Science.gov

Sample records for major flares coronal

  1. Coronal mass ejections and major solar flares: The great active center of March 1989

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Hundhausen, Arthur J.

    1994-01-01

    The solar flare and coronal mass ejection (CME) events associated with the large and complex March 1989 active region are discussed. This active region gave us a chance to study the relation of CME with truly major solar flares. The work concentrates on questions of the relation of CMEs and flares to one another and to other types of activity on the Sun. As expected, some major (X-3B class) flares had associated CMEs. However, an unexpected finding is that others did not. In fact, there is strong evidence that the X4-4B flare of March 9th had no CME. This lack of a CME for such an outstanding flare event has important implications to theories of CME causation.Apparently, not all major flares cause CMEs or are caused by CMEs. The relations between CMEs and other types of solar activity are also discussed. No filament disappearances are reported for major CMEs studied here. Comparing these results with other studies, CMEs occur in association with flares and with erupting prominences, but neither are required for a CME. The relation between solar structures showing flaring without filament eruptions and structures showing filament eruptions without flares becomes important. The evolutionary relation between an active flaring sunspot region and extensive filaments without sunspots is reviewed, and the concept of an 'evolving magnetic structure' (EMS) is introduced. It is suggested that all CMEs arise in EMSs and that CMEs provide a major path through which azimuthal magnetic fields escape form the Sun during the solar cycle.

  2. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  3. Pre-flare coronal dimmings

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    2017-01-01

    Context. Coronal dimmings are regions of decreased extreme-ultravoilet (EUV) and/or X-ray (originally Skylab, then Yohkoh/SXT) intensities, which are often associated with flares and coronal mass ejections (CMEs). The large-scale impulsive dimmings have been thoroughly observed and investigated. The pre-flare dimmings before the flare impulsive phase, however, have rarely been studied in detail. Aims: We focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME that was produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. Methods: The eruption was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white-light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) on board SOHO. Results: About 96 min before the onset of the flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly, with their intensities decreasing with time, while their apparent widths (8-9 Mm) continued to be nearly constant. During the impulsive and decay phases of flare, typical fan-like twin dimmings appeared and expanded, with a much larger extent and lower intensities than the pre-flare dimmings. The percentage of the 171 Å intensity decrease reaches 40%. The pre-flare dimmings are most striking in 171, 193, and 211 Å with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 Å. Conclusions: To our knowledge, this is the first detailed study of pre-flare coronal dimmings; they can be explained by density depletion as a result of the gradual

  4. VLA Observations of a High Coronal Flare

    NASA Astrophysics Data System (ADS)

    Raulin, J. P.; Gopalswamy, N.; Kundu, M. R.; Nitta, N.

    1993-12-01

    We present radio observations of a coronal flare which occurrred on 1993 April 22, in a weak magnetic field region to the west of AR 7477. The observations were made by the Very Large Array (VLA) at 20 and 90 cm. The event consists of bright (brightness temperature of 10(10) K) unpolarized bursts, followed by a longlasting unpolarized continuum with moderately high brightness temperature (2-3 10(9) K) in the high corona (90 cm observations). The low coronal counterpart of this flare is a weak and moderatly polarized 20 cm radio emission. Full disk Yohkoh images show that the corresponding radio emission is located in or above magnetic loops connecting AR 7477 and its neighborhood. The presence of permanent and non-varying noise storm associated with AR 7477 seems to indicate that the overall magnetic field structure of the active region is unaffected by the flare. The coronal radio source which is indicative of acceleration of electrons to nonthermal energies, is not associated with major Hα emissio n nor with bright X ray emission. The absence of any detectable circular polarization, as well as the high brightness temperature, seems to indicate that the 90 cm emission is second harmonic plasma emission.

  5. Major Solar Flare

    NASA Image and Video Library

    2017-09-11

    A large sunspot was the source of a powerful solar flare (an X 9.3) and a coronal mass ejection (Sept. 6, 2017). The flare was the largest solar flare of the last decade. For one thing, it created a strong shortwave radio blackout over Europe, Africa and the Atlantic Ocean. Sunspot 2673 has been also the source of several other smaller to medium-sized solar flares over the past few days. Data from the SOHO spacecraft shows the large cloud of particles blasting into space just after the flare. Note: the bright vertical line and the other rays with barred lines are aberrations in our instruments caused by the bright flash of the flare. https://photojournal.jpl.nasa.gov/catalog/PIA21949

  6. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    DTIC Science & Technology

    2011-04-07

    Doppler Imager (MDI) that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool...rates as a function of the free‐ magnetic‐energy proxy. To this end, we need accurate flare/CME/SPE production histories of a large number of active...with known flare, CME, and SPE production histories . Using this large combined database, we are able to discern power law dependence between our proxy

  7. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  8. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  9. Coronal mass ejections and associated X-ray flare durations

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Sheeley, N. R., Jr.; Liggett, M.

    1989-01-01

    It is found that 22 percent of a sample of M1 or greater impulsive soft X-ray flares were associated with coronal mass ejections (CMEs) observed in the Solwind coronagraph. These flares were more energetic than similar impulsive flares without CMEs, and the associated CMEs were narrow (5-40 deg) in angular width. A survey of all CMEs associated with M1 or greater X-ray flares reveals a good correlation between flare duration CME angular width. The H-alpha characteristics of impulsive, CME-associated flares suggest that they are not the dynamic or eruptive flares presumed to be associated with CMEs, but rather, are confined flares. The H-alpha flare locations are neither centered under the CME legs. The disparity in size scales between the CMEs and their associated flares leaves the basis of the correlation between CME width and X-ray flare duration unresolved.

  10. Major Solar Flare

    NASA Image and Video Library

    2017-09-18

    The Sun erupted with an X8 solar flare, one of the largest of the current solar cycle (Sept. 10, 2017). Its source was the same sunspot region that produced an X9 flare last week. This is shown in two wavelengths of extreme ultraviolet light at the same time and each reveals different features. Both are colorized to identify in which wavelength they were observed. The coils of loops after the flare are the magnetic field lines reorganizing themselves after the eruption. The video clip covers about six hours. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21958

  11. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  12. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  13. Evolution of the photospheric magnetic field and coronal null points before solar flares

    NASA Astrophysics Data System (ADS)

    Oreshina, I. V.; Somov, B. V.

    2009-03-01

    Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.

  14. Bastille Day Solar Flare and a Coronal Mass Ejection

    NASA Image and Video Library

    2017-07-18

    A flare medium-sized (M2) flare and a coronal mass ejection erupted from the same, large active region (July 14, 2017). The flare lasted almost two hours, quite a long duration. Coronagraphs on the SOHO spacecraft show a substantial cloud of charged particles blasting into space just after the blast. The coils arcing over this active region are particles spiraling along magnetic field lines, which were reorganizing themselves after the magnetic field was disrupted by the blast. Images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21836

  15. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    SciTech Connect

    Liu Rui; Wang Haimin

    2010-05-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  16. The spatial relationship between coronal mass ejections and solar flares

    NASA Astrophysics Data System (ADS)

    Nikou, E.; Nindos, A.; Patsourakos, S.

    2013-09-01

    Using 19 well-observed eruptions that gave both coronal mass ejections (CMEs) and flares, we quantified the spatial relationship between pairs of CMEs and associated flares. The flare and CME source locations were identified using images obtained at 174 A by the SWAP instrument aboard PROBA 2 satellite. The SWAP data are suitable for this study because flare emission does not saturate much. To reduce saturation even more, our database did not contain any M-class or X-class flare events. We selected eruptions that occurred close to disk center, as viewed from Earth, whereas they appeared as limb events in images obtained by the EUV Imagers (EUVI) aboard the SECCHI/STEREO spacecraft. The centroids of the CME-associated EUV dimmings in the SWAP images were used as proxies for the CME source locations. For each event, we compared the location of the flare brightenings with the location of the dimmings' centroid at the time of CME initiation which was determined from the EUVI data. In six cases the CME location was cospatial with flare brightenings while in the remaining cases the distance between each pair of flare-CME locations varied from 4 to 191 arcsecs with a median value of 71 arcsecs. Furthermore, we investigated the CME source locations with respect to the underlying magnetic field structures.

  17. The Nature of CME-flare-Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  18. Nature of CME-flare Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, Jianxia; Qiu, Jiong

    2016-04-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of eruption. We analyze the event of flare, CME, and coronal dimming on December 26, 2011. Data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) are used for disk observations of the dimming, and images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories are used to obtain height and velocity of the associated CMEs observed at the limb. We also calculate magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to flare ribbons, and is observed in multiple EUV passbands. Rapid dimming starts after onset of fast reconnection and CME acceleration, and its evolution well tracks the CME height and flare reconnection. Spatial distribution of dimming exhibits cores of deep dimming with rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From dimming analysis, we infer the process of CME expansion, and estimate properties of the CME.

  19. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Veronig, A.

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  20. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  1. Energetic Correlation Between Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Medlin, Drew A.; Haga, Leah; Schwartz, Richard a.; Tolbert, A. Kimberly

    2007-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak soft X-ray (SXR) flux, the radiated energy in SXRs (L(sub sxR)), and the radiated energy from the emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)).W e find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals.

  2. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  3. RELATION BETWEEN THE CORONAL MASS EJECTION ACCELERATION AND THE NON-THERMAL FLARE CHARACTERISTICS

    SciTech Connect

    Berkebile-Stoiser, S.; Veronig, A. M.; Bein, B. M.; Temmer, M.

    2012-07-01

    We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in Reuven Ramaty High Energy Solar Spectroscopic Imager non-thermal X-rays for a set of 37 impulsive flare-CME events. Both the CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum, which yields a higher correlation with the CME peak acceleration (c Almost-Equal-To -0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height h{sub 0} and the non-thermal flare parameters, with the highest correlation of h{sub 0} to the spectral index {delta} of flare-accelerated electrons (c Almost-Equal-To 0.8). This means that CMEs erupting at low coronal heights, i.e., in regions of stronger magnetic fields, are accompanied by flares that are more efficient at accelerating electrons to high energies. In the majority of events ({approx}80%), the non-thermal flare emission starts after the CME acceleration, on average delayed by Almost-Equal-To 6 minutes, in line with the standard flare model where the rising flux rope stretches the field lines underneath until magnetic

  4. Global Energetics in Solar Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-08-01

    We present a statistical study of the energetics of coronal mass ejections (CME) and compare it with the magnetic, thermal, and nonthermal energy dissipated in flares. The physical parameters of CME speeds, mass, and kinetic energies are determined with two different independent methods, i.e., the traditional white-light scattering method using LASCO/SOHO data, and the EUV dimming method using AIA/SDO data. We analyze all 860 GOES M- and X-class flare events observed during the first 7 years (2010-2016) of the SDO mission. The new ingredients of our CME modeling includes: (1) CME geometry in terms of a self-similar adiabatic expansion, (2) DEM analysis of CME mass over entire coronal temperature range, (3) deceleration of CME due to gravity force which controls the kinetic and potentail CME energy as a function of time, (4) the critical speed that controls eruptive and confined CMEs, (5) the relationship between the center-of-mass motion during EUV dimming and the leading edge motion observed in white-light coronagraphs. Novel results are: (1) Physical parameters obtained from both the EUV dimming and white-light method can be reconciled; (2) the equi-partition of CME kinetic and thermal flare energy; (3) the Rosner-Tucker-Vaiana scaling law. We find that the two methods in EUV and white-light wavelengths are highly complementary and yield more complete models than each method alone.

  5. Flare Prediction Using Photospheric and Coronal Image Data

    NASA Astrophysics Data System (ADS)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  6. Coronal mass ejection and solar flare initiation processes without appreciable

    NASA Astrophysics Data System (ADS)

    Veselovsky, I.

    TRACE and SOHO/EIT movies clearly show the cases of the coronal mass ejection and solar flare initiations without noticeable large-scale topology modifications in observed features. Instead of this, the appearance of new intermediate scales is often omnipresent in the erupting region structures when the overall configuration is preserved. Examples of this kind are presented and discussed in the light of the existing magnetic field reconnection paradigms. It is demonstrated that spurious large-scale reconnections and detachments are often produced due to the projection effects in poorly resolved images of twisted loops and sheared arcades especially when deformed parts of them are underexposed and not seen in the images only because of this reason. Other parts, which are normally exposed or overexposed, can make the illusion of "islands" or detached elements in these situations though in reality they preserve the initial magnetic connectivity. Spurious "islands" of this kind could be wrongly interpreted as signatures of topological transitions in the large-scale magnetic fields in many instances described in the vast literature in the past based mainly on fuzzy YOHKOH images, which resulted in the myth about universal solar flare models and the scenario of detached magnetic island formations with new null points in the large scale magnetic field. The better visualization with higher resolution and sensitivity limits allowed to clarify this confusion and to avoid this unjustified interpretation. It is concluded that topological changes obviously can happen in the coronal magnetic fields, but these changes are not always necessary ingredients at least of all coronal mass ejections and solar flares. The scenario of the magnetic field opening is not universal for all ejections. Otherwise, expanding ejections with closed magnetic configurations can be produced by the fast E cross B drifts in strong inductive electric fields, which appear due to the emergence of the new

  7. Coronal seismology of flare-excited longitudinal slow magnetoacoustic waves in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ofman, L.; Sun, X.; Provornikova, E. A.; Davila, J. M.

    2015-12-01

    The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 bandpasses. These oscillations show similar physical properties (such as period, decay time, and trigger) as those slow-mode standing waves previously detected by the SOHO/SUMER spectrometer in Doppler shift of flare lines formed above 6 MK. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage enable us to measure both thermal and wave properties of the oscillating hot plasma with unprecedented accuracy. These new measurements can be used to diagnose the complicated energy transport processes in flare plasma by a technique called coronal seismology based on the combination of observations and MHD wave theory. From a detailed case study we have found evidence for thermal conduction suppression in hot loops by measuring the polytropic index and analyzing the phase relationship between the temperature and density wave signals. This result is not only crucial for better understanding the wave dissipation mechanism but also provides an alternative mechanism to explain the puzzles of long-duration events and X-ray loop-top sources which show much slower cooling than expected by the classical Spitzer conductive cooling. This finding may also shed a light on the coronal heating problem because weak thermal conductivity implies slower cooling of hot plasma in nanoflares, so increasing the average coronal temperature for the same heating rate. We will discuss the effects of thermal conduction suppression on the wave damping and loop cooling based on MHD simulations.

  8. MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE

    SciTech Connect

    Krucker, Saem; Hudson, H. S.; Glesener, L.; Lin, R. P.; White, S. M.; Masuda, S.; Wuelser, J.-P.

    2010-05-10

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of 2007 December 31. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of {approx}16 Mm and {approx}25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to {approx}80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located {approx}6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of {approx}3.7 from {approx}16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5 x 10{sup 35} above 16 keV for the derived upper limit of the ambient density of {approx}8 x 10{sup 9} cm{sup -3}) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (tens of keV) within seconds. Hence, the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the

  9. Global Energetics of Solar Flares. IV. Coronal Mass Ejection Energetics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme, kinetic energy E kin, and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  10. The Nature of CME-flare Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Qiu, J.; Sullivan, S.

    2014-12-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map foot-points of the erupting flux rope. As emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may be used to diagnose initiation of CMEs. We analyze three events of flare, CME, and coronal dimming. Data from the Solar Dynamics Observatorys Atmospheric Imaging Assembly (AIA) and EUV variability Experiment (EVE) are used for observations of the dimming, and the Solar Terrestrial Relations Observatorys EUVI, COR1 and COR2 are used to obtain velocity for the associated CMEs. We also calculate the magnetic reconnection rate from the Helioseismic and Magnetic (HMI) combined with AIA 1600. The magnetic reconnection fluxes are correlated well with CME height profiles while the reconnection rate peaks at the CME acceleration maximum. In two events, the dimming light curve also shows good correlation with the CME height evolution. We model the dimming evolution based on several different assumptions of CME expansion: isothermal or adiabatic, self-similar or one-dimensional. The observed dimming light curves agree with the calculations based on one dimensional, isothermal CME expansion model. Dimming in the third event cannot be described by the above CME expansion models, and we speculate that the nature of dimming associated with the third CME event is different from the other two.

  11. Coronal X-ray activity preceding solar flares

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1985-01-01

    The characteristics of coronal emplacements preceding solar flares were investigated based on a comprehensive survey of Skylab soft X-ray images. A search interval of 30 min before flare was used in the X-ray observations. X-ray images with preflare enhancements were compared with high resolution H-alpha images and photospheric magnetograms and preflare enhancements were found in a statistically significant number of the observed preflare intervals. The enhancement events consisted of loops, kernels, and sinuous features with one to three separate preflare structures appearing in each interval. Typical gas pressures in the preflare X-ray features were estimated on the order of a few dyne per sq cm and densities were 4-10 x 10 to the -9th per cu cm for assumed average temperatures. H-alpha brightenings in the form of knots and patches were found in conjunction with the X-ray preflare features in nearly all of the intervals. It is concluded that H-alpha emission is characteristic of preflare emission processes. The observational data are interpreted within the framework of existing loop preheating models, and the results are discussed in detail.

  12. Straight line access and coronal flaring: effect on canal length.

    PubMed

    Schroeder, Kyle P; Walton, Richard E; Rivera, Eric M

    2002-06-01

    The object of this study was to determine if canal length is altered as a result of straight-line access (SLA) and coronal flaring (CF). Selected were 86 canals of extracted molars and premolars from two groups: straight or severely curved (Schneider curvature <5 degrees and >20 degrees). The reference cusp tip and root-end were flattened to produce reproducible measurements. A #10 file was placed such that the tip extended slightly beyond the apex, with the handle on the referenced cusp. The amount of file protrusion was measured with a stereomicroscope. Then, SLA and CF were performed and the corresponding file replaced to the same coronal reference position. Apical file protrusion was measured again. The change in canal length was determined by the difference in the pre- and post-SLA/CF measurements. A Wilcoxon signed rank test statistically verified that there was a measurable, significant (p < 0.001) change in canal length after SLA and CF. The mean change overall was slight, with a decrease of 0.17 mm. Severe curvature had a slightly greater, significant effect on the amount of change. Tooth type had no significant effect. Changes in working length from SLA and CF, although statistically significant, were very small and clinically unimportant.

  13. CORONAL ELECTRON DISTRIBUTION IN SOLAR FLARES: DRIFT-KINETIC MODEL

    SciTech Connect

    Minoshima, Takashi; Kusano, Kanya; Masuda, Satoshi; Miyoshi, Yoshizumi

    2011-05-10

    Using a model of particle acceleration and transport in solar flares, we investigate the height distribution of coronal electrons by focusing on the energy-dependent pitch-angle scattering. When pitch-angle scattering is not included, the peak heights of loop-top electrons are constant, regardless of their energy, owing to the continuous acceleration and compression of the electrons via shrinkage of magnetic loops. On the other hand, under pitch-angle scattering, the electron heights are energy-dependent: intermediate-energy electrons are at a higher altitude, whereas lower and higher energy electrons are at lower altitudes. This implies that the intermediate-energy electrons are inhibited from following the shrinking field lines to lower altitudes because pitch-angle scattering causes efficient precipitation of these electrons into the footpoint and their subsequent loss from the loop. This result is qualitatively consistent with the position of the above-the-loop-top hard X-ray (HXR) source that is located above coronal HXR loops emitted by lower energy electrons and microwaves emitted by higher energy electrons. Quantitative agreement with observations might be achieved by considering primary acceleration before the onset of loop shrinkage and additional pitch-angle scattering via wave-particle interactions.

  14. Observing the Formation of Flare-driven Coronal Rain

    NASA Astrophysics Data System (ADS)

    Scullion, E.; Rouppe van der Voort, L.; Antolin, P.; Wedemeyer, S.; Vissers, G.; Kontar, E. P.; Gallagher, P. T.

    2016-12-01

    Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop tops in thermally unstable postflare arcades. We detect five phases that characterize the postflare decay: heating, evaporation, conductive cooling dominance for ˜120 s, radiative/enthalpy cooling dominance for ˜4700 s, and finally catastrophic cooling occurring within 35-124 s, leading to rain strands with a periodicity of 55-70 s. We find an excellent agreement between the observations and model predictions of the dominant cooling timescales and the onset of catastrophic cooling. At the rain-formation site, we detect comoving, multithermal rain clumps that undergo catastrophic cooling from ˜1 MK to ˜22,000 K. During catastrophic cooling, the plasma cools at a maximum rate of 22,700 K s-1 in multiple loop-top sources. We calculated the density of the extreme-ultraviolet (EUV) plasma from the differential emission measure of the multithermal source employing regularized inversion. Assuming a pressure balance, we estimate the density of the chromospheric component of rain to be 9.21 × 1011 ± 1.76 × 1011 cm-3, which is comparable with quiescent coronal rain densities. With up to eight parallel strands in the EUV loop cross section, we calculate the mass loss rate from the postflare arcade to be as much as 1.98 × 1012 ± 4.95 × 1011 g s-1. Finally, we reveal a close proximity between the model predictions of {10}5.8 K and the observed properties between {10}5.9 and {10}6.2 K, which defines the temperature onset of catastrophic cooling. The close correspondence between the observations and numerical models suggests that indeed acoustic waves (with a sound travel time of 68 s) could play an important role in redistributing energy and sustaining the enthalpy-based radiative cooling.

  15. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O’Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  16. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  17. Relation between Flare-associated X-Ray Ejections and Coronal Mass Ejections.

    PubMed

    Nitta; Akiyama

    1999-11-01

    In an attempt to identify the direct signatures of coronal mass ejections (CMEs) in soft X-ray wavelengths, we have searched for plasma ejections in Yohkoh soft X-ray telescope (SXT) images in a total of 17 limb flares, and compared the results with the Solar and Heliospheric Observatory LASCO data. A general correlation exists between the presence/absence of the X-ray ejection and the CME. Although the height versus time relation often indicates (under the assumption of constant speed) that the CME onset coincides with the X-ray ejection, the latter probably does not represent the CME front, because the CME speed must result from acceleration, which would put the estimated onset at an earlier time. In some cases, the estimated CME onset time comes well before the impulsive phase of the associated flare. Although the role of the flare-associated plasma ejection in a CME is still unclear, we propose that its occurrence depends on the presence of open field lines, which can be due to a preceding CME. Lastly, we present a rare example of SXT observations of what appeared to be the three-part structure of a CME, which was seen a few minutes before a major flare started.

  18. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    NASA Technical Reports Server (NTRS)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  19. Onset of Flare Reconnection and Coronal Mass Ejection Acceleration in Eruptive Events

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; Karpen, J. T.; DeVore, C. R.; Qiu, J.

    2014-12-01

    The mechanism for producing fast coronal mass ejections/eruptive flares (CME/EFs) is hotly debated. Most models rely on ideal instability/loss of equilibrium or magnetic reconnection; these two categories of models predict different relationships between CMEs and flares. Discriminating between them requires continuous, high-resolution observations and state-of-the-art numerical simulations that enable the relative timing of key stages in the events to be determined. With the advent of SDO, STEREO, and massively parallel supercomputers, we are well poised to tackle this major challenge to our understanding of solar activity. In recent work (Karpen et al. 2012), we determined the timing and location of triggering mechanisms for the breakout initiation model (Antiochos et al. 1999), using ultra-high-resolution magnetohydrodynamic simulations with adaptive mesh refinement and high-cadence analysis. This approach enabled us to resolve as finely as possible the small scales of magnetic reconnection and island formation in the current sheets, within the global context of a large-scale solar eruption. We found that the explosive acceleration of the fast CME occurs only after the onset of rapid reconnection at the flare current sheet formed in the wake of the rising CME flux rope. In the present work, we discriminate between ideal and resistive mechanisms for fast CME/EFs using a combination of state-of-the-art observations and simulations. We compare flare reconnection rates, measured from flare ribbon UV brightenings observed by SDO/AIA and magnetograms from SDO/HMI, with the height evolution of CME fronts and cores, measured from STEREO/SECCHI EUV and coronagraph images. We also calculate these quantities from numerical simulations and compare them to observations, as a new test of the breakout initiation model.

  20. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Kontar, Eduard P.; Dennis, Brian R.

    2015-12-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources were studied quantitatively. The altitude of the coronal X-ray source was observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although an isothermal model can fit the thermal X-ray spectrum observed by RHESSI, such a model cannot account for the changes in altitude, and multi-thermal coronal sources are required where the temperature increases with altitude. For the first time, we show how RHESSI imaging information can be used to constrain the DEM(T) of a flaring plasma. We developed a thermal bremsstrahlung X-ray emission model with inhomogeneous temperature and density distributions to simultaneously reproduce i) DEM(T); ii) altitude as a function of energy; and iii) vertical extent of the flaring coronal source versus energy. We find that the temperature-altitude gradient in the region is ~+0.08 keV/arcsec (~1.3 MK/Mm). Similar altitude-energy trends in other flares suggest that the majority of coronal X-ray sources are multi-thermal and have strong vertical temperature and density gradients with a broad DEM(T).

  1. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    SciTech Connect

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  2. Does Flare Reconnection Occur Before or After Explosive Coronal Mass Ejection Acceleration?

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. R.; Qiu, Jiong

    2015-04-01

    The mechanism for producing fast coronal mass ejections/eruptive flares (CME/EFs) is hotly debated. Most models rely on ideal instability/loss of equilibrium or magnetic reconnection; these two categories of models predict different causal relationships between CMEs and flares. In both cases, flare reconnection disconnects the bulk of the CME from the Sun, but in the former models, flare reconnection onset is a consequence of the fast outward motion of the CME while in the later models reconnection is what causes the CME acceleration. Discriminating between these models requires continuous, high-cadence observations and state-of-the-art numerical simulations that enable the relative timing of key stages in the events to be determined. With the advent of SDO, STEREO, and massively parallel supercomputers, we are well poised to tackle this major challenge to our understanding of solar activity. In recent work (Karpen et al. 2012), we determined the timing and location of triggering mechanisms for the breakout initiation model (Antiochos et al. 1999), using ultra-high-resolution magnetohydrodynamic simulations with adaptive mesh refinement and high-cadence analysis. This approach enabled us to resolve as finely as possible the small scales of magnetic reconnection and island formation in the current sheets, within the global context of a large-scale solar eruption. We found that the explosive acceleration of the fast CME occurs only after the onset of rapid reconnection at the flare current sheet formed in the wake of the rising CME flux rope. In the present work, we compare flare reconnection rates, measured from flare ribbon UV brightenings observed by SDO/AIA and magnetograms from SDO/HMI, with the height evolution of CME fronts and cores, measured from STEREO/SECCHI EUV and coronagraph images. We also calculate these quantities from numerical simulations and compare them to observations, as a new test of the breakout initiation model. This work was supported by

  3. How did a Major Confined Flare Occur in Super Solar Active Region 12192?

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, S. T.; Yurchyshyn, V.; Wang, H.; Feng, X. S.; Hu, Q.

    2016-12-01

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using a data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution,which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The current layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully "reproduced" the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption-the consequent of the reconnection is the shared arcade instead of a newly formed flux rope. We also found much weaker magnetic implosion effect comparing to many other X-class flares.

  4. Fast-mode Coronal EUV Wave Trains Associated with Solar Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Karlicky, Marian; Chen, Bin

    2017-08-01

    As a new observational phenomenon, Quasi-periodic, Fast Propagating EUV wave trains (QFPs) are fast-mode magnetosonic waves closely related to quasi-periodic pulsations commonly detected in solar flares (traditionally with non-imaging observations). They can provide critical clues to flare energy release and serve as new tools for coronal seismology. We report recent advances in observing and modeling QFPs, including evidence of heating and cooling cycles revealed with differential emission measure (DEM) analysis that are consistent with alternating compression and rarefaction expected for magnetosonic waves. Through a statistical survey, we found a preferential association of QFPs with eruptive flares (with CMEs) rather than confined flares (without CMEs). We also identified some correlation with quasi-periodic radio bursts observed at JVLA and Ondrejov observatories. We will discuss the implications of these results and the potential roles of QFPs in coronal heating and energy transport.

  5. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  6. Well-observed Dynamics of Flaring and Peripheral Coronal Magnetic Loops during an M-class Limb Flare

    NASA Astrophysics Data System (ADS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Wiegelmann, Thomas; Inhester, Bernd; Feng, Li

    2014-08-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  7. Characteristics of flares producing metric type II bursts and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Sheeley, N. R., Jr.; Howard, R. A.; Michels, D. J.; Koomen, M. J.

    1984-01-01

    An attempt is made to study the origin of coronal shocks by comparing several flare characteristics for two groups of flares: those with associated metric type II bursts and coronal mass ejections (CMEs) and those with associated metric type II bursts but no CMEs. CMEs accompany about 60 percent of all flares with type II bursts for solar longitudes greater than 30 deg, where CMEs are well observed with the NRL Solwind coronagraph. H-alpha flare areas, 1-8 A X-ray fluxes, and impulsive 3-cm fluxes are all statistically smaller for events with no CMEs than for events with CMEs. It appears that both compact and large mass ejection flares are associated with type II bursts. The events with no CMEs imply that at least many type II shocks are not piston-driven, but the large number of events of both groups with small 3 cm bursts does not support the usual assumption that type II shocks are produced by large energy releases in flare impulsive phases. The poor correlation between 3 cm burst fluxes and the occurrence of type II bursts may be due to large variations in the coronal Alfven velocity.

  8. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    NASA Astrophysics Data System (ADS)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  9. Coronal heating of M dwarfs: The flare-energy distribution of fully convective stars

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Poppenhaeger, K.; Goulding, A. D.; Bulbul, E.

    2014-01-01

    Stochastic flaring is an important mechanism for the coronal heating of the Sun and solar-like stars. The driver for these flares is a magnetic dynamo anchored at the boundary layer between the convective zone and the radiative core. Fully convective M dwarfs have been observed to produce powerful flares as well, but they lack a radiative core and must possess a different dynamo mechanism. How their flaring behavior differs from the solar case is not fully understood yet. We have analyzed X-ray flares of 22 M dwarfs, including both fully and partially convective ones, using archival XMM-Newton data. We extracted flares from the individual X-ray light curves and determined the amount of energy released by each flare in the observed X-ray band. We constructed flare-energy distributions of the targets to investigate the degree to which flares heat stellar coronae. We fitted the slopes of the flare-energy distributions for individual targets and for groups of targets bundled by spectral type. Depending on the value of the slope, the total energy released by flares, as extrapolated from the flare-energy distributions, could be sufficient to heat the entire corona. We find that the slopes of the flare-energy distributions are very similar to that of the Sun, for both partially and fully convective M dwarfs. The dynamo process at work in the fully convective stars of our sample needs to have a flare production efficiency which is very close to the solar case. Further observations will cover ultracool targets near the brown dwarfs boundary to test for which masses this solar analogy is valid. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  10. Coronal current sheet signatures during the 17 May 2002 CME-flare

    NASA Astrophysics Data System (ADS)

    Aurass, H.; Landini, F.; Poletto, G.

    2009-11-01

    Context: The relation between current sheets (CSs) associated with flares, revealed by characteristic radio signatures, and current sheets associated with coronal mass ejections (CMEs), detected in coronal ultraviolet (UV) and white light data, has not been analyzed, yet. Aims: We aim at establishing the relationship between CSs associated with a limb flare and CSs associated with the CME that apparently develops after the flare. We use a unique data set, acquired on May 17, 2002, which includes radio and extreme ultraviolet (XUV) observations. Methods: Spectral radio diagnostics, UV spectroscopic techniques, white light coronograph imaging, and (partly) radio imaging are used to illustrate the relation between the CSs and to infer the physical parameters of the radially aligned features that develop in the aftermath of the CME. Results: During the flare, several phenomena are interpreted in accordance with earlier work and with reference to the common eruptive flare scenario as evidence of flare CSs in the low corona. These are drifting pulsating structures in dynamic radio spectra, an erupting filament, expanding coronal loops morphologically recalling the later white light CME, and associated with earlier reported hard X-ray source sites. In the aftermath of the CME, UV spectra allowed us to estimate the CS temperature and density, over the 1.5-2.1 R_⊙ interval of heliocentric altitudes. The UV detected CS, however, appears to be only one of many current sheets that exist underneath the erupting flux rope. A type II burst following the CME radio continuum in time at lower frequencies is considered as the radio signature of a coronal shock excited at the flank of the CME. Conclusions: The results show that we can build an overall scenario where the CME is interpreted in terms of an erupting arcade crossing the limb of the Sun and connected to underlying structures via multiple CSs. Eventually, the observed limb flare seems to be a consequence of the ongoing CME.

  11. The correlation of coronal mass ejections with energetic flare proton events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Mcguire, R. E.; Reames, D. V.; Von Rosenvinge, T. T.; Sheeley, N. R., Jr.; Howard, R. A.; Michels, D. J.; Koomen, M. J.

    1983-01-01

    Proton events of energies of at least 4 MeV presumed due to solar flares are compared with coronal mass ejections (CMEs) observed with an orbiting coronagraph. H alpha flares are associated with 27 of the 50 flare proton events of the study. Each of these 27 flares is then associated temporally and spatially with a CME, confirming the earlier conclusion, based on Skylab data, that a CME may be a necessary condition for a flare proton event. Peak 4-22 MeV proton fluxes correlate with both the speeds and the angular sizes of the associated CMEs. CMEs of larger angular sizes are more likely to be loops or fans rather than jets or spikes and are more likely to intersect the ecliptic.

  12. A CRITICAL EXAMINATION OF THE FUNDAMENTAL ASSUMPTIONS OF SOLAR FLARE AND CORONAL MASS EJECTION MODELS

    SciTech Connect

    Spicer, D. S.; Bingham, R.; Harrison, R.

    2013-05-01

    The fundamental assumptions of conventional solar flare and coronal mass ejection (CME) theory are re-examined. In particular, the common theoretical assumption that magnetic energy that drives flares and CMEs can be stored in situ in the corona with sufficient energy density is found wanting. In addition, the observational constraint that flares and CMEs produce non-thermal electrons with fluxes of order 10{sup 34}-10{sup 36} electrons s{sup -1}, with energies of order 10-20 keV, must also be explained. This constraint when imposed on the ''standard model'' for flares and CMEs is found to miss the mark by many orders of magnitude. We suggest, in conclusion, there are really only two possible ways to explain the requirements of observations and theory: flares and CMEs are caused by mass-loaded prominences or driven directly by emerging magnetized flux.

  13. Solar coronal abundances: Some recent X-ray flare observations

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.

    1996-06-01

    I review recent elemental abundance studies from X-ray flare spectra obtained with Bragg crystal spectrometer experiments on board the SMM, P78-1, and Yohkoh spacecraft. Using the line-to-continuum method, data from all three satellites indicate an enhancement of the abundance of low-FIP Ca relative to H. But the average magnitude of the enhancement is somewhat uncertain. Flare-to-flare variations in the enhancement are also seen. Fe flare abundances seem to be close to photospheric values, with differing methods giving somewhat differing values. These findings, in conjunction with results for S, leave open the possibility that H may behave as an intermediate-FIP element or that a more complex characterization may apply. Further studies of the Yohkoh data, and studies comparing different analysis methods are needed to clarify these issues.

  14. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2015-12-01

    The Lorentz force changes associated with strong photospheric fields in large structures within active regions can be estimated from time series of Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) vector magnetograms. The major, most organized changes tend to occur close to the centers of flaring regions, near the main neutral line and/or in twisted sunspots. Fields close to the neutral line tend to collapse downward and inward, consistent with compression rather than rotation of the vector field. In sunspots the twist (or azimuthal component around the sunspot axis) tends to decrease. In a limited number of cases particularly well-observed by the Atmospheric Imaging Assembly (AIA) on SDO and the Extreme Ultraviolet Imager (EUVI) on the Solar TErrestrial RElations Observatory (STEREO), the evolution of the photospheric magnetic vector field can be related to changes in coronal magnetic structure to provide a coherent description of the magnetic changes during the different phases of a flare. This work was supported by NASA grant NNX14AE05G.

