Science.gov

Sample records for major flares coronal

  1. Coronal mass ejections and major solar flares: The great active center of March 1989

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Hundhausen, Arthur J.

    1994-01-01

    The solar flare and coronal mass ejection (CME) events associated with the large and complex March 1989 active region are discussed. This active region gave us a chance to study the relation of CME with truly major solar flares. The work concentrates on questions of the relation of CMEs and flares to one another and to other types of activity on the Sun. As expected, some major (X-3B class) flares had associated CMEs. However, an unexpected finding is that others did not. In fact, there is strong evidence that the X4-4B flare of March 9th had no CME. This lack of a CME for such an outstanding flare event has important implications to theories of CME causation.Apparently, not all major flares cause CMEs or are caused by CMEs. The relations between CMEs and other types of solar activity are also discussed. No filament disappearances are reported for major CMEs studied here. Comparing these results with other studies, CMEs occur in association with flares and with erupting prominences, but neither are required for a CME. The relation between solar structures showing flaring without filament eruptions and structures showing filament eruptions without flares becomes important. The evolutionary relation between an active flaring sunspot region and extensive filaments without sunspots is reviewed, and the concept of an 'evolving magnetic structure' (EMS) is introduced. It is suggested that all CMEs arise in EMSs and that CMEs provide a major path through which azimuthal magnetic fields escape form the Sun during the solar cycle.

  2. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  3. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  4. The cooling and condensation of flare coronal plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1981-01-01

    A model is investigated for the decay of flare heated coronal loops in which rapid radiative cooling at the loop base creates strong pressure gradients which, in turn, generate large (supersonic) downward flows. The coronal material cools and 'condenses' onto the flare chromosphere. The features which distinguish this model from previous models of flare cooling are: (1) most of the thermal energy of the coronal plasma may be lost by mass motion rather than by conduction or coronal radiation; (2) flare loops are not isobaric during their decay phase, and large downward velocities are present near the footpoints; (3) the differential emission measure q has a strong temperature dependence.

  5. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Adams, James; Barghouty, Abdulnasser; Falconer, D. A.

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA's Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. It's algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region's free magnetic energy, determined from a data set of approximately 40,000 active-region magnetograms from approximately 1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region's free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  6. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy

    NASA Astrophysics Data System (ADS)

    Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor; Moore, Ron

    2011-04-01

    This paper describes a new forecasting tool developed for and currently being tested by NASA's Space Radiation Analysis Group (SRAG) at Johnson Space Center, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M- and X-class flares, coronal mass ejections, and solar energetic particle events. For each type of event, the algorithm is based on the empirical relationship between the event rate and a proxy of the active region's free magnetic energy. Each empirical relationship is determined from a data set of ˜40,000 active-region magnetograms from ˜1300 active regions observed by SOHO/Michelson Doppler Imager (MDI) that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic area from an MDI full-disk magnetogram, identifies each as a NOAA active region, and measures the proxy of the active region's free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free-magnetic-energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the data sets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI are briefly discussed.

  7. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  8. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  9. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    SciTech Connect

    Liu Rui; Wang Haimin

    2010-05-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  10. Coronal X-Ray Flares on Active Stars

    NASA Astrophysics Data System (ADS)

    Nordon, Raanan

    2008-09-01

    Stellar coronae are the hot (kT>0.1 keV) tenuous regions in the outer atmospheres of cool-stars. Stellar coronae have been researched for many years, and yet they are poorly understood. In particular, the deviation of coronal chemical composition from photospheric elemental abundances is a long standing mystery. In the solar case, this was labeled the first ionization potential (FIP) effect. While some stellar coronae show a solar-like FIP effect, others show no FIP effect, or an inverse effect, although difficulties in measuring stellar photospheric abundances cast some doubt on these results. A correlation between coronal activity and abundance patterns led to a suggestion that flares affect coronal abundances. However, different variations were observed during flares, with no clear pattern emerging. We investigate a full sample of X-ray flares on stellar coronae from the archives of XMM-Newton and Chandra space observatories. We develop a method for reconstructing emission measure distribution, EMD(T), and abundances that is optimized to reduce systematic uncertainties. We measure variations of coronal abundances during flares, relative to quiescence abundances. This measurement is independent of the photospheric abundances and their related uncertainties. A theoretical analysis of the EMD(T) degeneracy problem is also presented. We find excess emission during flares originates predominantly from temperatures of kT>2 keV, while the low-T emission is very close to quiescence. This result cannot be reconciled with pure radiative-cooling or simple conductive-cooling. Evaporation from low dense regions into higher, thinner corona may aid in explaining this observed behavior. We define a relative measure for the FIP bias and compare the FIP bias of flare vs. quiescence with that of quiescence vs. photospheric (solar). We discovered a general trend where the relative FIP bias during flares is opposite to the quiescence FIP bias, meaning that the flares tend to

  11. The Nature of CME-flare-Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  12. The structure, stability and flaring of solar coronal loops

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.

    1982-01-01

    A review is given of recent progress in the theory of the magnetohydrodynamic behavior of coronal loops, beginning with a brief characterization of thy observations. The equilibrium magnetic field is described, along with the consequences of the empirical requirement for short-term, or infinite-conductivity, stability which is shown to be dominated by the end-effect influence of thy quasi-rigid photosphere. A new loop-flare model is then developed, which takes account of the finite loop length. The primary resistive-sausage-mode instability exhibits the necessary threshold behavior, and produces a number of spatially and energetically distinct flare-release manifestations.

  13. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Veronig, A.

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  14. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Chae, Jongchul; Jing, Ju; Tan, Changyi; Wang, Haimin

    2010-09-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 × 1043 Mx2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 × 1043 Mx2, in the corona over ~1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  15. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    SciTech Connect

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-09-10

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10{sup 43} Mx{sup 2} just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10{sup 43} Mx{sup 2}, in the corona over {approx}1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  16. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  17. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  18. Energetic Correlation Between Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Medlin, Drew A.; Haga, Leah; Schwartz, Richard a.; Tolbert, A. Kimberly

    2007-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak soft X-ray (SXR) flux, the radiated energy in SXRs (L(sub sxR)), and the radiated energy from the emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)).W e find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals.

  19. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Jing, J.; Wang, H.

    2010-05-01

    To study the three-dimensional (3D) magnetic field topology and its long-term (a few days) evolution associated with the X3.4 flare of 2006 December 13, we investigate the temporal evolution of the relative coronal magnetic helicity in NOAA active region (AR) 10930 during the time period of December 8, 21:20 UT through December 14, 5:00 UT. The coronal helicity is calculated based on the 3D nonlinear force-free (NLFF) magnetic fields reconstructed by the optimization method (Wheatland et al. 2000) as implemented by Wiegelmann (2004). As the boundary conditions for the force-free reconstruction, we use the preprocessed Hinode Spectropolarimeter (SP) vector magnetograms in which the net Lorentz force and the torque in the photosphere are minimized (see Wiegelmann et al. 2006 for the details). The major findings of this study are: (1) a negative (left-handed) helicity of -5×1043 Mx2 in the AR corona is estimated right before the X3.4 flare; (2) the major flare is preceded by a significantly and consistently large amount of negative helicity injection (-2×1043 Mx2) into the corona over 2 days; (3) the temporal variation of helicity is comparable to that of the rotational speed in the southern sunspot with positive polarity; (4) in general, the time profile of the coronal helicity is well-matched with that of the helicity accumulation by the time integration of the simplified helicity injection rate (Chae 2001) determined by using SOHO MDI magnetograms; (5) at the time period of the channel structure development (December 11, 4:00-8:00 UT) with newly emerging flux and just right before the C5.7 class flare, the time variation of the coronal helicity shows a rapid and huge increase of negative helicity, but that of the helicity accumulation by MDI magnetograms indicates a monotonous increase of negative helicity.

  20. Magnetic flux emergence, flares, and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Schmieder, Brigitte; Cristiani, Germán; Demoulin, Pascal; Guo, Yang

    We study the violent events occurring in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed in November 2010 with instruments onboard the Solar Dynamics Observatory and from Earth. Within one day the total magnetic flux increased by 70 per cent with the emergence of new groups of bipoles in AR 11123. These emergences led to a very complex magnetic configuration in which around ten solar flares, some of them accompanied by coronal mass ejections (CMEs), occurred. A magnetic-field topology somputation indicates the presence of null points, associated separatrices and quasi-separatrix layers (QSLs) where magnetic reconnection is prone to occur. Based on this analysis, we propose a scenario to explain the origin of a low-energy event preceding a filament eruption, which is accompanied by a two-ribbon flare and CME, and a consecutive confined flare in AR 11123. The results of our topology computation can also explain the locations of flare ribbons in two other events, one preceding and one following the ones just mentioned.

  1. Coronal seismology of flare-excited longitudinal slow magnetoacoustic waves in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ofman, L.; Sun, X.; Provornikova, E. A.; Davila, J. M.

    2015-12-01

    The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 bandpasses. These oscillations show similar physical properties (such as period, decay time, and trigger) as those slow-mode standing waves previously detected by the SOHO/SUMER spectrometer in Doppler shift of flare lines formed above 6 MK. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage enable us to measure both thermal and wave properties of the oscillating hot plasma with unprecedented accuracy. These new measurements can be used to diagnose the complicated energy transport processes in flare plasma by a technique called coronal seismology based on the combination of observations and MHD wave theory. From a detailed case study we have found evidence for thermal conduction suppression in hot loops by measuring the polytropic index and analyzing the phase relationship between the temperature and density wave signals. This result is not only crucial for better understanding the wave dissipation mechanism but also provides an alternative mechanism to explain the puzzles of long-duration events and X-ray loop-top sources which show much slower cooling than expected by the classical Spitzer conductive cooling. This finding may also shed a light on the coronal heating problem because weak thermal conductivity implies slower cooling of hot plasma in nanoflares, so increasing the average coronal temperature for the same heating rate. We will discuss the effects of thermal conduction suppression on the wave damping and loop cooling based on MHD simulations.

  2. Straight line access and coronal flaring: effect on canal length.

    PubMed

    Schroeder, Kyle P; Walton, Richard E; Rivera, Eric M

    2002-06-01

    The object of this study was to determine if canal length is altered as a result of straight-line access (SLA) and coronal flaring (CF). Selected were 86 canals of extracted molars and premolars from two groups: straight or severely curved (Schneider curvature <5 degrees and >20 degrees). The reference cusp tip and root-end were flattened to produce reproducible measurements. A #10 file was placed such that the tip extended slightly beyond the apex, with the handle on the referenced cusp. The amount of file protrusion was measured with a stereomicroscope. Then, SLA and CF were performed and the corresponding file replaced to the same coronal reference position. Apical file protrusion was measured again. The change in canal length was determined by the difference in the pre- and post-SLA/CF measurements. A Wilcoxon signed rank test statistically verified that there was a measurable, significant (p < 0.001) change in canal length after SLA and CF. The mean change overall was slight, with a decrease of 0.17 mm. Severe curvature had a slightly greater, significant effect on the amount of change. Tooth type had no significant effect. Changes in working length from SLA and CF, although statistically significant, were very small and clinically unimportant.

  3. CORONAL ELECTRON DISTRIBUTION IN SOLAR FLARES: DRIFT-KINETIC MODEL

    SciTech Connect

    Minoshima, Takashi; Kusano, Kanya; Masuda, Satoshi; Miyoshi, Yoshizumi

    2011-05-10

    Using a model of particle acceleration and transport in solar flares, we investigate the height distribution of coronal electrons by focusing on the energy-dependent pitch-angle scattering. When pitch-angle scattering is not included, the peak heights of loop-top electrons are constant, regardless of their energy, owing to the continuous acceleration and compression of the electrons via shrinkage of magnetic loops. On the other hand, under pitch-angle scattering, the electron heights are energy-dependent: intermediate-energy electrons are at a higher altitude, whereas lower and higher energy electrons are at lower altitudes. This implies that the intermediate-energy electrons are inhibited from following the shrinking field lines to lower altitudes because pitch-angle scattering causes efficient precipitation of these electrons into the footpoint and their subsequent loss from the loop. This result is qualitatively consistent with the position of the above-the-loop-top hard X-ray (HXR) source that is located above coronal HXR loops emitted by lower energy electrons and microwaves emitted by higher energy electrons. Quantitative agreement with observations might be achieved by considering primary acceleration before the onset of loop shrinkage and additional pitch-angle scattering via wave-particle interactions.

  4. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  5. A unified view of coronal loop contraction and oscillation in flares

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Simões, P. J. A.; Fletcher, L.

    2015-09-01

    Context. Transverse loop oscillations and loop contractions are commonly associated with solar flares, but the two types of motion have traditionally been regarded as separate phenomena. Aims: We present an observation of coronal loops that contract and oscillate following the onset of a flare. We aim to explain why both behaviours are seen together and why only some of the loops oscillate. Methods: A time sequence of SDO/AIA 171 Å images is analysed to identify the positions of coronal loops following the onset of the M6.4 flare SOL2012-03-09T03:53. We focus on five loops in particular, all of which contract during the flare, with three of them oscillating as well. A simple model is then developed for the contraction and oscillation of a coronal loop. Results: We propose that coronal loop contractions and oscillations can occur in a single response to removal of magnetic energy from the corona. Our model reproduces the various types of loop motion observed and explains why the highest loops oscillate during their contraction, while no oscillation is detected for the shortest contracting loops. The proposed framework suggests that loop motions can be used as a diagnostic for the removal of coronal magnetic energy by flares, while rapid decrease in coronal magnetic energy is a newly identified excitation mechanism for transverse loop oscillations. Appendices are available in electronic form at http://www.aanda.org Warning, no authors found for 2015A&A...581A..14.

  6. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    SciTech Connect

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  7. Core and Large-Scale Structure of the 2000 November 24 X-Class Flare and Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Gallagher, Peter; Yurchyshyn, Vasyl; Yang, Guo; Godde, Philip R.

    2002-01-01

    In this paper, we present three important aspects of the XI .8 flare and the associated coronal mass ejection (CME) that occurred on 2000 November 24: (1) The source of the flare is clearly associated with a magnetic channel structure, as was noted in a study by Zirin & Wang , which is due to a combination of flux emergence inside the leading edge of the penumbra of the major leading sunspot and proper motion of the sunspot group. The channel structure provides evidence for twisted flux ropes that can erupt, forming the core of a CME, and may be a common property of several superactive regions that have produced multiple X-class flares in the past. (2) There are actually three flare ribbons visible. The first can be seen moving away from the flare site, while the second and third make up a stationary ribbon near the leader spot. The moving ribbons could be due to a shock associated with the erupting flux rope or due to the interaction of erupting rope and the surrounding magnetic fields. In either case, the ribbon motion does not fit the classical Kopp-Pneuman model, in which the separation of ribbons is due to magnetic reconnection at successively higher and higher coronal altitudes. (3) From the coronal dimming observed with the EUV Imaging Telescope (EIT), the CME involved a much larger region than the initial X-class flare. By comparing high-resolution full-disk Ha and EIT observations, we found that a remote dimming area is cospatial with the enhanced Ha emission. This result is consistent with the recent model of Yokoyama & Shibata that some dimming areas near footpoints may be due to chromospheric evaporation.

  8. How Did a Major Confined Flare Occur in Super Solar Active Region 12192?

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Yurchyshyn, Vasyl; Wang, Haiming; Feng, Xueshang; Hu, Qiang

    2016-09-01

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The current layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.

  9. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  10. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  11. A CRITICAL EXAMINATION OF THE FUNDAMENTAL ASSUMPTIONS OF SOLAR FLARE AND CORONAL MASS EJECTION MODELS

    SciTech Connect

    Spicer, D. S.; Bingham, R.; Harrison, R.

    2013-05-01

    The fundamental assumptions of conventional solar flare and coronal mass ejection (CME) theory are re-examined. In particular, the common theoretical assumption that magnetic energy that drives flares and CMEs can be stored in situ in the corona with sufficient energy density is found wanting. In addition, the observational constraint that flares and CMEs produce non-thermal electrons with fluxes of order 10{sup 34}-10{sup 36} electrons s{sup -1}, with energies of order 10-20 keV, must also be explained. This constraint when imposed on the ''standard model'' for flares and CMEs is found to miss the mark by many orders of magnitude. We suggest, in conclusion, there are really only two possible ways to explain the requirements of observations and theory: flares and CMEs are caused by mass-loaded prominences or driven directly by emerging magnetized flux.

  12. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    SciTech Connect

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B. E-mail: lyndsay.fletcher@glasgow.ac.uk E-mail: hhudson@ssl.berkeley.edu

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  13. Time-resolved Spectroscopy of Active Binary Stars: Coronal Structure and Flares (Part II)

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    EUVE has provided the first stellar coronal spectra showing individual emission lines, thereby allowing coronal modelling at a level of sophistication previously unattainable. Long EUVE observations have shown that large-scale flaring is prevalent in the coronae of active binary stars. We propose to obtain EUVE DSS spectra and photometry for 4 active binaries, one of which has never been observed by EUVE (V478 Lyr) and three EUV-bright systems that merit reobservation (Sigma CrB, Sigma Gem, Xi UMa). We shall use these observations to derive high quality quiescent coronal spectra for measuring emission measure distributions and modelling, and to obtain new flare data. We shall try to coordinate these observations with ground-based radio observations and other spacecraft, if the scheduling allows. The Sigma CrB spectra may be coordinated with AXAF GTO observations. The proposed observations will significantly increase the available EUVE spectroscopy of active binaries.

