concentration and permeation of pre-existing calcretes. The silica precipitates as the pH drops when renewed freshwater enters the pools. Hence the inferred palaeo-climatic regime for silcretisation may be similar to that occurring in Botswana at present being dry semi-arid with low seasonal rainfall. In contrast the extensive calcrete precipitation in the strandlines results from abundant Ca 2+ in adjacent waters which appear to be derived from both local and regional sources. The arrival of Ca 2+ from regional sources (shown by trace element evidence) infers heavy rainfall in the upper catchment suggesting a major humid event followed by regional drying. Palaeo-climatic inferences suggest the juxtaposition of major humid events interspersed with more normal semi-arid palaeo-climates with an exception obtained from isotope data, of drier and cooler conditions than usual for the region around 80-90 000 years ago. Whereas trace element data can greatly assist in the interpretation of complex deposits such as duricrusts, care should be taken over the use of particular ratios (such as Yb/Gd ratio) which may produce spurious results.
Frías, Sergio; Conde, José E; Rodríguez, Miguel A; Dohnal, Vlasta; Pérez-Trujillo, Juan P
2002-10-01
Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of Li and Rb for which flame atomic emission spectrophotometry was used. The content in copper and iron did not present risks of cases. All samples presented a copper and zinc content below the maximum amount recommended by the Office International de la Vigne et du Vin (OIV) for these elements. Significant differences in the metallic content were found among the different islands. Thus, Lanzarote presented the highest mean content in sodium and lithium and the lowest mean content in rubidium, and La Palma presented the highest mean content in strontium and rubidium. Sweet wines from La Palma, elaborated as naturally sweet with over-ripe grapes, presented mean contents significantly higher with regard to dry wines from the same island in the majority of the analysed elements. Cluster analysis and Kohonen self-organising maps showed differences in wines according to the island of origin and the ripening state of the grapes. Back-propagation artificial neural networks showed better prediction ability than stepwise linear discriminant analysis.
da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana
2016-01-01
Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.
Reinders, Anke; Schulze, Waltraud; Kühn, Christina; Barker, Laurence; Schulz, Alexander; Ward, John M.; Frommer, Wolf B.
2002-01-01
Suc represents the major transport form for carbohydrates in plants. Suc is loaded actively against a concentration gradient into sieve elements, which constitute the conduit for assimilate export out of leaves. Three members of the Suc transporter family with different properties were identified: SUT1, a high-affinity Suc proton cotransporter; SUT4, a low-affinity transporter; and SUT2, which in yeast is only weakly active and shows features similar to those of the yeast sugar sensors RGT2 and SNF3. Immunolocalization demonstrated that all three SUT proteins are localized in the same enucleate sieve element. Thus, the potential of Suc transporters to form homooligomers was tested by the yeast-based split-ubiquitin system. The results show that both SUT1 and SUT2 have the potential to form homooligomers. Moreover, all three Suc transporters have the potential to interact with each other. As controls, a potassium channel and a monosaccharide transporter, expressed in the plasma membrane, did not interact with the SUTs. The in vivo interaction between the functionally different Suc transporters indicates that the membrane proteins are capable of forming oligomeric structures that, like mammalian Glc transporter complexes, might be of functional significance for the regulation of transport. PMID:12119375
Trace elements record complex histories in diogenites
NASA Astrophysics Data System (ADS)
Balta, J. B.; Beck, A. W.; McSween, H. Y.
2012-12-01
Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major element compositions imply. Many trace element analyses are performed using either bulk rock techniques or spot analyses, and these maps suggest those types of analyses likely sample variable trace element abundances even within otherwise homogeneous grains, rendering their results difficult to interpret. Consequently, the correlation discussed previously between trace elements and short lived isotopes has likely been impacted by post-magmatic alteration and cannot solely be used to argue that HED's cannot be derived from Vesta. Furthermore, these maps strengthen the HED-Vesta link by suggesting that the diogenites underwent an extended history of cooling, reheating, partial melting, impact fragmentation, fluid/melt migration, and finally re-annealing. These complicated steps are particularly noteworthy as the pyroxene cumulate layer on the asteroid Vesta should lie beneath the eucritic crust, implying that early impacts were able to penetrate that crust and affect the diogenite layers early in Vesta's history, most likely while the asteroid was still hot enough to allow for annealing and regrowth of fractured grains. [1] Schiller et al. (2011) [2] Milman-Barris et al. (2008)
Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana
NASA Astrophysics Data System (ADS)
Schrauder, Marcus; Koeberl, Christian; Navon, Oded
1996-12-01
Fibrous diamonds from Botswana contain abundant micro-inclusions, which represent syngenetic mantle fluids under high pressure. The major element composition of the fluids within individual diamonds was found to be uniform, but a significant compositional variation exists between different diamond specimens. The composition of the fluids varies between a carbonatitic and a hydrous endmember. To constrain the composition of fluids in the mantle, the trace element contents of thirteen micro-inclusion-bearing fibrous diamonds from Botswana was studied using neutron activation analysis. The concentrations of incompatible elements (including K, Na, Br, Rb, Sr, Zr, Cs, Ba, Hf, Ta, Th, U, and the LREEs) in the fluids are higher than those of mantle-derived rocks and melt inclusions. The compatible elements (e.g., Cr, Co, Ni) have abundances that are similar to those of the primitive mantle. The concentrations of most trace elements decrease by a factor of two from the carbonate-rich fluids to the hydrous fluids. Several models may explain the observed elemental variations. Minerals in equilibrium with the fluid were most likely enriched in incompatible elements, which does not agree with derivation of the fluids by partial melting of common peridotites or eclogites. Fractional crystallization of a kimberlite-like magma at depth may yield carbonatitic fluids with low mg numbers (atomic ratio [Mg/(Mg+Fe)]) and high trace element contents. Fractionation of carbonates and additional phases (e.g., rutile, apatite, zircon) may, in general, explain the concentrations of incompatible elements in the fluids, which preferably partition into these phases. Alternatively, mixing of fluids with compositions similar to those of the two endmembers may explain the observed variation of the elemental contents. The fluids in fibrous diamonds might have equilibrated with mineral inclusions in eclogitic diamonds, while peridotitic diamonds do not show evidence of interaction with these fluids. The chemical composition of the fluids in fibrous diamonds indicates that, at p, T conditions that are characteristic for diamond formation, carbonatitic and hydrous fluids are efficient carriers of incompatible elements.