  15. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    SciTech Connect

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B. E-mail: lyndsay.fletcher@glasgow.ac.uk E-mail: hhudson@ssl.berkeley.edu

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  16. Solar Flares and Collisions Between Current-Carrying Loops Types and Mechanisms of Solar Flares and Coronal Loop Heating

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-Ichi; de Jager, Cornelis

    1996-07-01

    This paper deals with the temporal dynamics of solar flares. It gives a systematic description of solar flare models and tries to link the observations to results of simulations. After a review of the development of ideas on flare structure and on theories on current-loop interaction in flares since the pioneering work by Gold and Hoyle (1960), this paper gives first a synthesis of present-days observationally based views on solar flares, essentially describing the developments since the review by de Jager (1986). We distinguish between confined/impulsive and eruptive/dynamic flares (briefly: confined and eruptive). The main difference between these two types is one of field-line topology: ‘closed’ or ‘open’. The ‘grand instability’ in a field-line system opening to space is basic to the relation between eruptive flares, filament instability, and Coronal Mass Ejections. A fair part of the paper deals with the developments in our understanding of the physical processes during collisions between current-carrying loops. After work by Tajima et al. (1982), who introduced the concept of current-loop coalescence in solar flares, using results obtained from two-dimensional particle simulation, it became clear that the current-loop interaction process includes a rich variety of physical mechanisms associated with rapid magnetic energy conversion through partial or complete magnetic reconnection, such as prompt high-energy particle acceleration, plasma heating, shock formation, plasma-jet formation and plasma radiation. This part of the paper concentrates on the developments since the review by Sakai and Ohsawa (1987), dealing with particle acceleration by magnetic reconnection and shocks during current-loop coalescence in solar flares. Theoretical research performed since the above review paper refers to magnetic reconnection, shock formation, particle acceleration and plasma emission during collisions between current-carrying loops. These theoretical

  17. Closed coronal structures. V - Gasdynamic models of flaring loops and comparison with SMM observations

    NASA Technical Reports Server (NTRS)

    Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.

    1983-01-01

    A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.

  18. Closed coronal structures. V - Gasdynamic models of flaring loops and comparison with SMM observations

    NASA Technical Reports Server (NTRS)

    Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.

    1983-01-01

    A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.

  19. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  20. Solar flare associated coronal mass ejections causing geo-effectiveness and Forbush decreases

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Chandra, Harish

    2017-02-01

    In the present study, we have selected 35 halo Coronal Mass Ejections (CMEs) associated with solar flares, Geomagnetic Storms (GSs) and Forbush decrease (Fd) chosen from 1st January 2000 to 31st December 2007 (i.e., the descending phase of solar cycle 23) observed by the Large Angle Spectrometric Coronagraph (LASCO) on board the SOHO spacecraft. Statistical analyses are performed to look at the distribution of solar flares associated with halo CMEs causing GSs and Fd and investigated the relationship between solar flare and halo CME parameters with GSs and Fd. Forbush decrease is the phenomenon of rapid decrease in cosmic ray intensity following the CME. Our analysis indicates that during 2000 to 2007 the northern region produced 44 % of solar flares associated with halo CMEs, GSs, and Fd, whereas 56 % solar flares associated with halo CMEs, GSs, and Fd were produced in the southern region. The northern and the southern hemispheres between 10° to 20° latitudinal belts are found to be more effective in producing events leading to Fd. From our selected events, we found that about 60 % of super-intense storms (Dst ≤ -200 nT) caused by halo CMEs are associated with X-class flares. Fast halo CMEs associated with X-class flares originating from 0° to 25° latitudes are better potential candidates in producing super-intense GSs than the slow halo CMEs associated with other classes of flares.

  1. Evidence that magnetic energy shedding in solar filament eruptions is the drive in accompanying flares and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1988-01-01

    The dependence of the magnetic energy on the field expansion and untwisting of the flux tube in which an erupting solar filament is embedded has been determined in order to evaluate the energy decrease in the erupting flux tube. Magnetic energy shedding by the filament-field eruption is found to be the driving mechanism in both filament-eruption flares and coronal mass ejections. Confined filament-eruption flares, filament-eruption flares with sprays and coronal mass ejections, and coronal mass ejections from quiescent filament eruptions are all shown to be similar types of events.

  2. Observation of nano-flares and transient coronal heating

    NASA Astrophysics Data System (ADS)

    Serge, Koutchmy; Golub, Leon; Bazin, Cyrille; Tavabi, Ehsan

    Nano-flares are the best candidate for heating the bulk of the corona but their signature is still not clearly recognized in the data. The Hinode XRT provided many high resolution partial frame sequences that allowed study of intermittent flash events in quiet areas, suggesting a definite signature of nano-flares. The Yohkoh so-called SXR transient brightenings are now recorded by XRT with a wealth of detail. The typical resolution and low noise of XRT permits detection at a much lower intensity threshold and a much shorter duration. In order to evaluate what is a nano-flare, we selected a well-observed solar disk event seen at the beginning of the XRT mission, when the Sun was still very quiet. This single flare event is recorded outside of any active region and does not show any GOES or RHESSI signature, even at the lowest level. This nano-flare shows structures suggestive of rather horizontal low lying loops with a short intense flash phase. No jet is observed. EUV brightening counterparts exist, including the 304Å TR emission, detected by the SECCHI EUV imagers on the two STEREO spacecrafts. Filtergrams taken simultaneously at a fast rate in Hα are deeply processed to look at the resulting effects, seen as a faint brightening and a cool transient very small scale feature. We argue in favor of many similar SXR events permanently occurring at the TR levels, not showing strong EUV brightenings but with horizontally stretched structures similar to the recently described Hi-C reconnection events called magnetic “braids” that include twists and possibly counter flows.

  3. Coronal Mass Ejections Associated With Impulsive Solar Flares - Observations With SECCHI EUVI On STEREO

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.; Lemen, J. R.; Wuelser, J.; Aschwanden, M. J.; Freeland, S. L.; Zarro, D. M.

    2008-12-01

    Long-duration flares, sometimes referred to as Long Decay Events (LDEs), are known to be unmistakable signatures of coronal mass ejections (CMEs), and often of fast and large ones. Short-duration or impulsive flares, on the other hand, do not as frequently accompany CMEs, even though X-ray plasmoid ejections seen in some of these flares may suggest that all flares are eruptive irrespective of durations. Some of these ejections in X-ray or EUV images could be failed ejections, however, meaning that they do not move into interplanetary medium. A complementary, and perhaps more reliable signature of a CME in the low corona may be large-scale dimming typically observed at 1-2 MK. We report on high cadence observations of SECCHI EUVI on STEREO that show this phenomenon in weak impulsive flares more frequently than expected. We systematically study flare periods with good data coverage. In order to avoid false dimming, we use both base and running difference images after carefully co-aligning the image pairs. Some of the dimming events were observed in more than one channel and at two widely separated view angles, letting us better understand the nature of dimming especially in terms of the associated CME. We discuss how the properties of dimming are reflected in CME parameters, how to distinguish the impulsive flares with large- scale effects from those that are confined, and whether similar events could account for orphan ICMEs without a clearly associated CME near the Sun.

  4. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    SciTech Connect

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  5. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    SciTech Connect

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-03-25

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  6. Recent Voyager Evidence for Rapid Transport of Flare-Generated Disturbances by Polar Coronal Hole Streams

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Miller, W. D.; Intriligator, J.; Webber, W.; Sun, W.; Detman, T.; Dryer, M.; Deehr, C.

    2017-09-01

    Disturbances observed by Voyagers 1 and 2 during the past five years or more may have been transported by plasma emitted from polar coronal holes, thereby having travelled much faster from the Sun to the termination shock than previously recognized. Estimating the average speed to the shock as 750 km/s has produced consistently good associations between solar flares, or groups of them, and dynamic pressure increases at Voyager 2 and plasma wave events at Voyager 1. Furthermore, magnetograph observations confirm that polar coronal holes were present around the times of the flares to which the events at the Voyagers have been attributed. These calculations also provide revised estimates of the transport of heliospheric current sheet fluctuations. We discuss the possibilities that extrapolations from past observations and simulations based on them may provide insight into currently challenging issues and possible future developments.

  7. Are Homologous Flare-Coronal Mass Ejection Events Triggered by Moving Magnetic Features?

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wang, Jingxiu

    2002-02-01

    Coronal mass ejections (CMEs) often present destabilization and eruption of a global (or large-scale) magnetic structure in the solar atmosphere. Furthermore, the Earth-directed CMEs are the primary driver of the disastrous space weather. Here we report on five homologous CMEs. They initiated in the early phase of five homologous X-class flares seen in NOAA Active Region 9236 on 2000 November 24-26. The flares appeared between the main sunspot with positive magnetic field and the moat of the active region. We examined the magnetic evolution in the source active region for the first three of the five flare-CME events and found that the main magnetic changes are magnetic flux emergence in the form of moving magnetic features (MMFs) in the vicinity of the main positive magnetic field. There are three peaks in the flux (number) distribution of the emerging MMFs. If each peak corresponds to an X-class flare and associated halo CME, there is a time lag of 10 hr between flux emergence and flaring. The flux appearing in the form of MMFs is 1.1×1022 Mx, with a net flux of -2.1×1021 Mx. Around the main spot region, about 9.1×1021 Mx of flux disappeared in the 2 day interval. This is indicative that the repeated flare-CME activities are triggered by the continuous emergence of MMFs.

  8. Solar cycle dependence of Wind/EPACT protons, solar flares and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Miteva, R.; Samwel, S. W.; Costa-Duarte, M. V.; Malandraki, O. E.

    2017-01-01

    The aim of this work is to compare the occurrence and overall properties of solar energetic particles (SEPs), solar flares and coronal mass ejections (CMEs) over the first seven years in solar cycles (SCs) 23 and 24. For the case of SEP events, we compiled a new proton event catalog using data from the Wind/EPACT instrument. We confirm the previously known reduction of high energy proton events in SC24 compared to the same period in SC23; our analysis shows a decrease of 25-50 MeV protons by about 30%. The similar trend is found for X to C-class solar flares which are less by about 40% and also for faster than 1000 km/s CMEs, which are reduced by about 45%. In contrast, slow CMEs are more numerous in the present solar cycle. We discuss the implications of these results for the population of SEP-productive flares and CMEs.

  9. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    SciTech Connect

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel; Lindsey, Charles; Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil; Schou, Jesper

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  10. Vortex and Sink Flows in Eruptive Flares as a Model for Coronal Implosions

    NASA Astrophysics Data System (ADS)

    Zuccarello, F. P.; Aulanier, G.; Dudík, J.; Démoulin, P.; Schmieder, B.; Gilchrist, S. A.

    2017-03-01

    Eruptive flares are sudden releases of magnetic energy that involve many phenomena, several of which can be explained by the standard 2D flare model and its realizations in 3D. We analyze a 3D magnetohydrodynamics simulation, in the framework of this model, that naturally explains the contraction of coronal loops in the proximity of the flare sites, as well as the inflow toward the region above the cusp-shaped loops. We find that two vorticity arcs located along the flanks of the erupting magnetic flux rope are generated as soon as the eruption begins. The magnetic arcades above the flux rope legs are then subjected to expansion, rotation, or contraction depending on which part of the vortex flow advects them. In addition to the vortices, an inward-directed magnetic pressure gradient exists in the current sheet below the magnetic flux rope. It results in the formation of a sink that is maintained by reconnection. We conclude that coronal loop apparent implosions observed during eruptive flares are the result of hydromagnetic effects related to the generation of vortex and sink flows when a flux rope moves in a magnetized environment.

  11. Flare coronal loop heating and hard X-ray emission from solar flares of August 23, 2005, and November 9, 2013

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Motorina, G. G.; Kopylova, Yu. G.

    2016-12-01

    The thermal balance and hard X-ray emission of coronal loops for two solar events have been considered in the scope of a "standard" flare model. An important role of the thermal energy release is justified by the event of August 23, 2005, as an example. For the flare of November 9, 2013, it has been established that electrons accelerated at a flare loop top cannot maintain the observed hard X-ray fluxes from the flare footpoints, which indicates that charged particles are additionally accelerated in the chromosphere.

  12. Magnetic Energy Partition between the Coronal Mass Ejection and Flare from AR 11283

    NASA Astrophysics Data System (ADS)

    Feng, L.; Wiegelmann, T.; Su, Y.; Inhester, B.; Li, Y. P.; Sun, X. D.; Gan, W. Q.

    2013-03-01

    On 2011 September 6, an X-class flare and a halo coronal mass ejection (CME) were observed from Earth erupting from the same active region AR 11283. The magnetic energy partition between them has been investigated. SDO/HMI vector magnetograms were used to obtain the coronal magnetic field using the nonlinear force-free field (NLFFF) extrapolation method. The free magnetic energies before and after the flare were calculated to estimate the released energy available to power the flare and the CME. For the flare energetics, thermal and nonthermal energies were derived using the RHESSI and GOES data. To obtain the radiative output, SDO/EVE data in the 0.1-37 nm waveband were utilized. We have reconstructed the three-dimensional (3D) periphery of the CME from the coronagraph images observed by STEREO-A, B, and SOHO. The mass calculations were then based on a more precise Thomson-scattering geometry. The subsequent estimate of the kinetic and potential energies of the CME took advantage of the more accurate mass, and the height and speed in a 3D frame. The released free magnetic energy resulting from the NLFFF model is about 6.4 × 1031 erg, which has a possible upper limit of 1.8 × 1032 erg. The thermal and nonthermal energies are lower than the radiative output of 2.2 × 1031 erg from SDO/EVE for this event. The total radiation covering the whole solar spectrum is probably a few times larger. The sum of the kinetic and potential energy of the CME could go up to 6.5 × 1031 erg. Therefore, the free energy is able to power the flare and the CME in AR 11283. Within the uncertainty, the flare and the CME may consume a similar amount of free energy.

  13. Forward Modeling of Standing Slow Modes in Flaring Coronal Loops

    NASA Astrophysics Data System (ADS)

    Yuan, D.; Van Doorsselaere, T.; Banerjee, D.; Antolin, P.

    2015-07-01

    Standing slow-mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Owing to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow-mode waves in flaring loops and compare the synthesized line emission properties with Solar Ultraviolet Measurements of Emitted Radiation spectrographic and Solar Dynamics Observatory/Atmospheric Imaging Assembly imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity in both time and spatial domain, which can be used to identify a standing slow-mode wave from spectroscopic observations. However, the longitudinal overtones could only be measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variations. One may detect half periodicity close to the loop apex, where emission intensity modulation is relatively small. The line-of-sight projection affects the observation of Doppler shift significantly. A more accurate estimate of the amplitude of velocity perturbation is obtained by de-projecting the Doppler shift by a factor of 1-2θ/π rather than the traditionally used {cos}θ . If a loop is heated to the hotter wing, the intensity modulation could be overwhelmed by background emission, while the Doppler shift velocity could still be detected to a certain extent.

  14. Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare

    NASA Astrophysics Data System (ADS)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-12-01

    In this paper we investigate the distribution characteristics of the coronal electric current density in a flare-producing active region (AR12158; SOL2014-09-10) by reconstructing nonlinear force-free (NLFF) fields from photospheric magnetic field data. A time series of NLFF fields shows the spatial distribution and its temporal development of coronal current density in this active region. A fractal dimensional analysis shows that a concentrated coronal current forms a structure of fractal spatiality. Furthermore, the distribution function of coronal current density is featured with a double power-law profile, and the value of electric current density at the breaking point of a double power-law fitting function shows a noticeable time variation toward the onset of an X-class flare. We discuss that this quantity will be a useful indicator for the occurrence of a flare.

  15. Coronal extension of the MURaM radiative MHD code: From quiet sun to flare simulations

    NASA Astrophysics Data System (ADS)

    Rempel, Matthias D.; Cheung, Mark

    2016-05-01

    We present a new version of the MURaM radiative MHD code, which includes a treatment of the solar corona in terms of MHD, optically thin radiative loss and field-aligned heat conduction. In order to relax the severe time-step constraints imposed by large Alfven velocities and heat conduction we use a combination of semi-relativistic MHD with reduced speed of light ("Boris correction") and a hyperbolic formulation of heat conduction. We apply the numerical setup to 4 different setups including a mixed polarity quiet sun, an open flux region, an arcade solution and an active region setup and find all cases an amount of coronal heating sufficient to maintain a corona with temperatures from 1 MK (quiet sun) to 2 MK (active region, arcade). In all our setups the Poynting flux is self-consistently created by photospheric and sub-photospheric magneto-convection in the lower part of our simulation domain. Varying the maximum allowed Alfven velocity ("reduced speed of light") leads to only minor changes in the coronal structure as long as the limited Alfven velocity remains larger than the speed of sound and about 1.5-3 times larger than the peak advection velocity. We also found that varying details of the numerical diffusivities that govern the resistive and viscous energy dissipation do not strongly affect the overall coronal heating, but the ratio of resistive and viscous energy dependence is strongly dependent on the effective numerical magnetic Prandtl number. We use our active region setup in order to simulate a flare triggered by the emergence of a twisted flux rope into a pre-existing bipolar active region. Our simulation yields a series of flares, with the strongest one reaching GOES M1 class. The simulation reproduces many observed properties of eruptions such as flare ribbons, post flare loops and a sunquake.

  16. The propagation of solar flare particles in a coronal loop

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.

    1986-01-01

    A time-dependent diffusion equation with velocity-dependent diffusion and energy-loss coefficients was solved for the case where energetic solar particles are injected into a coronal loop and then diffuse out the ends of the loop into the lower corona/chromosphere. The solution yields for the case of relativistic electrons, precipitation rates and populations which are necessary for calculating thick and thin target X-ray emission. It follows that the thick target emission is necessarily delayed with respect to the particle acceleration on injection by more than the mere travel time of the particle over the loop length. In addition the time-dependent electron population at the top of the loop is calculated. This is useful in estimating the resulting micron-wave emission. The results show relative timing differences in the different emission processes which are functions of particle species, energy and the point of injection of the particles into the loop. Equivalent quantities are calculated for non-relativistic protons.

  17. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  18. Exceptions to the rule: the X-flares of AR 2192 Lacking Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2016-04-01

    NOAA Active region (AR) 2192, that was present on the Sun in October 2014, was the largest region which occurred since November 1990 (see Figure 1). The huge size accompanied by a very high activity level, was quite unexpected as it appeared during the unusually weak solar cycle 24. Nevertheless, the AR turned out to be one of the most prolific flaring ARs of cycle 24. It produced in total 6 X, 29 M, 79 C flares during its disk passage from October 18-29, 2014 (see Figure 2). Surprisingly, all flares greater than GOES class M5 and X were confined, i.e. had no coronal mass ejections (CME) associated. All the flare events had some obvious similarity in morphology, as they were located in the core of the AR and revealed only minor separation motion away from the neutral line but a large initial separation of the conjugate flare ribbons. In the paper by Thalmann et al. (2015) we describe the series of flares and give details about the confined X1.6 flare event from October 22, 2014 as well as the single eruptive M4.0 flare event from October 24, 2014. The study of the X1.6 flare revealed a large initial separation of flare ribbons together with recurrent flare brightenings, which were related to two episodes of enhanced hard X-ray emission as derived from RHESSI observations. This suggests that magnetic field structures connected to specific regions were repeatedly involved in the process of reconnection and energy release. Opposite to the central location of the sequence of confined events within the AR, a single eruptive (M4.0) event occurred on the outskirt of the AR in the vicinity of open magnetic fields. Our investigations revealed a predominantly north-south oriented magnetic system of arcade fields overlying the AR that could have preserved the magnetic arcade to erupt, and consequently kept the energy release trapped in a localized volume of magnetic field high up in the corona (as supported by the absence of a lateral motion of the flare ribbons and the

  19. A consistent picture of coronal and chromospheric processes in a well-observed solar flare

    NASA Technical Reports Server (NTRS)

    Gunkler, T. A.; Canfield, R. C.; Acton, L. W.; Kiplinger, A. L.

    1984-01-01

    The solar flare of 15:22 UT on June 24, 1980 is analyzed using simultaneous observations in hard X-rays, soft X-rays, and H-alpha line profiles obtained from instruments aboard the Solar Maximum Mission and ground-based instruments. The theoretical H-alpha profiles of Canfield, Gunkler, and Ricchiazzi (1984) are used to analyze the H-alpha data, and the work of Hummer and Rybicki (1968) is used to provide qualitative velocity information. The soft X-ray data are employed to obtain coronal measurements of parameters of interest, while the flux and spectrum of the hard X-rays are used to calculate the peak power of nonthermal electrons. Various flare phenomena are studied, including heating of the chromosphere by nonthermal electrons, enhanced coronal pressure, enhanced thermal conduction, chromospheric evaporation and mass motion. It is shown that the observations strongly suggest a scenario in which two large magnetic loop systems interact to provide the flare energy.

  20. Faint Coronal Hard X-rays From Accelerated Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay Erin

    Solar flares are huge explosions on the Sun that release a tremendous amount of energy from the coronal magnetic field, up to 1033 ergs, in a short time (100--1000 seconds), with much of the energy going into accelerated electrons and ions. An efficient acceleration mechanism is needed, but the details of this mechanism remain relatively unknown. A fraction of this explosive energy reaches the Earth in the form of energetic particles, producing geomagnetic storms and posing dangers to spaceborne instruments, astronauts, and Earthbound power grids. There are thus practical reasons, as well as intellectual ones, for wishing to understand this extraordinary form of energy release. Through imaging spectroscopy of the hard X-ray (HXR) emission from solar flares, the behavior of flare-accelerated electrons can be studied. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) spacecraft launched in 2002 with the goal of better understanding flare particle acceleration. Using rotation modulation collimators, RHESSI is able to cover a wide energy range (3 keV--17 MeV) with fine angular and energy resolutions. RHESSI's success in the last 10 years in investigating the relationship between energetic electrons and ions, the nature of faint sources in the corona, the energy distribution of flares, and several other topics have significantly advanced the understanding of flares. But along with the wealth of information revealed by RHESSI come some clear observational challenges. Very few, if any, RHESSI observations have come close to imaging the electron acceleration region itself. This is undoubtedly due to a lack of both sensitivity (HXRs from electron beams in the tenuous corona are faint) and dynamic range (HXR sources at chromospheric flare footpoints are much brighter and tend to obscure faint coronal sources). Greater sensitivity is also required to investigate the role that small flares in the quiet Sun could play in heating the corona. The Focusing Optics

  1. Solar Flares and Coronal Mass Ejections Are Aspects of Same Event

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Solar flares and coronal mass ejections from the Sun are intertwined aspects of the same event, rather than two separate events, it was announced at a meeting of the American Astronomical Society's Solar Physics Division on 18 June. The finding resolves ``a chicken-and-egg type of problem as to which came first,'' according to Peter Gallagher, solar physicist with the NASA Goddard Space Flight Center. He said that the problem had been debated for several decades. Gallagher is research scientist for two of the three spacecraft involved with the findings: NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and NASA's Transition Region and Coronal Explorer, (TRACE). The third spacecraft is the Solar and Heliospheric Observatory spacecraft (SOHO), which is a cooperative effort of NASA and the European Space Agency.

  2. Structural properties of the solar flare-producing coronal current system developed in an emerging magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Magara, Tetsuya

    2017-02-01

    The activity of a magnetic structure formed in the solar corona depends on a coronal current system developed in the structure, which determines how an electric current flows in the corona. To investigate structural properties of the coronal current system responsible for producing a solar flare, we perform magnetohydrodynamic simulation of an emerging magnetic flux tube which forms a coronal magnetic structure. Investigation using fractal dimensional analysis and electric current streamlines reveals that the flare-producing coronal current system relies on a specific coronal current structure of two-dimensional spatiality, which has a sub-region where a nearly anti-parallel magnetic field configuration is spontaneously generated. We discuss the role of this locally generated anti-parallel magnetic field configuration in causing the reconnection of a three-dimensional magnetic field, which is a possible mechanism for producing a flare. We also discuss how the twist of a magnetic flux tube affects structural properties of a coronal current system, showing how much volume current flux is carried into the corona by an emerging flux tube. This gives a way to evaluate the activity of a coronal magnetic structure.

  3. Magnetic field variations accompanying the filament eruption and the flare related to coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.; Egorov, Ya. I.; Rudenko, G. V.; Anfinogentov, S. A.

    2016-12-01

    Field variations in the region of eruptive event of June 7, 2011, associated with the filament eruption (FE), flare, and coronal mass ejection are studied based on vector measurements of the photospheric magnetic field with the SDO/HMI instrument. Variations of the module (B), the radial (Br) and transverse (Bt) components of the magnetic induction, and the inclination angle (α) of field lines to the radial direction from the center of the Sun are analyzed. It is shown that the strongest changes of the field before the event were located near the base of the southeastern leg of the eruptive filament; after the beginning of the event, they were located in the CME flare region. It is suggested that the FE is associated with two episodes of strong and rapid field variations: before the beginning of the slow filament rise and before its sudden acceleration. For the first time, variations of the inclination angles of the field lines over time in different parts of the eruptive event are studied in detail. It was found that the inclination angles of the field lines decrease in the vicinity of its channel during the slow rise of the filament, and the inclination angles of the field lines increase sharply after the beginning of the flare in the flare region in the vicinity of the neutral line.

  4. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  5. THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY

    SciTech Connect

    Masson, S.; Aulanier, G.; Pariat, E.; Schrijver, C. J.

    2009-07-20

    Flare ribbons are commonly attributed to the low-altitude impact, along the footprints of separatrices or quasi-separatrix layers (QSLs), of particle beams accelerated through magnetic reconnection. If reconnection occurs at a three-dimensional coronal magnetic null point, the footprint of the dome-shaped fan surface would map a closed circular ribbon. This paper addresses the following issues: does the entire circular ribbon brighten simultaneously, as expected because all fan field lines pass through the null point? And since the spine separatrices are singular field lines, do spine-related ribbons look like compact kernels? What can we learn from these observations about current sheet formation and magnetic reconnection in a null-point topology? The present study addresses these questions by analyzing Transition Region and Coronal Explorer and Solar and Heliospheric Observatory/Michelson Doppler Imager observations of a confined flare presenting a circular ribbon. Using a potential field extrapolation, we linked the circular shape of the ribbon with the photospheric mapping of the fan field lines originating from a coronal null point. Observations show that the flare ribbon outlining the fan lines brightens sequentially along the counterclockwise direction and that the spine-related ribbons are elongated. Using the potential field extrapolation as initial condition, we conduct a low-{beta} resistive magnetohydrodynamics simulation of this observed event. We drive the coronal evolution by line-tied diverging boundary motions, so as to emulate the observed photospheric flow pattern associated with some magnetic flux emergence. The numerical analysis allows us to explain several observed features of the confined flare. The vorticity induced in the fan by the prescribed motions causes the spines to tear apart along the fan. This leads to formation of a thin current sheet and induces null-point reconnection. We also find that the null point and its associated

  6. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    SciTech Connect

    Zong, Weiguo; Dai, Yu

    2015-08-20

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  7. Coronal and Chromospheric Signatures of Large-scale Disturbances Associated with a Major Solar Eruption

    NASA Astrophysics Data System (ADS)

    Zong, Weiguo; Dai, Yu

    2015-08-01

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s-1 and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  8. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    NASA Astrophysics Data System (ADS)

    Cabezas, Denis P.; Martínez, Lurdes M.; Buleje, Yovanny J.; Ishitsuka, Mutsumi; Ishitsuka, José K.; Morita, Satoshi; Asai, Ayumi; UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari

    2017-02-01

    Coronal disturbances associated with solar flares, such as Hα Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in Hα images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the Hα images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead, we confirm that the winking filaments were activated by the EUV coronal wave.

  9. THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES

    SciTech Connect

    Karpen, J. T.; Antiochos, S. K.; DeVore, C. R.

    2012-11-20

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  10. The Mechanisms for the Onset and Explosive Eruption of Coronal Mass Ejections and Eruptive Flares

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Antiochos, Spiro K.; DeVore, Carl Richard

    2012-01-01

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by a slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  11. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Jiang, C. W.; Xue, Z. K.; Wang, J. C.; Priest, E. R.; Yang, L. H.; Kong, D. F.; Cao, W. D.; Ji, H. S.

    2017-08-01

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observaotry, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  12. Solar wind helium enhancements following major solar flares

    NASA Technical Reports Server (NTRS)

    Hirshberg, J.

    1972-01-01

    The observations of solar wind helium enhancements following major solar flares are reviewed, and the hypothesis that helium enhancements often mark flare piston plasma is confirmed. Helium enhancements were observed during each of the three periods (March 1966, July 1966, August/September 1966) of major solar activity that occurred from October 1965 to October 1966. No enhancements were seen during the long quiet periods that occurred that year. At 1 AU, the helium-enhanced plasma pistons had slowed so that the velocity was 80 percent of the mean transit velocity, in general agreement with theoretical models of the propagation of flare disturbances. A qualitative model, in which the piston plasma is accelerated from the flare site deep in the corona, is discussed briefly. If the model is valid in general outline, the piston plasmas provide samples of material from the lower levels of the corona.

  13. Coronal type III radio bursts and their X-ray flare and interplanetary type III counterparts

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Vilmer, Nicole

    2017-01-01

    Context. Type III bursts and hard X-rays are both produced by flare energetic electron beams. The link between both emissions has been investigated in many previous studies, but no statistical studies have compared both coronal and interplanetary type III bursts with X-ray flares. Aims: Using events where the coronal radio emission above 100 MHz is exclusively from type III bursts, we revisited some long-standing questions regarding the relation between type III bursts and X-ray flares: Do all coronal type III bursts have X-ray counterparts? What correlation, if any, occurs between radio and X-ray intensities? What X-ray and radio signatures above 100 MHz occur in connection with interplanetary type III bursts below 14 MHz? Methods: We analysed ten years of data from 2002 to 2011 starting with a selection of coronal type III bursts above 100 MHz. We used X-ray flare information from RHESSI >6 keV to make a list of 321 events that have associated type III bursts and X-ray flares, encompassing at least 28% of the initial sample of type III events. We then examined the timings, intensities, associated GOES class, and whether there was an associated interplanetary radio signature in both radio and X-rays. Results: For our 321 events with radio and X-ray signatures, the X-ray emission at 6 keV usually lasted much longer than the groups of type III bursts at frequencies >100 MHz. The selected events were mostly associated with GOES B and C class flares. A weak correlation was found between the type III radio flux at frequencies below 327 MHz and the X-ray intensity at 25-50 keV, with an absence of events at high X-ray intensity and low type III radio flux. The weakness of the correlation is related to the coherent emission mechanism of radio type IIIs which can produce high radio fluxes by low density electron beams. Interplanetary type III bursts (<4 MHz) were observed for 54% of the events. The percentage of association increased when events were observed with 25-50 ke

  14. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  15. Study of multi-periodic coronal pulsations during an X-class solar flare

    NASA Astrophysics Data System (ADS)

    Chowdhury, Partha; Srivastava, A. K.; Dwivedi, B. N.; Sych, Robert; Moon, Y.-J.

    2015-12-01

    We investigate quasi-periodic coronal pulsations during the decay phase of an X 3.2 class flare on 14 May 2013, using soft X-ray data from the RHESSI satellite. Periodogram analyses of soft X-ray light curves show that ∼ 53 s and ∼ 72 s periods co-exist in the 3-6 keV, 6-12 keV and 12-25 keV energy bands. Considering the typical length of the flaring loop system and observed periodicities, we find that they are associated with multiple (first two harmonics) of fast magnetoacoustic sausage waves. The phase relationship of soft X-ray emissions in different energy bands using cross-correlation technique show that these modes are standing in nature as we do not find the phase lag. Considering the period ratio, we diagnose the local plasma conditions of the flaring region by invoking MHD seismology. The period ratio P1/2P2 is found to be ∼ 0.65, which indicates that such oscillations are most likely excited in longitudinal density stratified loops.

  16. Dependence of prompt components of solar proton events on the associated solar flares and coronal shocks

    NASA Astrophysics Data System (ADS)

    Le, G.; Zhang, C.

    2016-12-01

    To compare the solar flares and coronal mass ejections(CMEs) contribution to the early phase of solar proton events (SPEs), the classical (i.e. Pearson) correlation coefficients between the prompt component intensity of SPEs and the parameters of the associated solar activities have been calculated. The sample comprise 56 SPEs with source location in the west hemisphere. Of the 56 SPEs, 36 SPEs were distributed in the well connected region (W20-W70). The classical correlation analysis shows that the correlation coefficients between the soft X-ray (SXR) emission and the prompt component intensity of SPEs are longitudinal dependent, while the correlation coefficients between CME speed and the prompt component intensity of SPEs are not longitudinal dependent. The classical correlation analysis suggests that for the well connected SPEs, solar flare is much more important than CME speed for the prompt component intensity of SPEs. The partial correlation analysis suggests that only the SXR fluence can significantly affect the prompt component intensity of the SPEs, CME speed only have small effect on the prompt component intensity of the SPEs, while SXR peak flux almost have no contribution to the prompt component intensity of the SPEs. The results of the paper suggest that solar flares dominate in the prompt component of SPEs with source location distributed in the well connected region.