  14. Temporal and Spatial Relationship of Flare Signatures and the Force-free Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Veronig, A.; Su, Y.

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  15. Periodicity in the most violent solar eruptions: recent observations of coronal mass ejections and flares revisited

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Xie, Jing-Lan; Liang, Hong-Fei

    2012-03-01

    Using the Hilbert-Huang Transform method, we investigate the periodicity in the monthly occurrence numbers and monthly mean energy of coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliographic Observatory from 1999 March to 2009 December. We also investigate the periodicity in the monthly occurrence numbers of Hα flares and monthly mean flare indices from 1996 January to 2008 December. The results show the following. (1) The period of 5.66 yr is found to be statistically significant in the monthly occurrence numbers of CMEs; the period of 10.5 yr is found to be statistically significant in the monthly mean energy of CMEs. (2) The periods of 3.05 and 8.70yr are found to be statistically significant in the monthly occurrence numbers of Hα flares; the period of 9.14yr is found to be statistically significant in the monthly mean flare indices.

  16. FLARE ENERGY BUILD-UP IN A DECAYING ACTIVE REGION NEAR A CORONAL HOLE

    SciTech Connect

    Su Yingna; Van Ballegooijen, Adriaan; Golub, Leon; Schmieder, Brigitte; Berlicki, Arkadiusz; Guo, Yang; Huang Guangli

    2009-10-10

    A B1.7 two-ribbon flare occurred in a highly non-potential decaying active region near a coronal hole at 10:00 UT on 2008 May 17. This flare is 'large' in the sense that it involves the entire region, and it is associated with both a filament eruption and a coronal mass ejection. We present multi-wavelength observations from EUV (TRACE, STEREO/EUVI), X-rays (Hinode/XRT), and Halpha (THEMIS, BBSO) prior to, during and after the flare. Prior to the flare, the region contained two filaments. The long J-shaped sheared loops corresponding to the southern filament were evolved from two short loop systems, which happened around 22:00 UT after a filament eruption on May 16. Formation of highly sheared loops in the southeastern part of the region was observed by STEREO 8 hr before the flare. We also perform nonlinear force-free field (NLFFF) modeling for the region at two times prior to the flare, using the flux rope insertion method. The models include the non-force-free effect of magnetic buoyancy in the photosphere. The best-fit NLFFF models show good fit to observations both in the corona (X-ray and EUV loops) and chromosphere (Halpha filament). We find that the horizontal fields in the photosphere are relatively insensitive to the present of flux ropes in the corona. The axial flux of the flux rope in the NLFFF model on May 17 is twice that on May 16, and the model on May 17 is only marginally stable. We also find that the quasi-circular flare ribbons are associated with the separatrix between open and closed fields. This observation and NLFFF modeling suggest that this flare may be triggered by the reconnection at the null point on the separatrix surface.

  17. Emission Measure and Temperature Analysis of the Upper Coronal Source of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Ning, Z.; Li, D.; Zhang, Q. M.

    2016-08-01

    An X-ray coronal source is usually seen above the reconnection site located above flare loops, while a second source appears in between this site and the loops. The first source is called the upper coronal source, the second the loop-top source. Both sources are thought to be related to the outflows from the magnetic reconnection site above the flare loops. Previous observations have shown that the upper coronal source has both a thermal and nonthermal component. In this article, we explore the spatial appearance of the upper coronal source in a solar flare observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) on 8 March 2011. This event occurred at the limb with completely occulted loop footpoints. Both the loop-top and the upper coronal sources are well observed by RHESSI in X-rays. The loop-top source emission covers a wide energy range up to 50 keV, while the upper coronal source emits below 25 keV. The upper coronal source appears later (about two minutes) than the loop-top source, and the RHESSI X-ray spectral analysis shows that both sources have a temperature of 30 MK. This temperature is confirmed by the differential emission measure (DEM) analysis from SDO/AIA data. AIA observations show the counterparts in the ultraviolet (UV), and bidirectional outflows appear between AIA brightenings. The loop-top source seems to be located at the top of a hot and dense loop system, which expands with a speed of 10 km s^{-1}, while the upper coronal source moves faster upward with a speed of about 32 km s^{-1} in the same time interval. The analysis of the spatial distribution of the emission measure and temperature indicates that the hot plasma itself or the heating region are possibly moving upward from the lower coronal region where the loop-top source appears. This is the reason that the upper coronal source appears later than the loop-top source.

  18. Trigger of a Blowout Jet in a Solar Coronal Mass Ejection Associated with a Flare

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-01

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  19. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    SciTech Connect

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  20. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  1. SDO/AIA Observation and Modeling of Flare-excited Slow Waves in Hot Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ofman, L.; Provornikova, E.; Sun, X.; Davila, J. M.

    2014-12-01

    The flare-excited standing slow waves were first detected by SOHO/SUMER as Doppler shift oscillations in hot (>6 MK) coronal loops. It has been suggested that they are excited by small or micro- flares at one loop's footpoint. However, the detailed excitation mechanism remains unclear. In this study, we report an oscillation event observed by SDO/AIA in the 131 channel. The intensity disturbances excited by a C-class flare propagated back and forth along a hot loop for about two period with a strong damping. From the measured oscillation period and loop length, we estimate the wave phase speed to be about 410 km/s. Using a regularized DEM analysis we determine the loop temperature and electron density evolution and find that the loop plasma is heated to a temperature of 8-12 MK with a mean about 9 MK. These measurements support the interpretation as slow magnetoacousic waves. Magnetic field extrapolation suggests that the flare is triggered by slipping and null-point-type reconnections in a fan-spine magnetic topology, and the injected (or impulsively evaporated) hot plasmas flowing along the large spine field lines form the oscillating hot loops. To understand why the propagating waves but not the standing waves as observed previously are excited in this event, we preform simulations using a 3D MHD model based on the observed magnetic configuration including full energy equation. Our simulations indicate that the nature of loop temperature structure is critical for the excitation of whether propagating or standing waves in a hot loop. Our result demonstrates that the slow waves may be used for heating diagnostics of coronal loops with coronal seismology. We also discuss the application of coronal seismology for estimating the average magnetic field strength in the hot loop based on the observed slow waves.

  2. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    SciTech Connect

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel; Lindsey, Charles; Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil; Schou, Jesper

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  3. Forward Modeling of Standing Slow Modes in Flaring Coronal Loops

    NASA Astrophysics Data System (ADS)

    Yuan, D.; Van Doorsselaere, T.; Banerjee, D.; Antolin, P.

    2015-07-01

    Standing slow-mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Owing to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow-mode waves in flaring loops and compare the synthesized line emission properties with Solar Ultraviolet Measurements of Emitted Radiation spectrographic and Solar Dynamics Observatory/Atmospheric Imaging Assembly imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity in both time and spatial domain, which can be used to identify a standing slow-mode wave from spectroscopic observations. However, the longitudinal overtones could only be measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variations. One may detect half periodicity close to the loop apex, where emission intensity modulation is relatively small. The line-of-sight projection affects the observation of Doppler shift significantly. A more accurate estimate of the amplitude of velocity perturbation is obtained by de-projecting the Doppler shift by a factor of 1–2θ/π rather than the traditionally used {cos}θ . If a loop is heated to the hotter wing, the intensity modulation could be overwhelmed by background emission, while the Doppler shift velocity could still be detected to a certain extent.

  4. Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare

    NASA Astrophysics Data System (ADS)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-10-01

    In this paper we investigate the distribution characteristics of the coronal electric current density in a flare-producing active region (AR12158; SOL2014-09-10) by reconstructing nonlinear force-free (NLFF) fields from photospheric magnetic field data. A time series of NLFF fields shows the spatial distribution and its temporal development of coronal current density in this active region. A fractal dimensional analysis shows that a concentrated coronal current forms a structure of fractal spatiality. Furthermore, the distribution function of coronal current density is featured with a double power-law profile, and the value of electric current density at the breaking point of a double power-law fitting function shows a noticeable time variation toward the onset of an X-class flare. We discuss that this quantity will be a useful indicator for the occurrence of a flare.

  5. Coronal extension of the MURaM radiative MHD code: From quiet sun to flare simulations

    NASA Astrophysics Data System (ADS)

    Rempel, Matthias D.; Cheung, Mark

    2016-05-01

    We present a new version of the MURaM radiative MHD code, which includes a treatment of the solar corona in terms of MHD, optically thin radiative loss and field-aligned heat conduction. In order to relax the severe time-step constraints imposed by large Alfven velocities and heat conduction we use a combination of semi-relativistic MHD with reduced speed of light ("Boris correction") and a hyperbolic formulation of heat conduction. We apply the numerical setup to 4 different setups including a mixed polarity quiet sun, an open flux region, an arcade solution and an active region setup and find all cases an amount of coronal heating sufficient to maintain a corona with temperatures from 1 MK (quiet sun) to 2 MK (active region, arcade). In all our setups the Poynting flux is self-consistently created by photospheric and sub-photospheric magneto-convection in the lower part of our simulation domain. Varying the maximum allowed Alfven velocity ("reduced speed of light") leads to only minor changes in the coronal structure as long as the limited Alfven velocity remains larger than the speed of sound and about 1.5-3 times larger than the peak advection velocity. We also found that varying details of the numerical diffusivities that govern the resistive and viscous energy dissipation do not strongly affect the overall coronal heating, but the ratio of resistive and viscous energy dependence is strongly dependent on the effective numerical magnetic Prandtl number. We use our active region setup in order to simulate a flare triggered by the emergence of a twisted flux rope into a pre-existing bipolar active region. Our simulation yields a series of flares, with the strongest one reaching GOES M1 class. The simulation reproduces many observed properties of eruptions such as flare ribbons, post flare loops and a sunquake.

  6. The propagation of solar flare particles in a coronal loop

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.

    1986-01-01

    A time-dependent diffusion equation with velocity-dependent diffusion and energy-loss coefficients was solved for the case where energetic solar particles are injected into a coronal loop and then diffuse out the ends of the loop into the lower corona/chromosphere. The solution yields for the case of relativistic electrons, precipitation rates and populations which are necessary for calculating thick and thin target X-ray emission. It follows that the thick target emission is necessarily delayed with respect to the particle acceleration on injection by more than the mere travel time of the particle over the loop length. In addition the time-dependent electron population at the top of the loop is calculated. This is useful in estimating the resulting micron-wave emission. The results show relative timing differences in the different emission processes which are functions of particle species, energy and the point of injection of the particles into the loop. Equivalent quantities are calculated for non-relativistic protons.

  7. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  8. Exceptions to the rule: the X-flares of AR 2192 Lacking Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2016-04-01

    NOAA Active region (AR) 2192, that was present on the Sun in October 2014, was the largest region which occurred since November 1990 (see Figure 1). The huge size accompanied by a very high activity level, was quite unexpected as it appeared during the unusually weak solar cycle 24. Nevertheless, the AR turned out to be one of the most prolific flaring ARs of cycle 24. It produced in total 6 X, 29 M, 79 C flares during its disk passage from October 18-29, 2014 (see Figure 2). Surprisingly, all flares greater than GOES class M5 and X were confined, i.e. had no coronal mass ejections (CME) associated. All the flare events had some obvious similarity in morphology, as they were located in the core of the AR and revealed only minor separation motion away from the neutral line but a large initial separation of the conjugate flare ribbons. In the paper by Thalmann et al. (2015) we describe the series of flares and give details about the confined X1.6 flare event from October 22, 2014 as well as the single eruptive M4.0 flare event from October 24, 2014. The study of the X1.6 flare revealed a large initial separation of flare ribbons together with recurrent flare brightenings, which were related to two episodes of enhanced hard X-ray emission as derived from RHESSI observations. This suggests that magnetic field structures connected to specific regions were repeatedly involved in the process of reconnection and energy release. Opposite to the central location of the sequence of confined events within the AR, a single eruptive (M4.0) event occurred on the outskirt of the AR in the vicinity of open magnetic fields. Our investigations revealed a predominantly north-south oriented magnetic system of arcade fields overlying the AR that could have preserved the magnetic arcade to erupt, and consequently kept the energy release trapped in a localized volume of magnetic field high up in the corona (as supported by the absence of a lateral motion of the flare ribbons and the

  9. From Coronal Observations to MHD Simulations, the Building Blocks for 3D Models of Solar Flares (Invited Review)

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Aulanier, G.; Démoulin, P.

    2015-12-01

    Solar flares are energetic events taking place in the Sun's atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarise the processes that can account for the build-up and release of energy during their evolution. In particular, we focus on the development of recent 3D numerical simulations that explain many of the observed flare features. These simulations can also provide predictions of the dynamical evolution of coronal and photospheric magnetic field. Here we present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.

  10. Accelerated particles and their observational signatures from confined solar flares in twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Browning, Philippa; Kontar, Eduard; Vilmer, Nicole; Gordovskyy, Mykola; Pinto, Rui; Bian, Nicolas

    Twisted magnetic fields provide a reservoir of free magnetic energy, and are ubiquitous in the solar corona. Recent theoretical studies suggest that the onset of the kink instability in twisted coronal loops may generate fragmented current sheets throughout the loop, leading to fast magnetic reconnection which dissipates magnetic energy. This provides a viable model for small self-contained flares. Using a combination of 3D MHD and guiding-centre test-particle simulations, incorporating collisions with the background plasma, we study the kinetics of non-thermal particles accelerated during magnetic reconnection in a flaring twisted coronal loop. It is shown that this model can provide the number of high-energy electrons and acceleration efficiency comparable with those obtained from observations of small flares. We consider various geometries: including idealised cylindrical loop models, as well as, more realistically, curved loops. The effects of gravitational stratification, which has very significant effects on the non-thermal particles through collisions, are included. The calculated loop temperatures and densities, and the energy spectra and pitch-angles of the accelerated particles, are used to forward-model the emission in both Soft X-rays and Hard X-rays, predicting spatial distributions and temporal evolution, as well as radio emission arising from cyclotron/synchrotron radiation. These properties may be compared with observations.

  11. Faint Coronal Hard X-rays From Accelerated Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay Erin

    Solar flares are huge explosions on the Sun that release a tremendous amount of energy from the coronal magnetic field, up to 1033 ergs, in a short time (100--1000 seconds), with much of the energy going into accelerated electrons and ions. An efficient acceleration mechanism is needed, but the details of this mechanism remain relatively unknown. A fraction of this explosive energy reaches the Earth in the form of energetic particles, producing geomagnetic storms and posing dangers to spaceborne instruments, astronauts, and Earthbound power grids. There are thus practical reasons, as well as intellectual ones, for wishing to understand this extraordinary form of energy release. Through imaging spectroscopy of the hard X-ray (HXR) emission from solar flares, the behavior of flare-accelerated electrons can be studied. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) spacecraft launched in 2002 with the goal of better understanding flare particle acceleration. Using rotation modulation collimators, RHESSI is able to cover a wide energy range (3 keV--17 MeV) with fine angular and energy resolutions. RHESSI's success in the last 10 years in investigating the relationship between energetic electrons and ions, the nature of faint sources in the corona, the energy distribution of flares, and several other topics have significantly advanced the understanding of flares. But along with the wealth of information revealed by RHESSI come some clear observational challenges. Very few, if any, RHESSI observations have come close to imaging the electron acceleration region itself. This is undoubtedly due to a lack of both sensitivity (HXRs from electron beams in the tenuous corona are faint) and dynamic range (HXR sources at chromospheric flare footpoints are much brighter and tend to obscure faint coronal sources). Greater sensitivity is also required to investigate the role that small flares in the quiet Sun could play in heating the corona. The Focusing Optics

  12. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    SciTech Connect

    Zong, Weiguo; Dai, Yu

    2015-08-20

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  13. Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Priest, E. R.; Longcope, D. W.; Janvier, M.

    2016-08-01

    During eruptive solar flares and coronal mass ejections, a non-potential magnetic arcade with much excess magnetic energy goes unstable and reconnects. It produces a twisted erupting flux rope and leaves behind a sheared arcade of hot coronal loops. We suggest that the twist of the erupting flux rope can be determined from conservation of magnetic flux and magnetic helicity and equipartition of magnetic helicity. It depends on the geometry of the initial pre-eruptive structure. Two cases are considered, in the first of which a flux rope is not present initially but is created during the eruption by the reconnection. In the second case, a flux rope is present under the arcade in the pre-eruptive state, and the effect of the eruption and reconnection is to add an amount of magnetic helicity that depends on the fluxes of the rope and arcade and the geometry.

  14. THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY

    SciTech Connect

    Masson, S.; Aulanier, G.; Pariat, E.; Schrijver, C. J.