Annual water-resources review, White Sands Missile Range, New Mexico, 1984
Cruz, R.R.
1985-01-01
Hydrologic data were collected at White Sands Missile Range in 1984. The total groundwater withdrawal in 1984 was 685,275,000 gallons. The Post Headquarters well field produced 650,821,000 gallons in 1984. Six new wells were drilled at White Sands Missile Range in 1984. Nineteen water samples were collected for major chemical-constituent, trace-element, or radiochemical analysis in 1984. Depth-to-water measurements in the Post Headquarters supply wells showed seasonal fluctuations as well as continued long-term declines. (USGS)
Anatomy of a new B-cell-specific enhancer.
Koch, W; Benoist, C; Mathis, D
1989-01-01
The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhancers seem to show little resemblance. Images PMID:2467189
Space station System Engineering and Integration (SE and I). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1987-01-01
A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.
National Mapping of Wetland Connectivity
Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrolo...
Local structures around the substituted elements in mixed layered oxides
Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka
2017-01-01
The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008
Apollo 16 impact-melt splashes - Petrography and major-element composition
NASA Technical Reports Server (NTRS)
See, Thomas H.; Horz, Friedrich; Morris, Richard V.
1986-01-01
Petrographic and major-element analyses are applied to 50 Apollo 16 impact-melt splash (IMS) samples in order to determine their origin and assess the nature of the subregolith source. The macroscopic analyses reveal that the IMSs exhibit a glassy appearance, but the textures range from holohyaline to hyalopilitic. Schlieren-rich glasses dominate the holohyaline areas, and the crystalline areas are mainly spherulitic. It is observed that most IMSs contain feldspathic monomineralic and lithic clasts and no regolithic materials. It is detected that the chemistry of most IMSs is not like the local regolith and appears to represent varied mixtures of VHA impact-melt breccias and anorthosite; the host rocks are mainly dimict breccias. It is concluded that the Cayley Formation is a polymict deposit composed of VHA impact-melt breccias and anorthosites. Tables revealing the macroscopic characteristics of the IMSs and the major-element composition of IMSs and various host rock are presented.
Bahar, Ali Newaz; Waheed, Sajjad
2016-01-01
The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.
The development and evaluation of a new coding system for medical records.
Papazissis, Elias
2014-01-01
The present study aims to develop a simple, reliable and easy tool enabling clinicians to codify the major part of individualized medical details (patient history and findings of physical examination) quickly and easily in routine medical practice, by entering data to a purpose-built software application, using structure data elements and detailed medical illustrations. We studied medical records of 9,320 patients and we extracted individualized medical details. We recorded the majority of symptoms and the majority of findings of physical examination into the system, which was named IMPACT® (Intelligent Medical Patient Record and Coding Tool). Subsequently the system was evaluated by clinicians, based on the examination of 1206 patients. The evaluation results showed that IMPACT® is an efficient tool, easy to use even under time-pressing conditions. IMPACT® seems to be a promising tool for illustration-guided, structured data entry of medical narrative, in electronic patient records.
Oksanen, Atte
2012-01-01
Rock autobiographies have become increasingly popular since the 1990s. This article analyzes 31 mainstream rock autobiographies describing a wide variety of legal and illegal substances used and reckless behavior. Narrative analysis shows that books concentrate on recovering from addiction. The majority of writers have participated in some kind of treatment. Rock autobiographies use therapeutic vocabulary and borrow discursive elements from culturally familiar Alcoholics Anonymous texts recounting recovery stories. The analysis shows that drugs and alcohol are not associated with rebellion and authenticity as they once were in rock music. Surviving addiction has become a key theme of rock culture.