  17. Comparing the Coronal Flaring Efficacy of Five Different Instruments Using Cone-Beam Computed Tomography

    PubMed Central

    Homayoon, Amin; Hamidi, Mahmood Reza; Haddadi, Azam; Madani, Zahra Sadat; Moudi, Ehsan; Bijani, Ali

    2015-01-01

    Introduction: Fearless removal of tooth structure during canal preparation and shaping has negative effects on the prognosis of treatment. On the other hand, sufficient pre-enlargement facilitates exact measurement of the apical size. The present in vitro study aimed to compare the efficacy of Gates-Glidden drills, K3, ProTaper, FlexMaster and RaCe instruments in dentin removal during coronal flaring using cone-beam computed tomography (CBCT). Methods and Materials: A total of 40 mandibular molars were selected and the coronal areas of their mesiobuccal and mesiolingual root canals were randomly prepared with either mentioned instruments. Pre- and post-instrumentation CBCT images were taken and the thickness of canal walls was measured in 1.5- and 3-mm distances from the furcation area. Data were analyzed using the one-way ANOVA. Tukey’s post hoc tests were used for two-by-two comparisons. Results: At 1.5-mm distance, there was no significant difference between different instruments. However, at 3-mm distances, Gates-Glidden drills removed significantly more dentin compared to FlexMaster files (mean=0.18 mm) (P<0.02); however, two-by-two comparisons did not reveal any significant differences between the other groups. Conclusion: All tested instruments can be effectively used in clinical settings for coronal pre-enlargement. PMID:26525955

  18. Over-and-Out Coronal Mass Ejections: Blowouts of Magnetic Arches by Ejective Flares in One Foot

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2006-01-01

    Streamer puffs from compact ejective flares in the foot of an outer loop of the magnetic arcade under a streamer were recently identified as a new variety of coronal mass ejection (CME) (Bemporad, Sterling, Moore, & Poletto 2006, ApJ Letters, in press). In the reported examples, the compact flares produced only weak to moderate soft X-ray bursts having peak intensities no stronger than GOES class C3. Here, we present two examples of this type of CME in which the compact flare in the flank of the steamer base is much stronger (one M-class, the other X-class in GOES X-rays) and the resulting streamer puff is wider and brighter than in the discovery examples. Coronal dimming observed in SOHOBIT Fe XII images in the launching of each of these two CMEs M e r supports the view that these CMEs are produced by a high loop of the steamer arcade being blown out by magnetoplasma ejecta exploding up the leg of the loop from the flare. In addition, we present evidence that this same type of CME occurs on larger scales than in the above examples. We examine a sequence of flare eruptions seated on the north side of AR 8210 as it rotated across the southern hemisphere in late April and early May 1998. Each flare occurs in synchrony with the launching of a large CME centered on the equator. Coronal dimming in EIT Fe XII images shows the trans-equatorial footprints of these CMEs extending north from the flare site. The set of flare-with-CME events includes the trans-equatorial loop eruptions reported by Khan & Hudson (1998, GRL, 27, 1083). Our observations indicate that these CMEs were not driven by the self-eruption of the transequatorial loops, but that these loops were part of a trans-equatorial magnetic arch that was blown open by ejecta from the flares on the north side of AR 8210. Thus, a relatively compact ejective flare can be the driver of a CME that is much larger in lateral extent than the flare and is laterally far offset from the flare. It has previously been thought

  19. Over-and-Out Coronal Mass Ejections: Blowouts of Magnetic Arches by Ejective Flares in One Foot

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2006-01-01

    Streamer puffs from compact ejective flares in the foot of an outer loop of the magnetic arcade under a streamer were recently identified as a new variety of coronal mass ejection (CME) (Bemporad, Sterling, Moore, & Poletto 2006, ApJ Letters, in press). In the reported examples, the compact flares produced only weak to moderate soft X-ray bursts having peak intensities no stronger than GOES class C3. Here, we present two examples of this type of CME in which the compact flare in the flank of the steamer base is much stronger (one M-class, the other X-class in GOES X-rays) and the resulting streamer puff is wider and brighter than in the discovery examples. Coronal dimming observed in SOHOBIT Fe XII images in the launching of each of these two CMEs M e r supports the view that these CMEs are produced by a high loop of the steamer arcade being blown out by magnetoplasma ejecta exploding up the leg of the loop from the flare. In addition, we present evidence that this same type of CME occurs on larger scales than in the above examples. We examine a sequence of flare eruptions seated on the north side of AR 8210 as it rotated across the southern hemisphere in late April and early May 1998. Each flare occurs in synchrony with the launching of a large CME centered on the equator. Coronal dimming in EIT Fe XII images shows the trans-equatorial footprints of these CMEs extending north from the flare site. The set of flare-with-CME events includes the trans-equatorial loop eruptions reported by Khan & Hudson (1998, GRL, 27, 1083). Our observations indicate that these CMEs were not driven by the self-eruption of the transequatorial loops, but that these loops were part of a trans-equatorial magnetic arch that was blown open by ejecta from the flares on the north side of AR 8210. Thus, a relatively compact ejective flare can be the driver of a CME that is much larger in lateral extent than the flare and is laterally far offset from the flare. It has previously been thought

  20. Validation of a scaling law for the coronal magnetic field strength and loop length of solar and stellar flares

    NASA Astrophysics Data System (ADS)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Shibata, Kazunari

    2017-02-01

    Shibata and Yokoyama (1999, ApJ, 526, L49; 2002, ApJ, 577, 422) proposed a method of estimating the coronal magnetic field strength (B) and magnetic loop length (L) of solar and stellar flares, on the basis of magnetohydrodynamic simulations of the magnetic reconnection model. Using the scaling law provided by Shibata and Yokoyama (1999, ApJ, 526, L49; 2002, ApJ, 577, 422), we obtain B and L as functions of the emission measure (EM = n2L3) and temperature (T) at the flare peak. Here, n is the coronal electron density of the flares. This scaling law enables the estimation of B and L for unresolved stellar flares from the observable physical quantities EM and T, which is helpful for studying stellar surface activities. To apply this scaling law to stellar flares, we discuss its validity for spatially resolved solar flares. Quantities EM and T are calculated from GOES (Geostationary Operational Environmental Satellite) soft X-ray flux data, and B and L are theoretically estimated using the scaling law. For the same flare events, B and L were also observationally estimated with images taken by the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) Magnetogram and Atmospheric Imaging Assembly (AIA) 94 Å pass band. As expected, a positive correlation was found between the theoretically and observationally estimated values. We interpret this result as indirect evidence that flares are caused by magnetic reconnection. Moreover, this analysis makes us confident about the validity of applying this scaling law to stellar flares as well as solar flares.

  1. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  2. Extreme-Ultraviolet Spectroscopic Observation of Direct Coronal Heating During a C-Class Solar Flare

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    2012-01-01

    With the Coronal Diagnostic Spectrometer operating in rapid cadence (9.8 s) stare mode during a C6.6 flare on the solar disk, we observed a sudden brightening of Fe xix line emission (formed at temperature T ˜ 8 MK) above the pre-flare noise without a corresponding brightening of emission from ions formed at lower temperatures, including He i (0.01 MK), Ov (0.25 MK), and Si xii (2 MK). The sudden brightening persisted as a plateau of Fe xix intensity that endured more than 11 minutes. The Fe xix emission at the rise and during the life of the plateau showed no evidence of significant bulk velocity flows, and hence cannot be attributed to chromospheric evaporation. However, the line width showed a significant broadening at the rise of the plateau, corresponding to nonthermal velocities of at least 89 km s-1 due to reconnection outflows or turbulence. During the plateau He i, Ov, and Si xii brightened at successively later times starting about 3.5 minutes after Fe xix, which suggests that these brightenings were produced by thermal conduction from the plasma that produced the Fe xix line emission; however, we cannot rule out the possibility that they were produced by a weak beam of nonthermal particles. We interpret an observed shortening of the Ov wavelength for about 1.5 minutes toward the middle of the plateau to indicate new upward motions driven by the flare, as occurs during gentle chromospheric evaporation; relative to a quiescent interval shortly before the flare, the Ov upward velocity was around -10 km s-1.

  3. OBSERVATIONS AND MAGNETIC FIELD MODELING OF THE FLARE/CORONAL MASS EJECTION EVENT ON 2010 APRIL 8

    SciTech Connect

    Su Yingna; Surges, Vincent; Van Ballegooijen, Adriaan; DeLuca, Edward; Golub, Leon

    2011-06-10

    We present a study of the flare/coronal mass ejection event that occurred in Active Region 11060 on 2010 April 8. This event also involves a filament eruption, EIT wave, and coronal dimming. Prior to the flare onset and filament eruption, both SDO/AIA and STEREO/EUVI observe a nearly horizontal filament ejection along the internal polarity inversion line, where flux cancellations frequently occur as observed by SDO/HMI. Using the flux-rope insertion method developed by van Ballegooijen, we construct a grid of magnetic field models using two magneto-frictional relaxation methods. We find that the poloidal flux is significantly reduced during the relaxation process, though one relaxation method preserves the poloidal flux better than the other. The best-fit pre-flare NLFFF model is constrained by matching the coronal loops observed by SDO/AIA and Hinode/XRT. We find that the axial flux in this model is very close to the threshold of instability. For the model that becomes unstable due to an increase of the axial flux, the reconnected field lines below the X-point closely match the observed highly sheared flare loops at the event onset. The footpoints of the erupting flux rope are located around the coronal dimming regions. Both observational and modeling results support the premise that this event may be initiated by catastrophic loss of equilibrium caused by an increase of the axial flux in the flux rope, which is driven by flux cancellations.

  4. Effect of coronal flaring on apical extrusion of debris during root canal instrumentation using single-file systems.

    PubMed

    Topçuoğlu, H S; Üstün, Y; Akpek, F; Aktı, A; Topçuoğlu, G

    2016-09-01

    To evaluate the effect of coronal flaring on the amount of debris extruded apically during root canal preparation using the Reciproc, WaveOne (WO) and OneShape (OS) single-file systems. Ninety extracted single-rooted mandibular incisor teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, coronal flaring was not performed; coronal flaring was performed with Gates-Glidden drills on all teeth in the remaining three groups. The canals were then instrumented with one or other of the following single-file instrument systems: Reciproc, WO and OS. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. Data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests (P = 0.05). Reciproc and WO files without coronal flaring produced significantly more debris compared with the other groups (P < 0.05). There was no significant difference in apical extrusion of debris amongst the other groups (P > 0.05). All single-file systems caused apical extrusion of debris. Performing coronal flaring prior to canal preparation reduced the amount of apically extruded debris when using Reciproc or WO systems. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Effect of early coronal flaring on working length change in curved canals using rotary nickel-titanium versus stainless steel instruments.

    PubMed

    Davis, R Dean; Marshall, J Gordon; Baumgartner, J Craig

    2002-06-01

    This in vitro investigation examined pre- and postinstrumentation working length (WL) measurements in curved root canals. The conditions compared were combinations of (a) stainless steel hand files + Gates Glidden drills (SS) versus nickel-titanium rotary files (Ni-Ti); and (b) early coronal flaring (flaring completed before WL determination) versus late coronal flaring (flaring completed after WL determination). Coronal flaring was accomplished for the SS group using Gates Glidden drills and for the Ni-Ti group using rotary Ni-Ti files (n = 15/group). WL was determined before coronal flaring, immediately after coronal flaring, and again after canal preparation. Results indicated that WL decreased for all canals as a result of canal preparation. The mean decrease in WL was significantly greater for the SS group (-0.48 mm +/- 0.32) than for the Ni-Ti group (-0.22 mm +/- 0.26). Less change in WL occurred in both groups when initial WL was determined after coronal flaring (SS: -0.12 mm +/- 0.13, Ni-Ti: -0.14 mm +/- 0.25).

  6. A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares.

    PubMed

    Amari; Luciani; Mikic; Linker

    2000-01-20

    We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.

  7. The solar flare iron line to continuum ratio and the coronal abundances of iron and helium

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    Narrow band Ross filter measurements of the Fe 25 line flux around 0.185 nm and simultaneous broadband measurements during a solar flare were used to determine the relationship between the solar coronal abundances of iron and helium. The Fe 25 ion population was also determined as a function of time. The proportional counter and the Ross filter on OSO-7 were utilized. The data were analyzed under the separate assumptions that (1) the electron density was high enough that a single temperature could characterize the continuum spectrum and the ionization equilibrium, and that (2) the electron density was low so that the ion populations trailed the electron temperature in time. It was found that the density was at least 5x10 to the 9th power, and that the high density assumption was valid. It was also found that the iron abundance is 0.000011 for a helium abundance of 0.2, relative to hydrogen.

  8. An Explanation of Remarkable Emission-line Profiles in Post-flare Coronal Rain

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela A.; Judge, Philip G.; Donea, Alina

    2017-06-01

    We study broad redshifted emission in chromospheric and transition region lines that appears to correspond to a form of post-flare coronal rain. Profiles of Mg ii, C ii, and Si iv lines were obtained using IRIS before, during, and after the X2.1 flare of 2015 March 11 (SOL2015-03-11T16:22). We analyze the profiles of the five transitions of Mg ii (the 3p-3s h and k transitions, and three lines belonging to the 3d-3p transitions). We use analytical methods to understand the unusual profiles, together with higher-resolution observational data of similar phenomena observed by Jing et al. The peculiar line ratios indicate anisotropic emission from the strands that have cross-strand line center optical depths (k line) of between 1 and 10. The lines are broadened by unresolved Alfvénic motions whose energy exceeds the radiation losses in the Mg ii lines by an order of magnitude. The decay of the line widths is accompanied by a decay in the brightness, suggesting a causal connection. If the plasma is ≲99% ionized, ion-neutral collisions can account for the dissipation; otherwise, a dynamical process seems necessary. Our work implies that the motions are initiated during the impulsive phase, to be dissipated as radiation over a period of an hour, predominantly by strong chromospheric lines. The coronal “rain” we observe is far more turbulent than most earlier reports have indicated, with implications for plasma heating mechanisms.

  9. Investigation of X-class Flare-Associated Coronal Mass Ejections with and without DH Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Lawrance, M. Bendict; Shanmugaraju, A.; Vršnak, Bojan

    2015-11-01

    A statistical analysis of 135 out of 141 X-class flares observed during 1997 - 2012 with and without deca-hectometric (DH) type II radio bursts has been performed. It was found that 79 events (X-class flares and coronal mass ejections - Group I) were associated with DH type II radio bursts and 62 X-class flare events were not. Out of these 62 events without DH type IIs, 56 events (Group II) have location information, and they were selected for this study. Of these 56 events, only 32 were associated with CMEs. Most of the DH-associated X-class events ({˜} 79 %) were halo CMEs, in contrast to 14 % in Group II. The average CME speed of the X-class flares associated with DH type IIs is 1555 km s-1, which is nearly twice that of the X-class flare-associated CMEs without DH event (744 km s-1). The X-class flares associated with DH radio bursts have a mean flare intensity (3.63 × 10^{-4} W m^{-2}) that is 38 % greater than that of X-class flares without DH radio bursts (2.23 × 10^{-4} W m^{-2}). In addition to the greater intensity, it is also found that the the duration and rise time of flares associated with DH radio emission (DH flares) is more than twice than that of the flares without DH radio emission. When the events were further divided into two categories with respect to their source locations in eastern and western regions, 65 % of the events in the radio-loud category (with DH radio bursts) are from the western hemisphere and the remaining 35 % are from the eastern hemisphere. On the other hand, in the radio-quiet category (without DH radio bursts), nearly 60 % of the events are from the eastern hemisphere in contrast to those of the radio-loud category. It is found that 81 % of the events from eastern regions have flare durations > 30 min in the DH-flare category, in contrast to a nearly equal number from the western side for flare durations longer/shorter than 30 min. Similarly, the eastern events in the DH-flare category have a longer average rise-time of

  10. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  11. On the transport and acceleration of solar flare particles in a coronal loop

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lee, Martin A.

    1991-01-01

    The turbulent environment of a flaring solar coronal loop directly affects the population of particles to be accelerated or already accelerated. Under the assumption of a uniform turbulent MHD wave field within the loop, the behavior of a particle distribution as it interacts with the turbulence is discussed, including particle precipitation to the footpoints of the loop and the evolution of the energy distribution as the particles undergo second-order stochastic acceleration. Two cases are discussed in detail: (1) particles spatially diffusing within the loop and precipitating with minimal acceleration in the short time scale of an impulsive event and (2) particles diffusing in both real and momentum space in a long duration event. Collisional losses due to ambient electrons are included. The gamma-ray flare of June 3, 1982 is modeled, and good agreement is obtained between predicted and observed time profiles if the loop length is 100,000 km with an intrinsic spatial diffusion time of 100-450 s. It follows that the production of high-energy neutrons and pi mesons extends over a time scale of 1000 s as observed.

  12. Eruption and acceleration of flare-associated coronal mass ejection loops in the low corona

    NASA Astrophysics Data System (ADS)

    Neupert, W. M.; Thompson, B. J.; Gurman, J. B.; Plunkett, S. P.

    2001-11-01

    Observations made by the EUV imaging telescope (EIT) and the Large-Angle Spectrometric Coronagraph (LASCO) on board the Solar Heliospheric Observatory (SOHO) have been used to characterize the eruption and acceleration of flare-associated coronal mass ejections (CMEs) in the low corona. For three well-observed limb events we tracked CME loops back to preexisting but faint EUV-emitting loops at heights of 100-250 Mm that initially brightened slowly and possibly increased slowly in height, apparently in response to filament activity and eruption in the associated active regions. Subsequent CME acceleration coincided with a rapid rise of the soft X-ray flux, occurred between 100 and 350 Mm above the surface, and may have been as high as 0.5 km s-1 s-1, consistent with an impulsive acceleration of the CME to the speeds observed in subsequent white-light observations. The existence of a delay of up to 30 min observed between initial filament eruption in H alpha and subsequent high acceleration of the CME in one event implies that there may have been two separate phases of magnetic reconnection, with the initial filament activity acting as a trigger for subsequent CME and energetic particle acceleration in the impulsive stage of the flare. The presence or absence of this impulsive phase may provide a basis for the two types of CMEs that have been discussed in the literature.

  13. Kappa Distribution Model for Hard X-Ray Coronal Sources of Solar Flares

    NASA Astrophysics Data System (ADS)

    Oka, M.; Ishikawa, S.; Saint-Hilaire, P.; Krucker, S.; Lin, R. P.

    2013-02-01

    Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an "above-the-loop" coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was ~2.4 × 1010 cm-3. We also estimated without assuming the source volume that a moderate fraction (~20%) of electrons in the source region was non-thermal and carried ~52% of the total electron energy. The temperature was 28 MK, and the power-law index δ of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.

  14. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010–2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner–Tucker–Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  15. ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS

    SciTech Connect

    Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Van Ballegooijen, A. A.; Lin, J.; Seaton, D. B.

    2012-05-20

    We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

  16. Study of large solar energetic particle events with halo coronal mass ejections and their associated solar flares

    NASA Astrophysics Data System (ADS)

    Kharayat, Hema; Prasad, Lalan; Pokharia, Meena; Bhoj, Chandrashekhar; Mathpal, Chandni

    2017-05-01

    The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997-2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s-1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s-1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0-20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10-20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.

  17. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; hide

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  18. Long Fading Mid-infrared Emission in Transient Coronal Line Emitters: Dust Echo of a Tidal Disruption Flare

    NASA Astrophysics Data System (ADS)

    Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-12-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.

  19. BBSO/NST Observations of the Sudden Differential Rotation of a Sunspot Caused by a Major Flare

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Deng, Na; Cao, Wenda; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-05-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere), from which the field extends high into the corona. Complex plasma motions that drag field in the photosphere can build up free energy in the corona that powers solar eruptions. It is known that solar flares and the often associated coronal ejections (CMEs) can produce various radiations in the low atmosphere. However, it was considered implausible that disturbances created in the tenuous corona would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden rotational motion of a sunspot clearly induced by a major solar flare (SOL2015-06-22T18:23 M6.6), using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO). It is particularly striking that the rotation is not uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50 degree per hour) at different times corresponding to peaks of flare hard X-ray emission. The intensity and magnetic field of the sunspot also change significantly associated with the flare. Our results reveal an intrinsic relationship between the photospheric plasma bulk motions and coronal energy release, with direct consequences for our understanding of energy and momentum balance in the flare/CME phenomenon. This work is mainly supported by NASA grants NNX13AF76G and NNX13AG13G (LWS), and NNX16AF72G, and NSF grants AGS 1250818 and 1408703.

  20. On the variation of solar flare coronal X-ray source sizes with energy

    SciTech Connect

    Jeffrey, Natasha L. S.; Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon

    2014-05-20

    Observations with RHESSI have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold target model and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here, we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch angle distribution of the accelerated electrons, and the effects of collisional pitch angle scattering. The finite temperature results in the thermal diffusion of electrons, which leads to the observationally inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch angle and scattering within the target, cause the projected propagation distance parallel to the guiding magnetic field to be reduced, so that a one-dimensional interpretation can overestimate the actual density by a factor of up to ∼6. The implications of these results for the determination of acceleration region properties (specific acceleration rate, filling factor, etc.) are discussed.

  1. The magnetic connectivity of coronal shocks to the visible disk during long-duration gamma-ray flares

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Rouillard, Alexis; Share, Gerald

    2017-04-01

    Solar gamma-ray emissions are attributed to energetic particles accelerated in the low corona during solar flares and generally associated to the concomitant eruption of Coronal Mass Ejections (CMEs). Solar flares and coronal shocks are two strong candidate accelerators for energetic particles that produce γ-rays. For many γ-ray events that last more than an hour, the so-called Long Duration Gamma Ray Flares (LDGRFs), a broad source location is invoked to explain the observations, this is particularly true in events associated with solar eruptions that emerged on the far side of the Sun since the flare loop and foot-points are not visible from Earth. Such configurations provide favorable case studies to investigate the possible role of shocks driven by CMEs in producing the energetic particles that lead to LDGRFs. We analyse three CMEs that (1) erupted behind the solar limb viewed from Earth, (2) were associated with the early formation of coronal shocks measured by ground-based radio spectrographs, (3) were associated with γ-ray events measured by the Fermi-LAT instrument. A 3D triangulation technique, based on observation in the Extreme Ultraviolet (EUV) and visible light, is employed to model the expansion of these three CME shocks from above the solar surface to the upper corona. We then used the HELCATS catalogue of CMEs to follow the interplanetary propagation of these CMEs. Coupling it with different models of the coronal magnetic field allows us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of the shock to the solar surface visible from Earth. In all of the three events, the shock front associated with the impulsive flare was magnetically connected to the visible solar surface rapidly after the start of the flare and before the onset of gamma-ray emission observed by Fermi-LAT γ-ray emission. These early connected parts of the shock surface are mainly the flanks of the pressure wave and are therefore quasi

  2. A coronal mass ejection model for the 1992 July 15 flare on AU Microscopii observed by the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Cully, Scott L.; Fisher, George H.; Abbott, Mark J.; Siegmund, Oswald H. W.

    1994-01-01

    The dM1e flare star AU Microscopii (AU Mic) was observed by the EUVE Deep Survey Instrument on 1992 July 14-18. A large flare was detected in the Deep Survey Lexan/Boron (DS Lex/B)(65-190 A) band and the SW (70-190 A) and MW (140-380 A) spectrometers. The flare consisted of a sharp impulsive peak lasting approximately 2 hours followed by a decaying tail lasting about a day. We present a simple, single temperature, dynamic model for the flare decay which is consistent with the DS Lex/B light curve and reproduces the strongest, high-temperature spectral lines in the released EUVE spectra. In this model, we assume the long decay time is due to an ejected, magnetically confined, low beta plasmoid expanding self similarly in the ambient medium in a manner reminiscent of solar coronal mass ejections. We demonstrate that the long tail of the DS Lex/B light curve can be explained by rapid expansion, causing the plasma to become tenuous sufficiently quickly that it avoids catastrophic radiative cooling. From this model, we estimate the mass of the plasmoid to be approximately = 10(exp 20) g and the total energy of the event to be approximately = 10(exp 36) ergs. These values are approximately 10(exp 4) times as large as those seen during the largest solar coronal mass ejection (CME) events. We argue that the results of our model are consistent with other measurements of stellar flare parameters. We also estimate a mass-loss rate of a few times 10(exp -13) Solar mass/yr and discuss the role of mass loss from dMe stars in the mass balance of the interstellar medium. We estimate the rotational braking timescale from these events to be less than 500 million years and suggest that CME's may be an important source of angular momentum loss from late-type stars.

  3. A coronal mass ejection model for the 1992 July 15 flare on AU Microscopii observed by the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Cully, Scott L.; Fisher, George H.; Abbott, Mark J.; Siegmund, Oswald H. W.

    1994-01-01

    The dM1e flare star AU Microscopii (AU Mic) was observed by the EUVE Deep Survey Instrument on 1992 July 14-18. A large flare was detected in the Deep Survey Lexan/Boron (DS Lex/B)(65-190 A) band and the SW (70-190 A) and MW (140-380 A) spectrometers. The flare consisted of a sharp impulsive peak lasting approximately 2 hours followed by a decaying tail lasting about a day. We present a simple, single temperature, dynamic model for the flare decay which is consistent with the DS Lex/B light curve and reproduces the strongest, high-temperature spectral lines in the released EUVE spectra. In this model, we assume the long decay time is due to an ejected, magnetically confined, low beta plasmoid expanding self similarly in the ambient medium in a manner reminiscent of solar coronal mass ejections. We demonstrate that the long tail of the DS Lex/B light curve can be explained by rapid expansion, causing the plasma to become tenuous sufficiently quickly that it avoids catastrophic radiative cooling. From this model, we estimate the mass of the plasmoid to be approximately = 10(exp 20) g and the total energy of the event to be approximately = 10(exp 36) ergs. These values are approximately 10(exp 4) times as large as those seen during the largest solar coronal mass ejection (CME) events. We argue that the results of our model are consistent with other measurements of stellar flare parameters. We also estimate a mass-loss rate of a few times 10(exp -13) Solar mass/yr and discuss the role of mass loss from dMe stars in the mass balance of the interstellar medium. We estimate the rotational braking timescale from these events to be less than 500 million years and suggest that CME's may be an important source of angular momentum loss from late-type stars.

  4. Flare Observations.

    PubMed

    Benz, Arnold O

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs), electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions. Supplementary material is available for this article at 10.12942/lrsp-2008-1.

  5. Onset of the Magnetic Explosion in Filament-Eruption Flares and Coronal Mass Ejections: Single-Bipole Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Sterling, Alphonse C.

    2000-01-01

    We present three-dimensional sketches of die magnetic field before and during filament eruptions in flares and coronal mass ejections. Before the eruption, the overall magnetic field is a closed bipole in which the core field (the field rooted along the bipole's neutral line in the photospheric magnetic flux) is strongly sheared and has oppositely curved "elbows" that bulge out from the opposite ends of the neutral line. This core-field sigmoid runs under and is pressed down in the middle by the rest of the field in the bipole, the less-sheared envelope field rooted outside the core field (as in the model of Antiochos, Dahlburg, & Klimchuk. A filament of chromospheric-temperature plasma is often held in the core field over the neutral line. In a filament eruption, the core field undergoes an explosive eruption, the frozen-in filament plasma providing a visible tracer of the erupting field. The core-field explosion may be either confined (as in some flares) or ejective (as in CMEs that begin together with the onset of a long-duration two-ribbon flare). We present examples of each of these two kind of events as observed in sequences of coronal X-ray images from the Yohkoh SXT, and consider (1) how the explosion begins, and (2) whether confined eruptions begin in basically the same way as ejective eruptions.

  6. SUNSPOT ROTATION, SIGMOIDAL FILAMENT, FLARE, AND CORONAL MASS EJECTION: THE EVENT ON 2000 FEBRUARY 10

    SciTech Connect

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.

    2012-07-20

    We find that a sunspot with positive polarity had an obvious counterclockwise rotation and resulted in the formation and eruption of an inverse S-shaped filament in NOAA Active Region 08858 from 2000 February 9 to 10. The sunspot had two umbrae which rotated around each other by 195 Degree-Sign within about 24 hr. The average rotation rate was nearly 8 Degree-Sign hr{sup -1}. The fastest rotation in the photosphere took place during 14:00 UT to 22:01 UT on February 9, with a rotation rate of nearly 16 Degree-Sign hr{sup -1}. The fastest rotation in the chromosphere and the corona took place during 15:28 UT to 19:00 UT on February 9, with a rotation rate of nearly 20 Degree-Sign hr{sup -1}. Interestingly, the rapid increase of the positive magnetic flux occurred only during the fastest rotation of the rotating sunspot, the bright loop-shaped structure, and the filament. During the sunspot rotation, the inverse S-shaped filament gradually formed in the EUV filament channel. The filament experienced two eruptions. In the first eruption, the filament rose quickly and then the filament loops carrying the cool and the hot material were seen to spiral counterclockwise into the sunspot. About 10 minutes later, the filament became active and finally erupted. The filament eruption was accompanied with a C-class flare and a halo coronal mass ejection. These results provide evidence that sunspot rotation plays an important role in the formation and eruption of the sigmoidal active-region filament.

  7. Pre-flare Coronal Jet and Evolutionary Phases of a Solar Eruptive Prominence Associated with the M1.8 Flare: SDO and RHESSI Observations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Cho, K.-S.

    2016-12-01

    We investigate the triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, the Reuven Ramaty High Energy Solar Spectroscopic Imager, and the Extreme Ultraviolet Imager/Sun Earth Connection Coronal and Heliospheric Investigation on board the Solar Terrestrial Relation Observatory. Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet, which is associated with the rapid eruption of a cool flux rope. Furthermore, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ˜12 km s-1 while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare, suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power-law spectra with hard electron spectral index (δ ˜ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ˜177 km s-1. The temporal, spatial, and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.

  8. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Feng, X.; Wu, S.; Hu, Q.

    2012-12-01

    Non-potentiality of the solar coronal magnetic field accounts for the solar explosion like flares and CMEs. We apply a data-driven CESE-MHD model to investigate the three-dimensional (3D) coronal magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The CESE-MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the magnetic free energy drops during the flare with an amount of 1.7 × 1030 erg, which can be interpreted as the energy budget released by the minor C-class flare.

  9. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ∼ (10{sup 8}-10{sup 9}) cm for ∼30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  10. INITIATION OF CORONAL MASS EJECTION AND ASSOCIATED FLARE CAUSED BY HELICAL KINK INSTABILITY OBSERVED BY SDO/AIA

    SciTech Connect

    Kumar, Pankaj; Cho, K.-S.; Bong, S.-C.; Park, Sung-Hong; Kim, Y. H.

    2012-02-10

    In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. High-resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly suggest the development of helical kink instability in the erupting prominence, which implies a flux rope structure of the magnetic field. A brightening starts below the apex of the prominence with its slow rising motion ({approx}100 km s{sup -1}) during the activation phase. A bright structure, indicative of a helix with {approx}3-4 turns, was transiently formed at this position. The corresponding twist of {approx}6{pi}-8{pi} is sufficient to generate the helical kink instability in a flux rope according to recently developed models. A slowly rising blob structure was subsequently formed at the apex of the prominence, and a flaring loop was observed near the footpoints. Within 2 minutes, a second blob was formed in the northern prominence leg. The second blob erupts (like a plasmoid ejection) with the detachment of the northern prominence leg, and flare intensity maximizes. The first blob at the prominence apex shows rotational motion in the counterclockwise direction in the plane of sky, interpreted as the unwinding motion of a helix, and it also erupts to give the CME. RHESSI hard X-ray (HXR) sources show the two footpoint sources and a loop-top source during the flare. We found RHESSI HXR flux, soft X-ray flux derivative, and CME acceleration in the low corona correlate well, which is in agreement with the standard flare model (CSHKP). We also discuss the possible role of ballooning as well as torus instabilities in driving the CME. We conclude that the CME and flare were triggered by the helical kink instability in a flux rope and accelerated mainly by the torus instability.

  11. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    SciTech Connect

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-11-20

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  12. Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    SciTech Connect

    Battaglia, Marina; Fletcher, Lyndsay; Simões, Paulo J. A.

    2014-07-01

    Before the onset of a flare is observed in hard X-rays, there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission, which suggests that energy is already being released and deposited into the corona and chromosphere at this stage. This work analyzes the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well-observed flare with a prolonged pre-heating phase are analyzed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minute duration of the pre-heating phase we find no hint of accelerated electrons in either hard X-rays or microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to sustain the observed temperature and emission measure. Under the assumption of this energy being transported toward the chromosphere via thermal conduction, significant energy deposition at the chromosphere is expected. However, no detectable increase of the emission in the AIA wavelength channels sensitive to chromospheric temperatures is observed. The observations suggest energy release and deposition in the flaring loop before the onset of particle acceleration, yet a model in which energy is conducted to the chromosphere and subsequent heating of the chromosphere is not supported by the observations.

  13. Coronal mass ejection and solar flare initiation processes without appreciable changes of the large-scale magnetic field topology

    NASA Astrophysics Data System (ADS)

    Veselovsky, I. S.; Panasenco, O. A.

    We demonstrate that spurious three-dimensional re-constructions from two-dimensional images and movies of solar flares and coronal mass ejections can arise as a result of viewing conditions and projection effects, which are not always properly taken into account in the current literature. Theory and observations indicate that eruptions can proceed with or without large-scale topological changes of prominences and coronal magnetic fields. Electric currents and plasma drifts in crossed electric and magnetic fields play not negligible, but important role. This means that large-scale magnetic reconnections understood as topological transitions in the magnetic field are not always necessary for eruptions. The scenario of expanding and rising non-planar systems of preexisting loops and arcades, which are deforming when shearing at bottom parts, twisting and rotating at summits, satisfactory fits available observations. Movies are presented demonstrating this type of behavior with a preserved magnetic connectivity.

  14. Non-Maxwellian distribution functions in flaring coronal loops - Comparison of Landau-Fokker-Planck and BGK solutions

    NASA Technical Reports Server (NTRS)

    Ljepojevic, N. N.; Macneice, P.

    1988-01-01

    The high-velocity tail of the electron distribution has been calculated by solving the high-velocity form of the Landau equation for a thermal structure representative of a flaring coronal loop. These calculations show an enhancement of the tail population above Maxwellian for electrons moving down the temperature gradient. The results obtained are used to test the reliability of the BGK approximation. The comparison shows that the BGK technique can estimate contributions to the heat flux from the high-energy tail to within an order of magnitude.

  15. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    SciTech Connect

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu

    2014-04-10

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ΔE {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  16. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  17. Investigation on M-class Flare-Associated Coronal Mass Ejections with and Without DH Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Selvarani, G.; Shanmugaraju, A.; Vrsnak, Bojan; Lawrance, M. Bendict

    2017-06-01

    We perform a statistical analysis on 157 M-class soft X-ray flares observed during 1997 - 2014 with and without deca-hectometric (DH) type II radio bursts aiming at the reasons for the non-occurrence of DH type II bursts in certain events. All the selected events are associated with halo Coronal Mass Ejections (CMEs) detected by the Solar and Heliospheric Observatory (SOHO) / Large Angle Spectrometric and COronograph (LASCO). Out of 157 events, 96 (61%; "Group I") events are associated with a DH type II burst observed by the Radio and Plasma Wave (WAVES) experiment onboard the Wind spacecraft and 61 (39%; "Group II") events occur without a DH type II burst. The mean CME speed of Group I is 1022 km/s and that of Group II is 647 km/s. It is also found that the properties of the selected M-class flares such as flare intensity, rise time, duration and decay time are greater for the DH associated flares than the non-DH flares. Group I has a slightly larger number (56%) of western events than eastern events (44%), whereas Group II has a larger number of eastern events (62%) than western events (38%). We also compare this analysis with the previous study by Lawrance, Shanmugaraju, and Vršnak ( Solar Phys. 290, 3365L, 2015) concerning X-class flares and confirm that high-intensity flares (X-class and M-class) have the same trend in the CME and flare properties. Additionally we consider aspects like acceleration and the possibility of CME-streamer interaction. The average deceleration of CMEs with DH type II bursts is weaker (a = - 4.39 m/s2) than that of CMEs without a type II burst (a = -12.21 m/s2). We analyze the CME-streamer interactions for Group I events using the model proposed by Mancuso and Raymond ( Astron. Astrophys. 413, 363, 2004) and find that the interaction regions are the most probable source regions for DH type II radio bursts.

  18. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  19. Coronal vs chromospheric heating through co-spatial return currents during the 19 and 20 Jan 2005 solar flare

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2016-05-01

    The high electron flux required to explain the bremsstrahlung X-ray emission observed from solar flares is expected to be accompanied by a neutralizing co-spatial return current. In addition to resupplying the acceleration region with electrons, this return current will both heat the coronal plasma and flatten the electron distribution at lower energies. This flattening in the electron distribution in turn flattens the X-ray spectrum. We have found that return-current collisional thick-target model (RCCTTM) of Holman (2012) provides an acceptable fit to X-ray spectra with strong breaks for 18 flares observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). This is a 1D model similar to the collisional thick-target model (CTTM) with two additional assumptions: (1) electrons lose some of their energy through return current losses along their path to the thick target, where they lose all their remaining energy through Coulomb collisions; (2) the non-thermal beam is streaming in a warm target, which means that electrons will be thermalized at a non-zero energy. We assume this energy to be equal to the analytical value derived by Kontar et al. 2015. We show that return-current heating in the corona is about an order of magnitude higher than the heating at the footpoints at times during the flare.

  20. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Park, Y. D.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.

  1. Forecast of a Major Flare Occurrence Rate within a Day Using SDO/HMI Data

    NASA Astrophysics Data System (ADS)

    Lim, Daye; Moon, Yong-Jae; Park, J.-Y.

    2017-08-01

    We present the relationship between vector magnetic field parameters and solar major flare occurrence rate. Based on this we are developing the forecast of major flare (M and X-class) occurrence rate within a day using Space-weather HMI Active Region Patch (SHARP) vector magnetic field hourly data from May 2010 to December 2016. In order to reduce the projection effect, we use SHARP data whose longitudes are smaller than 60 degrees. We consider six SHARP magnetic parameters (the total unsigned current helicity, the total photospheric magnetic free energy density, the total unsigned vertical current, the absolute value of the net current helicity, the sum of the net current emanating from each polarity, the total unsigned magnetic flux) with high F-scores as useful predictors of flaring activity from Bobra et al. (2015). All magnetic parameters are divided into 100 groups to estimate the corresponding flare occurrence rates. The flare identification is determined by using LMSAL flare locations, giving more numbers of flares than the NGDC flare list. 70% of the data are used for setting up a flare model, and the other for test. Major results are as follows. First, flare occurrence rates (X-class and M & X-class) are well correlated with six magnetic parameters. Second, the occurrence rate ranges from 0.001 to 1 for M and X-class flares. Third, the logarithmic values of flaring rates are well approximated by two linear equations with different slopes: steeper one at lower values. Fourth, the sum of the net current emanating from each polarity gives the minimum RMS error between actual flare rate and predicted one.