    2009-07-20

    Flare ribbons are commonly attributed to the low-altitude impact, along the footprints of separatrices or quasi-separatrix layers (QSLs), of particle beams accelerated through magnetic reconnection. If reconnection occurs at a three-dimensional coronal magnetic null point, the footprint of the dome-shaped fan surface would map a closed circular ribbon. This paper addresses the following issues: does the entire circular ribbon brighten simultaneously, as expected because all fan field lines pass through the null point? And since the spine separatrices are singular field lines, do spine-related ribbons look like compact kernels? What can we learn from these observations about current sheet formation and magnetic reconnection in a null-point topology? The present study addresses these questions by analyzing Transition Region and Coronal Explorer and Solar and Heliospheric Observatory/Michelson Doppler Imager observations of a confined flare presenting a circular ribbon. Using a potential field extrapolation, we linked the circular shape of the ribbon with the photospheric mapping of the fan field lines originating from a coronal null point. Observations show that the flare ribbon outlining the fan lines brightens sequentially along the counterclockwise direction and that the spine-related ribbons are elongated. Using the potential field extrapolation as initial condition, we conduct a low-{beta} resistive magnetohydrodynamics simulation of this observed event. We drive the coronal evolution by line-tied diverging boundary motions, so as to emulate the observed photospheric flow pattern associated with some magnetic flux emergence. The numerical analysis allows us to explain several observed features of the confined flare. The vorticity induced in the fan by the prescribed motions causes the spines to tear apart along the fan. This leads to formation of a thin current sheet and induces null-point reconnection. We also find that the null point and its associated

  15. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  16. Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ofman, Leon; Broder, Brittany; Karlický, Marian; Downs, Cooper

    2016-03-01

    Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ˜2000 km s-1 within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry suffcient energy fluxes required for coronal heating during their occurr ences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

  17. The Mechanisms for the Onset and Explosive Eruption of Coronal Mass Ejections and Eruptive Flares

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Antiochos, Spiro K.; DeVore, Carl Richard

    2012-01-01

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by a slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  18. THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES

    SciTech Connect

    Karpen, J. T.; Antiochos, S. K.; DeVore, C. R.

    2012-11-20

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  19. Comparing the Coronal Flaring Efficacy of Five Different Instruments Using Cone-Beam Computed Tomography

    PubMed Central

    Homayoon, Amin; Hamidi, Mahmood Reza; Haddadi, Azam; Madani, Zahra Sadat; Moudi, Ehsan; Bijani, Ali

    2015-01-01

    Introduction: Fearless removal of tooth structure during canal preparation and shaping has negative effects on the prognosis of treatment. On the other hand, sufficient pre-enlargement facilitates exact measurement of the apical size. The present in vitro study aimed to compare the efficacy of Gates-Glidden drills, K3, ProTaper, FlexMaster and RaCe instruments in dentin removal during coronal flaring using cone-beam computed tomography (CBCT). Methods and Materials: A total of 40 mandibular molars were selected and the coronal areas of their mesiobuccal and mesiolingual root canals were randomly prepared with either mentioned instruments. Pre- and post-instrumentation CBCT images were taken and the thickness of canal walls was measured in 1.5- and 3-mm distances from the furcation area. Data were analyzed using the one-way ANOVA. Tukey’s post hoc tests were used for two-by-two comparisons. Results: At 1.5-mm distance, there was no significant difference between different instruments. However, at 3-mm distances, Gates-Glidden drills removed significantly more dentin compared to FlexMaster files (mean=0.18 mm) (P<0.02); however, two-by-two comparisons did not reveal any significant differences between the other groups. Conclusion: All tested instruments can be effectively used in clinical settings for coronal pre-enlargement. PMID:26525955

  20. IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE

    SciTech Connect

    Chen Qingrong; Petrosian, Vahe E-mail: vahep@stanford.edu

    2012-03-20

    We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense footpoint (FP) sources. A distinct loop top (LT) coronal source is detected up to {approx}150 keV and a second (upper) coronal source up to {approx}80 keV. These photon energies, which were not fully investigated in earlier analysis of this flare, are much higher than commonly observed in coronal sources and pose grave modeling challenges. The LT source in general appears higher in altitude with increasing energy and exhibits a more limited motion compared to the expansion of the thermal loop. The high-energy LT source shows an impulsive time profile and its nonthermal power-law spectrum exhibits soft-hard-soft evolution during the impulsive phase, similar to the FP sources. The upper coronal source exhibits an opposite spatial gradient and a similar spectral slope compared to the LT source. These properties are consistent with the model of stochastic acceleration of electrons by plasma waves or turbulence. However, the LT and FP spectral index difference (varying from {approx}0 to 1) is much smaller than commonly measured and than that expected from a simple stochastic acceleration model. Additional confinement or trapping mechanisms of high-energy electrons in the corona are required. Comprehensive modeling including both kinetic effects and the macroscopic flare structure may shed light on this behavior. These results highlight the importance of imaging spectroscopic observations of the LT and FP sources up to high energies in understanding electron acceleration in solar flares. Finally, we show that the electrons producing the upper coronal HXR source may very likely be responsible for the type III radio bursts at the decimetric/metric wavelength observed during the impulsive phase of this

  1. Over-and-Out Coronal Mass Ejections: Blowouts of Magnetic Arches by Ejective Flares in One Foot

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2006-01-01

    Streamer puffs from compact ejective flares in the foot of an outer loop of the magnetic arcade under a streamer were recently identified as a new variety of coronal mass ejection (CME) (Bemporad, Sterling, Moore, & Poletto 2006, ApJ Letters, in press). In the reported examples, the compact flares produced only weak to moderate soft X-ray bursts having peak intensities no stronger than GOES class C3. Here, we present two examples of this type of CME in which the compact flare in the flank of the steamer base is much stronger (one M-class, the other X-class in GOES X-rays) and the resulting streamer puff is wider and brighter than in the discovery examples. Coronal dimming observed in SOHOBIT Fe XII images in the launching of each of these two CMEs M e r supports the view that these CMEs are produced by a high loop of the steamer arcade being blown out by magnetoplasma ejecta exploding up the leg of the loop from the flare. In addition, we present evidence that this same type of CME occurs on larger scales than in the above examples. We examine a sequence of flare eruptions seated on the north side of AR 8210 as it rotated across the southern hemisphere in late April and early May 1998. Each flare occurs in synchrony with the launching of a large CME centered on the equator. Coronal dimming in EIT Fe XII images shows the trans-equatorial footprints of these CMEs extending north from the flare site. The set of flare-with-CME events includes the trans-equatorial loop eruptions reported by Khan & Hudson (1998, GRL, 27, 1083). Our observations indicate that these CMEs were not driven by the self-eruption of the transequatorial loops, but that these loops were part of a trans-equatorial magnetic arch that was blown open by ejecta from the flares on the north side of AR 8210. Thus, a relatively compact ejective flare can be the driver of a CME that is much larger in lateral extent than the flare and is laterally far offset from the flare. It has previously been thought

  2. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  3. Study of multi-periodic coronal pulsations during an X-class solar flare

    NASA Astrophysics Data System (ADS)

    Chowdhury, Partha; Srivastava, A. K.; Dwivedi, B. N.; Sych, Robert; Moon, Y.-J.

    2015-12-01

    We investigate quasi-periodic coronal pulsations during the decay phase of an X 3.2 class flare on 14 May 2013, using soft X-ray data from the RHESSI satellite. Periodogram analyses of soft X-ray light curves show that ∼ 53 s and ∼ 72 s periods co-exist in the 3-6 keV, 6-12 keV and 12-25 keV energy bands. Considering the typical length of the flaring loop system and observed periodicities, we find that they are associated with multiple (first two harmonics) of fast magnetoacoustic sausage waves. The phase relationship of soft X-ray emissions in different energy bands using cross-correlation technique show that these modes are standing in nature as we do not find the phase lag. Considering the period ratio, we diagnose the local plasma conditions of the flaring region by invoking MHD seismology. The period ratio P1/2P2 is found to be ∼ 0.65, which indicates that such oscillations are most likely excited in longitudinal density stratified loops.

  4. OBSERVATIONS AND MAGNETIC FIELD MODELING OF THE FLARE/CORONAL MASS EJECTION EVENT ON 2010 APRIL 8

    SciTech Connect

    Su Yingna; Surges, Vincent; Van Ballegooijen, Adriaan; DeLuca, Edward; Golub, Leon

    2011-06-10

    We present a study of the flare/coronal mass ejection event that occurred in Active Region 11060 on 2010 April 8. This event also involves a filament eruption, EIT wave, and coronal dimming. Prior to the flare onset and filament eruption, both SDO/AIA and STEREO/EUVI observe a nearly horizontal filament ejection along the internal polarity inversion line, where flux cancellations frequently occur as observed by SDO/HMI. Using the flux-rope insertion method developed by van Ballegooijen, we construct a grid of magnetic field models using two magneto-frictional relaxation methods. We find that the poloidal flux is significantly reduced during the relaxation process, though one relaxation method preserves the poloidal flux better than the other. The best-fit pre-flare NLFFF model is constrained by matching the coronal loops observed by SDO/AIA and Hinode/XRT. We find that the axial flux in this model is very close to the threshold of instability. For the model that becomes unstable due to an increase of the axial flux, the reconnected field lines below the X-point closely match the observed highly sheared flare loops at the event onset. The footpoints of the erupting flux rope are located around the coronal dimming regions. Both observational and modeling results support the premise that this event may be initiated by catastrophic loss of equilibrium caused by an increase of the axial flux in the flux rope, which is driven by flux cancellations.

  5. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  6. Extreme-Ultraviolet Spectroscopic Observation of Direct Coronal Heating During a C-Class Solar Flare

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    2012-01-01

    With the Coronal Diagnostic Spectrometer operating in rapid cadence (9.8 s) stare mode during a C6.6 flare on the solar disk, we observed a sudden brightening of Fe xix line emission (formed at temperature T ˜ 8 MK) above the pre-flare noise without a corresponding brightening of emission from ions formed at lower temperatures, including He i (0.01 MK), Ov (0.25 MK), and Si xii (2 MK). The sudden brightening persisted as a plateau of Fe xix intensity that endured more than 11 minutes. The Fe xix emission at the rise and during the life of the plateau showed no evidence of significant bulk velocity flows, and hence cannot be attributed to chromospheric evaporation. However, the line width showed a significant broadening at the rise of the plateau, corresponding to nonthermal velocities of at least 89 km s-1 due to reconnection outflows or turbulence. During the plateau He i, Ov, and Si xii brightened at successively later times starting about 3.5 minutes after Fe xix, which suggests that these brightenings were produced by thermal conduction from the plasma that produced the Fe xix line emission; however, we cannot rule out the possibility that they were produced by a weak beam of nonthermal particles. We interpret an observed shortening of the Ov wavelength for about 1.5 minutes toward the middle of the plateau to indicate new upward motions driven by the flare, as occurs during gentle chromospheric evaporation; relative to a quiescent interval shortly before the flare, the Ov upward velocity was around -10 km s-1.

  7. A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares.

    PubMed

    Amari; Luciani; Mikic; Linker

    2000-01-20

    We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.

  8. The solar flare iron line to continuum ratio and the coronal abundances of iron and helium

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    Narrow band Ross filter measurements of the Fe 25 line flux around 0.185 nm and simultaneous broadband measurements during a solar flare were used to determine the relationship between the solar coronal abundances of iron and helium. The Fe 25 ion population was also determined as a function of time. The proportional counter and the Ross filter on OSO-7 were utilized. The data were analyzed under the separate assumptions that (1) the electron density was high enough that a single temperature could characterize the continuum spectrum and the ionization equilibrium, and that (2) the electron density was low so that the ion populations trailed the electron temperature in time. It was found that the density was at least 5x10 to the 9th power, and that the high density assumption was valid. It was also found that the iron abundance is 0.000011 for a helium abundance of 0.2, relative to hydrogen.

  9. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  10. An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns

    SciTech Connect

    Hindman, Bradley W.; Jain, Rekha

    2014-04-01

    We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that creates them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.

  11. On the transport and acceleration of solar flare particles in a coronal loop

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lee, Martin A.

    1991-01-01

    The turbulent environment of a flaring solar coronal loop directly affects the population of particles to be accelerated or already accelerated. Under the assumption of a uniform turbulent MHD wave field within the loop, the behavior of a particle distribution as it interacts with the turbulence is discussed, including particle precipitation to the footpoints of the loop and the evolution of the energy distribution as the particles undergo second-order stochastic acceleration. Two cases are discussed in detail: (1) particles spatially diffusing within the loop and precipitating with minimal acceleration in the short time scale of an impulsive event and (2) particles diffusing in both real and momentum space in a long duration event. Collisional losses due to ambient electrons are included. The gamma-ray flare of June 3, 1982 is modeled, and good agreement is obtained between predicted and observed time profiles if the loop length is 100,000 km with an intrinsic spatial diffusion time of 100-450 s. It follows that the production of high-energy neutrons and pi mesons extends over a time scale of 1000 s as observed.

  12. Ion acceleration and abundance enhancements in coronal heating and during impulsive flares

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M. M.; Liu, Y.

    2012-12-01

    Particle-in-cell simulations and modeling results are presented of ion heating during guide-field reconnection of large-scale current layers with multiple species. We focus on the reconnection exhaust where most of the magnetic energy is released. We show that the classical MHD description of the exhaust in which rotational discontinuities (RDs) switch off the reconnecting field and slow shocks then heat the plasma fails because of strong ion heating at the RD. We have shown that the heating at the RD depends critically on the mass-to-charge of the particles. Ions with mi/Z_im_p>√ {β pr}, where β pr=8π pp/B_r2 is based on the proton pressure and reconnecting magnetic field Br just upstream of the exhaust, behave like "pickup" particles and are strongly heated. As reconnection in wide current layers begins, Br is initially very small and there is essentially no heating of any ion species. As reconnection proceeds, ions with progressively higher values of mi/Z_im_p are heated with most of the energy going to the perpendicular component with T⊥ ˜ micAr2. Thus, high-mass-to-charge ions are heated first and gain the most energy, producing a simple, direct mechanism for producing the abundance enhancements seen in impulsive flares. For typical coronal parameters ions reach temperatures of several keV/nucleon. During flares further energy gain can take place as ions interact with multiple magnetic islands.

  13. ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS

    SciTech Connect

    Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Van Ballegooijen, A. A.; Lin, J.; Seaton, D. B.

    2012-05-20

    We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

  14. Flare-associated Fast-mode Coronal Wave Trains Discovered by SDO/AIA: Physical Properties and Implications

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ofman, L.; Downs, C.; Cheung, C. M. M.; Broder, B.; De Pontieu, B.

    2015-12-01

    Quasi-periodic Fast Propagating wave trains (QFPs) are a new observational phenomenon discovered in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). They are fast-mode magnetosonic waves, closely related to quasi-periodic pulsations in solar flare emission ranging from radio to X-ray wavelengths. The significance of QFPs lies in their diagnostic potential, because they can provide critical clues to flare energy release and serve as new tools for coronal seismology. In this presentation, we report recent advances in observing and modeling QFPs. For example, using differential emission measure (DEM) inversion, we found clear evidence of heating and cooling cycles that are consistent with alternating compression and rarefaction expected for magnetosonic wave pulses. Moreover, recent IRIS observations of QFP source regions revealed sawtooth-like flare ribbon motions, indicative of pulsed magnetic reconnection, that are correlated with QFP excitation. More interestingly, from a survey of over 100 QFP events, we found a preferential association with eruptive flares rather than confined flares. We will discuss the implications of these results and the potential roles of QFPs in coronal heating, energy transport, and solar eruptions.

  15. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; Valenti, Jeffrey

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  16. Solar energetic particle event and radio bursts associated with the 1996 July 9 flare and coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Laitinen, T.; Klein, K.-L.; Kocharov, L.; Torsti, J.; Trottet, G.; Bothmer, V.; Kaiser, M. L.; Rank, G.; Reiner, M. J.

    2000-08-01

    Using spaceborne particle and gamma-ray detection and radio diagnostics we study solar energetic particle (SEP) production in the 1996 July 9 event. This event is associated with an impulsive soft X-ray flare (9:10 UT) and a coronal mass ejection (CME). In a global classification the event is considered as mixed-impulsive. A sequence of acceleration processes is identified, starting early in the flare impulsive phase and continuing throughout the period when the CME propagated up to several Rsolar above the photosphere: (1) Gamma-ray, hard X-ray and cm-wave emitting particles seen during the flare impulsive phase in the low corona had no counterpart at the Solar and Heliospheric Observatory (SoHO) spacecraft. (2) Electrons accelerated at a coronal shock wave were revealed by decimetric- to-metric type II radio emission and by simultaneous radio signatures of beams traveling to 1 AU. (3) Mildly relativistic (>=250 keV) electrons detected by SoHO did not correspond to these shock-accelerated populations, but to later mainly impulsive injection which was associated with radio brightenings over a large range of coronal altitudes. (4) Energetic protons detected by SoHO were accelerated during about 100 min after the flare impulsive phase with a gradually evolving production profile that bore some similarity with the time profile of broadband metric (type IV) emission. (5) While all other particle signatures decayed, a second period of interplanetary proton production took place >=2 hours after flare onset. The first, 100 min period of SEP acceleration, post-impulsive phase coronal acceleration, is definitely dominant in mildly relativistic electrons. Two acceleration periods nearly equally contribute to the production of ~ 20 MeV protons. However, the second period is more productive in low energy, ~ 1 MeV, protons. The timing of the SEP injections indicates that neither the impulsive flare acceleration in the low corona nor the interplanetary CME at >= 10 Rsolar are

  17. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ˜800 km s‑1 and it accelerated to ˜1490 km s‑1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (˜340 km s‑1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  18. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ˜800 km s-1 and it accelerated to ˜1490 km s-1 after passing through the arcade loops. A fan-spine magnetic topology was revealed at the flare site. A small, confined filament eruption (˜340 km s-1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan-spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  19. On the variation of solar flare coronal X-ray source sizes with energy

    SciTech Connect

    Jeffrey, Natasha L. S.; Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon

    2014-05-20

    Observations with RHESSI have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold target model and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here, we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch angle distribution of the accelerated electrons, and the effects of collisional pitch angle scattering. The finite temperature results in the thermal diffusion of electrons, which leads to the observationally inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch angle and scattering within the target, cause the projected propagation distance parallel to the guiding magnetic field to be reduced, so that a one-dimensional interpretation can overestimate the actual density by a factor of up to ∼6. The implications of these results for the determination of acceleration region properties (specific acceleration rate, filling factor, etc.) are discussed.