Design of the software development and verification system (SWDVS) for shuttle NASA study task 35
NASA Technical Reports Server (NTRS)
Drane, L. W.; Mccoy, B. J.; Silver, L. W.
1973-01-01
An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.
NASA Astrophysics Data System (ADS)
Chang, C.; Kenna, T. C.; Nitsche, F. O.
2016-12-01
The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.
Mil-Homens, M; Vale, C; Raimundo, J; Pereira, P; Brito, P; Caetano, M
2014-07-15
Upper sediments (0-5 cm) were sampled in 94 sites of water bodies of the fifteen Portuguese estuaries characterized by distinct settings of climate, topography and lithology, and marked by diverse anthropogenic pressures. Confined areas recognized as highly anthropogenic impacted, as well as areas dominated by erosion or frequently dredged were not sampled. Grain size, organic carbon (Corg), Al and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined. Normalisation of trace element concentrations to Al and Corg, correlations between elements and Principal Component Analysis (PCA) allowed identifying elemental associations and the relevance of grain-size, lithology and anthropogenic inputs on sediment chemical composition. Whereas grain-size is the dominant effect for the majority of the studied estuaries, the southern estuaries Mira, Arade and Guadiana are dominated by specific lithologies of their river basins, and anthropogenic effects are identified in Ave, Leça, Tagus and Sado. This study emphasizes how baseline values of trace elements in sediments may vary within and among estuarine systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib
2018-03-01
The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < I geo < 4.48, I geo ; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E-04, acceptable range: 10 -6 -10 -4 ). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salpas, P.A.; Daniell, N.
1993-03-01
The Whatley Mill Gneiss is the most voluminous exposure of the Pine Mountain Basement massif in eastern Alabama. Its type lithology is a proto-mylonitic gneiss composed of K-spar augen, up to 5 cm in diameter, in a finer matrix of biotite, microcline, and quartz. Granulite-facies mineral assemblages in the Whatley Mill Gneiss have been completely retrograded to amphibolite- and greenschist-facies assemblages in response to deformation that produced shear zones paralleling the foliation of the gneiss. The augen gneiss and its associated mylonites are well-exposed in a creek bed in Chewacla State Park. At this location the mineralogy of the mylonitesmore » is dominated by quartz indicating that shearing was associated with influx of a silica-rich fluid. A detailed geochemical study of these rocks shows that the augen gneiss displays relatively little variation in its major and trace element compositions while the quartz-rich mylonites display wider ranges, are enriched in SiO[sub 2] and depleted in the REE and other incompatible trace elements relative to the augen gneiss. When standard composition/volume calculations are applied to the mylonites the results show (1) the bulk of all of the elements, including the REE, were immobile during shearing with the exceptions of Si and Al which were added; and, (2) volume changes calculated using the REE as immobile elements range from +70% to +350%. Though these volume changes seem excessive, they apply to meter-thick shear zones which may actually represent only a small fraction of the total volume of the augen gneiss. Consistent with previous interpretations of these shear zones, the calculated volume gains imply shearing during extension.« less
NASA Astrophysics Data System (ADS)
Park, Jung-Woo; Hu, Zhaochu; Gao, Shan; Campbell, Ian H.; Gong, Hujun
2012-09-01
Platinum group element (PGE) abundances in the upper continental crust (UCC) are poorly constrained with published values varying by up to an order of magnitude. We evaluated the validity of using loess to estimate PGE abundances in the UCC by measuring these elements in seven Chinese loess samples using a precise method that combines NiS fire assay with isotope dilution. Major and trace elements of the Chinese loess show a typical upper crustal composition and PGE abundances are consistent with literature data on Chinese loess, except for Ru, which is a factor of 10 lowe than published values. We suggest that the high Ru data and RuN/IrN values of Chinese loess reported by Peucker-Ehrenbrink and Jahn (2001) (Geochem. Geophys. Geosys.2, 2001GC000172) are an analytical artifact, rather than a true geochemical characteristic of loess because likely sources of loess are not significantly enriched in Ru and transport and deposition processes cannot preferentially enrich Ru in loess. The effect of eolian fractionation on PGE abundances in loess appears to be limited because Chinese loess from different locations shows similar PGE patterns and concentrations. This conclusion is supported by strong positive correlations between the PGE (except for Pt) and other compatible elements such as Fe2O3, Ni, Cr, Co. Using a compilation of PGE data for loess from China, Argentina and Europe, including our data but excluding one sample with an anomalously high Pt content, we propose average PGE abundances for global loess of Ir = 0.022 ppb (ng/g), Ru = 0.030 ppb, Rh = 0.018 ppb, Pt = 0.599 ppb, and Pd = 0.526 ppb, and suggest that these are the best current estimates for the PGE abundances of the UCC.
Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T
1993-12-01
CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.
Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.
2002-01-01
The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.