  2. Relationship of decametric-hectometric type II radio burst, coronal mass ejections and solar flare observed during 1997-2014

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Verma, V. K.

    2017-01-01

    In the present study we have investigated 426 DH Type II radio burst and associated CMEs events observed during the time period of 1997-2014. The starting frequency of most of associated DH type-II bursts (85%) lies in the range of 1-14 MHz (364 out of 426) with mean value of starting frequency is ∼11 MHz. The study of starting frequency (1-16 MHz) of DH type II bursts and heliocentric distance in solar radii indicate that DH type II radio bursts originate from 2.2-4.5 (RS) heliocentric distance in solar radii. We also found that the ∼ 48% DH Type II radio bursts associated CMEs are located between ± 40° of solar central disc and we also found that duration of DH type II radio bursts located at solar disc center are more than the duration of DH type II radio bursts located at solar limb. It is found that mean value for linear and initial speed of DH Type II associated CMEs are 1157 km/s and 1200 km/s, respectively. The CMEs speed are not correlated with duration of DH Type II radio bursts indicate that the durations of DH Type II radio bursts does not depend on speed of CMEs. The study also show that 426 DH type II radio bursts associated CMEs/flares occurred when there is coronal holes(CH) in nearby area and the mean distance between DH type II burst associated CMEs/ flares and boundary of coronal hole (CH) is 26°. The study also shows that there is no relation between drift velocity of DH type II radio bursts and speed of CMEs. The study also indicate that about 45% flares those associated DH Type II radio bursts have duration about 60 minutes and long duration DH Type II radio bursts are associated with X-class flares. We have also discussed that the results obtained in the present investigation in view of latest heliophysics interpretations.

  3. Transport inhibition of coronal energetic electrons by multiple double layers: application to solar flares and expansion of the corona

    NASA Astrophysics Data System (ADS)

    Li, T.; Drake, J. F.; Swisdak, M. M.

    2012-12-01

    The transport of electrons from a coronal acceleration site to the chromosphere and out to the solar wind is a key issue in understanding the dynamics of solar flares and the expansion of the hot corona. The physics of how these energetic electrons transport from the corona remains poorly understood. Using a particle-in-cell code, we recently simulated an initial system of very hot electrons in contact with cold electrons along the local magnetic field, and found that transport inhibition begins when the hot electrons start to propagate from the source region [1]. This is due to the formation of a large-amplitude, localized electrostatic electric field, in the form of a double layer (DL), which is driven by an ion/return-current-electron streaming instability. The DL provides a potential barrier that suppresses the hot electron transport into the cold electron region, and significantly reduces electron heat flux. The result can help explain the observed prolonged duration of looptop hard X-ray emission. As a continued effort, simulations of increasing sizes are performed. Larger simulations allow the system to evolve for longer time and give rise to more complex dynamics. Instead of a single DL observed in smaller simulations [1], multiple DLs are generated. A succession of many weak DLs, occurring from the corona to the Earth, was considered to make up the interplanetary potential difference in exospheric solar wind models [2]. The observation of multiple DLs in the larger simulations favors this scenario. The dynamics of multiple DLs and the associated transport regulation are being investigated, and the application to solar flares and coronal expansion will be discussed. [1] T.C. Li, J.F. Drake and M. Swisdak, ApJ, in press, 2012 [2] C. Lacombe, et. al., Ann. Geophysicae, 20, 609, 2002

  4. Evidence of coronal flaring in narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.

    High-energy (E>2 keV) continuum flaring is detected in two narrow-line Seyfert 1 galaxies (I Zw 1 and NAB 0205+024), consistent with occurring in a hot corona distinct from the accretion disc. The flare in I Zw 1 is accompanied by an increase in the amount of gravitationally redshifted reflected emission coming from the accretion disc. This indicates that the high-energy continuum component is compact and located close to the black hole, and could possibly be the base of an aborted jet.

  5. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  6. EVIDENCE FOR INTERNAL TETHER-CUTTING IN A FLARE/CORONAL MASS EJECTION OBSERVED BY MESSENGER, RHESSI, AND STEREO

    SciTech Connect

    Raftery, Claire L.; Gallagher, Peter T.; McAteer, R. T. James; Delahunt, Gareth; Lin, Chia-Hsien

    2010-10-01

    The relationship between eruptive flares and coronal mass ejections (CMEs) is a topic of ongoing debate, especially regarding the possibility of a common initiation mechanism. We studied the kinematic and hydrodynamic properties of a well-observed event that occurred on 2007 December 31 using data from MESSENGER, RHESSI, and STEREO in order to gain new physical insight into the evolution of the flare and CME. The initiation mechanism was determined by comparing observations to the internal tether-cutting, breakout, and ideal magnetohydrodynamic (MHD) models. Evidence of pre-eruption reconnection immediately eliminated the ideal MHD model. The timing and location of the soft and hard X-ray sources led to the conclusion that the event was initiated by the internal tether-cutting mechanism. In addition, a thermal source was observed to move in a downward direction during the impulsive phase of the event, followed by upward motion during the decay phase, providing evidence for X- to Y-type magnetic reconnection.

  7. GOES-13 SXI Observations of the 5 Dec 2006 X9 Flare and Associated Coronal Wave Activity

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; Hill, S. M.; Biesecker, D.; Reinard, A.

    2008-05-01

    On 5 Dec 2006, the GOES-13 SXI observed a spectacular coronal wave associated with an X9 flare on the East limb of the Sun. Because of the regularity and relatively high cadence of SXI imaging, this observation captures the global manifestation of the wave in a way never before seen. The images have now been carefully registered and de-scattered, revealing details of the event previously unseen and with more clarity than in the original data reduction. In particular, the phenomenology of the initial 15 minutes of the event is greatly enhanced, showing the launch of a powerful blast wave traveling at about 1500 km/s. This front, probably a fast MHD shock driven by the impulsive expansion of a coronal loop system, quickly slows down and spreads all the way across the Sun with speeds (300-400 km/sec) typical of EIT-like wave activity. Many secondary waves are generated as the initial front propagates, keeping the base of the corona in an agitated state for at least two hours. A key element driving such prolonged and spatially extended wave activity is the rapid increase in characteristic speeds with height above the solar surface. This property of the solar atmosphere tends to refract the wave fronts around the solar limb, effectively trapping much of the wave energy near the base of the corona.

  8. Working length changes in curved canals after coronal flaring by using rotary files and hand file: An in vitro study

    PubMed Central

    Kumar, Rahul; Khambete, Neha; Patil, Suvarna; Hoshing, Upendra; Medha, Ashish; Shetty, Roshan

    2013-01-01

    Aim: This in vitro investigation examined the effect of early coronal flaring (CF) and late CF on the working length (WL) in curved root canals. Background: The objective of this study was to determine if canal length is altered as a result of CF in curved canals of molar roots. Study Design: The conditions compared were combinations of (a) stainless steel hand files using Gates Glidden (G. G.) drills (SS) versus nickel-titanium rotary files (Ni-Ti); and (b) early CF (flaring completed before WL determination) versus late CF (flaring completed after WL determination). Selected were 90 canals of extracted maxillary or mandibular first molars (mesial root of mandibular molars and the mesiobuccal root of the maxillary molars) from three groups. CF was accomplished for the SS group using G. G. drills and for the Ni-Ti group using rotary ProTaper and Hero Shaper files. WL was determined by a digital vernier caliper before CF, immediately after CF, and again after canal preparation. Statistical Analysis: A repeated measures analysis of variance (ANOVA) test and a Tukey's multiple prosthoc test were used for this study. Results: Results indicated that WL decreased for all canals as a result of canal preparation. The mean decrease in WL was significantly greater for the SS group (−0.77 ± 0.42 mm) than for the Ni-Ti groups (−0.33 mm ± 0.44). Less change in WL occurred in all groups when initial WL was determined after CF. Conclusion: WL in curved canals consistently decreases during the course of instrumentation. Clinician should keep this in mind for better treatment outcome. PMID:24082566

  9. CME Mass Estimates via EVE Coronal Dimmings for X-class Flares

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.; Hannah, Iain; Schrijver, Karel

    2014-06-01

    The EVE instrument on SDO detects post-flare dimmings, mainly in the spectral regions of Fe IX-XII in its MEGS-A range, which is available for most of the 29 X-class flares that have occurred between SDO launch and the end of April 2014. Based upon earlier X-ray observations we interpret these dimmings as the result of CME mass ejection from the low corona. We estimate the masses involved in these dimmings by deriving a best pre-event temperature and emission measure in the dimmed region from EVE, and a source volume from AIA images. The dimming for SOL2011-02-15, the first of these events, "peaked"at -3.4% in Fe IX in terms of the pre-event emission from the whole Sun, with smaller relative depletions in higher ionization states of Fe. The "maximum" occurred more than one hour after GOES peak. The dimming signature is generally cleanly measurable in the EVE/MEGS-A spectral samples at10 s cadence, with the dominant source of uncertainty stemming from the "sun-as-a-star" integrations; for example flare-related excess emission at a given wavelength tends to compensate for the dimming,and in this sense the mass estimate must be considered a lower limit. We address these uncertainties for the solar case by appealing to the AIA images, but for analogous processes in stellar flares one would not have this luxury.

  10. Solar flares associated coronal mass ejections in case of type II radio bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Prasad, Lalan; Chandra, Harish; Garia, Suman

    2016-08-01

    We have statistically studied 220 events from 1996 to 2008 (i.e. solar cycle 23). Two set of flare-CME is examined one with Deca-hectometric (DH) type II and other without DH type II radio burst. Out of 220 events 135 (flare-halo CME) are accompanied with DH type II radio burst and 85 are without DH type II radio burst. Statistical analysis is performed to examine the distribution of solar flare-halo CME around the solar disk and to investigate the relationship between solar flare and halo CME parameters in case of with and without DH type II radio burst. In our analysis we have observed that: (i) 10-20° latitudinal belt is more effective than the other belts for DH type II and without DH type II radio burst. In this belt, the southern region is more effective in case of DH type II radio burst, whereas in case of without DH type II radio burst dominance exits in the northern region. (ii) 0-10° longitudinal belt is more effective than the other belts for DH type II radio burst and without DH type II radio burst. In this belt, the western region is more effective in case of DH type II radio burst, while in case of without DH type II radio burst dominance exits in the eastern region. (iii) Mean speed of halo CMEs (1382 km/s) with DH type II radio burst is more than the mean speed of halo CMEs (775 km/s) without DH type II radio burst. (iv) Maximum number of M-class flares is found in both the cases. (v) Average speed of halo CMEs in each class accompanied with DH type II radio burst is higher than the average speed of halo CMEs in each class without DH type II radio burst. (vi) Average speed of halo CMEs, associated with X-class flares, is greater than the other class of solar flares in both the cases.

  11. Solar and Heliospheric Observatory/Coronal Diagnostic Spectrograph and Ground-based Observations of a Two-Ribbon Flare: Spatially Resolved Signatures of Chromospheric Evaporation

    NASA Astrophysics Data System (ADS)

    Teriaca, L.; Falchi, A.; Cauzzi, G.; Falciani, R.; Smaldone, L. A.; Andretta, V.

    2003-05-01

    During a coordinated observing campaign (Solar and Heliospheric Observatory, SOHO JOP 139), we obtained simultaneous spectroheliograms of a solar active region in several spectral lines, sampling levels from the chromosphere to the corona. Ground-based spectroheliograms were acquired at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak in four chromospheric lines, while the coronal diagnostic spectrograph on board SOHO was used to obtain rasters of the active region in transition region (TR) and coronal lines. Such a complete data set allowed us to compare the development of intensity and velocity fields during a small two-ribbon flare in the whole atmosphere. In particular, we obtained for the first time quasi-simultaneous and spatially resolved observations of velocity fields during the impulsive phase of a flare, in both the chromosphere and upper atmosphere. In this phase, strong downflows (up to 40 km s-1) following the shape of the developing ribbons are measured at chromospheric levels, while strong upward motions are instead measured in TR (up to -100 km s-1) and coronal lines (-160 km s-1). The spatial pattern of these velocities have a common area about 10" wide. This is the first time that opposite-directed flows at different atmospheric levels are observed in the same spatial location during a flare. These signatures are highly suggestive of the chromospheric evaporation scenario predicted in theoretical models of flares.

  12. On Our Ability to Predict Major Solar Flares

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    We discuss the outstanding problem of solar flare prediction and briefly overview the various methods that have been developed to address it. A class of these methods, relying on the fractal and multifractal nature of solar magnetic fields, are shown to be inadequate for flare prediction. More promise seems delivered by morphological methods applying mostly to the photospheric magnetic configuration of solar active regions but a definitive assessment of their veracity is subject to a number of caveats. Statistical and artificial-intelligence methods are also briefly discussed, together with their possible shortcomings. The central importance of proper validation procedures for any viable method is also highlighted, together with the need for future studies that will finally judge whether practically meaningful flare prediction will ever become possible, if only purely probabilistic.

  13. Performance of Major Flare Watches from the Max Millennium Program (2001 - 2010)

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. S.; Gallagher, P. T.; Marquette, W. H.; Milligan, R. O.; Canfield, R. C.

    2016-02-01

    The physical processes that trigger solar flares are not well understood, and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares ≥ X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, which finds that (1) 220 MFWs were issued in 3407 days considered (6.5 % duty cycle), with these occurring in 32 uninterrupted periods that typically last 2 - 8 days; (2) 56% of flares ≥ X1 were caught, occurring in 19 % of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).

  14. Electron acceleration in a flare plasma via coronal circuits. (German Title: Elektronenbeschleunigung im Flareplasma modelliert mit koronalen Schaltkreisen)

    NASA Astrophysics Data System (ADS)

    Önel, Hakan

    2008-08-01

    The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters

  15. Forecasting flares and Coronal Mass Ejections by the evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    Brigitta Korsos, Marianna

    2015-04-01

    We present newly discovered pre-flare behaviour of the evolution of sunspot groups by analysing the SOHO/MDI-Debrecen Data (SDD) catalogue. Our method employes the horizontal gradient of magnetic field (G_M) defined between two spots with opposite polarities at the polarity inversion line of ARs. The G_M is a n excellent proxy measure of magnetic non-potentiality at the photosphere, derived from the observed line-of-sight component of the magnetic field. The value and temporal variation of this proxy is found to possess important diagnostic information about the intensity of expected flares.Next, we address the benefits of introducing the generalisation of this proxy, i.e. the weighted horizontal magnetic gradient, WG_M. This new approach does not limit anymore the analysis to two spots having the largest horizontal magnetic gradient value. Instead, all spots are now taken into account within an appropriately defined small region in the AR.This new tool greatly enhances the capability of forecast, including (i) the accuracy of onset time prediction, (ii) CME risk assessment, (iii) whether a flare, stronger than M5 in terms of the GOES classification, is followed by another event within 18 hours. We argue that our method is currently one of the bests to forecast these eruptive events. Finally, we discuss the limitations of our approach and propose how to potentially mitigate these shortcomings.

  16. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    SciTech Connect

    Zeng, Zhicheng; Cao, Wenda; Qiu, Jiong; Judge, Philip G.

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  17. Solar Flares and Coronal Physics Using P/OF as a Research Tool

    NASA Technical Reports Server (NTRS)

    Tandberg, E. (Editor); Wilson, R. M. (Editor); Hudson, R. M. (Editor)

    1986-01-01

    This NASA Conference Publication contains the proceedings of the Workshop on Solar High-Resolution Astrophysics Using the Pinhole/Occulter Facility held at NASA Marshall Space Flight Center, Alabama, on May 8 to 10, 1985. These proceedings include primarily the invited tutorial papers, extended abstracts of contributed poster papers, and summaries of subpanel (X-Ray and Coronal Physics) discussions. Both observational and theoretical results are presented. Although the emphasis of the Workshop was focused primarily on topics peculiar to solar physics, one paper is included that discusses the P/0F as a tool for X-ray astronomy.

  18. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    SciTech Connect

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  19. Coronal O VI emission observed with UVCS/SOHO during solar flares: Comparison with soft X-ray observations

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Giordano, S.; Raymond, J. C.

    2016-06-01

    In this work, we derive the O VI 1032 Å luminosity profiles of 58 flares, during their impulsive phase, based on off-limb measurements by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the SOlar and Heliospheric Observatory (SOHO). The O VI luminosities from the transition region plasma (here defined as the region with temperatures 5.0 ≤ log T (K) ≤ 6.0) were inferred from the analysis of the resonantly scattered radiation of the O VI coronal ions. The temperature of maximum ionization for O VI is log Tmax (K) = 5.47. By comparison with simultaneous soft X-ray measurements, we investigate the likely source (chromospheric evaporation, footpoint emission, or heated prominence ejecta) for the transition region emission observed during the impulsive phase. In our study, we find evidence of the main characteristics predicted by the evaporation scenario. Specifically, most O VI flares precede the X-ray peaks typically by several minutes with a mean of 3.2 ± 0.1 min, and clear correlations are found between the soft X-ray and transition region luminosities following power laws with indices ~ 0.7 ± 0.3. Overall, the results are consistent with transition region emission originating from chromospheric evaporation; the thermal X-ray emission peaks after the emission from the evaporation flow as the loops fill with hot plasma. Finally, we were able to infer flow speeds in the range ~20-100 km s-1 for one-third of the events, 14 of which showed speeds between 60 and 80 km s-1. These values are compatible with those found through direct spectroscopic observations at transition region temperatures by the EUV Imaging Spectrometer (EIS) on board Hinode.

  20. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Rybák, J.; Kashapova, L.; Gömöry, P.; Tokhchukova, S.; Myshyakov, I.

    2016-09-01

    Aims: We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. Methods: The complex microwave dynamic spectrum and the expanding loop images were analyzed with the help of SDO/AIA/HMI, RHESSI, and the STEREO/SECCHI-EUVI data processing software, wavelet analysis methods, the GX Simulator tool, and the NAFE method. Results: We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz s-1. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal loop with twisted sub-structures observed in the 131, 94, and 193 Å SDO/AIA channels. Their slit-time diagrams were compared with the location of the radio source at 5.7 GHz to realize that the EUV intensity of the expanding loop increased just before the radio source triggering. We reveal two EUV bidirectional flows that are linked with the start time of the loop expansion. Their positions were close to the radio source and propagated with velocities within a range of 30-117 km s-1. Conclusions: We demonstrate that periodic regime of the electron acceleration in a model of the quasi-periodic magnetic reconnection might be able to explain physical properties and behavior of the sub

  1. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  2. Coronal Dynamics and Complete Flare Energy Budget for the M Dwarf AD Leo

    NASA Technical Reports Server (NTRS)

    Brown, Alexander; Sonneborn, Georgwe (Technical Monitor)

    2005-01-01

    This grant supported the observing and data analysis for FUSE Cycle 3 project C114 to observe the flare star AD Leo for 50 ksec coordinated with HST (Hubble Space Telescope) STIS ultraviolet spectroscopy and Chandra X-ray spectroscopy. Unfortunately, it was impossible to obtain the planned FUSE observations because AD Leo is a low declination target (delta approximately 20 degrees) and was rendered unobservable by restrictions in the sky coverage for FUSE observations. In April 2002 another M dwarf star, EV Lac, which is at significantly higher declination, was substituted for this project. EV Lac was observed by FUSE for a cumulative exposure of 35 ksec on 2002 July 1. The observation used the large LWRS aperture and collected data in time-tagged mode. The LWRS aperture is large enough that the target should remain within the aperture despite the normal level of pointing jitter and target drift experienced during FUSE observing. Our examination of the stellar signal showed that the target was well within the aperture throughout the observation. The data were split into night-time and day-time data so that the effects of airglow emission were recognizable. No obvious flaring, the primary science objective, was detected during the observation. The only stellar lines detected are 0 VI 1031.9, 1037.6 Angstrom, and the C III 1175 Angstrom, UV multiplet and the 977 Angstrom, resonance line. A comparison of the day-time and night-time spectra show that the 0 VI lines and the C III intersystem multiplet are unaffected by airglow features. The day-time data 977 Angstrom profile shows the presence of significant scattered solar C III photons, which should not be present in the night time spectrum. Emission fluxes for these lines were measured by direct summation of the emission lines. No continuum signal was detected in the region of these lines. The cleanest emission line profiles are for the O VI lines and we performed Gaussian fitting for these profiles. Both lines are

  3. Coronal Dynamics and Complete Flare Energy Budget for the M Dwarf AD Leo

    NASA Technical Reports Server (NTRS)

    Brown, Alexander; Sonneborn, Georgwe (Technical Monitor)

    2005-01-01

    This grant supported the observing and data analysis for FUSE Cycle 3 project C114 to observe the flare star AD Leo for 50 ksec coordinated with HST (Hubble Space Telescope) STIS ultraviolet spectroscopy and Chandra X-ray spectroscopy. Unfortunately, it was impossible to obtain the planned FUSE observations because AD Leo is a low declination target (delta approximately 20 degrees) and was rendered unobservable by restrictions in the sky coverage for FUSE observations. In April 2002 another M dwarf star, EV Lac, which is at significantly higher declination, was substituted for this project. EV Lac was observed by FUSE for a cumulative exposure of 35 ksec on 2002 July 1. The observation used the large LWRS aperture and collected data in time-tagged mode. The LWRS aperture is large enough that the target should remain within the aperture despite the normal level of pointing jitter and target drift experienced during FUSE observing. Our examination of the stellar signal showed that the target was well within the aperture throughout the observation. The data were split into night-time and day-time data so that the effects of airglow emission were recognizable. No obvious flaring, the primary science objective, was detected during the observation. The only stellar lines detected are 0 VI 1031.9, 1037.6 Angstrom, and the C III 1175 Angstrom, UV multiplet and the 977 Angstrom, resonance line. A comparison of the day-time and night-time spectra show that the 0 VI lines and the C III intersystem multiplet are unaffected by airglow features. The day-time data 977 Angstrom profile shows the presence of significant scattered solar C III photons, which should not be present in the night time spectrum. Emission fluxes for these lines were measured by direct summation of the emission lines. No continuum signal was detected in the region of these lines. The cleanest emission line profiles are for the O VI lines and we performed Gaussian fitting for these profiles. Both lines are

  4. AN ANALYTICAL MODEL FOR THE CORONAL COMPONENT OF MAJOR SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Kocharov, Leon; Valtonen, Eino; Cho, Kyung-Suk

    2011-07-01

    We formulate an analytical model of the coronal-phase acceleration observed in the beginning of major solar energetic particle (SEP) events, before the main-phase acceleration associated with coronal mass ejections (CMEs) in solar wind. The model is driven and constrained by the broadband observations of SEPs and CMEs, in particular SEP data from the particle telescope of the Energetic and Relativistic Nuclei and Electron (ERNE) experiment on the Solar and Heliospheric Observatory (SOHO) spacecraft, solar radio spectrograms, and low-corona observations of CMEs. The model is also verified against observations of solar high-energy neutrons and neutron-decay protons. The model suggests SEP acceleration above {approx} 50 MeV nucleon{sup -1} by coronal shock and the shock-amplified turbulence in closed magnetic structures, and particle release at magnetic reconnection between the closed structure of expanding CME and pre-existing open magnetic flux tubes. The analytical model connects parameters of coronal shocks and structures and the SEP parameters in space, which facilitates analysis of multiwavelength data and will assist in further development of coronal acceleration models.

  5. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    SciTech Connect

    Kushwaha, Upendra; Joshi, Bhuwan; Moon, Yong-Jae; Veronig, Astrid M.

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  6. Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Sterling, A. C.; Hudson, H.; Lemen, J. R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We present observations of the magnetic field configuration and its transformation in six solar eruptive events that show good agreement with the Hirayama-Shibata model for eruptive flares. The observations arc X-ray images from the Yohkoh Soft X-ray Telescope (SXT) and magnetograms from Kitt Peak National Solar Observatory, interpreted together with the 1-8 Angstrom X-ray flux observed by GOES. The observations show: 1. Each event is a magnetic explosion that occurs in an initially closed magnetic bipole in which the core field is sheared and twisted in the shape of a sigmoid, having an oppositely curved elbow on each end. The arms of the opposite elbows are sheared past each other so that they overlap and are crossed low above the neutral line in the middle of the bipole. 2. Although four of the explosions arc ejective (blow open the bipole) and two are confined (arc arrested within the closed bipole), all six begin the same way. In the SXT iniages, the explosion begins with brightening and expansion of the two elbows together with the appearance of short bright sheared loops low over the neutral line under the crossed arms and, rising up from the crossed arms, long strands connecting the far ends of the elbows. 3. All six events arc single-bipole events in that during the onset and early development of the explosion they show no evidence for reconnection between the exploding bipole and any surrounding magnetic fields. We conclude that in each of our events the magnetic explosion was unleashed by runaway tether-cutting via implosive/explosive rcconnection in the middle of the sigmoid, as in the Hirayama-Shibata model. The similarity of the onsets of the two confined explosions to the onsets of the four ejective explosions and their agreement with the model indicate that runaway reconnection inside a sheared core field can begin whether or not the overlying fields (the envelope field and contiguous fields that press down on the envelope) allow the explosion to be

  7. Data-driven Simulations of Magnetic Connectivity in Behind-the-Limb Gamma-ray Flares and Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Jin, Meng; Petrosian, Vahe; Liu, Wei; Omodei, Nicola

    2017-08-01

    Recent Fermi detection of high-energy gamma-ray emission from the behind-the-limb (BTL) solar flares pose a puzzle on the particle acceleration and transport mechanisms in such events. Due to the large separation between the flare site and the location of gamma-ray emission, it is believed that the associated coronal mass ejections (CMEs) play an important role in accelerating and subsequently transporting particles back to the Sun to produce obseved gamma-rays. We explore this scenario by simulating the CME associated with a well-observed flare on 2014 September 1 about 40 degrees behind the east solar limb and by comparing the simulation and observational results. We utilize a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model) to track the dynamical evolution of the global magnetic field during the event and investigate the magnetic connectivity between the CME/CME-driven shock and the Fermi emission region. Moreover, we derive the time-varying shock parameters (e.g., compression ratio, Alfven Mach number, and ThetaBN) over the area that is magnetically connected to the visible solar disk where Fermi gamma-ray emission originates. Our simulation shows that the visible solar disk develops connections both to the flare region and to the CME-driven shock during the eruption, which indicate that the CME’s interaction with the global solar corona is critical for understanding such Fermi BTL events and gamma-ray flares in general. We discuss the causes and implications of Fermi BTL events, in the framework of a potential shift of paradigm on particle acceleration in solar flares/CMEs.

  8. Unusual Emissions at Various Energies Prior to the Impulsive Phase of the Large Solar Flare and Coronal Mass Ejection of 4 November 2003

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Holman, Gordon D.; Su, Yang; de Castro, C. Guillermo Gimenez; Correia, Emilia; Fernandes, Luis O. T.; de Souza, Rodney V.; Marun, Adolfo; Pereyra, Pablo

    2012-01-01

    The GOES X28 flare of 4 November 2003 was the largest ever recorded in its class. It produced the first evidence for two spectrally separated emission components, one at microwaves and the other in the THz range of frequencies.We analyzed the pre-flare phase of this large flare, twenty minutes before the onset of the major impulsive burst. This periodis characterized by unusual activity in X-rays, sub-THz frequencies, H, and microwaves.The CME onset occurred before the onset of the large burst by about 6 min.

  9. THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES

    SciTech Connect

    Petrie, G. J. D.

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  10. Reply. [to comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1995-01-01

    In replying to a comment by Hudson et. al. (1995) in regards to Gosling (1993), Gosling (1995) holds that solar flares do not play a major role in geomagnetic storms. According to Gosling, Hudson et. al. has done nothing to demonstrate that flares either produce coronal mass ejections (CMEs) or cause major disturbances in the near-Earth space environment.

  11. Detection and Characterization of the Photospheric and Coronal Magnetic Fields of Sunspot Groups: Implications for Flare Forecasting

    DTIC Science & Technology

    2015-05-25

    be implemented there. This was also used to analyze a large archival dataset to study the evolution of ARs and the connection to solar flares . 15...SUBJECT TERMS EOARD, solar flares , sunspots, solar active region 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF...was also used to analyse a large archival                                dataset to study the evolution of ARs and the connection to  solar   flares .     2

  12. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  13. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  14. Understanding extreme quasar optical variability with CRTS - I. Major AGN flares

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric

    2017-10-01

    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.

  15. THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jerome E-mail: brian.punsly@comdev-usa.com

    2013-02-20

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L {sub intrinsic}, from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L {sub intrinsic} (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L {sub intrinsic} (1.2-50) 0-4 hr before the ejection, the increase in L {sub intrinsic} (1.2-50) in the hours preceding the ejection and the time-averaged L {sub intrinsic} (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L {sub intrinsic} (1.2-50) during ejection) is strongly correlated with L {sub intrinsic} (1.2-50) just before launch with near equality if the distance to the source is Almost-Equal-To 10.5 kpc.

  16. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  17. Study of the Three-dimensional Coronal Magnetic Field of Active Region 11117 around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang

    2012-11-01

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by ~1030 erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  18. A magnetic bald-patch flare in solar active region 11117

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2017-09-01

    With SDO observations and a data-constrained magnetohydrodynamics (MHD) model, we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch (BP) flare with strong evidence. From the photospheric magnetic field observed by SDO/HMI, we find there are indeed magnetic BPs on the polarity inversion lines (PILs) which match parts of the flare ribbons. From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms, we find strikingly good agreement of the BP separatrix surface (BPSS) footpoints with the flare ribbons, and the BPSS itself with the hot flaring loop system. Moreover, the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS, and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions, which match the corresponding pre- and post-flare AIA observations, respectively. Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.

  19. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    NASA Astrophysics Data System (ADS)

    Momany, Y.; Zaggia, S.; Gilmore, G.; Piotto, G.; Carraro, G.; Bedin, L. R.; de Angeli, F.

    2006-05-01

    Aims.In this paper we derive the structure of the Galactic stellar warp and flare. Methods: .We use 2MASS red clump and red giant stars, selected at mean and fixed heliocentric distances of R⊙≃3, 7 and 17 kpc. Results: .Our results can be summarized as follows: (i) a clear stellar warp signature is derived for the 3 selected rings, proving that the warp starts already within the solar circle; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and neutral atomic hydrogen; (iii) the consistency and regularity of the stellar-gaseous warp is traced out to about R_GC˜20 kpc; (iv) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (φ˜15°) is close to the orientation angle of the Galactic bar and this, most importantly, produces an asymmetric warp for the inner R⊙≃3 and 7 kpc rings; (v) a Northern/Southern warp symmetry is observed only for the ring at R⊙≃17 kpc, at which the dependency on φ is weakened; (vi) treating a mixture of thin and thick disk stellar populations, we trace the variation with R_GC of the disk thickness (flaring) and derive an almost constant scale-height (~0.65 kpc) within R_GC˜15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R_GC˜23 kpc; (vii) the derived outer disk warping and flaring provide further robust evidence that there is no disk radial truncation at R_GC˜14 kpc. Conclusions: .In the particular case of the Canis Major (CMa) over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l˜240° (for R⊙≃7 kpc) which brings down the Milky Way mid-plane by ~3° in this direction. The regularity and consistency of the stellar, gaseous and dust warp argues strongly against a recent merger scenario for Canis Major. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion

  20. Flares and dynamic aspects. [solar physics

    NASA Technical Reports Server (NTRS)

    Hanssen, E. T.

    1981-01-01

    Theory of the dynamic nature of solar flares, eruptive prominences, and coronal transients is surveyed. Two types of flare are considered: compact eruptions (small flares) which are probably loops, and large eruptions of double filament flares. The physical sense of this classification is justified, using solar observations. Even leaving the question unanswered of whether a coronal transient is a loop of ejected matter or a shock wave, the important, perhaps fundamental, role of mass motion in flare physics is evidenced.

  1. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  2. Observations of the 12.3 micron Mg I emission line during a major solar flare

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  3. Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Bai, T.; Murdin, P.

    2000-11-01

    Like weather forecasting, solar flare forecasting (or forecasting solar activity in general) is motivated by pragmatic needs. Solar flares, coronal mass ejections, solar winds and other solar activity intimately influence the near-Earth space environment. All kinds of spacecraft including weather and communication satellites are orbiting Earth, and their performance and lifetimes are greatly infl...

  4. Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Hannah, I. G.; MacKinnon, A. L.

    2008-10-01

    Aims: A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density. Methods: Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution (~0.2'') for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with an unprecedented vertical resolution of ~150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km. Results: Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around 140 ± 30 km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of magnetic flux tubes in the chromosphere with height. The magnetic scale height B(z)(dB/dz)-1 is found to be of the order of 300 km and a strong horizontal magnetic field is associated with noticeable flux tube expansion at a height of ~900 km.

  5. Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; McAteer, R. T. James; Dennis, Brian R.; Young, C. Alex

    2010-01-01

    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation.

  6. Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; McAteer, R. T. James; Dennis, Brian R.; Young, C. Alex

    2010-01-01

    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation.

  7. Evidence of elevated X-ray absorption before and during major flare ejections in GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jérôme

    2014-03-10

    We present time-resolved X-ray spectroscopy of the microquasar GRS 1915+105 with the MAXI observatory in order to study the accretion state just before and during the ejections associated with its major flares. Radio monitoring with the RATAN-600 radio telescope from 4.8-11.2 GHz has revealed two large, steep-spectrum major flares in the first eight months of 2013. Since the RATAN has received one measurement per day, we cannot determine the jet-forming time without more information. Fortunately, this is possible since a distinct X-ray light curve signature that occurs preceding and during major ejections has been determined in an earlier study. The X-ray luminosity spikes to very high levels in the hours before ejection, then becomes variable (with a nearly equal X-ray luminosity when averaged over the duration of the ejection) during a brief 3-8 hr ejection process. By comparing this X-ray behavior with MAXI light curves, we can estimate the beginning and end of the ejection episode of the strong 2013 flares to within ∼3 hr. Using this estimate in conjunction with time-resolved spectroscopy from the data in the MAXI archives allows us to deduce that the X-ray absorbing hydrogen column density increases significantly in the hours preceding the ejections and remains elevated during the ejections responsible for the major flares. This finding is consistent with an outflowing wind or enhanced accretion at high latitudes.

  8. Coronal Mass Ejections and Solar Proton Events During the Great March 1989 Disturbances

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1995-01-01

    The great active region of March 1989 was the most prolific in X- rays in the preceding 15 years, and produced very large bright optical solar flares. The accompanying solar energetic particle event was one of the four most intense episodes since 1963. These increases in particle fluxes are compared to the major X-ray and optical flares and to the major coronal mass ejections in order to test hypothesis.

  9. Coronal Mass Ejections and Solar Proton Events During the Great March 1989 Disturbances

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1995-01-01

    The great active region of March 1989 was the most prolific in X- rays in the preceding 15 years, and produced very large bright optical solar flares. The accompanying solar energetic particle event was one of the four most intense episodes since 1963. These increases in particle fluxes are compared to the major X-ray and optical flares and to the major coronal mass ejections in order to test hypothesis.