  20. RHESSI AND SDO/AIA OBSERVATIONS OF THE CHROMOSPHERIC AND CORONAL PLASMA PARAMETERS DURING A SOLAR FLARE

    SciTech Connect

    Battaglia, M.; Kontar, E. P.

    2012-12-01

    X-ray and extreme ultraviolet (EUV) observations are an important diagnostic of various plasma parameters of the solar atmosphere during solar flares. Soft X-ray and EUV observations often show coronal sources near the top of flaring loops, while hard X-ray emission is mostly observed from chromospheric footpoints. Combining RHESSI with simultaneous Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) observations, it is possible for the first time to determine the density, temperature, and emission profile of the solar atmosphere over a wide range of heights during a flare, using two independent methods. Here we analyze a near limb event during the first of three hard X-ray peaks. The emission measure, temperature, and density of the coronal source is found using soft X-ray RHESSI images while the chromospheric density is determined using RHESSI visibility analysis of the hard X-ray footpoints. A regularized inversion technique is applied to AIA images of the flare to find the differential emission measure (DEM). Using DEM maps, we determine the emission and temperature structure of the loop, as well as the density, and compare it with RHESSI results. The soft X-ray and hard X-ray sources are spatially coincident with the top and bottom of the EUV loop, but the bulk of the EUV emission originates from a region without cospatial RHESSI emission. The temperature analysis along the loop indicates that the hottest plasma is found near the coronal loop-top source. The EUV observations suggest that the density in the loop legs increases with increasing height while the temperature remains constant within uncertainties.

  1. SDO/AIA observations and model of standing waves in hot coronal loops excited by a flare

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Davila, Joseph M.

    2014-06-01

    The strongly damped Doppler shift oscillations in hot coronal loops were first observed by SOHO/SUMER in flare lines formed at plasma temperature more than 6 MK. They were mainly interpreted as the standing slow magnetosonic waves excited by impulsive energy release at the loop’s footpoint based on the measured properties and on MHD modeling results. Longitudinal waves with similar properties have been recently observed by SDO/AIA in active region loops. In this study, we report a new event that exhibited the flare-excited intensity disturbances propagating back and forth in a hot coronal loop imaged by AIA in 131 bandpass. We measure the physical parameters of the wave and loop plasma, determine the loop geometry, and explore the triggering mechanism. We identify the wave modes (propagating or standing waves) based on these measurements and on 3D MHD modeling. A loop model is constructed with enhanced density in a hydrostatic equilibrium following potential or force-free magnetic field lines extrapolated from the photospheric magnetic field data observed by SDO/HMI. We also discuss the applications of coronal seismology to this event.

  2. SUNSPOT ROTATION, SIGMOIDAL FILAMENT, FLARE, AND CORONAL MASS EJECTION: THE EVENT ON 2000 FEBRUARY 10

    SciTech Connect

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.

    2012-07-20

    We find that a sunspot with positive polarity had an obvious counterclockwise rotation and resulted in the formation and eruption of an inverse S-shaped filament in NOAA Active Region 08858 from 2000 February 9 to 10. The sunspot had two umbrae which rotated around each other by 195 Degree-Sign within about 24 hr. The average rotation rate was nearly 8 Degree-Sign hr{sup -1}. The fastest rotation in the photosphere took place during 14:00 UT to 22:01 UT on February 9, with a rotation rate of nearly 16 Degree-Sign hr{sup -1}. The fastest rotation in the chromosphere and the corona took place during 15:28 UT to 19:00 UT on February 9, with a rotation rate of nearly 20 Degree-Sign hr{sup -1}. Interestingly, the rapid increase of the positive magnetic flux occurred only during the fastest rotation of the rotating sunspot, the bright loop-shaped structure, and the filament. During the sunspot rotation, the inverse S-shaped filament gradually formed in the EUV filament channel. The filament experienced two eruptions. In the first eruption, the filament rose quickly and then the filament loops carrying the cool and the hot material were seen to spiral counterclockwise into the sunspot. About 10 minutes later, the filament became active and finally erupted. The filament eruption was accompanied with a C-class flare and a halo coronal mass ejection. These results provide evidence that sunspot rotation plays an important role in the formation and eruption of the sigmoidal active-region filament.

  3. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Feng, X.; Wu, S.; Hu, Q.

    2012-12-01

    Non-potentiality of the solar coronal magnetic field accounts for the solar explosion like flares and CMEs. We apply a data-driven CESE-MHD model to investigate the three-dimensional (3D) coronal magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The CESE-MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the magnetic free energy drops during the flare with an amount of 1.7 × 1030 erg, which can be interpreted as the energy budget released by the minor C-class flare.

  4. Turbulent Pitch-angle Scattering and Diffusive Transport of Hard X-Ray-producing Electrons in Flaring Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole

    2014-01-01

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ~ (108-109) cm for ~30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  5. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ∼ (10{sup 8}-10{sup 9}) cm for ∼30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  6. Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    SciTech Connect

    Battaglia, Marina; Fletcher, Lyndsay; Simões, Paulo J. A.

    2014-07-01

    Before the onset of a flare is observed in hard X-rays, there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission, which suggests that energy is already being released and deposited into the corona and chromosphere at this stage. This work analyzes the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well-observed flare with a prolonged pre-heating phase are analyzed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minute duration of the pre-heating phase we find no hint of accelerated electrons in either hard X-rays or microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to sustain the observed temperature and emission measure. Under the assumption of this energy being transported toward the chromosphere via thermal conduction, significant energy deposition at the chromosphere is expected. However, no detectable increase of the emission in the AIA wavelength channels sensitive to chromospheric temperatures is observed. The observations suggest energy release and deposition in the flaring loop before the onset of particle acceleration, yet a model in which energy is conducted to the chromosphere and subsequent heating of the chromosphere is not supported by the observations.

  7. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    SciTech Connect

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-11-20

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  8. INITIATION OF CORONAL MASS EJECTION AND ASSOCIATED FLARE CAUSED BY HELICAL KINK INSTABILITY OBSERVED BY SDO/AIA

    SciTech Connect

    Kumar, Pankaj; Cho, K.-S.; Bong, S.-C.; Park, Sung-Hong; Kim, Y. H.

    2012-02-10

    In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. High-resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly suggest the development of helical kink instability in the erupting prominence, which implies a flux rope structure of the magnetic field. A brightening starts below the apex of the prominence with its slow rising motion ({approx}100 km s{sup -1}) during the activation phase. A bright structure, indicative of a helix with {approx}3-4 turns, was transiently formed at this position. The corresponding twist of {approx}6{pi}-8{pi} is sufficient to generate the helical kink instability in a flux rope according to recently developed models. A slowly rising blob structure was subsequently formed at the apex of the prominence, and a flaring loop was observed near the footpoints. Within 2 minutes, a second blob was formed in the northern prominence leg. The second blob erupts (like a plasmoid ejection) with the detachment of the northern prominence leg, and flare intensity maximizes. The first blob at the prominence apex shows rotational motion in the counterclockwise direction in the plane of sky, interpreted as the unwinding motion of a helix, and it also erupts to give the CME. RHESSI hard X-ray (HXR) sources show the two footpoint sources and a loop-top source during the flare. We found RHESSI HXR flux, soft X-ray flux derivative, and CME acceleration in the low corona correlate well, which is in agreement with the standard flare model (CSHKP). We also discuss the possible role of ballooning as well as torus instabilities in driving the CME. We conclude that the CME and flare were triggered by the helical kink instability in a flux rope and accelerated mainly by the torus instability.

  9. The Magnetic Field of Active Region 11158 during the 2011 February 12-17 Flares: Differences between Photospheric Extrapolation and Coronal Forward-Fitting Methods

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang

    2014-04-01

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential EN and potential energy EP but find up to a factor of 4 discrepancy in the free energy E free = EN – EP and up to a factor of 10 discrepancy in the decrease of the free energy ΔE free during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  10. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    SciTech Connect

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu

    2014-04-10

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ΔE {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  11. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection

    NASA Astrophysics Data System (ADS)

    Pick, Monique; Vilmer, Nicole

    2008-10-01

    This paper will review the input of 65 years of radio observations to our understanding of solar and solar terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio

  12. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  13. Coronal vs chromospheric heating through co-spatial return currents during the 19 and 20 Jan 2005 solar flare

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2016-05-01

    The high electron flux required to explain the bremsstrahlung X-ray emission observed from solar flares is expected to be accompanied by a neutralizing co-spatial return current. In addition to resupplying the acceleration region with electrons, this return current will both heat the coronal plasma and flatten the electron distribution at lower energies. This flattening in the electron distribution in turn flattens the X-ray spectrum. We have found that return-current collisional thick-target model (RCCTTM) of Holman (2012) provides an acceptable fit to X-ray spectra with strong breaks for 18 flares observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). This is a 1D model similar to the collisional thick-target model (CTTM) with two additional assumptions: (1) electrons lose some of their energy through return current losses along their path to the thick target, where they lose all their remaining energy through Coulomb collisions; (2) the non-thermal beam is streaming in a warm target, which means that electrons will be thermalized at a non-zero energy. We assume this energy to be equal to the analytical value derived by Kontar et al. 2015. We show that return-current heating in the corona is about an order of magnitude higher than the heating at the footpoints at times during the flare.

  14. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Park, Y. D.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.

  15. Fine Structure of Metric Type IV Radio Bursts Observed with the ARTEMIS-IV Radio-Spectrograph: Association with Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2015-01-01

    Fine structures embedded in type IV burst continua may be used as diagnostics of the magnetic-field restructuring and the corresponding energy release associated with the low-corona development of flare or coronal mass ejection (CME) events. A catalog of 36 type IV bursts observed with the SAO receiver of the ARTEMIS-IV solar radio-spectrograph in the 450 - 270 MHz range at high cadence (0.01 sec) was compiled; the fine structures were classified into five basic classes with two or more subclasses each. The time of fine-structure emission was compared with the injection of energetic electrons as recorded by hard X-ray and microwave emission, the soft X-ray (SXR) light curves and the CME onset time. Our results indicate a very tight temporal association between energy release episodes and pulsations, spikes, narrow-band bursts of the type III family, and zebra bursts. Of the remaining categories, the featureless broadband continuum starts near the time of the first energy release, between the CME onset and the SXR peak, but extends for several tens of minutes after that, covering almost the full extent of the flare-CME event. The intermediate drift bursts, fibers in their majority, mostly follow the first energy release, but have a wider distribution than other fine structures.

  16. Post-flare loops embedded in a hot coronal fan-like structure

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Farnik, F.; Hudson, H. S.; Hick, P.

    1997-01-01

    Limb events were demonstrated on the sun in which rising post-flare loops were embedded in hot structures looking in soft X-rays like fans of rays, formed during the flare and extending high into the corona. One of these structures is analyzed and it is suggested that these fans of rays represent temporary ministreamers, along which mass flows into interplanetary space. This suggestion is supported by maps of solar wind density constructed from scintillation measurements.

  17. Transport inhibition of coronal energetic electrons by multiple double layers: application to solar flares and expansion of the corona

    NASA Astrophysics Data System (ADS)

    Li, T.; Drake, J. F.; Swisdak, M. M.

    2012-12-01

    The transport of electrons from a coronal acceleration site to the chromosphere and out to the solar wind is a key issue in understanding the dynamics of solar flares and the expansion of the hot corona. The physics of how these energetic electrons transport from the corona remains poorly understood. Using a particle-in-cell code, we recently simulated an initial system of very hot electrons in contact with cold electrons along the local magnetic field, and found that transport inhibition begins when the hot electrons start to propagate from the source region [1]. This is due to the formation of a large-amplitude, localized electrostatic electric field, in the form of a double layer (DL), which is driven by an ion/return-current-electron streaming instability. The DL provides a potential barrier that suppresses the hot electron transport into the cold electron region, and significantly reduces electron heat flux. The result can help explain the observed prolonged duration of looptop hard X-ray emission. As a continued effort, simulations of increasing sizes are performed. Larger simulations allow the system to evolve for longer time and give rise to more complex dynamics. Instead of a single DL observed in smaller simulations [1], multiple DLs are generated. A succession of many weak DLs, occurring from the corona to the Earth, was considered to make up the interplanetary potential difference in exospheric solar wind models [2]. The observation of multiple DLs in the larger simulations favors this scenario. The dynamics of multiple DLs and the associated transport regulation are being investigated, and the application to solar flares and coronal expansion will be discussed. [1] T.C. Li, J.F. Drake and M. Swisdak, ApJ, in press, 2012 [2] C. Lacombe, et. al., Ann. Geophysicae, 20, 609, 2002

  18. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  19. Evidence of coronal flaring in narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.

    High-energy (E>2 keV) continuum flaring is detected in two narrow-line Seyfert 1 galaxies (I Zw 1 and NAB 0205+024), consistent with occurring in a hot corona distinct from the accretion disc. The flare in I Zw 1 is accompanied by an increase in the amount of gravitationally redshifted reflected emission coming from the accretion disc. This indicates that the high-energy continuum component is compact and located close to the black hole, and could possibly be the base of an aborted jet.

  20. Comparing SSN Index to X-Ray Flare and Coronal Mass Ejection Rates from Solar Cycles 22 - 24

    NASA Astrophysics Data System (ADS)

    Winter, L. M.; Pernak, R. L.; Balasubramaniam, K. S.

    2016-05-01

    The newly revised sunspot-number series allows for placing historical geoeffective storms in the context of several hundred years of solar activity. Using statistical analyses of the Geostationary Operational Environmental Satellites (GOES) X-ray observations from the past {≈} 30 years and the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) Coronal Mass Ejection (CME) catalog (1996 - present), we present sunspot-number-dependent flare and CME rates. In particular, we present X-ray flare rates as a function of sunspot number for the past three cycles. We also show that the 1 - 8 Å X-ray background flux is strongly correlated with sunspot number across solar cycles. Similarly, we show that the CME properties (e.g. proxies related to the CME linear speed and width) are also correlated with sunspot number for Solar Cycles 23 and 24. These updated rates will enable future predictions for geoeffective events and place historical storms in the context of present solar activity.

  1. Solar flares associated coronal mass ejections in case of type II radio bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Prasad, Lalan; Chandra, Harish; Garia, Suman

    2016-08-01

    We have statistically studied 220 events from 1996 to 2008 (i.e. solar cycle 23). Two set of flare-CME is examined one with Deca-hectometric (DH) type II and other without DH type II radio burst. Out of 220 events 135 (flare-halo CME) are accompanied with DH type II radio burst and 85 are without DH type II radio burst. Statistical analysis is performed to examine the distribution of solar flare-halo CME around the solar disk and to investigate the relationship between solar flare and halo CME parameters in case of with and without DH type II radio burst. In our analysis we have observed that: (i) 10-20° latitudinal belt is more effective than the other belts for DH type II and without DH type II radio burst. In this belt, the southern region is more effective in case of DH type II radio burst, whereas in case of without DH type II radio burst dominance exits in the northern region. (ii) 0-10° longitudinal belt is more effective than the other belts for DH type II radio burst and without DH type II radio burst. In this belt, the western region is more effective in case of DH type II radio burst, while in case of without DH type II radio burst dominance exits in the eastern region. (iii) Mean speed of halo CMEs (1382 km/s) with DH type II radio burst is more than the mean speed of halo CMEs (775 km/s) without DH type II radio burst. (iv) Maximum number of M-class flares is found in both the cases. (v) Average speed of halo CMEs in each class accompanied with DH type II radio burst is higher than the average speed of halo CMEs in each class without DH type II radio burst. (vi) Average speed of halo CMEs, associated with X-class flares, is greater than the other class of solar flares in both the cases.

  2. Electron acceleration in a flare plasma via coronal circuits. (German Title: Elektronenbeschleunigung im Flareplasma modelliert mit koronalen Schaltkreisen)

    NASA Astrophysics Data System (ADS)

    Önel, Hakan

    2008-08-01

    The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters

  3. Accumulation of accelerated electrons in coronal loops and time delays of solar flare nonthermal emission

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Stepanov, A. V.; Kopylova, Yu. G.

    2015-12-01

    The mechanisms by which accelerated electrons accumulate in flare loops with regard to the observed time delays between peaks of prolonged (≫1 s) hard X-ray pulses with different energies are considered. The focus is on an analysis of electron pitch-angle scattering by background plasma particles and/or turbulent pulsations in extreme cases of frequent and rare collisions. It was shown that it is difficult to explain the origination of time delays in the scope of a diffusion model when the electron free path length ( l) in the corona is smaller than the flare loop length ( L). The accumulation of energetic particles in loops at l > L is related to a trap-plus-precipitation model in which the regime of weak pitch angle diffusion of trapped electrons in the loss cone predominates.

  4. Forecasting flares and Coronal Mass Ejections by the evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    Brigitta Korsos, Marianna

    2015-04-01

    We present newly discovered pre-flare behaviour of the evolution of sunspot groups by analysing the SOHO/MDI-Debrecen Data (SDD) catalogue. Our method employes the horizontal gradient of magnetic field (G_M) defined between two spots with opposite polarities at the polarity inversion line of ARs. The G_M is a n excellent proxy measure of magnetic non-potentiality at the photosphere, derived from the observed line-of-sight component of the magnetic field. The value and temporal variation of this proxy is found to possess important diagnostic information about the intensity of expected flares.Next, we address the benefits of introducing the generalisation of this proxy, i.e. the weighted horizontal magnetic gradient, WG_M. This new approach does not limit anymore the analysis to two spots having the largest horizontal magnetic gradient value. Instead, all spots are now taken into account within an appropriately defined small region in the AR.This new tool greatly enhances the capability of forecast, including (i) the accuracy of onset time prediction, (ii) CME risk assessment, (iii) whether a flare, stronger than M5 in terms of the GOES classification, is followed by another event within 18 hours. We argue that our method is currently one of the bests to forecast these eruptive events. Finally, we discuss the limitations of our approach and propose how to potentially mitigate these shortcomings.

  5. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  6. Solar Flares and Coronal Physics Using P/OF as a Research Tool

    NASA Technical Reports Server (NTRS)

    Tandberg, E. (Editor); Wilson, R. M. (Editor); Hudson, R. M. (Editor)

    1986-01-01

    This NASA Conference Publication contains the proceedings of the Workshop on Solar High-Resolution Astrophysics Using the Pinhole/Occulter Facility held at NASA Marshall Space Flight Center, Alabama, on May 8 to 10, 1985. These proceedings include primarily the invited tutorial papers, extended abstracts of contributed poster papers, and summaries of subpanel (X-Ray and Coronal Physics) discussions. Both observational and theoretical results are presented. Although the emphasis of the Workshop was focused primarily on topics peculiar to solar physics, one paper is included that discusses the P/0F as a tool for X-ray astronomy.

  7. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    SciTech Connect

    Zeng, Zhicheng; Cao, Wenda; Qiu, Jiong; Judge, Philip G.

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  8. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    SciTech Connect

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  9. Evidence of Thermal Conduction Suppression in a Solar Flaring Loop by Coronal Seismology of Slow-mode Waves

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph M.

    2015-09-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ˜12 minutes and a decay time of ˜9 minutes. The measured phase speed of 500 ± 50 km s‑1 matches the sound speed in the heated loop of ˜10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  10. Coronal O VI emission observed with UVCS/SOHO during solar flares: Comparison with soft X-ray observations

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Giordano, S.; Raymond, J. C.

    2016-06-01

    In this work, we derive the O VI 1032 Å luminosity profiles of 58 flares, during their impulsive phase, based on off-limb measurements by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the SOlar and Heliospheric Observatory (SOHO). The O VI luminosities from the transition region plasma (here defined as the region with temperatures 5.0 ≤ log T (K) ≤ 6.0) were inferred from the analysis of the resonantly scattered radiation of the O VI coronal ions. The temperature of maximum ionization for O VI is log Tmax (K) = 5.47. By comparison with simultaneous soft X-ray measurements, we investigate the likely source (chromospheric evaporation, footpoint emission, or heated prominence ejecta) for the transition region emission observed during the impulsive phase. In our study, we find evidence of the main characteristics predicted by the evaporation scenario. Specifically, most O VI flares precede the X-ray peaks typically by several minutes with a mean of 3.2 ± 0.1 min, and clear correlations are found between the soft X-ray and transition region luminosities following power laws with indices ~ 0.7 ± 0.3. Overall, the results are consistent with transition region emission originating from chromospheric evaporation; the thermal X-ray emission peaks after the emission from the evaporation flow as the loops fill with hot plasma. Finally, we were able to infer flow speeds in the range ~20-100 km s-1 for one-third of the events, 14 of which showed speeds between 60 and 80 km s-1. These values are compatible with those found through direct spectroscopic observations at transition region temperatures by the EUV Imaging Spectrometer (EIS) on board Hinode.

  11. On the acceleration of thermal coronal ions by flare induced shock waves

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Pesses, M. E.; Armstrong, T. P.

    1981-01-01

    The energy spectra of solar flare ions are calculated by assuming that the process which accelerates solar wind ions to MeV/ nucleon energies in the interplanetary corotating interaction region (CIR) also occurs in flare induced magnetosonic fast-mode (MFM) shocks in the corona. Solar wind ions are considered to be accelerated to MeV/nucleon energies by wave-particle interactions in the shock front and the downstream flow, being compressed between upstream and downstream magnetic field irregularities, and then accelerated by the shock drift acceleration mechanism. The energy spectra of the accelerated ions is calculated from the number of shock encounters as a function of the post- and preacceleration energies. A best fit by an exponential in momentum is determined for ions in the 50 MeV to a few GeV range, and from 20-80 MeV by a suitable power law in kinetic energy with a mean spectral index. Comparisons with observed solar protons show good agreement.

  12. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Rybák, J.; Kashapova, L.; Gömöry, P.; Tokhchukova, S.; Myshyakov, I.

    2016-09-01

    Aims: We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. Methods: The complex microwave dynamic spectrum and the expanding loop images were analyzed with the help of SDO/AIA/HMI, RHESSI, and the STEREO/SECCHI-EUVI data processing software, wavelet analysis methods, the GX Simulator tool, and the NAFE method. Results: We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz s-1. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal loop with twisted sub-structures observed in the 131, 94, and 193 Å SDO/AIA channels. Their slit-time diagrams were compared with the location of the radio source at 5.7 GHz to realize that the EUV intensity of the expanding loop increased just before the radio source triggering. We reveal two EUV bidirectional flows that are linked with the start time of the loop expansion. Their positions were close to the radio source and propagated with velocities within a range of 30-117 km s-1. Conclusions: We demonstrate that periodic regime of the electron acceleration in a model of the quasi-periodic magnetic reconnection might be able to explain physical properties and behavior of the sub

  13. Coronal Dynamics and Complete Flare Energy Budget for the M Dwarf AD Leo

    NASA Technical Reports Server (NTRS)

    Brown, Alexander; Sonneborn, Georgwe (Technical Monitor)

    2005-01-01

    This grant supported the observing and data analysis for FUSE Cycle 3 project C114 to observe the flare star AD Leo for 50 ksec coordinated with HST (Hubble Space Telescope) STIS ultraviolet spectroscopy and Chandra X-ray spectroscopy. Unfortunately, it was impossible to obtain the planned FUSE observations because AD Leo is a low declination target (delta approximately 20 degrees) and was rendered unobservable by restrictions in the sky coverage for FUSE observations. In April 2002 another M dwarf star, EV Lac, which is at significantly higher declination, was substituted for this project. EV Lac was observed by FUSE for a cumulative exposure of 35 ksec on 2002 July 1. The observation used the large LWRS aperture and collected data in time-tagged mode. The LWRS aperture is large enough that the target should remain within the aperture despite the normal level of pointing jitter and target drift experienced during FUSE observing. Our examination of the stellar signal showed that the target was well within the aperture throughout the observation. The data were split into night-time and day-time data so that the effects of airglow emission were recognizable. No obvious flaring, the primary science objective, was detected during the observation. The only stellar lines detected are 0 VI 1031.9, 1037.6 Angstrom, and the C III 1175 Angstrom, UV multiplet and the 977 Angstrom, resonance line. A comparison of the day-time and night-time spectra show that the 0 VI lines and the C III intersystem multiplet are unaffected by airglow features. The day-time data 977 Angstrom profile shows the presence of significant scattered solar C III photons, which should not be present in the night time spectrum. Emission fluxes for these lines were measured by direct summation of the emission lines. No continuum signal was detected in the region of these lines. The cleanest emission line profiles are for the O VI lines and we performed Gaussian fitting for these profiles. Both lines are

  14. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K. E-mail: ron.moore@nasa.gov

    2011-12-10

    Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.

  15. Unusual Emissions at Various Energies Prior to the Impulsive Phase of the Large Solar Flare and Coronal Mass Ejection of 4 November 2003

    NASA Technical Reports Server (NTRS)

    Kaufmann, Pierre; Holman, Gordon D.; Su, Yang; de Castro, C. Guillermo Gimenez; Correia, Emilia; Fernandes, Luis O. T.; de Souza, Rodney V.; Marun, Adolfo; Pereyra, Pablo

    2012-01-01

    The GOES X28 flare of 4 November 2003 was the largest ever recorded in its class. It produced the first evidence for two spectrally separated emission components, one at microwaves and the other in the THz range of frequencies.We analyzed the pre-flare phase of this large flare, twenty minutes before the onset of the major impulsive burst. This periodis characterized by unusual activity in X-rays, sub-THz frequencies, H, and microwaves.The CME onset occurred before the onset of the large burst by about 6 min.

  16. Solar Flares and the Chromosphere

    NASA Astrophysics Data System (ADS)

    Fletcher, Lyndsay

    2015-08-01

    During a solar flare, the chromosphere emits across a large fraction of the electromagnetic spectrum, providing diagnostic information on heating, dynamics and flare energy transport by both thermal and non-thermal means. The evolution of chromospheric ribbons and footpoints also traces the progress of coronal reconnection, and links radiation output with magnetic evolution. Since the chromosphere emits the majority of a flare's radiation, the current emphasis on chromospheric observations by missions such as IRIS, and future large facilities such as the DKIST, is very beneficial to flare research. In this talk I will overview recent developments in observations and theory of flaring chromospheres and make some suggestions about profitable future avenues for research.

  17. THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES

    SciTech Connect

    Petrie, G. J. D.

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  18. Reply. [to comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1995-01-01

    In replying to a comment by Hudson et. al. (1995) in regards to Gosling (1993), Gosling (1995) holds that solar flares do not play a major role in geomagnetic storms. According to Gosling, Hudson et. al. has done nothing to demonstrate that flares either produce coronal mass ejections (CMEs) or cause major disturbances in the near-Earth space environment.

  19. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  20. THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jerome E-mail: brian.punsly@comdev-usa.com

    2013-02-20

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L {sub intrinsic}, from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L {sub intrinsic} (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L {sub intrinsic} (1.2-50) 0-4 hr before the ejection, the increase in L {sub intrinsic} (1.2-50) in the hours preceding the ejection and the time-averaged L {sub intrinsic} (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L {sub intrinsic} (1.2-50) during ejection) is strongly correlated with L {sub intrinsic} (1.2-50) just before launch with near equality if the distance to the source is Almost-Equal-To 10.5 kpc.

  1. Study of the Three-dimensional Coronal Magnetic Field of Active Region 11117 around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang

    2012-11-01

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by ~1030 erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  2. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  3. Observations of a soft X-ray rising loop associated with a type II burst and a coronal mass ejection in the 03 November 2003 X-ray flare

    NASA Astrophysics Data System (ADS)

    Dauphin, C.; Vilmer, N.; Krucker, S.

    2006-08-01

    Context: .We report observations of a type II burst - the signature of a shock wave - starting at the unusual high frequency of 650 MHz during the 03 November 2003 flare. This flare is associated with the propagation of a soft X-ray coronal loop and with a coronal mass ejection (CME). Aims: .We study in this paper the origin of the shock wave in the low corona and present a kinematics analysis of the soft X-ray coronal loop and of the CME observed a few tens of minutes later. Methods: .We study in this paper the spatial and temporal relation between the soft X-ray rising loop observed by the GOES soft X-ray Imager (GOES/SXI), the type II sources observed by the Nançay Radio Heliograph (NRH) and the CME observed by LASCO (Large Angle and Spectroscopic Coronograph). Results: .This analysis shows that the type II burst observed during this flare is driven by the X-ray rising loop. Furthermore, the kinematics analysis of the X-ray coronal loop and CME shows that the two structures are related. Conclusions: .The direct comparison of the type II sources with the GOES/SXI observations clearly shows that the type II burst is ignited by the shock wave created ahead of the rising X-ray loop. Finally, we propose to interpret these different observations in the framework of an ascending magnetic structure with a reconnecting process operating in the tail of this ascending structure.

  4. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  5. Analysis of peculiar penumbral flows observed in the active region NOAA 10930 during a major solar flare

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; García, R. A.

    2011-01-01

    It is believed that the high energetic particles and tremendous amount of energy released during the flares can induce velocity oscillations in the Sun. Using the Dopplergrams obtained by Global Oscillation Network Group (GONG) telescope, we analyze the velocity flows in the active region NOAA 10930 during a major flare (of class X3.4) that occurred on 13 December 2006. We observe peculiar evolution of velocity flows in some localized portions of the penumbra of this active region during the flare. Application of Wavelet transform to these velocity flows reveals that there is major enhancement of velocity oscillations in the high-frequency regime (5-8 mHz), while there is feeble enhancement in the p mode oscillations (2-5 mHz) in the aforementioned location. It has been recently shown that flares can induce high-frequency global oscillations in the Sun. Therefore, it appears that during the flare process there might be a common origin for the excitation of local and global high-frequency oscillations in the Sun.

  6. Evidence of elevated X-ray absorption before and during major flare ejections in GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jérôme

    2014-03-10

    We present time-resolved X-ray spectroscopy of the microquasar GRS 1915+105 with the MAXI observatory in order to study the accretion state just before and during the ejections associated with its major flares. Radio monitoring with the RATAN-600 radio telescope from 4.8-11.2 GHz has revealed two large, steep-spectrum major flares in the first eight months of 2013. Since the RATAN has received one measurement per day, we cannot determine the jet-forming time without more information. Fortunately, this is possible since a distinct X-ray light curve signature that occurs preceding and during major ejections has been determined in an earlier study. The X-ray luminosity spikes to very high levels in the hours before ejection, then becomes variable (with a nearly equal X-ray luminosity when averaged over the duration of the ejection) during a brief 3-8 hr ejection process. By comparing this X-ray behavior with MAXI light curves, we can estimate the beginning and end of the ejection episode of the strong 2013 flares to within ∼3 hr. Using this estimate in conjunction with time-resolved spectroscopy from the data in the MAXI archives allows us to deduce that the X-ray absorbing hydrogen column density increases significantly in the hours preceding the ejections and remains elevated during the ejections responsible for the major flares. This finding is consistent with an outflowing wind or enhanced accretion at high latitudes.

  7. Coronal Mass Ejections and Solar Proton Events During the Great March 1989 Disturbances

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1995-01-01

    The great active region of March 1989 was the most prolific in X- rays in the preceding 15 years, and produced very large bright optical solar flares. The accompanying solar energetic particle event was one of the four most intense episodes since 1963. These increases in particle fluxes are compared to the major X-ray and optical flares and to the major coronal mass ejections in order to test hypothesis.

  8. Determination of the coronal magnetic field from vector magnetograph data

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1991-01-01

    A new algorithm was developed, tested, and applied to determine coronal magnetic fields above solar active regions. The coronal field above NOAA active region AR5747 was successfully estimated on 20 Oct. 1989 from data taken at the Mees Solar Observatory of the Univ. of Hawaii. It was shown that observational data can be used to obtain realistic estimates of coronal magnetic fields. The model has significantly extended the realism with which the coronal magnetic field can be inferred from observations. The understanding of coronal phenomena will be greatly advanced by a reliable technique, such as the one presented, for deducing the detailed spatial structure of the coronal field. The payoff from major current and proposed NASA observational efforts is heavily dependent on the success with which the coronal field can be inferred from vector magnetograms. In particular, the present inability to reliably obtain the coronal field has been a major obstacle to the theoretical advancement of solar flare theory and prediction. The results have shown that the evolutional algorithm can be used to estimate coronal magnetic fields.

  9. RE-FLARING OF A POST-FLARE LOOP SYSTEM DRIVEN BY FLUX ROPE EMERGENCE AND TWISTING

    SciTech Connect

    Cheng, X.; Ding, M. D.; Guo, Y.; Zhang, J.; Jing, J.; Wiegelmann, T.