  10. SWUSV: a microsatellite mission for space weather early forecasting of major flares and CMEs and the complete monitoring of the ultraviolet solar variability influence on climate

    NASA Astrophysics Data System (ADS)

    Damé, Luc

    The SWUSV (Space Weather & Ultraviolet Solar Variability) proposed microsatellite mission encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (using Lyman-Alpha and Herzberg continuum imaging and H-Alpha ground support); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 10 to 20 nm, including ozone, plus Lyman-Alpha and the CN bandhead); (3) simultaneous local radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The mission is on a sun-synchronous polar orbit and proposes 5 instruments to the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2020-2021. With opening to Chinese collaboration (ESA-CAS Small Mission) a further instrument could be added (HEBS, High Energy Burst Spectrometers) to reinforced Space Weather flares prediction objectives.

  11. Spectroscopic Exploration of Solar Flares

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Paxton, L. J.; Woods, T. N.

    2016-12-01

    Professor Eugene Parker has educated and inspired the heliophysics community since the 1950s about the Parker spiral path for the solar wind, magnetic reconnection throughout the heliosphere, and coronal heating by nano-flares. Solar flares, as well as their often eruptive companions called coronal mass ejections (CMEs), have been studied for decades. While most of these studies involve imaging the Sun, observations of the Sun as a star (full-disk irradiance) have also revealed interesting results through exploring the spectral variability during flare events. Some of the new results from such studies include understanding the flare variability over all wavelengths from the energetic X-rays to the visible, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of Parker's nano-flares in continual heating of active regions.

  12. Elongation of Flare Ribbons

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.; Priest, Eric R.

    2017-03-01

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s‑1. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  13. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 1032 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  14. Flares in Profile

    NASA Image and Video Library

    2017-04-11

    An active region at the sun's edge produced several M5-class (medium sized) flares over a ten-hour period (Apr. 3, 2017). The most dramatic flare occurs about half way through the video clip, when it shoots up a bright towering plume of plasma. These were the strongest flares of the year so far. Some coronal mass ejections (which hurled clouds of plasma into space) were also associated with some of these flares. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21584

  15. Flares, CMEs and sunquakes

    NASA Astrophysics Data System (ADS)

    Zharkov, Sergei; Matthews, Sarah A.; Green, Lucie M.; Zharkova, Valentina

    Solar flares and coronal mass ejections (CMEs) are believed to be manifestations of a sudden and rapid release of the accumulated magnetic energy in the corona. Only recently, the photospheric changes due to the reconnection and coronal magnetic field reconfiguration have been seriously considered from the theoretical point of view. Analysis of seismic emission (sun-quakes) induced in the solar interior in the vicinity of flares offers us an opportunity to explore the physical processes of energy transport in flaring atmospheres. Only a limited number of M and X-class flares have been reported to show seismic signatures in the form or ripples or egression sources, revealing that some of the most powerful flares often do not produce any seismic signatures. In fact, the most powerful signatures were recorded from an M-class flare. This raises important questions about how the flare energy and momentum are transported to the solar surface and interior in order to produce sun-quakes. Using observations by Hinode, RHESSI and SDO we analyse and test the new theories, gaining insight into the flare physics using flare seismology.

  16. High-resolution Observations of Photospheric Structural Evolution Associated with a Flare

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Deng, Na; Cao, Wenda; Wang, Haimin

    2017-08-01

    The structural evolution of the photosphere not only play an important role in contributing to the accumulation of free energy in the corona that powers solar flares, but also may response to the restructuring of coronal field as a result of flare energy release. A better understanding of these issues may be achieved by high-resolution observations of the photospheric structure covering the entire flaring period, which are, however, still rare. Here we present photospheric vector magnetograms and TiO images (at 0.2" and 0.09" resolution, respectively) from before to after a major flare, taken by the 1.6 m New Solar Telescope at Big Bear Solar Observatory. In the pre-flare state, a small-scale magnetic structure of opposite-polarity configuration is seen near the footpoints of sheared magnetic loops; its magnetic fluxes and currents enhance till the flare start time and decline afterwards. During the main phase, as one flare ribbon sweeps across a sunspot, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. We suggest that the small-scale flux emergence between the two sheared flux systems triggers the flare reconnection, and that the sunspot rotation is driven by the surface Lorentz-force change due to the coronal back reaction.

  17. The Solar Flare Myth in solar-terrestrial physics

    SciTech Connect

    Gosling, J.T.

    1993-07-01

    Early observations of associations between solar flares and large non- recurrent geomagnetic storms, large {open_quote}solar{close_quote} energetic particle events, and transient shock wave disturbances in the solar wind led to a paradigm of cause and effect that gave flares a central position in the chain of events leading from solar activity to major transient disturbances in the near-earth space environment. However, research in the last two decades shows that this emphasis on flares is misplaced. In this paper the author outlines briefly the rationale for a different paradigm of cause and effect in solar- terrestrial physics that removes solar flares from their central position as the {open_quote}cause{close_quote} of major disturbances in the near-earth space environment. Instead, this central role of {open_quote}cause{close_quote} is played by events now known as coronal mass ejections, or CMEs.

  18. 1.56 Micron Spectropolarimetry of Umbral Dots and Their Evolution Associated with a Major Flare

    NASA Astrophysics Data System (ADS)

    Deng, Na; Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Cao, Wenda; Wang, Haimin

    2017-08-01

    We present unprecedented high-resolution and high magnetic sensitivity spectropolarimetric characterization of umbral dots (UDs), the prevailing fine scale brightness structure manifesting magneto-convection inside sunspot umbrae where the magnetic fields are strongest and nearly vertical. This is made available by recent development of the Near InfraRed Imaging Spectropolarimeter (NIRIS) using the 1.56 micron FeI line at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory. Vector magnetograms are obtained after Milne-Eddington Stokes inversions, 180-degree azimuthal ambiguity resolution, and correction of projection effects. A βγδ spot in NOAA AR 12371 was observed for six hours on June 22, 2015 with a cadence of 87 s, which covered an M6.6 flare. The overall umbra is separated into several smaller umbrae by light bridges. The umbrae are close to the flaring polarity inversion line and show an average inclination of about 17° and field strength of about 2100 Gauss. The UDs are resolvable in NIRIS vector magnetograms, especially for peripheral UDs. The measured field strength is about 3% lower in UDs comparing to umbral cores (UCs) where the continuum intensity is below the threshold of UDs. The field is more inclined in UDs by 5% ( ≈ 1°) than that in UCs. One of the umbrae showed rapid evolution associated with the flare. Its overall intensity and the number of UDs decrease by at least 7% within two hours after being swept by the flare ribbon. NIRIS vector magnetograms indicate that the average field strength of that umbra has a rapid stepwise increase for about 100 Gauss while the inclination almost has no change. The decreases of the umbral brightness and the number of UDs are thus attributed to the increase of the field strength. The results suggest that the field strength plays the most important role in constraining convective heat transport in umbra.

  19. FLARES PRODUCING WELL-ORGANIZED POST-FLARE ARCADES (SLINKIES) HAVE EARLY PRECURSORS

    SciTech Connect

    Ryutova, M. P.

    2011-06-01

    Exploding loop systems producing X-ray flares often, but not always, bifurcate into a long-living, well-organized system of multi-threaded loop arcades resembling solenoidal slinkies. The physical conditions that cause or prevent this process are not known. To address this problem, we examined most of the major (X-class) flares that occurred during the last decade and found that the flares that bifurcate into long-living slinky arcades have different signatures than those that do not 'produce' such structures. The most striking difference is that, in all cases of slinky formation, GOES high energy proton flux becomes significantly enhanced 10-24 hr before the flare occurs. No such effect was found prior to the 'non-slinky' flares. This fact may be associated with the difference between energy production by a given active region and the amount of energy required to bring the entire system into the form of well-organized, self-similar loop arcades. As an example illustrating the process of post-flare slinky formation, we present observations taken with the Hinode satellite, in several wavelengths, showing a time sequence of pre-flare and flare activity, followed by the formation of dynamically stable, well-organized structures. One of the important features revealed is that post-flare coronal slinky formation is preceded by scale invariant structure formation in the underlying chromosphere/transition region. We suggest that the observed regularities can be understood within the framework of self-organized critical dynamics characterized by scale invariant structure formation with critical parameters largely determined by energy saturation level. The observed regularities per se may serve as a long-term precursor of strong flares and may help to study predictability of system behavior.

  20. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  1. Relationship of great soft X-ray flares with other solar activity phenomena

    NASA Astrophysics Data System (ADS)

    Verma, V. K.

    2011-07-01

    We present study of relationship of GSXR flares with H α flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed H α flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with H α flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the H α, HXR and MW emissions, respectively while during 15-20% of GSXR flares the SXR emissions start after the onset of H α, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1-15 min, 1-20 min, 21-30 min, 21-40 min, 21-40 min, and 1-4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with "big flare syndrome" proposed by Kahler (1982).

  2. GRADUAL MAGNETIC EVOLUTION OF SUNSPOT STRUCTURE AND FILAMENT–CORONA DYNAMICS ASSOCIATED WITH THE X1.8 FLARE IN AR11283

    SciTech Connect

    Ruan, Guiping; Chen, Yao; Wang, Haimin

    2015-10-20

    In this paper, we present a study of the persistent and gradual penumbral decay and the correlated decline of the photospheric transverse field component 10–20 hr before a major flare (X1.8) eruption on 2011 September 7. This long-term pre-eruption behavior is corroborated by the well-imaged pre-flare filament rising, the consistent expansion of the coronal arcades overlying the filament, and the nonlinear force-free field modeling results in the literature. We suggest that both the long-term pre-flare penumbral decay and the transverse field decline are photospheric manifestations of the gradual rise of the coronal filament–flux rope system. We also suggest that the C3 flare and the subsequent reconnection process preceding the X1.8 flare play an important role in triggering the later major eruption.

  3. CORONAL CELLS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P. E-mail: harry.warren@nrl.navy.mil

    2012-04-10

    We have recently noticed cellular features in Fe XII 193 A images of the 1.2 MK corona. They occur in regions bounded by a coronal hole and a filament channel, and are centered on flux elements of the photospheric magnetic network. Like their neighboring coronal holes, these regions have minority-polarity flux that is {approx}0.1-0.3 times their flux of majority polarity. Consequently, the minority-polarity flux is 'grabbed' by the majority-polarity flux to form low-lying loops, and the remainder of the network flux escapes to connect with its opposite-polarity counterpart in distant active regions of the Sun. As these regions are carried toward the limb by solar rotation, the cells disappear and are replaced by linear plumes projecting toward the limb. In simultaneous views from the Solar Terrestrial Relations Observatory and Solar Dynamics Observatory spacecraft, these plumes project in opposite directions, extending away from the coronal hole in one view and toward the hole in the other view, suggesting that they are sky-plane projections of the same radial structures. We conclude that these regions are composed of closely spaced radial plumes, extending upward like candles on a birthday cake and visible as cells when seen from above. We suppose that a coronal hole has this same discrete, cellular magnetic structure, but that it is not seen until the encroachment of opposite-polarity flux closes part or all of the hole.

  4. Motion Magnification in Coronal Seismology

    NASA Astrophysics Data System (ADS)

    Anfinogentov, Sergey; Nakariakov, Valery M.

    2016-11-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.

  5. Highlights of the study of energy release in flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1987-01-01

    From February 26 to March 1, 1979, 32 solar flare investigators attended a workshop at Cambridge, MA to define objectives and devise a scientific program for the study of energy release in flares (SERF) during the coming solar maximum. Herein, some major results of the ensuing five-year effort to observe and understand the flare energy release process and its effects (energetic particle production, coronal and chromospheric heating, electromagnetic radiations, and mass motions and ejections) are reviewed. The central issue - what processes store and release the energy liberated in flares - remains unresolved except in the most general terms (e.g., it is generally agreed that the energy is stored in sheared or stressed magnetic fields and released by field annihilation during some MHD instability). Resolving that issue is still one of the most important goals in solar physics, but the advances during the SERF program have brought it closer.

  6. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  7. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.

  8. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-12-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  9. Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar flares

    NASA Astrophysics Data System (ADS)

    Pesce Rollins, Melissa

    2017-01-01

    The Fermi Large Area Telescope (LAT) observations of the active Sun provide the largest sample of detected solar flares with emission greater than 30 MeV to date. These include detections of impulsive and sustained emission, extending up to 20 hours in the case of the 2012 March 7 X-class flares. These high-energy flares are coincident with GOES X-ray flares of X, M and C classes as well as very fast Coronal Mass Ejections (CME). We will present results from the First Fermi-LAT solar flare catalog covering the majority of Solar Cycle 24 including correlation studies with the associated Solar Energetic Particles (SEP) and CMEs.

  10. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  11. Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7-13

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Xue, Xianghui; Shen, Chenglong; Ye, Pinzhong; Wang, S.; Zhang, Jie

    2006-07-01

    We have analyzed five major CMEs originating from NOAA active region (AR) 808 during the period of 2005 September 7-13, when the AR 808 rotated from the east limb to near solar meridian. Several factors that affect the probability of the CMEs' encounter with the Earth are demonstrated. The solar and interplanetary observations suggest that the second and third CMEs, originating from E67° and E47°, respectively, encountered the Earth, while the first CME originating from E77° missed the Earth, and the last two CMEs, although originating from E39° and E10°, respectively, probably only grazed the Earth. On the basis of our ice cream cone mode and CME deflection model, we find that the CME span angle and deflection are important for the probability of encountering Earth. The large span angles allowed the middle two CMEs to hit the Earth, even though their source locations were not close to the solar central meridian. The significant deflection made the first CME totally miss the Earth even though it also had wide span angle. The deflection may also have made the last CME nearly miss the Earth even though it originated close to the disk center. We suggest that, in order to effectively predict whether a CME will encounter the Earth, the factors of the CME source location, the span angle, and the interplanetary deflection should all be taken into account.

  12. Impact of major coronal mass ejections on geo-space during September 7 -- 13, 2005

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xue, X.; Shen, C.; Ye, P.; Wang, S.; Zhang, J.

    2006-05-01

    We have analyzed five major CMEs originating from NOAA active region (AR) 808 during the period of September 7 to 13, 2005, when the AR 808 rotated from the east limb to near solar meridian. Several factors that affect the probability of the CMEs' encounter with the Earth are demonstrated. The solar and interplanetary observations suggest that the 2nd and 3rd CMEs, originating from E67 and E47 respectively, encountered the Earth, while the 1st CME originating from E77 missed the Earth, and the last two CMEs, originating from E39 and E10 respectively, probably only grazed the Earth. Based on our ice-cream cone model (Xue et al. 2005a) and CME deflection model (Wang et al. 2004b), we find that the CME span angle and deflection are important for the probability of encountering. The large span angles make middle two CMEs hit the Earth, though their source locations were not close to the solar central meridian. The significant deflection makes the first CME totally missed the Earth though it also had wide span angle. The deflection may also make the last CME nearly missed the Earth though it originated close to the disk center. We suggest that, in order to effectively predict whether a CME will encounter the Earth, the factors of the CME source location, the span angle, and the interplanetary deflection should all be taken into account.

  13. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Green, L. M.

    2009-12-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  14. THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING

    SciTech Connect

    Schrijver, Carolus J.; Title, Alan M.; Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile E-mail: title@lmsal.com E-mail: etienne.pariat@obspm.fr

    2011-09-10

    The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much

  15. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  16. Are coronal type II shocks piston driven?

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kundu, M. R.

    1992-01-01

    Flare blast waves and shocks piston driven by coronal mass ejections (CMEs) have been proposed to be responsible for generating type II radio bursts in the solar corona. The idea for piston-driven shocks came primarily from temporal association of shocks and CMEs. Our compilation of CME events with simultaneous radio observations with positional information supports idea of flare blast waves.

  17. Coronal abundances determined from energetic particles

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    1995-01-01

    Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.

  18. DIRECT EVIDENCE FOR A FAST CORONAL MASS EJECTION DRIVEN BY THE PRIOR FORMATION AND SUBSEQUENT DESTABILIZATION OF A MAGNETIC FLUX ROPE

    SciTech Connect

    Patsourakos, S.; Vourlidas, A.; Stenborg, G.

    2013-02-20

    Magnetic flux ropes play a central role in the physics of coronal mass ejections (CMEs). Although a flux-rope topology is inferred for the majority of coronagraphic observations of CMEs, a heated debate rages on whether the flux ropes pre-exist or whether they are formed on-the-fly during the eruption. Here, we present a detailed analysis of extreme-ultraviolet observations of the formation of a flux rope during a confined flare followed about 7 hr later by the ejection of the flux rope and an eruptive flare. The two flares occurred during 2012 July 18 and 19. The second event unleashed a fast (>1000 km s{sup -1}) CME. We present the first direct evidence of a fast CME driven by the prior formation and destabilization of a coronal magnetic flux rope formed during the confined flare on July 18.

  19. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  20. Coronal Heating by Magnetic Explosions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1998-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

  1. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  2. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  3. Microflares and the Statistics of X-Ray Flares

    NASA Technical Reports Server (NTRS)

    Hannah, I. G.; Hudson, H. S.; Battaglia, M.; Christe, S.; Kasparova, J.; Krucker, S.; Kundu, M. R.; Veronig, A.

    2011-01-01

    This review surveys the statistics of solar X-ray flares, emphasising the new views that Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.

  4. Microflares and the Statistics of X-Ray Flares

    NASA Technical Reports Server (NTRS)

    Hannah, I. G.; Hudson, H. S.; Battaglia, M.; Christe, S.; Kasparova, J.; Krucker, S.; Kundu, M. R.; Veronig, A.

    2011-01-01

    This review surveys the statistics of solar X-ray flares, emphasising the new views that Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.

  5. The X-ray signature of solar coronal mass

    NASA Technical Reports Server (NTRS)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  6. Coronal Rain, Solar Storm

    NASA Image and Video Library

    2017-09-28

    Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  7. Outer Atmospheres of Low Mass Stars — Flare Characteristics.

    NASA Astrophysics Data System (ADS)

    Lalitha, S.; Schmitt, J. H. M. M.

    2013-04-01

    We compare the coronal properties during flares on active low mass stars CN Leonis, AB Doradus A and Proxima Centauri observed with XMM-Newton. From the X-ray data we analyze the temporal evolution of temperature, emission measure and coronal abundance. The nature of these flares are with secondary events following the first flare peak in the light curve, raising the question regarding the involved magnetic structure. We infer from the plasma properties and the geometry of the flaring structure that the flare originates from a compact arcade rather than in a single loop.

  8. Spectral response of the solar atmosphere to an X-class flare event

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela Adriana; Donea, Alina

    2016-05-01

    The only X-class flare of 2015 observed by IRIS occurred at 16:22 UT on 11 March 2015, in AR 12297. This flare generated significant seismic transients in the photosphere at the eastern location of the flare. IRIS observations of the chromosphere and transition region help us understand the physics of the sunquake. In this work we will analyse this event using data from IRIS, SDO, and RHESSI. The IRIS rasters scanned the area between the main footpoints of the solar flare, and a wealth of chromospheric information has been inferred about the dynamics of the event. The main X-ray emission dominates the eastern flare footpoint, being missed by the IRIS slit. Significant enhancements in the chromospheric and TR lines intensities were identified. The forbidden line of Fe XXI 1354.1 Å is detected after the flare peak revealing the coronal responses to the flare. Plasma downflows of up to 300 km/s were identified in the majority of the observed lines, consistent with magnetic field local reconfiguration. We have also analysed an erupting filament developing at an earlier time, which moved rapidly towards the eastern part of the active region. We discuss the possibility that this filament might have pre-conditioned the chromosphere for the flare process.

  9. The 26 December 2001 Solar Eruptive Event Responsible for GLE63. II. Multi-Loop Structure of Microwave Sources in a Major Long-Duration Flare

    NASA Astrophysics Data System (ADS)

    Grechnev, V.; Uralov, A. M.; Kiselev, V. I.; Kochanov, A. A.

    2017-01-01

    Our analysis of the observations of the SOL2001-12-26 event, which was related to ground-level enhancement of cosmic-ray intensity GLE63, including microwave spectra and images from the Nobeyama Radioheliograph at 17 and 34 GHz, from the Siberian Solar Radio Telescope at 5.7 GHz, and from the Transition Region and Coronal Explorer in 1600 Å, has led to the following results: A flare ribbon overlapped with the sunspot umbra, which is typical of large particle events. Atypical were i) the long duration of the flare, which lasted more than one hour; ii) the moderate intensity of the microwave burst, which was about 104 sfu; iii) the low peak frequency of the gyrosynchrotron spectrum, which was about 6 GHz; and its insensitivity to the flux increase by more than one order of magnitude. This was accompanied by a nearly constant ratio of the flux emitted by the volume in the high-frequency part of the spectrum to its elevated low-frequency part determined by the area of the source. With the self-similarity of the spectrum, a similarity was observed between the moving microwave sources and the brightest parts of the flare ribbons in 1600 Å images. We compared the 17 GHz and 1600 Å images and confirm that the microwave sources were associated with multiple flare loops, whose footpoints appeared in the ultraviolet as intermittent bright kernels. To understand the properties of the event, we simulated its microwave emission using a system of several homogeneous gyrosynchrotron sources above the ribbons. The scatter between the spectra and the sizes of the individual sources is determined by the inhomogeneity of the magnetic field within the ribbons. The microwave flux is mainly governed by the magnetic flux passing through the ribbons and the sources. The apparent simplicity of the microwave structures is caused by a poorer spatial resolution and dynamic range of the microwave imaging. The results indicate that microwave manifestations of accelerated electrons correspond

  10. Dual instrument for Flare and CME onset observations - Double solar Coronagraph with Solar Chromospheric Detector and Coronal Multi-channel Polarimeter at Lomnicky stit Observatory

    NASA Astrophysics Data System (ADS)

    Kucera, Ales; Tomczyk, Steven; Rybak, Jan; Sewell, Scott; Gomory, Peter; Schwartz, Pavol; Ambroz, Jaroslav; Kozak, Matus

    2015-08-01

    We report on unique dual instrument developed for simultaneous measurements of velocity and magnetic fields in the solar chromosphere and corona. We describe the technical parameters and capability of the Coronal Multi-channel Polarimeter (CoMP-S) and Solar Chromospheric detector (SCD) mounted at the Double solar coronagraph at Lomnicky Stit Observatory and working simultaneously with strictly parallel pointing of both coronagraphs. The CoMP-S is 2D spectropolarimeter designed for observations of VIS and near-IR emission lines of prominences and corona with operating spectral range: 500 - 1100 nm, sequential measurement of several VIS and near-IR lines. Its field of view is 14 arcmin x 11 arcmin. It consists of 4-stage calcite Lyot filter followed by the ferro-liquid crystal polarizer and four cameras (2 visible, 2 infrared). The capability is to deliver 2D full Stokes I, Q, U, V, using registration with 2 IR cameras (line + background) and 2 VIS cameras (line + background) SCD is a single beam instrument to observe bright chromosphere. It is a combination of tunable filter and polarimeter. Spectral resolution of the SCD ranges from 0.046 nm for observations of the HeI 1083 nm line up to to 25 pm is for observation of the HeI 587.6 nm line. The birefringent filter of the SCD has high spectral resolution, as well as spatial resolution (1.7 arcseconds) and temporal resolution (10 seconds) First results are also reported and discussed.

  11. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-11-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares (55 %) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares (45 %) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 (88 %) group 1 flares and 11 (85 %) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  12. Coronal streamers' theories

    NASA Astrophysics Data System (ADS)

    Schultz, C. Göran

    1994-10-01

    Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a “slow” solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.

  13. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  14. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  15. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  16. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  17. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  18. Understanding Solar Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Karpen, J. T.; DeVore, C. R.

    2012-05-01

    Solar flares and their associated coronal mass ejections are the most energetic explosions in the solar system. The largest events pose the greatest space weather dangers to life and civilization, and are of extreme importance to human space exploration. They also provide the best opportunity to study the universal processes of magnetic reconnection and particle acceleration that underlie most solar activity. The two great mysteries of solar flares are: how can so much energy be released so quickly, and how can such a large fraction (50% or more) end up in energetic particles. We present results from recent numerical modeling that sheds new light on these mysteries. These calculations use the highest spatial resolution yet achieved in order to resolve the flare dynamics as clearly as possible. We conclude from this work that magnetic island formation is the defining property of magnetic reconnection in the solar corona, at least, in the large-scale current sheet required for a solar flare. Furthermore, we discuss the types of future observations and modeling that will be required to solve definitively the solar flare mysteries. This work was supported, in part, by the NASA TR&T and SR&T Programs.

  19. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  20. Two Components in Major Solar Particle Events

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Cane, H. V.; vonRosenvinge, T. T.; Cohen, C. M. S.; Mewaldt, R. A.

    2003-01-01

    A study has been made of 29 intense, solar particle events observed in the energy range 25-100 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe to O ratios which were reasonably constant with time and energy, and with values above coronal. These all originated on the Sun s western hemisphere and most had intensities that rose rapidly at the time of an associated flare, and coronal mass ejection (CME), and then decayed more gradually. Few interplanetary shocks were observed during these increases. The spectra were mainly power laws. The remaining 10 events had different intensity-time profiles and Fe to O ratios that varied with time and energy with values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. In general the spectra were not power laws but steepened at high energies, particularly for Fe. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare and the other at shock passage. The results, considered in the light of other recent work, suggest that the high energy particles that occur shortly after flares are indeed flare particles. At the highest rigidities considered here shock-accelerated particles are uncommon and are observed only in association with unusually fast shocks.

  1. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  2. What is There Before a Flare?

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Hannah, I. G.; Krucker, S.; Watanabe, K.

    2007-12-01

    The physical parameters in a coronal volume prior to the occurrence of a flare are generally unknown, but may play an important role in identifying the processes involved in flaring or eruption. Now we have observations from Hinode at very high resolution that can provide the best possible values for preflare temperature and density, for example. We make use of Hinode XRT observations of the preflare magnetic structure with the same footpoint locations as a flaring loop, as identified in RHESSI images. We additionally introduce a method based on conductive equilibrium (RTV scaling) to reduce the uncertainty on estimates of physical parameters due to lack of knowledge of the detailed geometry. Preliminary results are consistent with the finding at lower resolution from Yohkoh: in a majority of cases, the preflare conditions are not observable in soft X-rays. We discuss the upper limits that result, which point to low temperatures, densities, and plasma beta values, but high Alfven speeds. We hope also to be able to extend this conclusion with EIS observations.

  3. Flux Accretion and Coronal Mass Ejection Dynamics

    NASA Astrophysics Data System (ADS)

    Welsch, Brian

    2017-08-01

    Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. The equations of ideal magnetohydrodynamics (MHD) have been used to model the onset and, in some cases, the subsequent acceleration of ejections. Both observations and numerical modeling, however, suggest that magnetic reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the dynamical effects of accretion of magnetic flux onto a rising ejection by reconnection involving the ejection's background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying forces acting during the eruption, generically leading to faster acceleration of the CME. Our ultimate aim is to characterize changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux, deduced from observations of flare ribbons and photospheric magnetic fields.

  4. MAGNETIC RECONNECTION: FROM 'OPEN' EXTREME-ULTRAVIOLET LOOPS TO CLOSED POST-FLARE ONES OBSERVED BY SDO

    SciTech Connect

    Zhang, Jun; Yang, Shuhong; Li, Ting; Zhang, Yuzong; Li, Leping; Jiang, Chaowei E-mail: shuhongyang@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: cwjiang@spaceweather.ac.cn

    2013-10-10

    We employ Solar Dynamics Observatory observations and select three well-observed events including two flares and one extreme-ultraviolet (EUV) brightening. During the three events, the EUV loops clearly changed. One event was related to a major solar flare that took place on 2012 July 12 in active region NOAA AR 11520. 'Open' EUV loops rooted in a facula of the AR deflected to the post-flare loops and then merged with them while the flare ribbon approached the facula. Meanwhile, 'open' EUV loops rooted in a pore disappeared from top to bottom as the flare ribbon swept over the pore. The loop evolution was similar in the low-temperature channels (e.g., 171 Å) and the high-temperature channels (e.g., 94 Å). The coronal magnetic fields extrapolated from the photospheric vector magnetograms also show that the fields apparently 'open' prior to the flare become closed after it. The other two events were associated with a B1.1 flare on 2010 May 24 and an EUV brightening on 2013 January 03, respectively. During both of these two events, some 'open' loops either disappeared or darkened before the formation of new closed loops. We suggest that the observations reproduce the picture predicted by the standard magnetic reconnection model: 'open' magnetic fields become closed due to reconnection, manifesting as a transformation from 'open' EUV loops to closed post-flare ones.

  5. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future.

  6. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  7. ORIGIN OF CORONAL SHOCK WAVES ASSOCIATED WITH SLOW CORONAL MASS EJECTIONS

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Zic, T.

    2010-07-20

    We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s{sup -1}). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nancay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.

  8. Gravitational Steady States of Coronal Loops as Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Sugiyama, L.; Asgari-Targhi, M.

    2016-12-01

    Many coronal loops observed on the surface of the sun appear to bemagnetic flux ropes containing plasma, with ends tied in the photosphere. Different types of loops contribute to important solar processes, but relatively little is known about their configuration.Like all toroidal confined, curved plasmas carrying current,they are intrinsically unstable to expansion in major radius.Consistent 3D MHD steady states are derived for the coronal partof the loop, including non-negligible effects due to the plasma pressure and solar gravity. Most loops have relativelyslender inverse aspect ratios ɛ =a/R≤ 1.For predominantly simple, non-helical loops, three gravitationally stabilized asymptotic solutions can be foundthat can be related to toroidal magnetically confined plasams.Comparison to observations shows thattwo solutions bracket the observed heights R<108m of the common thin coronal loops (ɛ ˜ 0.02) in solar active regions.The third solution better describes the fatter loops (ɛ ˜ 0.1)that sometimes appear along the magnetic neutral line in an active regionand grow to produce solar flares or coronal mass ejections.Since radial expansion is higher order than the basic flux ropeconfinement, the states also approximately describe radially unstable loops over similar heights.The solutions can also be generalized to other stabilizing mechanismsand may provide a useful basis for studies of loop dynamics.

  9. X-Ray Source Motions and Their Implications for Flare Models

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2008-01-01

    RHESSI observations have revealed a downward contraction of solar flare loops followed by upward expansion. In some flares a pair of above-the-looptop sources is observed, one just above the top of the cooler flare loops and the other a discrete source well above the looptops characterized by an effective temperature gradient increasing toward lower altitudes. In one flare the higher, temperature-inverted coronal source sped outward at a speed consistent with that of a coronal mass ejection associated with the flare. In some flares with minimal preheating (early impulsive flares), nonthermal X-ray sources have been observed to propagate downward and then upward along the legs of the flare loop. I will discuss the implications of all of these X-ray source motions for flare models, and their use as diagnostics of the evolution of the physical conditions in flares.

  10. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Coronal mass ejections (CMEs) and solar flares are two examples of major explosions from the surface of the Sun but theyre not the same thing, and they dont have to happen at the same time. A recent study examines whether we can predict which solar flares will be closely followed by larger-scale CMEs.Image of a solar flare from May 2013, as captured by NASAs Solar Dynamics Observatory. [NASA/SDO]Flares as a Precursor?A solar flare is a localized burst of energy and X-rays, whereas a CME is an enormous cloud of magnetic flux and plasma released from the Sun. We know that some magnetic activity on the surface of the Sun triggers both a flare and a CME, whereas other activity only triggers a confined flare with no CME.But what makes the difference? Understanding this can help us learn about the underlying physical drivers of flares and CMEs. It also might help us to better predict when a CME which can pose a risk to astronauts, disrupt radio transmissions, and cause damage to satellites might occur.In a recent study, Monica Bobra and Stathis Ilonidis (Stanford University) attempt to improve our ability to make these predictions by using a machine-learning algorithm.Classification by ComputerUsing a combination of 6 or more features results in a much better predictive success (measured by the True Skill Statistic; higher positive value = better prediction) for whether a flare will be accompanied by a CME. [Bobra Ilonidis 2016]Bobra and Ilonidis used magnetic-field data from an instrument on the Solar Dynamics Observatory to build a catalog of solar flares, 56 of which were accompanied by a CME and 364 of which were not. The catalog includes information about 18 different features associated with the photospheric magnetic field of each flaring active region (for example, the mean gradient of the horizontal magnetic field).The authors apply a machine-learning algorithm known as a binary classifier to this catalog. This algorithm tries to predict, given a set of features

  11. Coronal manifestations of preflare activity

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Webb, D. F.; Woodgate, B.; Waggett, P.; Bentley, R.; Hurford, G.; Schadee, A.; Schrijver, J.; Harrison, R.; Martens, P.

    1986-01-01

    A variety of coronal manifestations of precursors or preheating for flares are discussed. Researchers found that almost everyone with a telescope sees something before flares. Whether an all-encompassing scenario will ever be developed is not at all clear at present. The clearest example of preflare activity appears to be activated filaments and their manifestations, which presumably are signatures of a changing magnetic field. But researchers have seen two similar eruptions, one without any evidence of emerging flux (Kundu et al., 1985) and the other with colliding poles (Simon et al., 1984). While the reconnection of flux is generally agreed to be required to energize a flare, the emergence of flux from below (at least on short timescales and in compact regions) does not appear to be a necessary condition. In some cases the cancelling of magnetic flux (Martin, 1984) by horizontal motions instead may provide the trigger (Priest, 1985) Researchers found similarities and some differences between these and previous observations. The similarities, besides the frequent involvement of filaments, include compact, multiple precursors which can occur both at and near (not at) the flare site, and the association between coronal sources and activity lower in the atmosphere (i.e., transition zone and chromosphere).

  12. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.

  13. Coronal Dimmings and Energetic CMEs

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Cliver, E. W.; Nitta, N.; Delannee, C.; Delaboudiniere, J.-P.

    1999-01-01

    We have analyzed the coronal dimmings for seven fast (> 600 km/s) coronal mass ejections (CMEs) occurring between 23 April and 9 May which were associated with flares from NOAA active region (AR) 8210. These dimming regions were identified by their strong depletion in coronal emission within a half hour of the estimated time of CME lift-off. They included areas which were as dark as quiescent coronal holes as well as other regions with weaker brightness depletions. We found that the extended dimming areas in these events generally mapped out the apparent "footprint" of the CME. In two of the seven cases, a pair of dimmings were more or less symmetrically positioned north and south of the flare site. In the five remaining cases, the dimmings were most prominent to the north of AR 8210 (approximately S15 latitude) and extended well north of the solar equator, consistent with the locations of the CMEs. We discuss the implications of these results for the sigmoid/double dimming/flux rope model of CMEs.

  14. The Radiated Energy Budget of Chromospheric Plasma in a Major Solar Flare Deduced from Multi-wavelength Observations

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Kerr, Graham S.; Dennis, Brian R.; Hudson, Hugh S.; Fletcher, Lyndsay; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack; Mathioudakis, Mihalis; Keenan, Francis P.

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 1031 erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ~3 × 1030 erg about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  15. The Radiated Energy Budget Of Chromospheric Plasma In A Major Solar Flare Deduced From Multi-Wavelength Observations

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan; Kerr, Graham Stewart; Dennis, Brian; Hudson, Hugh; Fletcher, Lyndsay; Allred, Joel; Chamberlin, Phillip; Ireland, Jack; Mathioudakis, Mihalis; Keenan, Francis

    2015-04-01

    The response of the lower solar atmosphere is an important diagnostic tool for understanding energy transport during solar flares. The 15 February 2011 X-class flare was fortuitously observed by a host of space-based instruments that sampled the chromospheric response over a range of lines and continua at <20s cadence. These include the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304Å and H I (Lyα) at 1216Å by SDO/EVE, the UV continua at 1600Å and 1700Å by SDO/AIA, and the white light continuum at 4504Å, 5550Å, and 6684Å, along with the Ca II H line at 3968Å using Hinode/SOT. RHESSI also observed the entire event at energies up to ~100keV, making it possible to determine the properties of the nonthermal electrons deemed to be responsible for driving the enhanced chromospheric emission under the assumption of thick-target collisions. Integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2×1031 erg. By comparison, the summed energy detected by instruments onboard SDO and Hinode amounted to ~3×1030 erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses in contrast to the predictions of numerical simulations. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  16. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    SciTech Connect

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.; Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay; Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  17. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    NASA Astrophysics Data System (ADS)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  18. Fields, Flares, And Forecasts

    NASA Astrophysics Data System (ADS)

    Boucheron, L.; Al-Ghraibah, Amani; McAteer, J.; Cao, H.; Jackiewicz, J.; McNamara, B.; Voelz, D.; Calabro, B.; DeGrave, K.; Kirk, M.; Madadi, A.; Petsov, A.; Taylor, G.

    2011-05-01

    Solar active regions are the source of many energetic and geo-effective events such as solar flares and coronal mass ejections (CMEs). Understanding how these complex source regions evolve and produce these events is of fundamental importance, not only to solar physics, but also to the demands of space weather forecasting. We propose to investigate the physical properties of active region magnetic fields using fractal-, gradient-, neutral line-, emerging flux-, wavelet- and general image-based techniques, and to correlate them to solar activity. The combination of these projects with solarmonitor.org and the international Max Millenium Campaign presents an opportunity for accurate and timely flare predictions for the first time. Many studies have attempted to relate solar flares to their concomitant magnetic field distributions. However, a consistent, causal relationship between the magnetic field on the photosphere and the production of solar flares is unknown. Often the local properties of the active region magnetic field - critical in many theories of activity - are lost in the global definition of their diagnostics, in effect smoothing out variations that occur on small spatial scales. Mindful of this, our overall goal is to create measures that are sensitive to both the global and the small-scale nature of energy storage and release in the solar atmosphere in order to study solar flare prediction. This set of active region characteristics will be automatically explored for discriminating features through the use of feature selection methods. Such methods search a feature space while optimizing a criterion - the prediction of a flare in this case. The large size of the datasets used in this project make it well suited for an exploration of a large feature space. This work is funded through a New Mexico State University Interdisciplinary Research Grant.

  19. Statistical and theoretical studies of flares from Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Li, Ya-Ping; Yuan, Qiang; Wang, Q. Daniel; Chen, P. F.; Neilsen, Joseph; Fang, Taotao; Zhang, Shuo; Dexter, Jason

    2017-01-01

    Multi-wavelength flares have routinely been observed from the supermassive black hole, Sagittarius A* (Sgr A*), at our Galactic center. The nature of these flares remains largely unclear, despite many theoretical models. We study the statistical properties of the Sgr A* X-ray flares and find that they are consistent with the theoretical prediction of the self-organized criticality system with the spatial dimension S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole. Motivated by the statistical results, we further develop a time-dependent magnetohydrodynamic (MHD) model for the multi-band flares from Sgr A* by analogy with models of solar flares/coronal mass ejections (CMEs). We calculate the X-ray, infrared flare light curves, and the spectra, and find that our model can explain the main features of the flares.

  20. SOHO Captures CME From X5.4 Solar Flare

    NASA Image and Video Library

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  1. Pre-Flare Flows in the Corona

    NASA Astrophysics Data System (ADS)

    Wallace, A. J.; Harra, L. K.; van Driel-Gesztelyi, L.; Green, L. M.; Matthews, S. A.

    2010-12-01

    Solar flares take place in regions of strong magnetic fields and are generally accepted to be the result of a resistive instability leading to magnetic reconnection. When new flux emerges into a pre-existing active region it can act as a flare and coronal mass ejection trigger. In this study we observed active region 10955 after the emergence of small-scale additional flux at the magnetic inversion line. We found that flaring began when additional positive flux levels exceeded 1.38×1020 Mx (maxwell), approximately 7 h after the initial flux emergence. We focussed on the pre-flare activity of one B-class flare that occurred on the following day. The earliest indication of activity was a rise in the non-thermal velocity one hour before the flare. 40 min before flaring began, brightenings and pre-flare flows were observed along two loop systems in the corona, involving the new flux and the pre-existing active region loops. We discuss the possibility that reconnection between the new flux and pre-existing loops before the flare drives the flows by either generating slow mode magnetoacoustic waves or a pressure gradient between the newly reconnected loops. The subsequent B-class flare originated from fast reconnection of the same loop systems as the pre-flare flows.

  2. Automatic prediction of solar flares and super geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Song, Hui

    Space weather is the response of our space environment to the constantly changing Sun. As the new technology advances, mankind has become more and more dependent on space system, satellite-based services. A geomagnetic storm, a disturbance in Earth's magnetosphere, may produce many harmful effects on Earth. Solar flares and Coronal Mass Ejections (CMEs) are believed to be the major causes of geomagnetic storms. Thus, establishing a real time forecasting method for them is very important in space weather study. The topics covered in this dissertation are: the relationship between magnetic gradient and magnetic shear of solar active regions; the relationship between solar flare index and magnetic features of solar active regions; based on these relationships a statistical ordinal logistic regression model is developed to predict the probability of solar flare occurrences in the next 24 hours; and finally the relationship between magnetic structures of CME source regions and geomagnetic storms, in particular, the super storms when the D st index decreases below -200 nT is studied and proved to be able to predict those super storms. The results are briefly summarized as follows: (1) There is a significant correlation between magnetic gradient and magnetic shear of active region. Furthermore, compared with magnetic shear, magnetic gradient might be a better proxy to locate where a large flare occurs. It appears to be more accurate in identification of sources of X-class flares than M-class flares; (2) Flare index, defined by weighting the SXR flares, is proved to have positive correlation with three magnetic features of active region; (3) A statistical ordinal logistic regression model is proposed for solar flare prediction. The results are much better than those data published in the NASA/SDAC service, and comparable to the data provided by the NOAA/SEC complicated expert system. To our knowledge, this is the first time that logistic regression model has been applied

  3. Abetimus sodium: a new therapy for delaying the time to, and reducing the incidence of, renal flare and/or major systemic lupus erythematosus flares in patients with systemic lupus erythematosus who have a history of renal disease.

    PubMed

    Cardiel, Mario H

    2005-01-01

    The safety and efficacy of abetimus sodium (abetimus) has been evaluated in 13 controlled and uncontrolled clinical trials involving > 800 patients or subjects. The two pivotal trials enrolled a total of 547 patients with systemic lupus erythematosus (SLE) who had a history of lupus nephritis. Evidence of clinical effectiveness of abetimus comes from analyses of data from patients with SLE and high-affinity antibodies to the DNA epitope of abetimus at baseline; a retrospective subgroup in the pivotal Phase II/III LJP-394-90-05 trial (90-05 trial) and the intent-to-treat population in the Phase III LJP-394-90-09 trial (90-09 trial). These studies enrolled SLE patients who had experienced prior renal manifestations of their disease and had elevated anti-dsDNA antibodies at baseline by Farr assay. Both were long-term studies, with a mean duration of treatment participation of 371 days in 90-05 and 310 days in 90-09 for the population of patients with high-affinity antibodies at baseline. The 90-05 and 90-09 studies, as well as all other clinical studies of abetimus, consistently showed that treatment with abetimus resulted in durable and persistent reductions in anti-dsDNA antibodies in SLE patients. Treatment with abetimus was associated with statistically significant decreases in anti-dsDNA antibody levels from baseline compared with placebo in both the 90-09 and 90-05 trials. Positive trends were noted for the incidence of renal flares and major SLE flares in patients treated with abetimus. Abetimus appeared to be well tolerated for treatment periods of < or = 22 months.

  4. An Observational Overview of Solar Flares

    NASA Technical Reports Server (NTRS)

    Fletcher, Lyndsay; Battaglia, M.; Dennis, Brian R.; Liu, W.; Milligan, R. O.; Hudson, H. S.; Krucker, S.; Phillips, K.; Bone, L.; Veronig, A.; Caspi, A.; Temmer, M.

    2011-01-01

    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.

  5. An Observational Overview of Solar Flares

    NASA Technical Reports Server (NTRS)

    Fletcher, Lyndsay; Battaglia, M.; Dennis, Brian R.; Liu, W.; Milligan, R. O.; Hudson, H. S.; Krucker, S.; Phillips, K.; Bone, L.; Veronig, A.; hide

    2011-01-01

    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.

  6. Ion acceleration in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Steinacker, Jurgen; Jaekel, Uwe; Schlickeiser, Reinhard

    1993-01-01

    Nonrelativistic spectra of protons and ions accelerated in impulsive solar flares are derived using more realistic turbulence power spectra. The calculation is based on a particle transport equation extracted from a second step acceleration model containing stochastic acceleration. The turbulence model is generalized to waves with a small angle to the magnetic field vector and to turbulence power spectra with spectral indices s smaller than 2. Due to the occurrence of impulsive flares at low coronal heights, Coulomb losses at the dense coronal plasma and diffusive particle escape are taken into account. The ion spectra show deviations from long-duration spectra near the Coulomb barrier, where the losses become maximal. The Z-squared/A-dependence of the Coulomb losses leads to spectral variations for different ions. We present a method to estimate the turbulence parameters and injection conditions of the flare particles using ion ratios like Fe/O of impulsive flares.

  7. Studies of Solar Flares and Coronal Loops.

    DTIC Science & Technology

    1984-07-10

    atmosphere. In the 9:7:0 atmosphere, for exam- radiative loss rates depend. It should also be emphasized pIe , T, is 47 K less than the VAL/F r,,. This result...i( Tipo + T pl) and equations (5) and (8), we get P (D - w t P = + 0 (9j where 0 = o ’-, +T (k" -B,)- (o fTQ 10R B0 . G!) = ( - 1 ) R p + T ( k

  8. X-ray observations of the impulsive phase of solar flares with the Yohkoh satellite

    NASA Astrophysics Data System (ADS)

    Phillips, Andrew

    This thesis starts with an overview of the physics of the solar corona, concentrating on X-ray emission and the plasma dynamics associated with the impulsive or rise phase of solar flares. The Yohkoh satellite is described, with a section on each major instrument on board. Analysis techniques used in the thesis are then introduced, with a section of soft X-ray spectroscopy and on the application of the Maximum Entropy Method image reconstruction technique to data from the Hard X-ray Telescope on Yohkoh. The instrumental effect known as fixed pattern noise is described, leading to a numerical model of the BCS digitisation process, which is used both to understand the limits of the detector, and to correct the data in a limited way. Alternative methods for the avoidance of fixed pattern noise are evaluated. The analysis of a solar flare with unusually large soft X-ray blue shifts is then performed. Physical parameters of the plasma during the initial stages of the flare are derived, which are used in an energy balance calculation. Agreement is found between the energy in nonthermal electrons and that contained in the coronal plasma, supporting the nonthermal beam driven chromospheric evaporation theory of impulsive flares. The location of superhot plasma in two impulsive flares and one hot thermal flare is then investigated. Superhot plasma is found to be located close to the chromosphere, and related to the nonthermal burst in the two impulsive flares. Superhot plasma in the hot thermal flare is distributed uniformly throughout the loop. The differences are explained as being due to the different energy transport processes active in each type of flare.

  9. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  10. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  11. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    SciTech Connect

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  12. Anemone structure of AR NOAA 10798 and related geo-effective flares and CMEs

    NASA Astrophysics Data System (ADS)

    Asai, A.; Ishii, T. T.; Shibata, K.; Gopalswamy, N.

    We report coronal features of an active region NOAA 10798 This active region was located in the middle of a small coronal hole and generated 3 M-class flares The flares are associated with high speed CMEs which produced a magnetic storm on 2005 August 24 We examined the coronal features by using observational data in soft X-rays in extreme ultraviolets and in microwaves obtained with GOES SOHO TRACE satellites and Nobeyama Radioheliograph

  13. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    SciTech Connect

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Couvidat, Sebastien; Norton, Aimee A.; Li, Yan; Fisher, George H.; Shen, Chenglong

    2015-05-10

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  14. Stellar Coronal Astronomy

    NASA Astrophysics Data System (ADS)

    Favata, Fabio; Micela, Giuseppina

    2003-10-01

    Coronal astronomy is by now a fairly mature discipline, with a quarter century having gone by since the detection of the first stellar X-ray coronal source (Capella), and having benefitted from a series of major orbiting observing facilities. Serveral observational characteristics of coronal X-ray and EUV emission have been solidly established through extensive observations, and are by now common, almost text-book, knowledge. At the same time the implications of coronal astronomy for broader astrophysical questions (e.g.Galactic structure, stellar formation, stellar structure, etc.) have become appreciated. The interpretation of stellar coronal properties is however still often open to debate, and will need qualitatively new observational data to book further progress. In the present review we try to recapitulate our view on the status of the field at the beginning of a new era, in which the high sensitivity and the high spectral resolution provided by Chandra and SMM-Newton will address new questions which were not accessible before.

  15. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  16. The anatomy of chromosphereic flares and associated ephemeral brightenings

    NASA Astrophysics Data System (ADS)

    Kirk, Michael S.

    Chromospheric flares have been carefully observed and studied for many decades. Ribbons of hot plasma appear, brighten, and separate during the course of a flare. Adjacent to eruptions with associated coronal mass ejections, compact brightenings are observed in the impulsive phase of the flare. What causes these compact brightenings adjacent to flares? What can they tell us about the solar conditions that formed the chromospheric flare? We present a new automated algorithm to identify, track, and characterize small-scale brightening associated with solar eruptive phenomena observed in H a. The temporal, spatially localized changes in chromospheric intensities can be separated into two categories: flare ribbons and sequential chromospheric brightenings (SCBs). Within each category of brightening we determine the smallest resolvable locus of pixels, a kernel, and track the temporal evolution of the position and intensity of each kernel. We fully characterize the evolving intensity and morphology of the flare ribbons by observing the tracked flare kernels in aggregate. With the location of SCB and flare kernels identified, they can easily be overlaid on complementary data sets to extract coronal intensities, Doppler velocities, and magnetic-field intensities underlying the kernels. We then report on the physical properties of SCBs. Following the algorithmic identification and a statistical analysis, we compare and find the following: SCBs are distinctly different from flare brightening in their temporal characteristics of intensity, Doppler structure, duration, and location properties. Within the studied population of SCBs, different classes of characteristics are observed with coincident negative, positive, or both negative and positive Doppler shifts of a few km The appearance of SCBs often precedes peak flare intensity. They are also found to propagate laterally away from flare center in clusters at two distinct velocity groups. Given SCBs' distinctive nature

  17. Rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1986-01-01

    Study of rapid fluctuations in the emission of radiation from solar flares provides a promising approach for probing the magneto-plasma structure and plasma processes that are responsible for a flare. It is proposed that elementary flare bursts in X-ray and microwave emission may be attributed to fine structure of the coronal magnetic field, related to the aggregation of photospheric magnetic field into magnetic knots. Fluctuations that occur on a subsecond time-scale may be due to magnetic islands that develop in current sheets during magnetic reconnection. The impulsive phase may sometimes represent the superposition of a large number of the elementary energy-release processes responsible for elementary flare bursts. If so, the challenge of trying to explain the properties of the impulsive phase in terms of the properties of the elementary processes must be faced. Magnetic field configurations that might produce solar flares are divided into a number of categories, depending on: whether or not there is a filament; whether there is no current sheet, a closed current sheet, or an open current sheet; and whether the filament erupts into the corona, or is ejected completely from the Sun's atmosphere. Analysis of the properties of these possible configurations is compared with different types of flares, and to Bai's subdivision of gamma-ray/proton events.

  18. Properties of Sequential Chromospheric Brightenings and Associated Flare Ribbons (Postprint)

    DTIC Science & Technology

    2012-05-10

    AFRL-RV-PS- AFRL-RV-PS- TP-2012-0055 TP-2012-0055 PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS...PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS (POSTPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6...properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated Coronal

  19. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  20. He-3-rich flares - A possible explanation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1978-01-01

    A plasma mechanism is proposed to explain the dramatic enhancements in He-3 observed in He-3-rich flares. It is shown that a common current instability in the corona may heat ambient He-3(2+) over any other ion and thus may preferentially inject He-3 into the flare acceleration process. This mechanism operates when the abundance of He-4 and heavier elements is larger than normal in the coronal plasma. It may also preferentially heat and thus inject certain ions of iron. The mechanism thus provides a possible explanation for the observed correlation between He-3 and heavy enhancements in He-3-rich flares.

  1. Coronation Chemicals

    NASA Image and Video Library

    2012-08-22

    This is the first laser spectrum from the ChemCam instrument on NASA Curiosity rover, sent back from Mars on Aug. 19, 2012, showing emission lines from different elements present in the target, a rock near the rover landing site dubbed Coronation.

  2. Coronal Heating and Structure

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.

    2008-05-01

    The existence of the Sun's million-degree corona is one of the oldest and most challenging problems in all space physics. It is generally accepted that the solar magnetic field is responsible for both the heating and the structure of coronal plasma, but the physical mechanisms are still not clearly understood. Gene Parker has made many seminal contributions to solving the coronal heating problem, in particular, his widely-used nano-flare model. Parker argued that in closed field regions the complex motions of the photosphere must lead to the formation of fine-scale electric currents in the corona and, consequently, to continual bursts of magnetic reconnection. We discuss the implications of these ideas for understanding the observed features of the corona. We show that the type of reconnection proposed by Parker may well account for all the well-known observations of both the closed and open field corona, and we discuss the implications of our results for upcoming NASA missions. This work was supported by the NASA HTP and TR&T programs.

  3. Flare diagnostics from loop modeling of a stellar flare observed with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Reale, Fabio

    2006-01-01

    XMM-Newton data of an X-ray flare observed on Proxima Centauri provide detailed and challenging constraints for flare modeling. The comparison of the data with the results of time-dependent hydrodynamic loop modeling of this flare allows us to constrain not only the loop morphology, but also the details of the heating function. The results show that even a complex flare event like this can be described with a relatively few though constrained components: two loop systems, i.e., a single loop and an arcade, and two heat components, an intense pulse probably located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The similarity to at least one solar event (the Bastille Day flare in 2000) indicates that this pattern may be common to solar and stellar flares.

  4. Mass motion in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1973-01-01

    Mass motions in solar flares are here considered in terms of a previously proposed model. Particle acceleration occurs during reconnection of a current sheet located at coronal heights. The downward component of the particle flux produces an impulsive hard X-ray burst and heats the upper layers of the chromosphere sufficiently to lead to explosive evaporation. Some of the evaporated gas remains trapped in newly closed magnetic field lines and is responsible for the soft thermal component of X-ray emission. Gas which flows along open magnetic field lines subsequently forms a plasmoid which is ejected by magnetic stresses into interplanetary space and may subsequently cause a geomagnetic storm. Analysis of a highly simplified model leads to formulas for the density, temperature, and other parameters of the flare-produced plasma in terms of a length scale and mean magnetic field strength for the flare.

  5. Flare energetics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  6. Gradual Solar Coronal Dimming and Evolution of Coronal Mass Ejection in the Early Phase

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Cheng, Jianxia

    2017-03-01

    We report observations of a two-stage coronal dimming in an eruptive event of a two-ribbon flare and a fast coronal mass ejection (CME). Weak gradual dimming persists for more than half an hour before the onset of the two-ribbon flare and the fast rise of the CME. It is followed by abrupt rapid dimming. The two-stage dimming occurs in a pair of conjugate dimming regions adjacent to the two flare ribbons, and the flare onset marks the transition between the two stages of dimming. At the onset of the two-ribbon flare, transient brightenings are also observed inside the dimming regions, before rapid dimming occurs at the same places. These observations suggest that the CME structure, most probably anchored at the twin dimming regions, undergoes a slow rise before the flare onset, and its kinematic evolution has significantly changed at the onset of flare reconnection. We explore diagnostics of the CME evolution in the early phase with analysis of the gradual dimming signatures prior to the CME eruption.

  7. RHESSI AND TRACE OBSERVATIONS OF MULTIPLE FLARE ACTIVITY IN AR 10656 AND ASSOCIATED FILAMENT ERUPTION

    SciTech Connect

    Joshi, Bhuwan; Kushwaha, Upendra; Cho, K.-S.; Veronig, Astrid M.

    2013-07-01

    We present Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Transition Region and Coronal Explorer (TRACE) observations of multiple flare activity that occurred in the NOAA active region 10656 over a period of 2 hr on 2004 August 18. Out of four successive flares, three were class C events, and the final event was a major X1.8 solar eruptive flare. The activities during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by three localized episodes of energy release occurring in the vicinity of a filament that produces intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of {approx}12 km s{sup -1}. The filament eruption is accompanied by an X1.8 flare, during which multiple hard X-ray (HXR) bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts, which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied by very high plasma temperatures of {approx}31 MK, followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in the current sheet below the erupting prominence. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play an important role in destabilizing the active-region filament through the tether-cutting process, leading to large-scale eruption and X-class flare.

  8. Coronal Holes.

    PubMed

    Cranmer, Steven R

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance), but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  9. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  10. Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx.20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances.

  11. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  12. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  13. PRECURSOR FLARES IN OJ 287

    SciTech Connect

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L.; Valtonen, M.; Nilsson, K.; Zola, S.; Koziel-Wierzbowska, D.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Provencal, J.; Santangelo, M. M. M.; Salo, H.; Chandra, S.; Ganesh, S.; Baliyan, K. S.; and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  14. Solar activity during Skylab: Its distribution and relation to coronal holes

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Smith, J. B., Jr.; Wilson, R. M.; Mcintosh, P. S.

    1978-01-01

    Solar active regions observed during the period of Skylab observations (May 1973-February 1974) were examined for properties that varied systematically with location on the sun, particularly with respect to the location of coronal holes. Approximately 90 percent of the optical and X-ray flare activity occurred in one solar hemisphere (136-315 heliographic degrees longitude). Active regions within 20 heliographic degrees of coronal holes were below average in lifetimes, flare production, and magnetic complexity. Histograms of solar flares as a function of solar longitude were aligned with H alpha synoptic charts on which active region serial numbers and coronal hole boundaries were added.

  15. Why is a Flare-rich Active Region CME-poor?

    NASA Astrophysics Data System (ADS)

    Liu, Lijuan; Wang, Yuming; Wang, Jingxiu; Shen, Chenglong; Ye, Pinzhong; Liu, Rui; Chen, Jun; Zhang, Quanhao; Wang, S.

    2016-08-01

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both and two were inert. The investigation of the photospheric parameters based on the SDO/HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.

  16. IUE spectra of a flare in HR 5110: A flaring RS CVn or Algol system?

    NASA Technical Reports Server (NTRS)

    Simon, T.; Linsky, J. L.; Schiffer, F. H., III

    1981-01-01

    Ultraviolet spectra of the RS CVn type binary system HR 5110 were obtained with IUE on May 31, 1979 during a period of intense radio flaring of this star. High temperature transition region lines are present, but are not enhanced above observed quiescent strengths. The similarities of HR 5110 to the Algol system, As Eri, suggest that the 1979 May to June flare may involve mass exchange rather than annihilation of coronal magnetic fields.

  17. Some comments on flares after many years of observation

    NASA Technical Reports Server (NTRS)

    Dodson, H. W.; Hedeman, E. R.

    1976-01-01

    Ground based observations of flares are reviewed in search of information on flare build up on either a long or a short time scale. Plots of flare frequency and importance for certain individual centers of activity suggest a possible crescendo in flare occurrence days and hours before the development of large and significant flares. The X-ray records follow the same pattern of apparent build-up. A possible dependence between successive major flares, as phases one and two of a single complex flare event, suggests that the time scale in which the total flare event takes place may exhibit extreme variation.

  18. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  19. FIELD TOPOLOGY ANALYSIS OF A LONG-LASTING CORONAL SIGMOID

    SciTech Connect

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  20. Field Topology Analysis of a Long-lasting Coronal Sigmoid

    NASA Astrophysics Data System (ADS)

    Savcheva, A. S.; van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  1. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  2. Progress and problems in flare particle diagnostics

    NASA Astrophysics Data System (ADS)

    Brown, J. C.

    Recent solar maxima saw major progress in remote diagnosis of flare particles at the sun via advances in ground and space instrumentation and in coordinated observing campaigns, including in situ measurements of related space plasma particles, waves, and fields. This review discusses aspects of where we stand with regard to remote particle diagnostics, emphasising recent progress and new problems. Special attention is paid to interpretation of `hard' [hard X-ray (HXR) and gamma-ray (GR)] photon data from the Ramaty High Energy Spectrometric Imager (RHESSI) and emphasising their implications for the basic physics problems of acceleration, propagation, and flare energy transport budget. In particular the following are discussed: - a) HXR SPECTRAL INVERSION Progress in numerical regularisation algorithms incorporating physical constraints Real thin and thick target and thermal model electron distribution recovery Testing/exclusion of models by application of these to RHESSI data Interpretive complications - e.g. albedo, directivity, energy dispersion b) HXR SPECTROSCOPIC IMAGE INTERPRETATION Image reconstruction algorithms - 2-D to 3-D ambiguity Source sizes and physics implications Source sizes and locations compared with TRACE, radio and other data Beam energy losses, and atmospheric density structure - e.g. coronal thick targets Evidence for and implications of complex versus simple loop structure Diffuse source (e.g. albedo patch) detection c) HXR ANISOTROPY AND POLARISATION d) GR-LINE SPECTRA AND IMAGES AND OTHER ION DIAGNOSTICS Implications for MEV ion acceleration sites, propagation, and energy budget Low energy ion diagnostics e) FLARE ENERGY BUDGET Real evidence for low energy cut-offs in particle spectra Neupert effect and status of the single loop particle heated model

  3. THE RELATION BETWEEN SOLAR ERUPTION TOPOLOGIES AND OBSERVED FLARE FEATURES. I. FLARE RIBBONS

    SciTech Connect

    Savcheva, A.; McKillop, S.; McCauley, P.; Su, Y.; DeLuca, E. E.; Pariat, E.; Hanson, E.; Werner, E.

    2015-09-10

    In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and Solar Dynamics Observatory. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux-rope-related QSLs, and the matches to the hooked segments are less consistent but still good for most cases. In addition, we show that these QSLs overlay ridges in the electric current density maps. This study is the largest sample of regions with QSLs derived from 3D coronal magnetic field models, and it shows that the magnetofrictional modeling technique that we employ gives a very good representation of flaring regions, with the power to predict flare ribbon locations in the event of a flare following the time of the model.

  4. ROSAT investigation of flaring and activity on Prox Cen

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard

    1993-01-01

    The objective of this program was to investigate with high sensitivity the low-level flare activity which may underlie coronal heating. This was done. The ROSAT observations of Prox Cen were scheduled for 50 ks spread out from 26 Feb. - 10 Mar. 1992. Unfortunately because of spacecraft problems many of these pointings turned out to contain no useful data or extremely truncated valid data sets. Considerable time was spent trying to determine which of the data would be scientifically useful and which would not. Fortunately, several developments took place to augment the original data in such a way that the scientific goal of advancing the study of flaring and variability was able to be achieved after all. These are as follows: (1) a second round of ROSAT observations was carried out in Feb. 1993 which only came to the attention of the PI in Apr. 1993 when a new data tape arrived; (2) simultaneous IUE observations were requested and obtained; (3) data from the UK WFC are available via the collaboration with Dr. G. Bromage; and (4) the 'cleaned-up' original data set was found to include one major flare and 2 moderate flares. Because of the problems with the original data set, the unexpected acquisition of new data only two months ago, and the availability of IUE and WFC data, an article on Prox Cen for publication is not ready at this time. Such an article is being developed and can be completed as part of ongoing ROSAT research efforts on stellar coronae and flaring.

  5. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-09-27

    Caption: A burst of solar material leaps off the left side of the sun in what’s known as a prominence eruption. This image combines three images from NASA’s Solar Dynamics Observatory captured on May 3, 2013, at 1:45 pm EDT, just as an M-class solar flare from the same region was subsiding. The images include light from the 131, 171 and 304 Angstrom wavelengths. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  7. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  8. Enabling Solar Flare Forecasting at an Unprecedented Level: the FLARECAST Project

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Pariat, Etienne; Massone, Anna Maria; Vilmer, Nicole; Jackson, David; Buchlin, Eric; Csillaghy, Andre; Bommier, Veronique; Kontogiannis, Ioannis; Gallagher, Peter; Gontikakis, Costis; Guennou, Chloé; Murray, Sophie; Bloomfield, D. Shaun; Alingery, Pablo; Baudin, Frederic; Benvenuto, Federico; Bruggisser, Florian; Florios, Konstantinos; Guerra, Jordan; Park, Sung-Hong; Perasso, Annalisa; Piana, Michele; Sathiapal, Hanna; Soldati, Marco; Von Stachelski, Samuel; Argoudelis, Vangelis; Caminade, Stephane

    2016-07-01

    We attempt a brief but informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy for the forecasting of major solar flares. The consortium, objectives, and first results of the project - featuring an openly accessible, interactive flare forecasting facility by the end of 2017 - will be outlined. In addition, we will refer to the so-called "explorative research" element of project, aiming to connect solar flares with coronal mass ejections (CMEs) and possibly pave the way for CME, or eruptive flare, prediction. We will also emphasize the FLARECAST modus operandi, namely the diversity of expertise within the consortium that independently aims to science, infrastructure development and dissemination, both to stakeholders and to the general public. Concluding, we will underline that the FLARECAST project responds squarely to the joint COSPAR - ILWS Global Roadmap to shield society from the adversities of space weather, addressing its primary goal and, in particular, its Research Recommendations 1, 2 and 4, Teaming Recommendations II and III, and Collaboration Recommendations A, B, and D. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  9. A multiwavelength study of a double impulsive flare

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Benz, A. O.; Dennis, B. R.; Poland, A. I.; Leibacher, J. W.; Mewe, R.; Schrijver, J.; Simnett, G.; Smith, J. B., Jr.; Sylwester, J.

    1984-01-01

    Solar Maximum Mission (SMM) and ground-based observations are given for two flares which occurred 3 min apart in the same section of the active region. The physical characteristics of the two flares are derived and compared, and the main difference between them is noted to be in the preflare state of the coronal plasma at the flare site. These data suggest that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence. Since a study of the brightest flares observed by SMM shows that at least 43 percent of them are multiple, the situation presently studied may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters.

  10. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect

    Olmedo, Oscar; Vourlidas, Angelos; Zhang Jie; Cheng Xin

    2012-09-10

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  11. Coronal and interplanetary Type 2 radio emission

    NASA Astrophysics Data System (ADS)

    Cane, H. V.

    1987-09-01

    Several observations suggest that the disturbances which generate coronal (meter wavelength) type II radio bursts are not driven by coronal mass ejections (CMEs). A new analysis using a large sample of metric radio bursts and associated soft X-ray events provides further support for the original hypothesis that type II-producing disturbances are blast waves generated at the time of impulsive energy release in flares. Interplanetary (IP) shocks, however, are closely associated with CMEs. The shocks responsible for IP type II events (observed at kilometer wavelengths) are associated with the most energetic CMEs.

  12. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  13. Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: Comparison of the Halloween 2003 and the Bastille Day events

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Guarnieri, F. L.; Fuller-Rowell, T.; Mannucci, A. J.; Iijima, B.; Gonzalez, W. D.; Judge, D. L.; Gangopadhyay, P.; Saito, A.; Tsuda, T.; Verkhoglyadova, O. P.; Zambon, G. A.

    2006-06-01

    Extreme solar flares can cause extreme ionospheric effects. The 28 October 2003 flare caused a ~25 total electron content units (TECU = 1016 el/m2 column density), or a ~30%, increase in the local noon equatorial ionospheric column density. The rise in the TEC enhancement occurred in ~5 min. This TEC increase was ~5 times the TEC increases detected for the 29 October and the 4 November 2003 flares and the 14 July 2000 (Bastille Day) flare. In the 260-340 Å EUV wavelength range, the 28 October flare peak count rate was more than twice as large as for the other three flares. Another strong ionospheric effect is the delayed influence of the interplanetary coronal mass ejection (ICME) electric fields on the ionosphere. For the 28 and 29 October flares, the associated ICMEs propagated from the Sun to the Earth at particularly high speeds. The prompt penetration of the interplanetary electric fields (IEFs) caused the dayside near-equatorial ionosphere to be strongly uplifted by E × B convection. Consequential diffusion of the uplifted plasma down the Earth's magnetic field lines to higher magnetic latitudes is a major plasma transport process during these IEF (superstorm) events. Such diffusion should lead to inverted midlatitude ionospheres (oxygen ions at higher altitudes than protons). The energy input into the midlatitude ionospheres by this superfountain phenomenon could lead to local dayside midlatitude disturbance dynamos, features which cannot propagate from the nightside auroral zones.

  14. Understanding Coronal Dimming and its Relation to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, J. P.; Woods, T. N.; Caspi, A.; Hock, R. A.

    2013-12-01

    When extreme ultraviolet (EUV) emitting material in the corona is lost during a coronal mass ejection (CME), the solar spectral irradiance is impacted and these effects are observed in data from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA). This process is one of the physical mechanisms that can lead to the observation of 'coronal dimming,' a phenomenon lasting eight hours on average and rarely persisting longer than one day. Other mechanisms that can cause observed dimming include obscuration of bright material (e.g., flare arcade) by dark material (e.g., filament), temperature evolution (e.g., cool plasma being heated causing transient decreases in characteristic emission lines), and propagation of global waves. Each of these processes has a unique spectral signature, which will be explained and exemplified. In particular, the 7 August 2010 M1.0 flare with associated ~870 km/s CME will be analyzed in detail using both AIA and EVE to demonstrate new techniques for isolating dimming due to the CME ('core dimming'). Further analysis will estimate CME mass and velocity using only parameterization of core dimming and compare these estimates to traditionally calculated CME kinetics.

  15. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  16. Flares on the sun - Selected results from SMM

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    At present, a point has been reached at which significant progress has been made regarding an understanding of the flare problem. The current investigation is concerned with a review of the advances being made with the Solar Maximum Mission (SMM) data set on solar flares, taking into account the help which the obtained information can provide with respect to an interpretation of the flare star behavior. The physical parameters which can be readily deduced from the observations are indicated. Attention is given to fast hard X-ray time variations on March 22, 1981, and the investigation of the multithermal nature of the coronal plasma throughout flares.

  17. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  18. LYRA OBSERVATIONS OF TWO OSCILLATION MODES IN A SINGLE FLARE

    SciTech Connect

    Van Doorsselaere, T.; Goossens, M.; De Groof, A.; Berghmans, D.

    2011-10-20

    We analyze light curves from the LYRA irradiance experiment on board PROBA2 during the flare of 2010 February 8. We see both long- and short-period oscillations during the flare. The long-period oscillation is interpreted in terms of standing slow sausage modes; the short-period oscillation is thought to be a standing fast sausage mode. The simultaneous presence of two oscillation modes in the same flaring structure allows for new coronal seismological applications. The periods are used to find seismological estimates of the plasma-{beta} and the density contrast of the flaring loop. Also the wave mode number is estimated from the observed periods.

  19. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  20. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  1. Solar Flares, Type III Radio Bursts, CMEs, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2004-01-01

    Despite the fact that it has been well known since the earliest observations that solar energetic particle events are well associated with solar flares it is often considered that the association is not physically significant. Instead, in large events, the particles are considered to be only accelerated at a shock driven by the coronal mass ejection (CME) that is also always present. If particles are accelerated in the associated flare, it is claimed that such particles do not find access to open field lines and therefore do not escape from the low corona. However recent work has established that long lasting type III radio bursts extending to low frequencies are associated with all prompt solar particle events. Such bursts establish the presence of open field lines. Furthermore, tracing the radio bursts to the lowest frequencies, generated near the observer, shows that the radio producing electrons gain access to a region of large angular extent. It is likely that the electrons undergo cross field transport and it seems reasonable that ions do also. Such observations indicate that particle propagation in the inner heliosphere is not yet fully understood. They also imply that the contribution of flare particles in major particle events needs to be properly addressed.

  2. Negative Flare Emissions Observed in Euv By SDO/AIA

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, C.; Cao, W.; Jing, J.; Wang, H.