    2010-06-10

    In this Letter, we study in detail the evolution of the post-flare loops on 2005 January 15 that occurred between two consecutive solar eruption events, both of which generated a fast halo coronal mass ejection (CME) and a major flare. The post-flare loop system, formed after the first CME/flare eruption, evolved rapidly, as manifested by the unusual accelerating rise motion of the loops. Through nonlinear force-free field models, we obtain the magnetic structure over the active region. It clearly shows that the flux rope below the loops also kept rising, accompanied with increasing twist and length. Finally, the post-flare magnetic configuration evolved to a state that resulted in the second CME/flare eruption. This is an event in which the post-flare loops can re-flare in a short period of {approx}16 hr following the first CME/flare eruption. The observed re-flaring at the same location is likely driven by the rapid evolution of the flux rope caused by the magnetic flux emergence and the rotation of the sunspot. This observation provides valuable information on CME/flare models and their prediction.

  10. Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; McAteer, R. T. James; Dennis, Brian R.; Young, C. Alex

    2010-01-01

    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation.

  11. Comparison between the eruptive X2.2 flare on 2011 February 15 and confined X3.1 flare on 2014 October 24

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Lee, Jeongwoo; Nitta, Nariaki V.; Liu, Chang; Park, Sung-Hong; Wiegelmann, Thomas; Wang, Haimin

    2015-09-01

    We compare two contrasting X-class flares in terms of magnetic free energy, relative magnetic helicity and decay index of the active regions (ARs) in which they occurred. The events in question are the eruptive X2.2 flare from AR 11158 accompanied by a halo coronal mass ejection (CME) and the confined X3.1 flare from AR 12192 with no associated CME. These two flares exhibit similar behavior of free magnetic energy and helicity buildup for a few days preceding them. A major difference between the two flares is found to lie in the time-dependent change of magnetic helicity of the ARs that hosted them. AR 11158 shows a significant decrease in magnetic helicity starting ∼4 hours prior to the flare, but no apparent decrease in helicity is observed in AR 12192. By examining the magnetic helicity injection rates in terms of sign, we confirmed that the drastic decrease in magnetic helicity before the eruptive X2.2 flare was not caused by the injection of reversed helicity through the photosphere but rather the CME-related change in the coronal magnetic field. Another major difference we find is that AR 11158 had a significantly larger decay index and therefore weaker overlying field than AR 12192. These results suggest that the coronal magnetic helicity and the decay index of the overlying field can provide a clue about the occurrence of CMEs.

  12. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  13. The effect of solar flares, coronal mass ejections, and co-rotating interaction regions on the Venusian 557.7 nm oxygen green line

    NASA Astrophysics Data System (ADS)

    Gray, Candace L.; Chanover, Nancy; Slanger, Tom; Molaverdikhani, Karan; Peter, Kerstin; Häusler, Bernd; Tellmann, Silvia; Pätzold, Martin; Witasse, Olivier; Blelly, Pierre-Louis; Collinson, Glyn

    2015-11-01

    The Venusian 557.7nm OI (1S - 1D) (oxygen green line) nightglow emission is known to be highly temporally variable. The reason for this variability is unknown. We propose that the emission is due to electron precipitation from intense solar storms. For my dissertation, I observed the Venusian green line after solar flares, coronal mass ejections (CMEs), and co-rotating interaction regions from December 2010 to April 2015 using the high resolution Astrophysical Research Consortium Echelle Spectrograph on the Apache Point Observatory 3.5-m telescope. Combining these observation with all other published observations, we find that the strongest detections occur after CME impacts and we conclude electron precipitation is required to produce green line emission. We do not detect emission from the 630.0nm OI (1D - 3P) oxygen red line for any observation.In an effort to determine the emitting altitude, thereby constraining the possible emission processes responsible for green line emission, and quantify the electron energy and flux entering the Venusian nightside, we conducted analyses of space-based observations of the Venusian nightglow and ionosphere collected by the Venus Express (VEX) spacecraft. We were unable to detect the green line but confirmed that electron energy and flux increases after CME impacts.In order to determine the effect of storm condition electron precipitation on the Venusian green line, we modeled the Venusian ionosphere using the TRANSCAR model (a 1-D magnetohydrodynamic ionospheric model that simulates auroral emission from electron precipitation) by applying observed electron energies and fluxes. We found that electron energy plays a primary role in producing increased green line emission in the Venusian ionosphere.Based on observation and modeling results, we conclude that the Venusian green line is an auroral-type emission that occurs after solar storms with the largest intensities observed after CMEs. Post-CME electron fluxes and energies

  14. Analysis of coordinated observations of a giant stellar flare

    NASA Technical Reports Server (NTRS)

    Lambert, David L.

    1989-01-01

    Multi-wavelength observations of a giant flare on the star AD Leo were obtained with the 2.1 m and 0.9 m telescopes at McDonald Observatory and the International Ultraviolet Explorer satellite. The quality, spectral coverage, and time resolution of the data represented a major improvement over any published stellar flare data. Two theoretical, quantitative flare models were developed. Combining the models, the chromospheric emission model predictions in the hydrogen Balmer lines, Da II K, Mg II h + k and the optical continuum were compared to the observations, with the result that much of the gradual phase flare emission could be produced by the x ray and conductive heated atmospheres. The models lend insight into the impulsive phase flare emission, but do not reproduce it. Soft x ray and conductive heating of the chromosphere is a natural consequence of the coronal temperatures that have been observed during the gradual phase of flares on the sun and on M dwarf stars. The improved flare observations and quantitative flare models presented here show that these heating mechanisms can produce atmospheres whose emission matches many of the observed stellar flare features.

  15. The Solar Flare Myth in solar-terrestrial physics

    SciTech Connect

    Gosling, J.T.

    1993-07-01

    Early observations of associations between solar flares and large non- recurrent geomagnetic storms, large {open_quote}solar{close_quote} energetic particle events, and transient shock wave disturbances in the solar wind led to a paradigm of cause and effect that gave flares a central position in the chain of events leading from solar activity to major transient disturbances in the near-earth space environment. However, research in the last two decades shows that this emphasis on flares is misplaced. In this paper the author outlines briefly the rationale for a different paradigm of cause and effect in solar- terrestrial physics that removes solar flares from their central position as the {open_quote}cause{close_quote} of major disturbances in the near-earth space environment. Instead, this central role of {open_quote}cause{close_quote} is played by events now known as coronal mass ejections, or CMEs.

  16. FLARES PRODUCING WELL-ORGANIZED POST-FLARE ARCADES (SLINKIES) HAVE EARLY PRECURSORS

    SciTech Connect

    Ryutova, M. P.

    2011-06-01

    Exploding loop systems producing X-ray flares often, but not always, bifurcate into a long-living, well-organized system of multi-threaded loop arcades resembling solenoidal slinkies. The physical conditions that cause or prevent this process are not known. To address this problem, we examined most of the major (X-class) flares that occurred during the last decade and found that the flares that bifurcate into long-living slinky arcades have different signatures than those that do not 'produce' such structures. The most striking difference is that, in all cases of slinky formation, GOES high energy proton flux becomes significantly enhanced 10-24 hr before the flare occurs. No such effect was found prior to the 'non-slinky' flares. This fact may be associated with the difference between energy production by a given active region and the amount of energy required to bring the entire system into the form of well-organized, self-similar loop arcades. As an example illustrating the process of post-flare slinky formation, we present observations taken with the Hinode satellite, in several wavelengths, showing a time sequence of pre-flare and flare activity, followed by the formation of dynamically stable, well-organized structures. One of the important features revealed is that post-flare coronal slinky formation is preceded by scale invariant structure formation in the underlying chromosphere/transition region. We suggest that the observed regularities can be understood within the framework of self-organized critical dynamics characterized by scale invariant structure formation with critical parameters largely determined by energy saturation level. The observed regularities per se may serve as a long-term precursor of strong flares and may help to study predictability of system behavior.

  17. GRADUAL MAGNETIC EVOLUTION OF SUNSPOT STRUCTURE AND FILAMENT–CORONA DYNAMICS ASSOCIATED WITH THE X1.8 FLARE IN AR11283

    SciTech Connect

    Ruan, Guiping; Chen, Yao; Wang, Haimin

    2015-10-20

    In this paper, we present a study of the persistent and gradual penumbral decay and the correlated decline of the photospheric transverse field component 10–20 hr before a major flare (X1.8) eruption on 2011 September 7. This long-term pre-eruption behavior is corroborated by the well-imaged pre-flare filament rising, the consistent expansion of the coronal arcades overlying the filament, and the nonlinear force-free field modeling results in the literature. We suggest that both the long-term pre-flare penumbral decay and the transverse field decline are photospheric manifestations of the gradual rise of the coronal filament–flux rope system. We also suggest that the C3 flare and the subsequent reconnection process preceding the X1.8 flare play an important role in triggering the later major eruption.

  18. CORONAL CELLS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P. E-mail: harry.warren@nrl.navy.mil

    2012-04-10

    We have recently noticed cellular features in Fe XII 193 A images of the 1.2 MK corona. They occur in regions bounded by a coronal hole and a filament channel, and are centered on flux elements of the photospheric magnetic network. Like their neighboring coronal holes, these regions have minority-polarity flux that is {approx}0.1-0.3 times their flux of majority polarity. Consequently, the minority-polarity flux is 'grabbed' by the majority-polarity flux to form low-lying loops, and the remainder of the network flux escapes to connect with its opposite-polarity counterpart in distant active regions of the Sun. As these regions are carried toward the limb by solar rotation, the cells disappear and are replaced by linear plumes projecting toward the limb. In simultaneous views from the Solar Terrestrial Relations Observatory and Solar Dynamics Observatory spacecraft, these plumes project in opposite directions, extending away from the coronal hole in one view and toward the hole in the other view, suggesting that they are sky-plane projections of the same radial structures. We conclude that these regions are composed of closely spaced radial plumes, extending upward like candles on a birthday cake and visible as cells when seen from above. We suppose that a coronal hole has this same discrete, cellular magnetic structure, but that it is not seen until the encroachment of opposite-polarity flux closes part or all of the hole.

  19. Highlights of the study of energy release in flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1987-01-01

    From February 26 to March 1, 1979, 32 solar flare investigators attended a workshop at Cambridge, MA to define objectives and devise a scientific program for the study of energy release in flares (SERF) during the coming solar maximum. Herein, some major results of the ensuing five-year effort to observe and understand the flare energy release process and its effects (energetic particle production, coronal and chromospheric heating, electromagnetic radiations, and mass motions and ejections) are reviewed. The central issue - what processes store and release the energy liberated in flares - remains unresolved except in the most general terms (e.g., it is generally agreed that the energy is stored in sheared or stressed magnetic fields and released by field annihilation during some MHD instability). Resolving that issue is still one of the most important goals in solar physics, but the advances during the SERF program have brought it closer.

  20. The exceptional aspects of the confined X-Flares of Solar Active Region 2192

    NASA Astrophysics Data System (ADS)

    Thalmann, Julia K.; Su, Yang; Temmer, Manuela; Veronig, Astrid

    2015-08-01

    Active region NOAA 2192 showed an outstanding productivity of major (GOES class M5 and larger) two-ribbon flares lacking eruptive events. None of the X-flares was associated to a coronal mass ejection. The major confined flares on 2014 October 22 and 24 originated from the active-region core and were prohibited to develop an associated mass ejection due to the confinement of the overlying strong magnetic field. In contrast, the single eruptive M-flare on October 24 originated from the outer parts of the active region, in the neighborhood of open large-scale fields, which allowed for the observed mass ejection. Analysis of the spacial and temporal characteristics of the major confined flares revealed exceptional aspects, including a large initial separation of the confined flares' ribbons and an almost absent growth in ribbon separation, suggesting a reconnection site high up in the corona. Furthermore, detailed analysis of a confined X-flare on October 22 provides evidence that magnetic field structures were repeatedly involved in magnetic reconnection, that a large number of electrons was accelerated to non-thermal energies but that only a small fraction out of these accelerated electrons was accelerated to high energies. We conclude the latter due to the unusual steepness of the associated power law spectrum. Finally, we demonstrate that a considerable portion of the magnetic energy released during the X-flare was consumed by the non-thermal flare energy.

  1. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-10-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  2. Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7-13

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Xue, Xianghui; Shen, Chenglong; Ye, Pinzhong; Wang, S.; Zhang, Jie

    2006-07-01

    We have analyzed five major CMEs originating from NOAA active region (AR) 808 during the period of 2005 September 7-13, when the AR 808 rotated from the east limb to near solar meridian. Several factors that affect the probability of the CMEs' encounter with the Earth are demonstrated. The solar and interplanetary observations suggest that the second and third CMEs, originating from E67° and E47°, respectively, encountered the Earth, while the first CME originating from E77° missed the Earth, and the last two CMEs, although originating from E39° and E10°, respectively, probably only grazed the Earth. On the basis of our ice cream cone mode and CME deflection model, we find that the CME span angle and deflection are important for the probability of encountering Earth. The large span angles allowed the middle two CMEs to hit the Earth, even though their source locations were not close to the solar central meridian. The significant deflection made the first CME totally miss the Earth even though it also had wide span angle. The deflection may also have made the last CME nearly miss the Earth even though it originated close to the disk center. We suggest that, in order to effectively predict whether a CME will encounter the Earth, the factors of the CME source location, the span angle, and the interplanetary deflection should all be taken into account.

  3. Impact of major coronal mass ejections on geo-space during September 7 -- 13, 2005

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xue, X.; Shen, C.; Ye, P.; Wang, S.; Zhang, J.

    2006-05-01

    We have analyzed five major CMEs originating from NOAA active region (AR) 808 during the period of September 7 to 13, 2005, when the AR 808 rotated from the east limb to near solar meridian. Several factors that affect the probability of the CMEs' encounter with the Earth are demonstrated. The solar and interplanetary observations suggest that the 2nd and 3rd CMEs, originating from E67 and E47 respectively, encountered the Earth, while the 1st CME originating from E77 missed the Earth, and the last two CMEs, originating from E39 and E10 respectively, probably only grazed the Earth. Based on our ice-cream cone model (Xue et al. 2005a) and CME deflection model (Wang et al. 2004b), we find that the CME span angle and deflection are important for the probability of encountering. The large span angles make middle two CMEs hit the Earth, though their source locations were not close to the solar central meridian. The significant deflection makes the first CME totally missed the Earth though it also had wide span angle. The deflection may also make the last CME nearly missed the Earth though it originated close to the disk center. We suggest that, in order to effectively predict whether a CME will encounter the Earth, the factors of the CME source location, the span angle, and the interplanetary deflection should all be taken into account.

  4. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.

  5. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  6. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  7. The study of a spatial relationship between the Equatorial coronal hole and the Active region

    NASA Astrophysics Data System (ADS)

    Karna, Mahendra; Karna, Nishu

    2016-05-01

    The 11-year solar cycle is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal hole positions and sizes change with the solar cycle. We made a detailed study for two solar maximum: Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2011, 2012 and 2013). We used publically available Heliophysics Feature Catalogue and NOAA Solar Geophysical data for. Moreover, we used daily Solar Region Summary (SRS) data from SWPC/NOAA website. We examined the position of ECH and AR and noted that during a maximum of 23, the majority of ECH were not near active regions. However, in cycle 24 coronal holes and equatorial holes were more close to each other. Moreover, we noticed the asymmetry in AR migrations towards the lower latitude in both Northern and Southern hemisphere in cycle 23. While, no such notable asymmetrical behavior was observed in a maximum of cycle 24. Our goal is to extend the study with cycle 21 and 22 and examine the correlation between equatorial holes, the active regions, and the flares. This combined study will shed light in determining the distribution of flares.

  8. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Green, L. M.

    2009-12-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  9. FLUX ROPE FORMATION PRECEDING CORONAL MASS EJECTION ONSET

    SciTech Connect

    Green, L. M.; Kliem, B. E-mail: bhk@mssl.ucl.ac.uk

    2009-08-01

    We analyze the evolution of a sigmoidal (S-shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  10. THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING

    SciTech Connect

    Schrijver, Carolus J.; Title, Alan M.; Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile E-mail: title@lmsal.com E-mail: etienne.pariat@obspm.fr

    2011-09-10

    The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much

  11. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  12. Coronal abundances determined from energetic particles

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    1995-01-01

    Solar energetic particles (SEPs) provide a measurement of coronal element abundances that is highly independent of the ionization states and temperature of the ions in the source plasma. The most complete measurements come from large 'gradual' events where ambient coronal plasma is swept up by the expanding shock wave from a coronal mass ejection. Particles from 'impulsive' flares have a pattern of acceleration-induced enhancements superimposed on the coronal abundances. Particles accelerated from high-speed solar wind streams at corotating shocks show a different abundance pattern corresponding to material from coronal holes. Large variations in He/O in coronal material are seen for both gradual and impulsive-flare events but other abundance ratios, such as Mg/Ne, are remarkably constant. SEP measurements now include hundreds of events spanning 15 years of high-quality measurement.