    2014-12-01

    In this study, we present a large flare showing negative emissions in the EUV passbands observed by SDO/AIA. Contrary to ordinary flare emission represented by an increase of intensity, negative flare emission refers to as a decrease of intensity during flares. In the literature, negative flare emissions were usually reported by stellar observations. Only a few negative solar flares were observed in He I D3 in 1970s and one event observed in the near Infrared at 8542 Å in 2001. On 2014-Jan-07, an X1.2 flare occurred near the solar disk center with a complex magnetic configuration, showing multiple flare ribbons. Among them a remote flare ribbon is located to the southwest from the flare core region. A small portion of the remote ribbon became darkened from about 18:45 UT, while the rest of the ribbon remained bright. This darkening lasted for more than one hour and did not show obvious motion. Therefore, we exclude the possibility of transient coronal hole associated with EUV waves. By comparing with SDO/HMI LOS magnetograms, we find that the negative flare regions are associated with weak magnetic fields, lower than 50 Gauss. In contrast, the bright flare ribbons are co-spatial with strong magnetic fields above 200 Gauss. Furthermore, we investigate the properties of the negative emission by examining the temporal evolution of its intensity and area. Finally, we discuss the possible mechanisms in generating the negative emissions.

  3. Self-organized braiding in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Berger, M. A.; Asgari-Targhi, M.; Deluca, E. E.

    2015-08-01

    In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to x-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.

  4. Isotope abundances of solar coronal material derived from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.

    1989-01-01

    Coronal isotopic abundances for the elements He, C, N, O, Ne, and Mg are derived from previously published measurements of the isotopic composition of solar energetic particles by first measuring, and then correcting for, the charge-to-mass-dependent fractionation due to solar flare acceleration and propagation processes. The resulting coronal composition generally agrees with that of other samples of solar system material, but the previously noted difference between the solar flare and solar wind Ne-22/Ne-20 ratios remains unresolved.

  5. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  6. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  7. The X-ray spectral and timing properties of a major radio flare episode in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Koljonen, Karri I. I.; Hannikainen, Diana C.; McCollough, Michael L.; Pooley, Guy G.; Trushkin, Sergei A.; Droulans, Robert

    2013-02-01

    The microquasar Cygnus X-3 is known for massive outbursts that emit radiation from radio to γ-rays associated with jet ejection events. Using Principal Component Analysis to probe fast (~1 min) X-ray spectral evolution followed by subsequent spectral fits to the time-averaged spectra (~3 ks), we find that the overall X-ray variability during major outbursts can be attributed to two components. The spectral evolution of these components are best fitted with hybrid Comptonization and thermal bremsstrahlung components. Most of the X-ray variability is attributed to the hybrid Comptonization component. However, the spectral evolution of the thermal component is linked to a change in the X-ray spectral state. Phase-folding the fit results shows that the thermal component is restricted to two orbital phase regions opposite to each other, possibly indicating a flattened stellar wind from the Wolf-Rayet companion.

  8. Solar eruptions: The CME-flare relationship

    NASA Astrophysics Data System (ADS)

    Vršnak, B.

    2016-11-01

    Coronal mass ejections (CMEs), caused by large-scale eruptions of the coronal magnetic field, often are accompanied by a more localized energy release in the form of flares, as a result of dissipative magnetic-field reconfiguration. Morphology and evolution of such flares, also denoted as dynamical flares are often explained as a consequence of reconnection of the arcade magnetic field, taking place below the erupting magnetic flux rope. A close relationship of the CME acceleration and the flare energy release is evidenced by various statistical correlations between parameters describing CMEs and flares, as well as by the synchronization of the CME acceleration phase with the impulsive phase of the associated flare. Such behavior implies that there must be a feedback relation between the dynamics of the CME and the flare-associated reconnection process. From the theoretical standpoint, magnetic reconnection affects the CME dynamics in several ways. First, it reduces the tension of the overlying arcade magnetic field and increases the magnetic pressure below the flux rope, and in this way enhances the CME acceleration. Furthermore, it supplies the poloidal magnetic flux to the flux rope, which helps sustaining the electric current in the rope and prolonging the action of the driving Lorentz force to large distances. The role of these processes, directly relating solar flares and CMEs, is illustrated by employing a simple model, where the erupting structure is represented by a curved flux rope anchored at both sides in the dense/inert photosphere, being subject to the kink and torus instability. It is shown that in most strongly accelerated ejections, where values on the order of 10 km s-2 are attained, the poloidal flux supplied to the erupting rope has to be several times larger than was the initial flux.

  9. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    SciTech Connect

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W.

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  10. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  11. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  12. Steady states of solar coronal loops as nonaxisymmetric toroidal flux ropes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda; Asgari-Targhi, M.

    2016-10-01

    Consistent MHD steady states for coronal loops on the surface of the sun, modeled as magnetic flux ropes, are derived for the first time, based on the equilibrium and stability of toroidal magnetically confined fusion plasmas. Coronal loops, like magnetic tori, are unstable to expansion in major radius. The solar gravity and plasma beta, previously ignored, are crucual parameters in the steady state. For loops with a predominantly axisymmetric magnetic axis, three analytical steady states exist in terms of beta and the normalized solar gravity parameter Ĝ = ga /vA2 , where g is the acceleration due to gravity, ordered in inverse aspect ratio: high beta (β ɛ) and small gravity Ĝ ɛ3 , which resembles a nearly axisymmetric high-beta tokamak, and high beta with larger Ĝ ɛ2 , and low beta (β ɛ2) with Ĝ ɛ3 , which are more strongly nonaxisymmetric. Comparison with observations shows that the two high beta states bracket the range of thin coronal loops in solar active regions ɛ 0.02 and Ĝ orders the loops by height. The low beta solution may describe certain thicker loops ɛ 0.1 that grow to solar flares or Coronal Mass Ejections. Work partially supported by the U.S. DOE OFES under Award DE-SC-0007883.

  13. Association of EUV Waves and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Yashiro, Seiji; Gopalswamy, N.

    2011-05-01

    The association between EUV waves and coronal mass ejections (CMEs) is difficult to establish for disk flares using observations from the Sun-Earth line because of visibility issues. The other possibility is the real absence of mass motion in flares. This issue can be effectively addressed by the twin spacecraft of the Solar Terrestrial Relations Observatory (STEREO) mission. The Ahead and Behind spacecraft of the STEREO mission were located around ±90° from the Sun-Earth line from 2010 to 2012. This is the first opportunity to investigate the connection between CMEs and EUV waves with a high degree of accuracy. During January 28 - March 9, 2011, two X- and 28 M-class flares occurred. We examined their CME associations using STEREO/SECCHI and SOHO/LASCO observations, and EUV wave associations using SDO/AIA data. We found that 10 out of 30 flares were associated with clear flux-rope CMEs (FRCMEs) while 16 did not have any erupting features above the flaring regions in the coronagraph images. The remaining four flares had narrow CMEs or outflow above the flaring regions but their connection to the flares is unclear. We also found all of the FRCME-associated flares had clear EUV waves, while the flares without CMEs also lacked EUV waves. We found one-to-one correspondence between EUV waves and FRCMEs.

  14. Coronal mass ejection activity during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Lara, Alejandro; Yashiro, Seiji; Nunes, Steven; Howard, Russell A.

    2003-09-01

    We studied the solar cycle varition of various properties of coronal mass ejections (CMEs), such as daily CME rate, mean and median speeds, and the latitude of solar sources for cycle 23 (1996-2002). We find that (1) there is an order of magnitude increase in CME rate from the solar minimum (0.5/day) to maximum (6/day), (2) the maximum rate is significantly higher than previous estimates, (3) the mean and median speeds of CMEs also increase from minimum to maximum by a factor of 2, (4) the number of metric type II bursts (summed over CR) tracks CME rate, but the CME speed seems to be only of secondary importance, (5) for type II bursts originating farther from the Sun the CME speed is important, (6) the latitude distribution of CMEs separate the prominence-associated (high-latitude) and active-region associated CMEs, and (7) the rate of high-latitude CMEs shows north-south asymmetry and the cessation eruptions in the north and south roughly mark the polarity reversals. We compared the rates of the fast-and-wide CMEs, major solar flares, interplanetary (IP) shocks, long-wavelength type II bursts and large SEP events. This comparison revealed that the number of major flares is generally too large compared to all the other numbers. In other words, fast-and-wide CMEs, long-wavelength type II bursts, large SEP events, and IP shocks have a close physical relationship.

  15. Solar coronal jets

    NASA Astrophysics Data System (ADS)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  16. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  17. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  18. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  19. Multi-wavelength view of an M2.2 solar flare on 26 november 2000

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Verma, V. K.; Rani, S.; Maurya, R. A.

    2017-02-01

    In this paper, we present a study of an M2.2 class solar flare of 26 November 2000 from NOAA AR 9236. The flare was well observed by various ground based observatories (ARIES, Learmonths Solar Observatory) and space borne instruments (SOHO, HXRS, GOES) in time interval between 02:30 UT to 04:00 UT. The flare started with long arc-shape outer flare ribbon. Afterwards the main flare starts with two main ribbons. Initially the outer ribbons start to expand with an average speed (∼20 km s-1) and later it shows contraction. The flare was associated with partial halo coronal mass ejection (CMEs) which has average speed of 495 km s-1. The SOHO/MDI observations show that the active region was in quadrupolar magnetic configuration. The flux cancellation was observed before the flare onset close to flare site. Our analysis indicate the flare was initiated by the magnetic breakout mechanism.

  20. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  1. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  2. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  3. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-09-27

    Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  4. Sunspot waves and flare energy release

    NASA Astrophysics Data System (ADS)

    Sych, R.; Karlický, M.; Altyntsev, A.; Dudík, J.; Kashapova, L.

    2015-05-01

    Context. We study the possibility of flare process triggering by waves propagating from the sunspot along a magnetic loop (channel) to a nearby flare site. Aims: We present a relationship between the dynamics of ~3-min slow magnetoacoustic waves in the sunspot and flare emergence process. Waves propagating in the magnetic channel whose one foot is anchored in the umbra represent the disturbing agent responsible for triggering the flare energy release. Methods: We applied time-distance plots and pixel wavelet filtration methods to obtain spatio-temporal distribution of wave power variations in radio and SDO/AIA data. To find the magnetic channel, we used potential magnetic field extrapolation of SDO/HMI magnetograms. The propagation velocity of wave fronts was measured from wave locations at specific times. Results: In the correlation curves of the 17 GHz (NoRH) radio emission, we found a monotonous energy amplification of the 3-min waves in the sunspot umbra before the 2012 June 7 flare. This amplification was associated with an increase in the length of the oscillatory wakes in coronal loops (SDO/AIA, 171 Å) prior to the flare onset. A peculiarity of the flare is the constant level of the flare emission in soft X-rays (RHESSI, 3-25 keV) for ~10 min after the short impulsive phase, which indicates continuing energy release. Throughout this time, we found transverse oscillations of the flare loop with a 30 s period in the radio-frequency range (NoRH, 17 GHz). This period appears to be related to the 3-min waves from the sunspot. The magnetic field extrapolation based on SDO/HMI magnetograms shows the existence of the magnetic channel (waveguide) connecting the sunspot with the energy release region. Conclusions: We analysed the sunspot 3-min wave dynamics and found a correlation between the oscillation power amplification and flare triggering in the region connected to the sunspot through the magnetic channel. We propose that this amplified wave flux triggered the

  5. Deterministically Driven Avalanche Models of Solar Flares

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  6. A New Paradigm for Flare Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  7. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  8. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.

  9. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  10. Guided MHD waves as a coronal diagnostic tool

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.

  11. Solar extreme ultraviolet (EUV) flare observations and findings from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Eparvier, Francis G.; Mason, James P.

    New solar soft X-ray (SXR) and extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) provide full coverage from 0.1 to 106 nm and continuously at a cadence of 10 seconds for spectra at 0.1 nm resolution. These observations during flares can usually be decomposed into four distinct characteristics: impulsive phase, gradual phase, coronal dimming, and EUV late phase. Over 6000 flares have been observed during the SDO mission; some flares show all four phases, and some only show the gradual phase. The focus is on the newer results about the EUV late phase and coronal dimming and its relationship to coronal mass ejections (CMEs). These EVE flare measurements are based on observing the sun-as-a-star, so these results could exemplify stellar flares. Of particular interest is that new coronal dimming measurements of stars could be used to estimate mass and velocity of stellar CMEs.

  12. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, S.; Vilmer, N.; Bommier, V.

    2015-12-01

    Solar flares are among the most energetic events in the solar system. Magnetic energy previously stored in the coronal magnetic field is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur in coronal currents sheets associated with regions of strong gradient of magnetic connectivity. Coronal current sheets can be traced by their footprints at the surface on the Sun, in e.g. photospheric current ribbons. We aim to study the relationship between the current ribbons observed at the photospheric level which trace coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density are calculated from SDO/HMI spectropolarimetric data using the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra are reconstructed from RHESSI data. In a first case (the GOES X2.2 flare of February 15, 2011), a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons (Musset et al., 2015). Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets. Propagation of the reconnection sites to new structures during the flare results in new X-ray emission sites and local increase of the photospheric currents We will examine in this contribution whether similar results are obtained for other X-class flares.

  13. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  14. Real-Time Analysis of Global Waves Accompanying Coronal Mass Ejections

    DTIC Science & Technology

    2016-06-30

    observation, they were interpreted as either flows or shock waves produced by an erupting solar flare , they are strongly associated with Type II radio...active regions, solar flares , filaments and CMEs (for more details see Martens et al. 2012). This was mimicked for global coronal waves with the...run for a given solar eruption given a source point and start time, which are usually taken as the start time and location of the associated solar flare

  15. Real-time Analysis of Global Waves Accompanying Coronal Mass Ejections

    DTIC Science & Technology

    2016-09-01

    observation, they were interpreted as either flows or shock waves produced by an erupting solar flare , they are strongly associated with Type II radio...active regions, solar flares , filaments and CMEs (for more details see Martens et al. 2012). This was mimicked for global coronal waves with the...run for a given solar eruption given a source point and start time, which are usually taken as the start time and location of the associated solar flare

  16. Gravitational steady states of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.; Asgari-Targhi, M.

    2017-02-01

    Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with

  17. Stellar Coronal Spectroscopy with the XMM-Newton RGS

    NASA Astrophysics Data System (ADS)

    Guedel, M.; Audard, M.; Behar, E.; Cottam, J.; Kahn, S. M.; Paerels, F. B. S.; Peterson, J. M.; Rasmussen, A. P.; Branduardi-Raymont, G.; Sakelliou, I.; den Boggende, A. J.; Brinkman, A. C.; den Herder, J. W.; Kaastra, J. S.; Mewe, R.; Tamura, T.; de Vries, C.; Erd, C.; XMM Collaboration

    2000-10-01

    High resolution X-ray spectroscopy opens new windows to the study of the structuring and energetics of stellar coronae. XMM-Newton has obtained excellent spectra of several stellar coronal sources (e.g., HR1099, Capella, YY Gem, and AB Dor) with its two Reflection Grating Spectrometers (RGS). These sources represent coronae of various activity levels, comprising a wide range of plasma temperatures. Several flares were observed in the course of the observations for which time-resolved RGS spectroscopy will be presented. The RGS spectra offer important diagnostics to probe properties of the coronal plasma. The large number of detected lines from various elements offer the possibility to determine emission measure distributions between approximately 1-20 MK. He-like triplets further provide information on electron densities at various temperatures. Coronal elemental abundances are found to vary between quiescent and flare states. Abundance anomalies may shed light on the coronal heating mechanism. We discuss implications from spectral modeling on coronal structuring, including the size of coronal structures, the abundance stratification, and possible optical depth effects. We complement this information with geometric modeling obtained from stellar eclipses and rotational modulation. Implications for the coronal heating scenario are discussed.

  18. Stellar flares and the dark energy of CMEs

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Cohen, Ofer; Garraffo, Cecilia

    2015-08-01

    Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate much more particle kinetic energy in CMEs than flare radiative energy. Such monster CMEs pose a quandary for understanding the fraction of the energy budget stars can spend on magnetic activity. They could also be the dominant mechanism of angular momentum loss on active stars, and have the potential to ravage planetary atmospheres. We will discuss flare activity, how it might relate to coronal mass ejections, and efforts to understand stellar spin-down and the impact of CMEs on planetary atmospheres using detailed magnetohydrodynamic modelling.

  19. Stellar flares and the dark energy of CMEs

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Cohen, Ofer; Garraffo, Cecilia; Kashyap, V.

    Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate two orders of magnitude less X-ray radiative energy than the kinetic energy in the associated CME. Since coronal emission on active stars appears to be dominated by flare activity, CMEs pose a quandary for understanding the fraction of their energy budget stars can spend on magnetic activity. One answer is magnetic suppression of CMEs, in which the strong large-scale fields of active stars entrap and prevent CMEs unless their free energy exceeds a critical value. The CME-less flaring active region NOAA 2192 presents a possible solar analogue of this. Monster CMEs will still exist, and have the potential to ravage planetary atmospheres.

  20. Reconnection and Spire Drift in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as

  1. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  2. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  3. A STUDY OF FAST FLARELESS CORONAL MASS EJECTIONS

    SciTech Connect

    Song, H. Q.; Chen, Y.; Ye, D. D.; Han, G. Q.; Du, G. H.; Li, G.; Zhang, J.; Hu, Q.

    2013-08-20

    Two major processes have been proposed to convert coronal magnetic energy into the kinetic energy of a coronal mass ejection (CME): resistive magnetic reconnection and the ideal macroscopic magnetohydrodynamic instability of a magnetic flux rope. However, it remains elusive whether both processes play a comparable role or one of them prevails during a particular eruption. To shed light on this issue, we carefully studied energetic but flareless CMEs, i.e., fast CMEs not accompanied by any flares. Through searching the Coordinated Data Analysis Workshops database of CMEs observed in Solar Cycle 23, we found 13 such events with speeds larger than 1000 km s{sup -1}. Other common observational features of these events are: (1) none of them originated in active regions, they were associated with eruptions of well-developed long filaments in quiet-Sun regions; (2) no apparent enhancement of flare emissions was present in soft X-ray, EUV, and microwave data. Further studies of two events reveal that (1) the reconnection electric fields, as inferred from the product of the separation speed of post-eruption ribbons and the photospheric magnetic field measurement, were generally weak; (2) the period with a measurable reconnection electric field is considerably shorter than the total filament-CME acceleration time. These observations indicate that for these fast CMEs, the magnetic energy was released mainly via the ideal flux-rope instability through the work done by the large-scale Lorentz force acting on the rope currents rather than via magnetic reconnections. We also suggest that reconnections play a less important role in accelerating CMEs in quiet-Sun regions of weak magnetic field than those in active regions of strong magnetic field.

  4. Radio constraints on coronal models for dMe stars

    NASA Technical Reports Server (NTRS)

    White, S. M.; Lim, J.; Kundu, M. R.

    1994-01-01

    Radio data are used to test coronal models for dMe stars. Specifically, we show that photospheric magnetic field observations imply that the low corona of a dMe star should be saturated by magnetic fields with an average strength in excess of 1 kG. In such fields the hot component of the corona detected in X-ray observations (temperature of order 2 x 10(exp 7) K) would be optically thick at least up to 15 GHz due to thermal gyroresonance opacity. The resulting emission would easily be detectable by radio observations and should have a radio spectrum rising in the microwave range. We have carried out observations to test this prediction, and in the majority of cases find that the observed fluxes at 15 GHz are too low to be consistent with the assumptions. In the few cases where the stars were detected at 15 GHz, the evidence indicates that the observed emission is nonthermal. These results imply that the hot component of the X-ray-emitting plasma in the corona is not coincident with the strong magnetic fields in the lower corona. Because the hot plasma must still be confined by closed magnetic field lines, it is likely to be restricted to heights of the order of a stellar radius above the photosphere. The results seem to imply a different genesis for the two components of the X-ray-emitting corona of flare stars: the hot component may be cooling flare plasma, while the cooler component (temperature of order 3 x 10(exp 6) K) is associated with a more conventional coronal heating mechanism.

  5. Classification of solar flares

    NASA Astrophysics Data System (ADS)

    Bai, T.; Sturrock, P. A.

    The historical background of solar flare classification before the SMM launch is reviewed along with recent developments made by observations with SMM, Hinotori, and other contemporary satellite and ground-based observations. Based on these recent findings, solar flares are grouped into five classes: thermal hard X-ray flares, nonthermal hard X-ray flares, impulsive gamma-ray/proton flares, gradual gamma-ray/proton flares, and quiescent filament-eruption flares. The roles of filament eruptions in flare development are examined, and theoretical ideas related to processes occurring in different flare classes are discussed.

  6. STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES

    SciTech Connect

    Li, Y. P.; Gan, W. Q.; Feng, L.

    2012-03-10

    The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

  7. The response of the chromosphere during a stellar flare

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.

    1991-01-01

    A set of chromospheric models was developed, having a coronal loop geometry, energy balance through the entire loop from photosphere to corona, and a rigorous treatment of the radiative transfer in the important, optically thick, chromospheric emission lines. The models show that the soft X-ray emission and thermal conduction from a long lived hot corona are effective heating agents in the lower atmosphere during the gradual phase of stellar flares. The model predictions show the correct order of magnitude for the emission lines produced during the gradual phase of the flare with a reasonable coronal temperature evolution.

  8. Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian

    2016-05-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.

  9. FNAS/solar flare energetics

    NASA Technical Reports Server (NTRS)

    Machado, M. E.

    1992-01-01

    We have performed an extensive study of solar flare energy buildup and release, concentrating in two aspects: (1) relationship with 3D field topology and measured electric currents; and (2) flare onset characteristics as determined from combined x ray and ultraviolet observations. We extended our previous studies on the characteristic topology of flaring regions, by following the evolution of an active region over three consecutive days. From comparison with flare observations in x rays and h alpha, we found further support for the hypothesis that flares were triggered by taking place at the separators (3D generalization of and x-type neutral point). Furthermore, we found that emerging in flux at a site within the active regions where no (or little) activity was previously observed, caused the appearance of a secondary separator and thereon continuous triggering of activity at such site. Our topology arguments were then applied to a study of sympathetic activity between two regions within an active complex. Here again we found that interacting field structures along separators and separatrices, which act as pathways for recurrent flaring to spread between the regions, could be used to understand how activity spread to potentially explosive sites with the complex. We also finished our study of flare onset characteristics as determined from combined x ray and ultraviolet observations. Using a quasi-static modeling approach, we find that this phase is characterized by a relatively low level of energy release, 10 exp 26-27 erg/s, which is sufficient to produce 'gentle' evaporation, a shift in the location of the transition zone as compared to pre-flare conditions, and an increase in the temperature and density of coronal loops. All these changes have profound implications on the observed signatures of impulsive phase phenomena, which had been neglected in the past. As a follow-up of this investigation, we now plan to apply our results to the interpretation of high

  10. The formation flare loops by magnetic reconnection and chromospheric ablation

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Malherbe, J. M.; Priest, E. R.

    1989-01-01

    Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.

  11. VALIDATION OF THE CORONAL THICK TARGET SOURCE MODEL

    SciTech Connect

    Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.; Gary, Dale E.

    2016-01-10

    We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra. The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.

  12. Validation of the Coronal Thick Target Source Model

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.; Gary, Dale E.

    2016-01-01

    We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra. The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.

  13. 3D Global Coronal Density, Temperature, and Vector Magnetic Field Derived from Coronal Observation.

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Airapetian, V.; Tomczyk, S.

    2016-12-01

    Solar coronal magnetic fields play a key role in the energetics and dynamics of coronal heating, solar flares, coronal mass ejections (CME), filament eruptions, and determine space weather processes. Therefore, one of the central problems of solar physics is to measure the magnetic fields in the solar corona.The main techniques that are currently used to deduce the global magnetic structure of the solar corona include potential field, nonlinear force-free field (NLFFF), and magnetohydrodynamic (MHD) models. These methods are based on boundary conditions of the solar photospheric magnetic field that are derived directly from photospheric magnetograms. All of these methods are essentially extrapolation methods based on inner boundary conditions taken at the photosphere. However, the magnetic field at the photosphere and lower chromosphere is far from potential or force-free, because of the dominance of the plasma pressure there.We will present 3D reconstruction of the global coronal electron density, temperature during periods of minimum and maximum of solar activity cycle and derived from coronal STEREO/COR1 and EUVI observations. We find that the magnetic field configuration during maximum of solar activity (CR 2131) has a tendency to become radially open at heliocentric distances below 2.5 Rsun while during the solar minimum (CR 2066) they tend to open at higher distances.Moreover, the obtained 3D density and temperature has been used as additional input for recently developed vector tomography method to reconstruct the coronal vector magnetic field based on polarimetric observation of magnetically sensitive Fe XIII ion emission by Coronal Magnetic Polarimeter (CoMP). We validated the vector tomography inverted coronal magnetic fields with those constructed by MHD simulation based on observed photospheric magnetic fields as well as with the STEREO/EUVI 195 image and with the global 3D coronal electron density structure obtained by tomography based on STEREO/COR1

  14. TRACKING CORONAL FEATURES FROM THE LOW CORONA TO EARTH: A QUANTITATIVE ANALYSIS OF THE 2008 DECEMBER 12 CORONAL MASS EJECTION

    SciTech Connect

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2013-05-20

    We have tracked a slow magnetic cloud associated coronal mass ejection (CME) continuously from its origin as a flux rope structure in the low solar corona over a four-day passage to impact with spacecraft located near Earth. Combining measurements from the STEREO, ACE, and Wind space missions, we are able to follow major elements with enough specificity to relate pre-CME coronal structure in the low corona to the corresponding elements seen in the near-Earth in situ data. Combining extreme ultraviolet imaging, quantitative Thomson scattering data throughout the flight of the CME, and ''ground-truth'' in situ measurements, we: (1) identify the plasma observed by ACE and Wind with specific features in the solar corona (a segment of a long flux rope); (2) determine the onset mechanism of the CME (destabilization of a filament channel following flare reconnection, coupled with the mass draining instability) and demonstrate that it is consistent with the in situ measurements; (3) identify the origin of different layers of the sheath material around the central magnetic cloud (closed field lifted from the base of the corona, closed field entrained during passage through the corona, and solar wind entrained by the front of the CME); (4) measure mass accretion of the system via snowplow effects in the solar wind as the CME crossed the solar system; and (5) quantify the kinetic energy budget of the system in interplanetary space, and determine that it is consistent with no long-term driving force on the CME.

  15. A Trio of Confined Flares in AR 11087

    NASA Astrophysics Data System (ADS)

    Joshi, Anand D.; Forbes, Terry G.; Park, Sung-Hong; Cho, Kyung-Suk

    2015-01-01

    We investigate three flares that occurred in active region, AR 11087, observed by the Dutch Open Telescope (DOT) on 2010 July 13, in a span of three hours. The first two flares have soft X-ray class B3, whereas the third flare has class C3. The third flare not only was the largest in terms of area and brightness but also showed a very faint coronal mass ejection (CME) associated with it, while the earlier two flares had no associated CME. The active region, located at 27° N, 26° E, has a small U-shaped active region filament to the south of the sunspot, and a quiescent filament is located to its west. Hα observations from DOT, as well as extreme-ultraviolet images and magnetograms from the STEREO spacecraft and Solar Dynamics Observatory, are used to study the dynamics of the active region during the three flares. Our observations imply that the first two flares are confined and that some filament material drains to the surface during these flares. At the onset of the third flare downflows are again observed within the active region, but a strong upflow is also observed at the northern end of the adjacent quiescent filament to the west. It is at the latter location that the CME originates. The temporal evolution of the flare ribbons and the dynamics of the filaments are both consistent with the idea that reconnection in a pre-existing current sheet leads to a loss of equilibrium.

  16. A TRIO OF CONFINED FLARES IN AR 11087

    SciTech Connect

    Joshi, Anand D.; Park, Sung-Hong; Cho, Kyung-Suk; Forbes, Terry G. E-mail: freemler@kasi.re.kr E-mail: terry.forbes@unh.edu

    2015-01-10

    We investigate three flares that occurred in active region, AR 11087, observed by the Dutch Open Telescope (DOT) on 2010 July 13, in a span of three hours. The first two flares have soft X-ray class B3, whereas the third flare has class C3. The third flare not only was the largest in terms of area and brightness but also showed a very faint coronal mass ejection (CME) associated with it, while the earlier two flares had no associated CME. The active region, located at 27° N, 26° E, has a small U-shaped active region filament to the south of the sunspot, and a quiescent filament is located to its west. Hα observations from DOT, as well as extreme-ultraviolet images and magnetograms from the STEREO spacecraft and Solar Dynamics Observatory, are used to study the dynamics of the active region during the three flares. Our observations imply that the first two flares are confined and that some filament material drains to the surface during these flares. At the onset of the third flare downflows are again observed within the active region, but a strong upflow is also observed at the northern end of the adjacent quiescent filament to the west. It is at the latter location that the CME originates. The temporal evolution of the flare ribbons and the dynamics of the filaments are both consistent with the idea that reconnection in a pre-existing current sheet leads to a loss of equilibrium.

  17. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  18. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    NASA Astrophysics Data System (ADS)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-10-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011 plus an event on 2010 August 7, analyzed in a previous paper to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are \\begin{eqnarray*}{v}{CME} ≤ft[\\displaystyle \\frac{{km}}{{{s}}}\\right] & ≈ & 2.36× {10}6 ≤ft[\\displaystyle \\frac{{km}}{ % }\\right]× {s}\\dim ≤ft[\\displaystyle \\frac{ % }{{{s}}}\\right]\\ {m}{CME} [{{g}}] & ≈ & 2.59× {10}15≤ft[\\displaystyle \\frac{g}{ % }\\right]× \\sqrt{{d}\\dim } [ % ].\\end{eqnarray*} These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  19. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  20. Reconnection in the lower solar atmosphere and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Wang, Jingxiu

    2006-01-01

    In 1985, a phenomenon in the solar photosphere, called magnetic flux cancellation, was first described in detail by Livi et al. (1985) [The cancellation of magnetic flux. I On the quiet sun, Aust. J. Phys. 38, 855 873, 1985] and Martin et al. (1985) [The cancellation of magnetic flux. II In a decaying active region, Aust. J. Phys. 38, 929 959, 1985]. Since then, it has been revealed that flux cancellation is intrinsically correlated to most, if not all, types of solar activity, such as flare, filament formation and eruption, and ubiquitous small-scale activity, e.g., X-ray bright point, explosive event, mini-filament eruption and so on. Only recently, it was discovered that flux cancellation appeared to be a key part of magnetic evolution leading to the initiation of coronal mass ejections (CMEs) [Zhang et al., Magnetic flux cancellation associated withthe major solar event on 2000 July 14. Astrophys. J. 548, L99 102, 2001; Zhang et al., 2001b. Filament-associated halo coronal mass ejection, Chin. J. Astron. Astrophys., 1, 85 98, 2001; Zhang and Wang, Filament eruptions and halo coronal mass ejections, Astrophys. J. 554, 474 487, 2001]. On the other hand, the nature of flux cancellation has been a topic of persistent interest and debate. We review the observational properties of magnetic flux cancellation and the relevant theoretical studies, describe the vector magnetic field changes in flux cancellation in CME-associated active regions (ARs), and demonstrate that the well-observed flux cancellations fit nicely the scenario of magnetic reconnection in the lower solar atmosphere. It is suggested that magnetic reconnection in the lower solar atmosphere is a ubiquitous process on the Sun. It is a key element in the magnetic evolution of CMEs.

  1. The solar minimum X2.6/1B flare and CME of 9 July 1996. Pt 2; Propagation

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Andrews, M. D.; Aurass, H.; DeForest, C.; Karlicky, M.; Kiplinger, A.; Klassen, A.; Meisner, R.; Ipavich, F. M.; Galvin, A. B.; hide

    1997-01-01

    The interplanetary propagation aspects of the first X-class solar flare and coronal mass ejection are discussed. The solar data relevant to this event are summarized. Data from WIND and charge element and isotope analysis system (CELIAS) show solar wind plasma and interplanetary magnetic field disturbances early on 12 July 1996. It was observed that the extrapolation of the coronal mass ejection back to the flare time suggests a close association between them. Moreover, the coronal mass ejection speed is similar to the type two shock's speed. The results suggest that the coronal mass ejection is intimately related to the shock itself.

  2. Analysis of Chromospheric Evaporation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.

    2017-08-01

    Chromospheric evaporation is one of the key processes of solar flares. Properties of chromospheric evaporation are thought to be closely connected to the energy release rates and energy transport mechanisms. Previous investigations revealed that in addition to electron-beam heating the chromospheric evaporation can be driven by heat fluxes and, probably, by other mechanisms. In this work, we present a study of flare events simultaneously observed by IRIS, SDO and RHESSI, focusing on spatio-temporal characteristics of the flare dynamics and its relation to the magnetic field topology. Event selection is performed using the Interactive Multi-Instrument Database of Solar Flares (IMIDSF) recently developed by the Center for Computational Heliophysics (CCH) at NJIT. The selection of IRIS observations was restricted to the fast-scanning regimes (coarse-raster or sparse-raster modes with ≥ 4 slit positions, ≥ 6`` spatial coverage, and ≤ 60 sec loop time). We have chosen 14 events, and estimated the spatially-resolved intensities and Doppler shifts of the chromospheric (Mg II), transition region (C II) and hot coronal (Fe XXI) lines reflecting the dynamics of the chromospheric evaporation. The correlations among the derived line profile properties, flare morphology, magnetic topology and hard X-ray characteristics will be presented, and compared with the RADYN flare models and other scenarios of chromospheric evaporations.

  3. Radio and X-ray Diagnostics of Energy Release in Solar Flares

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2013-07-01

    Solar flares involve catastrophic release of magnetic energy previously stored in the Sun's corona. This dissertation focuses on studies of radio and hard X-ray emissions as diagnostics of energy release in flares. A major part of the dissertation is exploiting spatially resolved dynamic spectroscopy to study coherent radio bursts. The Frequency-Agile Solar Radiotelescope Subsystem Testbed, a three-element radio interferometer, provides the first opportunity of doing such studies on zebra-pattern bursts. The observations allow us to identify the relevant emission mechanism, enabling diagnostics of the plasma parameters in the source. With the help of coronal magnetic field extrapolations, the source is placed into a three-dimensional magnetic field configuration and its relation to the energy release is clarified. The next part of the dissertation discusses the "solar mode" commissioning of the upgraded Karl G. Jansky Very Large Array (VLA). As a general purpose telescope, special provisions should be made for the VLA to enable solar observations. Based on the test results on the VLA's hardware, solar observing and calibration strategies are developed. Now the VLA is capable of observing the Sun with simultaneous imaging and dynamic spectroscopy over a large bandwidth at high spatial, spectral, and temporal resolutions. The upgraded VLA is used to observe decimetric type III radio bursts, which are the radio signature of propagating fast electron beams produced in flares. The new observing technique allows detailed trajectories of these electron beams to be derived. Combined with multi-wavelength observations, the properties of the energy release site, electron beams, and the surrounding coronal medium are deduced. The dissertation also presents a study on coronal hard X-ray/gamma-ray sources. Rather extreme conditions are needed to account for some observed coronal hard X-ray/gamma-ray sources using the usually-assumed non-thermal bremsstrahlung emission. This

  4. Standing sausage modes in curved coronal slabs

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  5. The analysis and the three-dimensional, forward-fit modeling of the X-ray and the microwave emissions of major solar flares

    NASA Astrophysics Data System (ADS)

    Kuroda, Natsuha; Wang, Haimin; Gary, Dale E.

    2017-08-01

    It is well known that the time profiles of the hard X-ray (HXR) emission and the microwave (MW) emission during the impulsive phase of the solar flare are well correlated, and that their analysis can lead to the understandings of the flare-accelerated electrons. In this work, we first studied the source locations of seven distinct temporal peaks observed in HXR and MW lightcurves of the 2011-02-15 X2.2 flare using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radioheliograph. We found that the seven emission peaks did not come from seven spatially distinct sites in HXR and MW, but rather in HXR we observed a sudden change in location only between the second and the third peak, with the same pattern occurring, but evolving more slowly in MW, which is consistent with the tether-cutting model of solar flares. Next, we closely examine the widely-used notion of a "common population" of the accelerated electrons producing the HXR and the MW, which has been challenged by some studies suggesting the differences in the inferred energy spectral index and emitting energies of the HXR- and MW- producing electrons. We use the Non-linear Force Free Field model extrapolated from the observed photospheric magnetogram in the three-dimensional, multi-wavelength modeling platform GX Simulator, and attempt to create a unified electron population model that can simultaneously reproduce the observed X-ray and MW observations of the 2015-06-22 M6.5 flare. We constrain the model parameters by the observations made by the highest-resolving instruments currently available in two wavelengths, the RHESSI for X-ray and the Expanded Owens Valley Solar Array for MW. The results suggest that the X-ray emitting electron population model fits to the standard flare model with the broken, hardening power-law spectrum at ~300 keV that simultaneously produces the HXR footpoint emission and the MW high frequency emission, and also reveals that there could be a

  6. Elongated Coronal Hole

    NASA Image and Video Library

    2016-03-24

    NASA Solar Dynamics Observatory shows a long coronal hole has rotated so that was temporarily facing right towards Earth Mar. 23-25, 2016. Coronal holes appear dark when viewed in some wavelengths of extreme ultraviolet light.

  7. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  8. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  9. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  10. Implications for Coronal Heating from Coronal Rain

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Shibata, K.; Carlsson, M.; van der Voort, L. R.; Vissers, G.; Hansteen, V.

    2012-08-01

    Coronal rain is a phenomenon above active regions in which cool plasma condensations fall down from coronal heights. Numerical simulations of loops have shown that such condensations can naturally form in the case of footpoint concentrated heating through the “catastrophic cooling” mechanism. In this work we analize high resolution limb observations in Ca II H and Hα of coronal rain performed by Hinode/SOT and by Crisp of SST and derive statistical properties. We further investigate the link between coronal rain and the coronal heating mechanisms by performing 1.5-D MHD simulations of a loop subject to footpoint heating and to Alfvén waves generated in the photosphere. It is found that if a loop is heated predominantly from Alfvén waves coronal rain is inhibited due to the characteristic uniform heating they produce. Hence coronal rain can point both to the spatial distribution of the heating and to the agent of the heating itself, thus acting as a marker for coronal heating mechanisms.

  11. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Su, Yang; Gömöry, Peter; Dickson, Ewan C.

    2017-10-01

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager (RHESSI) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  12. Discovery in 1960 of the Flare Nimbus Phenomenon and Changes with Time in Its Interpretation

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan M. P.

    2011-09-01

    During the International Geophysical Year (IGY, 1957/1958) Dunsink Observatory near Dublin in Ireland was a World Data Centre for Solar Activity. In this circumstance, Hα Lyot Heliograph records secured on a daily basis between 07:00 - 14:00 UT at the Cape of Good Hope (then an integral link in a network of similar instruments contributing during the IGY to global monitoring of solar chromospheric activity) were routinely sent to Dunsink for analysis and dissemination. The investigations carried out at Dunsink on these data resulted, inter alia, in the discovery of the Flare Nimbus phenomenon. The nimbus comprises a dark expanding halo seen in the plage regions around major flares at, or within a few minutes of, the time of flare maximum intensity in Hα light. It reaches its greatest extent about 30 minutes after flare maximum. Its maximum dimensions (estimated visually) lie in the range 2 - 4×105 km and its duration ranges from ˜ 1 - 2 hours. Within the nimbus the striation pattern is either completely destroyed or loses its pre-flare configuration. An account of this phenomenon and its interpretation appeared primarily, although not exclusively, in the locally produced Dunsink Observatory Publications which are not now easily accessible to the world community of solar researchers. Also, at around the time when the nimbus was first identified and recorded in Lyot Heliograph data at several observatories, techniques in solar physics shifted towards high resolution narrow field observations. Under these conditions no further examples of the nimbus were recorded and the subject has remained dormant over several decades. The present paper again places the scientific results obtained with regard to the nimbus in the public domain, together with an account of the evolution within the scientific community of an explanation of this phenomenon. It is suggested here for the first time, in the light of present day data concerning coronal mass ejections (CMEs) and coronal

  13. Coronal heating by waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1983-01-01

    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.

  14. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  15. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  16. Modeling Repeatedly Flaring δ Sunspots.

    PubMed

    Chatterjee, Piyali; Hansteen, Viggo; Carlsson, Mats

    2016-03-11

    Active regions (ARs) appearing on the surface of the Sun are classified into α, β, γ, and δ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the δ sunspots are known to be superactive and produce the most x-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin subphotospheric magnetic sheet breaks into multiple flux tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic δ sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  17. Modeling Repeatedly Flaring δ Sunspots

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Hansteen, Viggo; Carlsson, Mats

    2016-03-01

    Active regions (ARs) appearing on the surface of the Sun are classified into α , β , γ , and δ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the δ sunspots are known to be superactive and produce the most x-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin subphotospheric magnetic sheet breaks into multiple flux tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic δ sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  18. FlareLab: early results

    NASA Astrophysics Data System (ADS)

    Soltwisch, H.; Kempkes, P.; Mackel, F.; Stein, H.; Tenfelde, J.; Arnold, L.; Dreher, J.; Grauer, R.

    2010-12-01

    The FlareLab experiment at Bochum University has been constructed to generate and investigate plasma-filled magnetic flux tubes similar to arch-shaped solar prominences, which often result in coronal mass ejections (CMEs). In its first version, the device has been used to reproduce and extend previous studies of Bellan et al (1998 Phys. Plasmas 5 1991). Here the plasma source consists of two electrodes, which can be connected to a 1.0 kJ capacitor bank, and of a horseshoe magnet, which provides an arch-shaped guiding field. The discharge is ignited in a cloud of hydrogen gas that has been puffed into the space above the electrodes. In the first few microseconds the plasma current rises at a rate of several kA µs-1, causing the plasma column to pinch along the guiding B-field and to form an expanding loop structure. The observed dynamics of the magnetic flux tubes is analysed by means of three-dimensional MHD simulations in order to determine the influence of parameters like the initial magnetic field geometry on magnetic stability. At present, FlareLab is redesigned to mimic a model that was proposed by Titov and Démoulin (1999 Astron. Astrophys. 351 707) to investigate twisted magnetic configurations in solar flares.

  19. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  20. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    SciTech Connect

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.

  1. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  2. Constraining Solar Flare Differential Emission Measures with EVE and RHESSI

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-01

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from lsim2 to gsim50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ~2-25 MK thermal plasma emission, and RHESSI to gsim10 MK together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ~0.4-5 nm range, with important applications for geospace science.

  3. Temperature Dependence of the Flare Fluence Scaling Exponent

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.

    2015-12-01

    Solar flares result in an increase of the solar irradiance at all wavelengths. While the distribution of the flare fluence observed in coronal emission has been widely studied and found to scale as f(E)˜ E^{-α}, with α slightly below 2, the distribution of the flare fluence in chromospheric lines is poorly known. We used the solar irradiance measurements observed by the SDO/EVE instrument at a 10 s cadence to investigate the dependency of the scaling exponent on the formation region of the lines (or temperature). We analyzed all flares above the C1 level since the start of the EVE observations (May 2010) to determine the flare fluence distribution in 16 lines covering a wide range of temperatures, several of which were not studied before. Our results show a weak downward trend with temperature of the scaling exponent of the PDF that reaches from above 2 at lower temperature (a few 104 K) to {˜ }1.8 for hot coronal emission (several 106 K). However, because colder lines also have fainter contrast, we cannot exclude that this behavior is caused by including more noise for smaller flares for these lines. We discuss the method and its limitations and tentatively associate this possible trend with the different mechanisms responsible for the heating of the chromosphere and corona during flares.

  4. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  5. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  6. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between

  7. Stability of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    1990-05-01

    The equations of magnetohydrodynamics do not contain an intrinsic length scale determining the size of phenomena. Hence, size only enters through the external geometrical properties of the configurations considered. This is one of the reasons why tokamaks and solar coronal loops may be considered as similar objects. The equations of MHD do not distinguish between the two. It is only the geometry and, hence, the boundary conditions that discriminate between them. Whereas for tokamaks toroidal periodicity and normal confinement provide the appropriate boundary conditions, for coronal loops line-tying at the photosphere and some prescription for the behavior across the ``edge'' of the loop determine the solutions. The latter is a more complicated problem and gives rise to even more complex dynamics than encountered in tokamaks. Here, we consider the influence of the two mentioned groups of boundary conditions for the problem of the stability and disruption of a solar coronal loop. We consider the stability properties of a single loop with twisted magnetic field lines under the simultaneous influence of photospheric line-tying and constraining by neighboring flux loops. The loops would be violently unstable without these two ingredients (i.e. for the corresponding tokamak problem). It is shown that line-tying alone in not sufficient for stability, but the neighboring flux tubes provide a normal boundary condition similar to a conducting shell in tokamaks. This stabilization gets lost on the time scale associated with reconnection of the tangetial magnetic field discontinuities present in the many-loop system. On this time scale the magnetic energy, which has been built up during the twisting of the field lines, gets released, resulting in a disruption of the loop. This process may be considered as the single loop variant of Parker's solar flare model.

  8. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    NASA Astrophysics Data System (ADS)

    Li, Y.; Sun, X.; Ding, M. D.; Qiu, J.; Priest, E. R.

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  9. Flares, Fears, and Forecasts: Public Misconceptions About the Sunspot Cycle

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2012-06-01

    Among the disaster scenarios perpetrated by 2012 apocalypse aficionados is the destruction of humankind due to solar flares and coronal mass ejections (CMEs). These scenarios reflect common misconceptions regarding the solar cycle. This paper (based on an annual meeting poster) sheds light on those misconceptions and how the AAVSO Solar Section can address them.

  10. On-Disk Coronal Rain

    NASA Astrophysics Data System (ADS)

    Antolin, Patrick; Vissers, Gregal; Rouppe van der Voort, Luc

    2012-10-01

    Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology, and thermodynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non-equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed, and few reports on the phenomenon exist. In the present work, several data sets of on-disk Hα observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1- m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each data set, and a statistical analysis is carried out on their dynamics, morphology, and temperature. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. The chromospheric nature of the blobs and the projection effects (which eliminate all direct possibilities of height estimation) on one side, and their small sizes, fast dynamics, and especially their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.

  11. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  12. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  13. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  14. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  15. Energy released by the interaction of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field-line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared with the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.

  16. Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2014-09-01

    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/ EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is

  17. Determining Heating Rates in Reconnection Formed Flare Loops of the M8.0 Flare on 2005 May 13

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Qiu, Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-01

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 Å emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 Å bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this

  18. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    SciTech Connect

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this event

  19. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  20. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; Török, T.; Mason, H.; Curdt, W.; Meyer, K.; Dalmasse, K.; Matsui, Y.

    2016-11-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  1. Soft X-ray spectroscopy of solar flares - An overview

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1990-01-01

    An overview of the current status of high spectral resolution soft X-ray observations of solar flares is given. The review concentrates primarily on recent results and interpretations of results obtained from orbiting Bragg crystal spectrometers flow during the last solar maximum on the US DoD P78-1 spacecraft, the NASA SMM, and the ISAS Hinotori spacecraft. Results and several key issues regarding interpretation of the spectra are presented. Specifically, the dynamics of coronal flare plasmas as revealed by X-ray line profiles and wavelength shifts are discussed. Recent results concerning the theory of chromospheric evaporation are given. The temperature of coronal flare plasma is discussed within the context of a differential mission measure. Results concerning electron density measurements, nonequilibrium processes, and relative element abundances are also reviewed.

  2. Soft X-ray spectroscopy of solar flares - an overview

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.

    1990-06-01

    An overview of the current status of high spectral resolution soft X-ray observations of solar flares is given. The review concentrates primarily on recent results and interpretations of results obtained from orbiting Bragg crystal spectrometers flow during the last solar maximum on the US DoD P78-1 spacecraft, the NASA SMM, and the ISAS Hinotori spacecraft. Results and several key issues regarding interpretation of the spectra are presented. Specifically, the dynamics of coronal flare plasmas as revealed by X-ray line profiles and wavelength shifts are discussed. Recent results concerning the theory of chromospheric evaporation are given. The temperature of coronal flare plasma is discussed within the context of a differential mission measure. Results concerning electron density measurements, nonequilibrium processes, and relative element abundances are also reviewed.

  3. Circumstellar magnetic activity, flares and mass ejections in young stars

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Collier-Cameron, A.; Ehrenfreund, P.; Houdebine, E.

    1990-11-01

    Stellar activity studies are used for information on the early Sun and its environment, and for estimating activity effects on the young solar nebula. Large scale active structures are diagnosed from their rotational modulation signature, and reconstructed in three dimensions, using topographic or Doppler imaging techniques. Young stars undergo violent flares associated with coronal mass ejections leading to mass loss rates that can affect the stellar environment and stellar evolution. Young stars show large coronal condensations, magnetically linked with the stellar surface, that can be destabilized by energetic flares. From a joint ESA/AAT/IUE campaign, masses of such circumstellar clouds around the young star AB Doradus are estimated. These studies allow the problems of the link between circumstellar structures and magnetic activity and the role of mass ejections and flares in the context of mass loss and angular momentum braking in young stars, and early stellar evolution to be addressed.

  4. On the Location of the Acceleration Site for Energetic Helium-3 and Implications for Flare Models

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    2008-12-01

    The wide variation in the 3He/4He ratio in solar energetic particle events is most plausibly interpreted in terms of two distinct acceleration mechanisms for helium nuclei, one of which favors 3He. 3He-rich events are associated with impulsive energetic electron events which have (at least) two distinct acceleration mechanisms. Logically one of these should accelerate both 3He and electrons. Based on the electron energy spectrum from 3He-rich events Kahler et al (1987) proposed that the acceleration region should be the high corona, possibly as high as 2 solar radii. Two further observations provide information on where the 3He acceleration might occur. First is the remarkable upper limit on the total 3He fluence (Ho et al, 2005, 2008) which strongly suggests a model where the acceleration process accelerates the majority of 3He ions within a finite reservoir, which can only be a high coronal loop structure. The second is that at quiet times, at 1AU, the 3He/4He ratio is 6-60 times enhanced over the corresponding slow solar wind value (Desai et al, 2006). Both observations indicate that the acceleration, which favors 3He, is occurring quasi-continuously in the high coronal structure, with some leakage into the interplanetary medium. Eventually the coronal structure is disrupted and the trapped population is either released into the interplanetary medium or dumped into the "flare" site to provide both energy and seed particles for further acceleration, but by a different process which does not preferentially accelerate 3He. In the former case there will not be a significant flare, but a 3He-rich event, an impulsive electron event, and perhaps a fast jet from one of the footpoints of the trapping structure. In the latter case there will be a significant flare, with a major coronal mass ejection, probably driving a shock, which produces a non-3He-rich event and a much longer and larger energetic particle event.

  5. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  6. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  7. A Microwave Study of Coronal Ejecta

    NASA Astrophysics Data System (ADS)

    Kundu, M. R.; Nindos, A.; Raulin, J.-P.; Shibasaki, K.; White, S. M.; Nitta, N.; Shibata, K.; Shimojo, M.

    1999-05-01

    Using Nobeyama 17 GHz data, we have studied the radio properties of 19 coronal jets identified in Yohkoh SXT X-ray observations. The radio data provide information on the physical conditions in the jets which complements the data from the X-ray surveys. Microwave emission was associated with the majority of the X-ray jets in our sample. The radio emission typically came from the base or the base and lower part of the jets. We detected radio emission from almost all jets which showed flare-like activity at their bases. The jets which were not associated with radio emission did not show any significant increase in X-ray emission at their bases. The strongest radio emission came from two of the largest jets in our sample. Our data show a general correlation between the X-ray jet fluxes and the associated radio fluxes. The 17 GHz time profiles were gradual and unpolarized, implying that the emission was thermal. In a two-sided-loop jet (July 22, 1992 event) and one anemone-type jet (February 9, 1993 event), the observed microwave fluxes from the lower part of the jets were well above the fluxes calculated from the computed physical parameters of the soft X-ray-emitting material on the basis of thermal free-free emission. We interpret the large discrepancies in terms of the presence of lower temperature material which cannot be detected by the SXT (the SXT is most sensitive to hot plasma above 2 x 10(6) K) but which produces strong microwave free-free emission. This is the first time that such material has been observed in two-sided-loop type jets. We also observed motion of a jet-associated microwave source with a velocity of 55 km/sec. The microwave motion occurred after the appearance of the X-ray jet. There is clear evidence that the microwave emission of that source was associated with the jet and not with the associated small flare.

  8. Polarisation of microwave emission from reconnecting twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Gordovskyy, M.; Browning, P. K.; Kontar, E. P.

    2017-08-01

    Context. Magnetic reconnection and particle acceleration due to the kink instability in twisted coronal loops can be a viable scenario for confined solar flares. Detailed investigation of this phenomenon requires reliable methods for observational detection of magnetic twist in solar flares, which may not be possible solely through extreme UV and soft X-ray thermal emission. Polarisation of microwave emission in flaring loops can be used as one of the detection criteria. Aims: The aim of this study is to investigate the effect of magnetic twist in flaring coronal loops on the polarisation of gyro-synchrotron microwave (GSMW) emission, and determine whether it could provide a means for magnetic twist detection. Methods: We consider time-dependent magnetohydrodynamic and test-particle models developed using the LARE3D and GCA codes to investigate twisted coronal loops that relax after kink instability. Synthetic GSMW emission maps (I and V Stokes components) are calculated using GX simulator. Results: It is found that flaring twisted coronal loops produce GSMW radiation with a gradient of circular polarisation across the loop. However, these patterns may be visible only for a relatively short period of time owing to fast magnetic reconfiguration after the instability. Their visibility also depends on the orientation and position of the loop on the solar disk. Typically, it would be difficult to see these characteristic polarisation patterns in a twisted loop seen from the top (i.e. close to the centre of the solar disk), but easier in a twisted loop seen from the side (i.e. observed very close to the limb).

  9. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    SciTech Connect

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Liu, Rui; Pariat, Étienne; Wiegelmann, Thomas; Liu, Yang; Kleint, Lucia

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  10. ON THE ERUPTION OF CORONAL FLUX ROPES

    SciTech Connect

    Fan, Y.

    2010-08-10

    We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate, consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current layer developing. Preferential heating of field lines going through this current layer may give rise to the observed quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and the flare ribbons at their footpoints.

  11. Can we explain atypical solar flares?

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  12. Modelling the impulsive phase of solar flares

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, F.; Petrosian, V.; Liu, W.; Carlsson, M.

    2013-12-01

    Solar flares are the most energetic events in the solar system. In order to study this sudden release of energy and evaluate the response of the solar chromosphere to the deposition of thermal energy, we simulate the conditions of the solar atmosphere by creating a 1D plane-parallel atmospheric model and analyze the energy transport of a beam of non-thermal electrons that is injected at the top of the coronal loop. This is done using a numerical model which combines the radiative hydrodynamic equations (RADYN code - Carlsson & Stein, 1992) with the calculation of particle acceleration and transport (Flare code - Petrosian & Liu, 2004). With this model, it is for example possible to compare the emission of solar flares in several lines with available observations. The assemblage of high resolution chromospheric flare observations from the IRIS imaging spectrograph makes it an excellent time for this work. We discuss how accelerated particle heating and energy deposition rate are affected by the variation of cut-off energy and flux of non-thermal electrons as well as spectral index and investigate the response of the atmosphere to the acceleration of particles. Our flare simulation treats each atom in non-LTE condition and calculates in detail the transitions between its energy levels. It also assumes an optically thick atmosphere, which is crucial for understanding how energy is transported from the chromosphere deep into the photosphere.

  13. An MHD Model for Magnetar Giant Flares

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lin, J.; Zhang, L.; Reeves, K. K.; Zhang, Q. S.; Yuan, F.

    2014-04-01

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806-20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 1047 erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806-20, SGR 0526-66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  14. An MHD model for magnetar giant flares

    SciTech Connect

    Meng, Y.; Lin, J.; Zhang, Q. S.; Zhang, L.; Reeves, K. K.; Yuan, F. E-mail: jlin@ynao.ac.cn

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  15. Flare differentially rotates sunspot on Sun's surface

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50° h-1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  16. Flare model sensitivity of the Balmer spectrum

    NASA Technical Reports Server (NTRS)

    Falchi, A.; Falciani, R.; Smaldone, L. A.; Tozzi, G. P.

    1989-01-01

    Careful studies of various chromospheric spectral signatures are very important in order to explore their possible sensitivity to the modifications of the thermodynamic quantities produced by the flare occurrence. Pioneer work of Canfield and co-workers have shown how the H alpha behavior is able to indicate different changes in the atmospheric parameters structure associated to the flare event. It was decided to study the behavior of the highest Balmer lines and of the Balmer continuum in different solar flare model atmospheres. These spectral features, originating in the deep photosphere in a quiet area, may have a sensitivity different from H alpha to the modification of a flare atmosphere. The details of the method used to compute the Stark profile of the higher Balmer line (n is greater than or equal to 6) and their merging were extensively given elsewhere (Donati-Falchi et al., 1985; Falchi et al., 1989). The models used were developed by Ricchiazzi in his thesis (1982) evaluating the chromospheric response to both the nonthermal electron flux, for energy greater than 20 kev, (F sub 20) and to the thermal conduction, (F sub c). The effect of the coronal pressure values (P sub O) at the apex of the flare loop is also included.

  17. Characteristics of energetic solar flare electron spectra

    NASA Technical Reports Server (NTRS)

    Moses, Dan; Droege, Wolfgang; Meyer, Peter; Evenson, Paul

    1989-01-01

    A 55 event survey of energy spectra of 0.1-100 MeV interplanetary electrons originating from solar flares as measured by two spectrometers onboard the ISEE 3 (ICE) spacecraft for the years 1978-1982 has been completed. Spectra generated using the maximum flux of a given event in each energy channel were restricted to events with a well-defined flux rise time. Two broad groups of electron spectra are considered. In one group, the spectra are well represented by a single power law in rigidity with spectral index in the range 3-4.5. The spectra in the other group deviate from a power law in rigidity systematically in that they harden with increasing rigidity. Events with near power-law spectra are found to be correlated with long-duration soft X-ray events, whereas those with hardening spectra are correlated with short-duration events. The possible variation of acceleration and propagation processes with the properties of the flare site is discussed, using the duration of the soft X-ray flare emission as an indicator of the physical parameters of the flare site (flare volume, density, coronal height, and magnetic field geometry).

  18. Flare differentially rotates sunspot on Sun's surface.

    PubMed

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S; Gary, Dale E; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-10

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h(-1)) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  19. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  20. On-the-Disk Development of the Halo Coronal Mass Ejection on 1998 May 2

    NASA Astrophysics Data System (ADS)

    Pohjolainen, S.; Maia, D.; Pick, M.; Vilmer, N.; Khan, J. I.; Otruba, W.; Warmuth, A.; Benz, A.; Alissandrakis, C.; Thompson, B. J.

    2001-07-01

    A halo coronal mass ejection (CME) was observed at 15:03 UT on 1998 May 2 by the Solar and Heliospheric Observatory Large-Angle Spectrometric Coronagraph. The observation of the CME was preceded by a major soft X-ray flare in NOAA Active Region 8210, characterized by a delta spot magnetic configuration and some activity in region 8214. A large transequatorial interconnecting loop (TIL) seen in the soft X-rays connected AR 8210 to a faint magnetic field region in the periphery of region 8214. Smaller loop systems were also connecting AR 8210 to other fainter bipolar magnetic structures, the interconnecting loop (IL) east of AR 8210 being one of the most visible. We present here a multiwavelength analysis of the large- and small-scale coronal structures associated with the development of the flare and of the CME, with emphasis placed on radio-imaging data. In the early phases of the flare, the radio emission sources traced the propagation paths of electrons along the TIL and the IL, which are accelerated in the vicinity of AR 8210. Furthermore, jetlike flows were observed in soft X-rays and in Hα in these directions. Significantly, the TIL and IL loop systems disappeared at least partially after the CME. An EUV Imaging Telescope (EIT) dimming region of similar size and shape to the soft X-ray TIL, but noticeably offset from it, was also observed. During the ``flash'' phase of the flare, new radio sources appeared, presenting signatures of destabilization and reconnection at discrete locations of the connecting loops. We interpret these as possible signatures of the CME liftoff on the disk. An Hα Moreton wave (blast wave) and an ``EIT wave'' were also observed, originating from the flaring AR 8210. The signatures in radio, after the wave propagated high into the corona, include type II-like emissions in the spectra. The radio images link these emissions to fast-moving sources, presumably formed at locations where the blast wave encounters magnetic structures. The

  1. SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE HALLOWEEN FLARE ON 2003 OCTOBER 28

    SciTech Connect

    Kazachenko, Maria D.; Canfield, Richard C.; Longcope, Dana W.; Qiu Jiong

    2010-10-20

    We study the X17 eruptive flare on 2003 October 28 using Michelson Doppler Imager observations of photospheric magnetic and velocity fields and TRACE 1600 A images of the flare in a three-dimensional model of energy buildup and release in NOAA 10486. The most dramatic feature of this active region is the 123{sup 0} rotation of a large positive sunspot over 46 hr prior to the event. We apply a method for including such rotation in the framework of the minimum current corona model of the buildup of energy and helicity due to the observed motions. We distinguish between helicity and energy stored in the whole active region and that released in the flare itself. We find that while the rotation of a sunspot contributes significantly to the energy and helicity budgets of the whole active region, it makes only a minor contribution to that part of the region that flares. We conclude that in spite of the fast rotation, shearing motions alone store sufficient energy and helicity to account for the flare energetics and interplanetary coronal mass ejection helicity content within their observational uncertainties. Our analysis demonstrates that the relative importance of shearing and rotation in this flare depends critically on their location within the parent active region topology.

  2. A solar tornado triggered by flares?

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims: We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods: High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical developments of the tornado. The timings of the flares and EUV waves observed on-disk in 195 Å are analysed in relation to the tornado activities observed at the limb in 171 Å. Results: Each of the three flares and its related EUV wave occurred within ten hours of the onset of the tornado. They have an observed causal relationship with the commencement of activity in the prominence where the tornado develops. Tornado-like rotations along the side of the prominence start after the second flare. The prominence cavity expands with the accelerating tornado motion after the third flare. Conclusions: Flares in the neighbouring active region may have affected the cavity prominence system and triggered the solar tornado. A plausible mechanism is that the active-region coronal field contracted by the "Hudson effect" through the loss of magnetic energy as flares. Subsequently, the cavity expanded by its magnetic pressure to fill the surrounding low corona. We suggest that the tornado is the dynamical response of the helical prominence field to the cavity expansion. Movies are available in electronic form at http://www.aanda.org

  3. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  4. Influence of magnetic field structure on the conduction cooling of flare loops

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A simple model facilitates calculation of the influence of magnetic-field configuration on the conduction cooling rate of a hot post-flare coronal plasma. The magnetic field is taken to be that produced by a line dipole or point dipole at an arbitrary depth below the chromosphere. For the high temperatures (at least 10 million K) produced by flares, the plasma may remain static and isobaric. The influence of the field is such as to increase the heat flux (per unit area) into the chromosphere, but to decrease the total conduction cooling of the flare plasma. This leads to a significant enhancement of the total energy radiated by the flare plasma.

  5. Characterization of total flare energy

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    It is concluded that the estimates of total energy in the prime flares lie well below the Active Cavity Radiometer Irradiance Monitor upper limits. This is consistent with our knowledge of the energy distribution in solar flares. Insufficient data exist for us to be very firm about this conclusion, however, and major energetic components could exist undetected, especially in the EUV-XUV and optical bands. In addition, the radiant energy cannot quantitatively be compared at this time with non-radiant terms because of even larger uncertainties in the latter.

  6. Remote flare brightenings and type III reverse slope bursts

    NASA Technical Reports Server (NTRS)

    Tang, F.; Moore, R. L.

    1982-01-01

    Observations are presented on two large (H-alpha class 2) flares that each produced an extensive chain of discrete H-alpha brightenings spanning 370,000-470,000 km in length in remote quiet regions more than 100,000 km from the main flare site. A large group of Type III RS bursts was also observed accompanying each flare. The onset of about half the remote H-alpha emission patches were nearly simultaneous with the RS bursts. One flare was observed in hard X-rays, and it is noted that the RS bursts occurred during hard X-ray spikes. For the other flare, soft X-ray filtergrams indicate coronal loops connecting from the main flare site to the remote H-alpha brightenings. Observations indicate that the RS burst electrons were generated in the flares, and it is proposed that the remote H-alpha brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches. It is also suggested that after onset, the brightenings were heated by thermal conduction by slower thermal electrons.

  7. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  8. Repeated Structures Found After the Solar Maximum in the Butterfly Diagrams of Coronal Holes

    NASA Astrophysics Data System (ADS)

    Hofer, M. Y.; Storini, M.

    2003-09-01

    The influence of the solar cycle evolution on the coronal hole space-time distribution is well known, for polar as well as for equatorial isolated sources of high speed solar wind. Among them the long-lived coronal holes occurrence from the sunspot cycle 21 on is investigated, using the coronal hole catalogue based on HeI (1083 nm) observations (Sanchez-Ibarra and Barraza-Paredes). In at least these two solar cycles (n. 21 and n. 22) a similar structure in the latitude-time diagram of coronal holes is found. The area occurs shortly after the solar maximum at around ~35° heliolatitude and consists of over several Carrington Rotations stable coronal holes (>5 Carr. Rot.s). The diagonal disappears 2-3 years later at the helioequator. Furthermore, the analysis results in a close relation between long-lived isolated coronal holes and the soft X-class flares.

  9. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare.

    PubMed

    Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R

    2017-04-14

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component-the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the energy released, its relatively rapid (∼1-10  s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  10. EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R. E-mail: pvk@prl.res.in E-mail: ramit@prl.res.in

    2011-10-10

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  11. On the nature of the extreme-ultraviolet late phase of solar flares

    SciTech Connect

    Li, Y.; Ding, M. D.; Guo, Y.; Dai, Y.

    2014-10-01

    The extreme-ultraviolet (EUV) late phase of solar flares is a second peak of warm coronal emissions (e.g., Fe XVI) for many minutes to a few hours after the GOES soft X-ray peak. It was first observed by the EUV Variability Experiment on board the Solar Dynamics Observatory (SDO). The late-phase emission originates from a second set of longer loops (late-phase loops) that are higher than the main flaring loops. It is suggested to be caused by either additional heating or long-lasting cooling. In this paper, we study the role of long-lasting cooling and additional heating in producing the EUV late phase using the enthalpy based thermal evolution of loops model. We find that a long cooling process in late-phase loops can well explain the presence of the EUV late-phase emission, but we cannot exclude the possibility of additional heating in the decay phase. Moreover, we provide two preliminary methods based on the UV and EUV emissions from the Atmospheric Imaging Assembly on board SDO to determine whether or not additional heating plays a role in the late-phase emission. Using nonlinear force-free field modeling, we study the magnetic configuration of the EUV late phase. It is found that the late phase can be generated either in hot spine field lines associated with a magnetic null point or in large-scale magnetic loops of multipolar magnetic fields. In this paper, we also discuss why the EUV late phase is usually observed in warm coronal emissions and why the majority of flares do not exhibit an EUV late phase.

  12. On the Nature of the EUV Late Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ding, Mingde; Guo, Yang; Dai, Yu

    2014-06-01

    The EUV late phase of solar flares is a second peak of the warm coronal emissions (e.g., Fe XVI) many minutes to a few hours after the GOES soft X-ray peak, which was first observed by the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO). The late phase emission originates from a second set of longer loops (late phase loops) that are higher than the main flaring loops. It is explained as being caused by either additional heating or long-lasting cooling. In this paper, we study the role of long-lasting cooling and additional heating in producing the EUV late phase using the "enthalpy-based thermal evolution of loops'" (EBTEL) experiments. We find that the long cooling process in late phase loops, which definitely exists, can sufficiently explain the emission property of the EUV late phase; meanwhile, we cannot exclude the role of an additional heating of these loops that possibly occurs. Moreover, we provide two preliminary methods based on the UV and EUV emissions from the Atmospheric Imaging Assembly (AIA) on board SDO to determine whether an additional heating plays some role or not in the late phase emission. Through the nonlinear force-free field modeling, we study the magnetic configuration related to the EUV late phase. It is found that the late phase can be generated either in hot spine field lines associated with a magnetic null point or large-scale magnetic loops in multipolar magnetic fields. In this paper, we also explain why the EUV late phase appears most obviously in the warm coronal emissions and why the majority of flares do not exhibit an EUV late phase.

  13. COPD flare-ups

    MedlinePlus

    ... symptoms and signs of a COPD flare-up. Warning Signs of COPD Flare-up Signs of a ... 21810710 . Vestbo J, Hurd SS, Agusti AG, et al. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global ...

  14. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  15. Eruptions of Magnetic Ropes in Two Homologous Solar Events of 2002 June 1 and 2: a Key to Understanding an Enigmatic Flare

    NASA Astrophysics Data System (ADS)

    Meshalkina, Nataliya S.; Uralov, Arkadiy M.; Grechnev, Victor V.; Altyntsev, Alexander T.; Kashapova, Larisa K.

    2009-08-01

    The goal of this paper is to understand the drivers, configurations, and scenarios of two similar eruptive events, which occurred in the same solar active region 9973 on 2002 June 1 and 2. The June 2 event was previously studied by Sui, Holman, and Dennis (2006, ApJ, 646, 605; 2008, Adv. Space Res., 41, 976), who concluded that it was challenging for popular flare models. Using multi-spectral data, we analyzed a combination of the two events. Each of the events exhibited an evolving cusp-like feature. We have revealed that these apparent ``cusps'' were most likely mimicked by twisted magnetic flux ropes, but unlikely to be related to the inverted Y-like magnetic configuration in the standard flare model. The ropes originated inside a funnel-like magnetic domain whose base was bounded by an EUV ring structure, and the top was associated with a coronal null point. The ropes appear to be the major drivers for the events, but their rise was not triggered by reconnection in the coronal null point. We propose a scenario and a three-dimensional scheme for these events in which the filament eruptions and flares were caused by interaction of the ropes.

  16. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  17. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  18. Featured Image: Waves in a Coronal Fan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-09-01

    The inset in this Solar Dynamics Observatory image shows a close-up view of a stunning coronal fan extending above the Suns atmosphere. These sweeping loops were observed on 7 March 2012 by a number of observatories, revealing the first known evidence of standing slow magnetoacoustic waves in cool coronal fan loops. The oscillations of the loops, studied in a recent article led by Vaibhav Pant (Indian Institute of Astrophysics), were triggered by blast waves that were generated by X-class flares from the distant active region AR 11429 (marked withthe yellow box at left). The overplotted X-ray curve in the top right corner of the image (click for the full view) shows the evolution of the flares that perturbed the footpoints of the loops. You can check out the video of the action below, and follow the link to the original article to read more about what these oscillations tell us about the Suns activity. CitationV. Pant et al 2017 ApJL 847 L5. doi:10.3847/2041-8213/aa880f

  19. Filament Eruption without Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Moore, Ronald L.

    2003-01-01

    We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (20.7 R(sub sun)) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Ha and Fe XI, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Ha movies, each of the CME-producing eruptions produced a two-ribbon flare in Ha and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions.

  20. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Dudík, J.; Zuccarello, F. P.; Aulanier, G.; Schmieder, B.; Démoulin, P.

    2017-07-01

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171 Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.