  13. IMPLOSION IN A CORONAL ERUPTION

    SciTech Connect

    Liu Rui; Wang Haimin; Alexander, David

    2009-05-01

    We present the observations of the contraction of the extreme-ultraviolet coronal loops overlying the flaring region during the preheating as well as the early impulsive phase of a GOES class C8.9 flare. During the relatively long, 6 minutes, preheating phase, hard X-ray (HXR) count rates at lower energies (below 25 keV) as well as soft X-ray fluxes increase gradually and the flare emission is dominated by a thermal looptop source with the temperature of 20-30 MK. After the onset of impulsive HXR bursts, the flare spectrum is composed of a thermal component of 17-20 MK, corresponding to the looptop emission, and a nonthermal component with the spectral index {gamma} = 3.5-4.5, corresponding to a pair of conjugate footpoints. The contraction of the overlying coronal loops is associated with the converging motion of the conjugate footpoints and the downward motion of the looptop source. The expansion of the coronal loops following the contraction is associated with the enhancement in H{alpha} emission in the flaring region, and the heating of an eruptive filament whose northern end is located close to the flaring region. The expansion eventually leads to the eruption of the whole magnetic structure and a fast coronal mass ejection. It is the first time that such a large scale contraction of the coronal loops overlying the flaring region has been documented, which is sustained for about 10 minutes at an average speed of {approx}5 km s{sup -1}. Assuming that explosive chromospheric evaporation plays a significant role in compensating for the reduction of the magnetic pressure in the flaring region, we suggest that a prolonged preheating phase dominated by coronal thermal emission is a necessary condition for the observation of coronal implosion. The dense plasma accumulated in the corona during the preheating phase may effectively suppress explosive chromospheric evaporation, which explains the continuation of the observed implosion up to {approx}7 minutes into the

  14. Do All Candle-Flame-Shaped Flares Have the Same Temperature Distribution?

    NASA Astrophysics Data System (ADS)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2015-08-01

    We performed a differential emission measure (DEM) analysis of candle-flame-shaped flares observed with the Atmospheric Imaging Assembly onboard the Solar Dynamic Observatory. The DEM profile of flaring plasmas generally exhibits a double peak distribution in temperature, with a cold component around log T≈6.2 and a hot component around log T≈7.0. Attributing the cold component mainly to the coronal background, we propose a mean temperature weighted by the hot DEM component as a better representation of flaring plasma than the conventionally defined mean temperature, which is weighted by the whole DEM profile. Based on this corrected mean temperature, the majority of the flares studied, including a confined flare with a double candle-flame shape sharing the same cusp-shaped structure, resemble the famous Tsuneta flare in temperature distribution, i.e., the cusp-shaped structure has systematically higher temperatures than the rounded flare arcade underneath. However, the M7.7 flare on 19 July 2012 poses a very intriguing violation of this paradigm: the temperature decreases with altitude from the tip of the cusp toward the top of the arcade; the hottest region is slightly above the X-ray loop-top source that is co-spatial with the emission-measure-enhanced region at the top of the arcade. This signifies that a different heating mechanism from the slow-mode shocks attached to the reconnection site operates in the cusp region during the flare decay phase.

  15. SDO Sees Late Phase in Solar Flares

    NASA Video Gallery

    On May 5, 2010, shortly after the Solar Dynamics Observatory (SDO) began normal operation, the sun erupted with numerous coronal loops and flares. Many of these showed a previously unseen "late pha...

  16. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  17. Evolution of the Coronal Magnetic Structures traced by X-ray and Radio Emitting Electrons during the Flare of 3 November 2003

    NASA Astrophysics Data System (ADS)

    Vilmer, N. R.; Dauphin, C.; Krucker, S.

    2004-05-01

    During their transit on the solar disk AR 0488 and AR0486 produced 12 X-class flares. Two of these flares (28 October 2003 and 3 November 2003) were observed at both X-ray/gamma-ray wavelengths by the RHESSI experiment and by the Nancay Radioheliograph. We shall present here results for the 3 November 2003 event which was observed and imaged up to several 100 keV by RHESSI and which produced at radio wavelengths a type II burst with an unusually high starting frequency and a long duration continuum extending from the low corona to the interplanetary medium. The combined analysis of RHESSI sources at energies above a few hundred keV and of metric/decimetric sources observed by the NRH shows a spatial extension of both X-ray and radio sources traced by energetic electrons between the impulsive part of the event and the late energetic X-ray phase associated with the radio continuum. This spatial extension will be discussed in the context of the shock-associated type II burst and of the CME onset. Analysis of radio and X-ray spectra will be tentatively done to investigate the nature of the radio continuum.

  18. Microflares and the Statistics of X-Ray Flares

    NASA Technical Reports Server (NTRS)

    Hannah, I. G.; Hudson, H. S.; Battaglia, M.; Christe, S.; Kasparova, J.; Krucker, S.; Kundu, M. R.; Veronig, A.

    2011-01-01

    This review surveys the statistics of solar X-ray flares, emphasising the new views that Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.

  19. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  20. Stealth Coronal Mass Ejections: A Perspective

    NASA Astrophysics Data System (ADS)

    Howard, Timothy A.; Harrison, Richard A.

    2013-07-01

    "Stealth CME" has become a commonly used term in recent studies of solar activity. It refers to a coronal mass ejection (CME) with no apparent solar surface association, and therefore has no easily identifiable signature to locate the region on the Sun from which the CME erupted. We review the literature and express caution in categorising CMEs in this way. CMEs were discovered some 40 years ago and there have been numerous statistical studies of associations with phenomena in the solar atmosphere which clearly identify a range of associations, from bright flares and large prominence eruptions to small flares, and even a lack of flares or any identifiable surface activity at all. In this sense the stealth CME concept is not new. One major question relates to whether the range of associations reveal different CME classes, i.e. different CME launch processes, or are indicative of a spectrum of coronal responses to one common process. We favour the latter and stress that this spectrum must be considered in the description of the CME launch, meaning that the physics of a so-called stealth CME must not be fundamentally different from a CME associated with major surface events. On the other hand we also stress that the use of a stealth CME category implies that all surface activity could indeed be detected using modern instrumentation. We argue that this may not be the case, and that even in the SDO era of full-Sun, high resolution imaging, we are restricted by instrument sensitivity and bandwidth issues. Thus, having reviewed the case for stealth CMEs as a distinct category, we stress the need to keep the concept in perspective.

  1. Flares as Avalanches?

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.

    2003-05-01

    In 1991, E.T. Lu and R. Hamilton (ApJ 380, L89) suggested that flares could be interpreted as avalanches of reconnection events in coronal magnetic structures driven to a self-organized critical state. Physical underpinning for the simple cellular automaton model they used to illustrate their idea can be readily found in the nanoflare conjecture for coronal heating championed over the past two decades by E.N. Parker (e.g., ApJ 330, 474 [1988]). In this lecture I will give a brief overview of Lu & Hamilton's avalanche model, and describe how it can be physically interpreted in the context of Parker's nanoflare conjecture. After discussing some illustrative model results, I will focus on recent comparisons of the model's predictions with flare observations. Finally, I will discuss some recent attempts at quantitatively exploring the physical relationship between model components and the physics of magnetic reconnection.

  2. Outer Atmospheres of Low Mass Stars — Flare Characteristics.

    NASA Astrophysics Data System (ADS)

    Lalitha, S.; Schmitt, J. H. M. M.

    2013-04-01

    We compare the coronal properties during flares on active low mass stars CN Leonis, AB Doradus A and Proxima Centauri observed with XMM-Newton. From the X-ray data we analyze the temporal evolution of temperature, emission measure and coronal abundance. The nature of these flares are with secondary events following the first flare peak in the light curve, raising the question regarding the involved magnetic structure. We infer from the plasma properties and the geometry of the flaring structure that the flare originates from a compact arcade rather than in a single loop.

  3. Spectral response of the solar atmosphere to an X-class flare event

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela Adriana; Donea, Alina

    2016-05-01

    The only X-class flare of 2015 observed by IRIS occurred at 16:22 UT on 11 March 2015, in AR 12297. This flare generated significant seismic transients in the photosphere at the eastern location of the flare. IRIS observations of the chromosphere and transition region help us understand the physics of the sunquake. In this work we will analyse this event using data from IRIS, SDO, and RHESSI. The IRIS rasters scanned the area between the main footpoints of the solar flare, and a wealth of chromospheric information has been inferred about the dynamics of the event. The main X-ray emission dominates the eastern flare footpoint, being missed by the IRIS slit. Significant enhancements in the chromospheric and TR lines intensities were identified. The forbidden line of Fe XXI 1354.1 Å is detected after the flare peak revealing the coronal responses to the flare. Plasma downflows of up to 300 km/s were identified in the majority of the observed lines, consistent with magnetic field local reconfiguration. We have also analysed an erupting filament developing at an earlier time, which moved rapidly towards the eastern part of the active region. We discuss the possibility that this filament might have pre-conditioned the chromosphere for the flare process.

  4. Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, T. J.

    2016-02-01

    The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.

  5. Dual instrument for Flare and CME onset observations - Double solar Coronagraph with Solar Chromospheric Detector and Coronal Multi-channel Polarimeter at Lomnicky stit Observatory

    NASA Astrophysics Data System (ADS)

    Kucera, Ales; Tomczyk, Steven; Rybak, Jan; Sewell, Scott; Gomory, Peter; Schwartz, Pavol; Ambroz, Jaroslav; Kozak, Matus

    2015-08-01

    We report on unique dual instrument developed for simultaneous measurements of velocity and magnetic fields in the solar chromosphere and corona. We describe the technical parameters and capability of the Coronal Multi-channel Polarimeter (CoMP-S) and Solar Chromospheric detector (SCD) mounted at the Double solar coronagraph at Lomnicky Stit Observatory and working simultaneously with strictly parallel pointing of both coronagraphs. The CoMP-S is 2D spectropolarimeter designed for observations of VIS and near-IR emission lines of prominences and corona with operating spectral range: 500 - 1100 nm, sequential measurement of several VIS and near-IR lines. Its field of view is 14 arcmin x 11 arcmin. It consists of 4-stage calcite Lyot filter followed by the ferro-liquid crystal polarizer and four cameras (2 visible, 2 infrared). The capability is to deliver 2D full Stokes I, Q, U, V, using registration with 2 IR cameras (line + background) and 2 VIS cameras (line + background) SCD is a single beam instrument to observe bright chromosphere. It is a combination of tunable filter and polarimeter. Spectral resolution of the SCD ranges from 0.046 nm for observations of the HeI 1083 nm line up to to 25 pm is for observation of the HeI 587.6 nm line. The birefringent filter of the SCD has high spectral resolution, as well as spatial resolution (1.7 arcseconds) and temporal resolution (10 seconds) First results are also reported and discussed.

  6. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-09-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares ( 55~%) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares ( 45~%) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 ( 88~%) group 1 flares and 11 ( 85~%) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  7. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  8. Two Components in Major Solar Particle Events

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Cane, H. V.; vonRosenvinge, T. T.; Cohen, C. M. S.; Mewaldt, R. A.

    2003-01-01

    A study has been made of 29 intense, solar particle events observed in the energy range 25-100 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe to O ratios which were reasonably constant with time and energy, and with values above coronal. These all originated on the Sun s western hemisphere and most had intensities that rose rapidly at the time of an associated flare, and coronal mass ejection (CME), and then decayed more gradually. Few interplanetary shocks were observed during these increases. The spectra were mainly power laws. The remaining 10 events had different intensity-time profiles and Fe to O ratios that varied with time and energy with values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. In general the spectra were not power laws but steepened at high energies, particularly for Fe. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare and the other at shock passage. The results, considered in the light of other recent work, suggest that the high energy particles that occur shortly after flares are indeed flare particles. At the highest rigidities considered here shock-accelerated particles are uncommon and are observed only in association with unusually fast shocks.

  9. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  10. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  11. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  12. PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS

    SciTech Connect

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.

    2012-09-20

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30 Degree-Sign radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  13. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  14. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  15. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Coronal mass ejections (CMEs) and solar flares are two examples of major explosions from the surface of the Sun but theyre not the same thing, and they dont have to happen at the same time. A recent study examines whether we can predict which solar flares will be closely followed by larger-scale CMEs.Image of a solar flare from May 2013, as captured by NASAs Solar Dynamics Observatory. [NASA/SDO]Flares as a Precursor?A solar flare is a localized burst of energy and X-rays, whereas a CME is an enormous cloud of magnetic flux and plasma released from the Sun. We know that some magnetic activity on the surface of the Sun triggers both a flare and a CME, whereas other activity only triggers a confined flare with no CME.But what makes the difference? Understanding this can help us learn about the underlying physical drivers of flares and CMEs. It also might help us to better predict when a CME which can pose a risk to astronauts, disrupt radio transmissions, and cause damage to satellites might occur.In a recent study, Monica Bobra and Stathis Ilonidis (Stanford University) attempt to improve our ability to make these predictions by using a machine-learning algorithm.Classification by ComputerUsing a combination of 6 or more features results in a much better predictive success (measured by the True Skill Statistic; higher positive value = better prediction) for whether a flare will be accompanied by a CME. [Bobra Ilonidis 2016]Bobra and Ilonidis used magnetic-field data from an instrument on the Solar Dynamics Observatory to build a catalog of solar flares, 56 of which were accompanied by a CME and 364 of which were not. The catalog includes information about 18 different features associated with the photospheric magnetic field of each flaring active region (for example, the mean gradient of the horizontal magnetic field).The authors apply a machine-learning algorithm known as a binary classifier to this catalog. This algorithm tries to predict, given a set of features

  16. MAGNETIC RECONNECTION: FROM 'OPEN' EXTREME-ULTRAVIOLET LOOPS TO CLOSED POST-FLARE ONES OBSERVED BY SDO

    SciTech Connect

    Zhang, Jun; Yang, Shuhong; Li, Ting; Zhang, Yuzong; Li, Leping; Jiang, Chaowei E-mail: shuhongyang@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: cwjiang@spaceweather.ac.cn

    2013-10-10

    We employ Solar Dynamics Observatory observations and select three well-observed events including two flares and one extreme-ultraviolet (EUV) brightening. During the three events, the EUV loops clearly changed. One event was related to a major solar flare that took place on 2012 July 12 in active region NOAA AR 11520. 'Open' EUV loops rooted in a facula of the AR deflected to the post-flare loops and then merged with them while the flare ribbon approached the facula. Meanwhile, 'open' EUV loops rooted in a pore disappeared from top to bottom as the flare ribbon swept over the pore. The loop evolution was similar in the low-temperature channels (e.g., 171 Å) and the high-temperature channels (e.g., 94 Å). The coronal magnetic fields extrapolated from the photospheric vector magnetograms also show that the fields apparently 'open' prior to the flare become closed after it. The other two events were associated with a B1.1 flare on 2010 May 24 and an EUV brightening on 2013 January 03, respectively. During both of these two events, some 'open' loops either disappeared or darkened before the formation of new closed loops. We suggest that the observations reproduce the picture predicted by the standard magnetic reconnection model: 'open' magnetic fields become closed due to reconnection, manifesting as a transformation from 'open' EUV loops to closed post-flare ones.

  17. Coordinated Einstein and IUE observations of a disparitions brusques type flare event and quiescent emission from Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Bornmann, P. L.; Stencel, R. E.; Antiochos, S. K.; Golub, L.; Vaiana, G. S.

    1983-01-01

    The Einstein Imaging Particle Counter observed a major X-ray flare in its entirety during a 5-hr period of simultaneous observations, with the IUE, of the dM5e flare star Proxima Centauri in August, 1980. The detailed X-ray light curve, temperature determinations during various intervals, and UV line fluxes obtained before, during, and after the flare indirectly indicate a 'two-ribbon flare' prominence eruption. The calculated ratio of coronal to bolometric luminosity for the event is about 100 times the solar ratio. The Proxima Cen corona is analyzed in the context of static loop models, in light of which it is concluded that less than 6% of the stellar surface seems to be covered by X-ray emitting active regions.

  18. ORIGIN OF CORONAL SHOCK WAVES ASSOCIATED WITH SLOW CORONAL MASS EJECTIONS

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Zic, T.

    2010-07-20

    We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s{sup -1}). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nancay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.

  19. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    SciTech Connect

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.; Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay; Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  20. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future. PMID:20054505

  1. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.

  2. Coronal manifestations of preflare activity

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Webb, D. F.; Woodgate, B.; Waggett, P.; Bentley, R.; Hurford, G.; Schadee, A.; Schrijver, J.; Harrison, R.; Martens, P.

    1986-01-01

    A variety of coronal manifestations of precursors or preheating for flares are discussed. Researchers found that almost everyone with a telescope sees something before flares. Whether an all-encompassing scenario will ever be developed is not at all clear at present. The clearest example of preflare activity appears to be activated filaments and their manifestations, which presumably are signatures of a changing magnetic field. But researchers have seen two similar eruptions, one without any evidence of emerging flux (Kundu et al., 1985) and the other with colliding poles (Simon et al., 1984). While the reconnection of flux is generally agreed to be required to energize a flare, the emergence of flux from below (at least on short timescales and in compact regions) does not appear to be a necessary condition. In some cases the cancelling of magnetic flux (Martin, 1984) by horizontal motions instead may provide the trigger (Priest, 1985) Researchers found similarities and some differences between these and previous observations. The similarities, besides the frequent involvement of filaments, include compact, multiple precursors which can occur both at and near (not at) the flare site, and the association between coronal sources and activity lower in the atmosphere (i.e., transition zone and chromosphere).

  3. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  4. Slipping magnetic reconnection in coronal loops.

    PubMed

    Aulanier, Guillaume; Golub, Leon; Deluca, Edward E; Cirtain, Jonathan W; Kano, Ryouhei; Lundquist, Loraine L; Narukage, Noriyuki; Sakao, Taro; Weber, Mark A

    2007-12-01

    Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments. PMID:18063789

  5. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  6. Fields, Flares, And Forecasts

    NASA Astrophysics Data System (ADS)

    Boucheron, L.; Al-Ghraibah, Amani; McAteer, J.; Cao, H.; Jackiewicz, J.; McNamara, B.; Voelz, D.; Calabro, B.; DeGrave, K.; Kirk, M.; Madadi, A.; Petsov, A.; Taylor, G.

    2011-05-01

    Solar active regions are the source of many energetic and geo-effective events such as solar flares and coronal mass ejections (CMEs). Understanding how these complex source regions evolve and produce these events is of fundamental importance, not only to solar physics, but also to the demands of space weather forecasting. We propose to investigate the physical properties of active region magnetic fields using fractal-, gradient-, neutral line-, emerging flux-, wavelet- and general image-based techniques, and to correlate them to solar activity. The combination of these projects with solarmonitor.org and the international Max Millenium Campaign presents an opportunity for accurate and timely flare predictions for the first time. Many studies have attempted to relate solar flares to their concomitant magnetic field distributions. However, a consistent, causal relationship between the magnetic field on the photosphere and the production of solar flares is unknown. Often the local properties of the active region magnetic field - critical in many theories of activity - are lost in the global definition of their diagnostics, in effect smoothing out variations that occur on small spatial scales. Mindful of this, our overall goal is to create measures that are sensitive to both the global and the small-scale nature of energy storage and release in the solar atmosphere in order to study solar flare prediction. This set of active region characteristics will be automatically explored for discriminating features through the use of feature selection methods. Such methods search a feature space while optimizing a criterion - the prediction of a flare in this case. The large size of the datasets used in this project make it well suited for an exploration of a large feature space. This work is funded through a New Mexico State University Interdisciplinary Research Grant.

  7. GAMMA-RAY BURST FLARES: ULTRAVIOLET/OPTICAL FLARING. I

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional ''breaks'' to the light curve. These additional breaks represent the individual components of the detected flares: T{sub start}, T{sub stop}, and T{sub peak}. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of {approx}2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 10{sup 5} s. More than 80% of the flares detected are short in duration with {Delta}t/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  8. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  9. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    SciTech Connect

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  10. Coronal Magnetic Structures for Homologous Eruptions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Liu, C.; Jing, J.; Chae, J.

    2015-12-01

    Many studies have been made on homologous eruptions for their importance in understanding the flare energy build-up and release processes. We study the homologous eruptions that occurred in three active regions, NOAA 11444, 11283, and 12192, with emphasis on the coronal quantities derived from the nonlinear force-free field (NLFFF) extrapolation. The quantities include magnetic energy, electric current, and magnetic twist number, and decay index, computed from the high cadence photospheric vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). In addition, photospheric magnetic flux, flare ribbons and overlying field distribution are also examined to determine the changes associated with each eruption. As main results, we will present the difference between the homology of confined eruptions and that of eruptive ones, and variations of the coronal quantities with flare strength.

  11. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  12. Coronal partings

    NASA Astrophysics Data System (ADS)

    Nikulin, Igor F.; Dumin, Yurii V.

    2016-02-01

    The basic observational properties of "coronal partings"-the special type of quasi-one-dimensional magnetic structures, identified by a comparison of the coronal X-ray and EUV images with solar magnetograms-are investigated. They represent the channels of opposite polarity inside the unipolar large-scale magnetic fields, formed by the rows of magnetic arcs directed to the neighboring sources of the background polarity. The most important characteristics of the partings are discussed. It can be naturally assumed that-from the evolutionary and spatial points of view-the partings can transform into the coronal holes and visa versa. The classes of global, intersecting, and complex partings are identified.

  13. Why Is the Great Solar Active Region 12192 Flare-rich but CME-poor?

    NASA Astrophysics Data System (ADS)

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Li, Yan; Shen, Chenglong; Couvidat, Sebastien; Norton, Aimee A.; Fisher, George H.

    2015-05-01

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild” its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  14. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    SciTech Connect

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Couvidat, Sebastien; Norton, Aimee A.; Li, Yan; Fisher, George H.; Shen, Chenglong

    2015-05-10

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  15. Structures in the Algol Corona: Searching for Flare Eclipses

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    Our recent successful observation of a total eclipse of a large flare on Algol (with BeppoSAX) has demonstrated the diagnostic power of flare eclipses, allowing for the first time to derive the size of the coronal structure responsible for a stellar flare (and thus by inference the size of coronal structures in general) on purely geometrical grounds. The loop is compact, much smaller than deduced by the analysis of the flare decay, and located on the pole of the active star. We propose to observe Algol for two binary orbits searching for similar flare eclipses. Further detections of flare eclipses (for which RXTE, with its large effective area is ideally suited) will allow to directly constrain the characteristic sized of structures in the Algol corona.

  16. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; Tobiska, W. Kent; Schrijver, Carolus J.; Webb, David F.; Warren, Harry

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  17. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  18. HST STIS Coronal Iron Survey

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Brown, A.; Linsky, J. L.

    2001-05-01

    The broad coverage, high sensitivity, and precise wavelength calibration of the Space Telescope Imaging Spectrograph's medium-resolution echelle mode, coupled with the growing collection of GO and GTO E140M exposures, are ideal for surveys of specific spectral diagnostics across a diversity of stellar types, luminosities, and activity levels. Of great current interest are the weak coronal forbidden lines that appear in the far-UV, which are well known from solar flare work. Measuring coronal lines with STIS in the 1150--1700 Å band has significant advantages over using, say, Chandra HETGS or XMM-Newton RGS in the 1 keV range, because the STIS velocity resolution is 40x, or more, higher; STIS has an absolute wavelength calibration established by an onboard emission lamp; and the large effective area of the HST telescope compensates for the faintness of the forbidden lines. Here, we report a survey of Fe XXI λ 1354 in a sample of ~25 stars. The forbidden iron feature forms at a temperature of about 107 K, characteristic of very active or flaring coronal conditions. Clear detections of the coronal iron line are made in active M dwarfs (AU Mic, AD Leo), active giants (α Aur, β Cet, ι Cap, 24 UMa, HR 9024), short-period RS CVn binaries (e.g., HR 1099), and possibly in active solar-type dwarfs (ζ Dor, χ1 Ori). We describe our semi-empirical method for removing the C I blend that partially corrupts the Fe XXI profile, and our measurements of coronal line widths and Doppler shifts. Although α Aur displays clear variability between Fe XXI profiles obtained at the same orbital phase, but four years apart; the hyperactive HR 1099 system showed virtually no change in its coronal iron feature during a sequence of 14 spectra taken over a 7 hr period in 1999 September, despite the occurrence of two large flares in far-UV lines such as Si IV and C IV. This work was supported by grant GO-08280.01-97A from STScI. Observations were from the NASA/ESA HST, collected at the STSc

  19. Solar and Stellar Flares over Time: Effects on Hosted Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; DeWarf, Laurence E.; Engle, Scott G.; Gropp, Jeffrey

    2016-01-01

    The effects of flares from the Sun on Earth and other solar-system planets are presented. Also discussed are the flare properties of cooler, commonplace main-sequence K-M stars. Data from our "Sun in Time" program are used to study the flare properties of the Sun and solar-type stars from youth to old age. These studies are based on ground-based observations, UV and X-ray space missions (IUE & HST, ROSAT & Chandra) as well as a wealth of data from the Kepler Mission. The ultra-high precision photometry available from the Kepler Mission (and K2) has made it possible to study starspots, flare properties, and rotations of thousands of G, K, M stars. Superflares (defined as E > 10+33 ergs ~X-100 flares) on hundreds of mostly G and K stars have been found. (See e.g. Shibayama et al. 2013; Maehara et al. 2015; Notsu et al. 2013/15; Saar et al. 2015; Guinan et al. 2015). Using our Age-Rotation relations, we determine correlations of flares properties of the Sun and solar-type over a wide range of ages. We also compare these flare histories with the cooler, more common K- and M-type stars. The analysis of these datasets imply that the young Sun had numerous, very powerful flares that may have played major roles the evolution of the early atmospheres of Earth and other terrestrial planets. The strong X-UV fluxes and proton fluences from flares and associated plasmas from coronal mass ejection events can greatly affect the photochemistry of planetary atmospheres as well as ionizing and possibly eroding their atmospheres. Some examples are given. Also discussed are the effects of superflares from the present Sun on the Earth. Even though solar superflares are rarer (~1 per 300-500 yrs) than from the young Sun (> 1-2 per year), they could cause significant damage to our communication and satellite systems, electrical networks, and threaten the lives of astronauts in space..This research is supported by grants from NSF/RUI and NASA: NSF, AST 1009903; Chandra GO2-13020X, HST GO

  20. Rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1986-01-01

    Study of rapid fluctuations in the emission of radiation from solar flares provides a promising approach for probing the magneto-plasma structure and plasma processes that are responsible for a flare. It is proposed that elementary flare bursts in X-ray and microwave emission may be attributed to fine structure of the coronal magnetic field, related to the aggregation of photospheric magnetic field into magnetic knots. Fluctuations that occur on a subsecond time-scale may be due to magnetic islands that develop in current sheets during magnetic reconnection. The impulsive phase may sometimes represent the superposition of a large number of the elementary energy-release processes responsible for elementary flare bursts. If so, the challenge of trying to explain the properties of the impulsive phase in terms of the properties of the elementary processes must be faced. Magnetic field configurations that might produce solar flares are divided into a number of categories, depending on: whether or not there is a filament; whether there is no current sheet, a closed current sheet, or an open current sheet; and whether the filament erupts into the corona, or is ejected completely from the Sun's atmosphere. Analysis of the properties of these possible configurations is compared with different types of flares, and to Bai's subdivision of gamma-ray/proton events.

  1. He-3-rich flares - A possible explanation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1978-01-01

    A plasma mechanism is proposed to explain the dramatic enhancements in He-3 observed in He-3-rich flares. It is shown that a common current instability in the corona may heat ambient He-3(2+) over any other ion and thus may preferentially inject He-3 into the flare acceleration process. This mechanism operates when the abundance of He-4 and heavier elements is larger than normal in the coronal plasma. It may also preferentially heat and thus inject certain ions of iron. The mechanism thus provides a possible explanation for the observed correlation between He-3 and heavy enhancements in He-3-rich flares.

  2. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect

    Cargill, P. J.; Bradshaw, S. J.

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  3. RHESSI AND TRACE OBSERVATIONS OF MULTIPLE FLARE ACTIVITY IN AR 10656 AND ASSOCIATED FILAMENT ERUPTION

    SciTech Connect

    Joshi, Bhuwan; Kushwaha, Upendra; Cho, K.-S.; Veronig, Astrid M.

    2013-07-01

    We present Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Transition Region and Coronal Explorer (TRACE) observations of multiple flare activity that occurred in the NOAA active region 10656 over a period of 2 hr on 2004 August 18. Out of four successive flares, three were class C events, and the final event was a major X1.8 solar eruptive flare. The activities during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by three localized episodes of energy release occurring in the vicinity of a filament that produces intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of {approx}12 km s{sup -1}. The filament eruption is accompanied by an X1.8 flare, during which multiple hard X-ray (HXR) bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts, which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied by very high plasma temperatures of {approx}31 MK, followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in the current sheet below the erupting prominence. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play an important role in destabilizing the active-region filament through the tether-cutting process, leading to large-scale eruption and X-class flare.

  4. New flare diagnostics from loop modeling of a stellar flare observedwith XMM-Newton

    NASA Astrophysics Data System (ADS)

    Reale, F.

    XMM-Newton data of an X-ray flare observed on Proxima Centauri provide detailed and challenging constraints for flare modeling. The comparison of the data with the results of time-dependent hydrodynamic loop modeling of this flare allows us to constrain not only the loop morphology, but also the details of the heating function. The results show that even a complex flare event like this can be described with a relatively few - though constrained - components: two loop systems, i.e. a single loop and an arcade, and two heat components, an intense pulse probably located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The similarity to at least one solar event (the Bastille Day flare in 2000) indicate that this pattern may be common to solar and stellar flares.

  5. Flare diagnostics from loop modeling of a stellar flare observed with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Reale, Fabio

    2006-01-01

    XMM-Newton data of an X-ray flare observed on Proxima Centauri provide detailed and challenging constraints for flare modeling. The comparison of the data with the results of time-dependent hydrodynamic loop modeling of this flare allows us to constrain not only the loop morphology, but also the details of the heating function. The results show that even a complex flare event like this can be described with a relatively few though constrained components: two loop systems, i.e., a single loop and an arcade, and two heat components, an intense pulse probably located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The similarity to at least one solar event (the Bastille Day flare in 2000) indicates that this pattern may be common to solar and stellar flares.

  6. Modeling an X-ray flare on Proxima Centauri: Evidence of two flaring loop components and of two heating mechanisms at work

    NASA Astrophysics Data System (ADS)

    Reale, F.; Güdel, M.; Peres, G.; Audard, M.

    2004-03-01

    We model in detail a flare observed on Proxima Centauri with the EPIC-PN on board XMM-Newton at high statistics and high time resolution and coverage. Time-dependent hydrodynamic loop modeling is used to describe the rise and peak of the light curve, and a large fraction of the decay, including its change of slope and a secondary maximum, over more than 2 h. The light curve, the emission measure and the temperature derived from the data allow us to constrain the loop morphology and the heating function and to show that this flare can be described with two components: a major one triggered by an intense heat pulse injected in a single flaring loop with half-length ≈1.0 × 1010 cm, the other one by less intense heat pulses released about 1/2 h after the first one in related loop systems, probably arcades, with the same half-length. The heat functions of the two loop systems appear very similar: an intense pulse located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The latter result and the similarity to at least one solar event (the Bastille Day flare in 2000) indicate that this pattern may be common to solar and stellar flares. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and the USA (NASA).

  7. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  8. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  9. Why is a Flare-rich Active Region CME-poor?

    NASA Astrophysics Data System (ADS)

    Liu, Lijuan; Wang, Yuming; Wang, Jingxiu; Shen, Chenglong; Ye, Pinzhong; Liu, Rui; Chen, Jun; Zhang, Quanhao; Wang, S.

    2016-08-01

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both and two were inert. The investigation of the photospheric parameters based on the SDO/HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.

  10. PRECURSOR FLARES IN OJ 287

    SciTech Connect

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L.; Valtonen, M.; Nilsson, K.; Zola, S.; Koziel-Wierzbowska, D.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Provencal, J.; Santangelo, M. M. M.; Salo, H.; Chandra, S.; Ganesh, S.; Baliyan, K. S.; and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  11. IUE spectra of a flare in HR 5110: A flaring RS CVn or Algol system?

    NASA Technical Reports Server (NTRS)

    Simon, T.; Linsky, J. L.; Schiffer, F. H., III

    1981-01-01

    Ultraviolet spectra of the RS CVn type binary system HR 5110 were obtained with IUE on May 31, 1979 during a period of intense radio flaring of this star. High temperature transition region lines are present, but are not enhanced above observed quiescent strengths. The similarities of HR 5110 to the Algol system, As Eri, suggest that the 1979 May to June flare may involve mass exchange rather than annihilation of coronal magnetic fields.

  12. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  13. Field Topology Analysis of a Long-lasting Coronal Sigmoid

    NASA Astrophysics Data System (ADS)

    Savcheva, A. S.; van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  14. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  15. Enabling Solar Flare Forecasting at an Unprecedented Level: the FLARECAST Project

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Pariat, Etienne; Massone, Anna Maria; Vilmer, Nicole; Jackson, David; Buchlin, Eric; Csillaghy, Andre; Bommier, Veronique; Kontogiannis, Ioannis; Gallagher, Peter; Gontikakis, Costis; Guennou, Chloé; Murray, Sophie; Bloomfield, D. Shaun; Alingery, Pablo; Baudin, Frederic; Benvenuto, Federico; Bruggisser, Florian; Florios, Konstantinos; Guerra, Jordan; Park, Sung-Hong; Perasso, Annalisa; Piana, Michele; Sathiapal, Hanna; Soldati, Marco; Von Stachelski, Samuel; Argoudelis, Vangelis; Caminade, Stephane

    2016-07-01

    We attempt a brief but informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy for the forecasting of major solar flares. The consortium, objectives, and first results of the project - featuring an openly accessible, interactive flare forecasting facility by the end of 2017 - will be outlined. In addition, we will refer to the so-called "explorative research" element of project, aiming to connect solar flares with coronal mass ejections (CMEs) and possibly pave the way for CME, or eruptive flare, prediction. We will also emphasize the FLARECAST modus operandi, namely the diversity of expertise within the consortium that independently aims to science, infrastructure development and dissemination, both to stakeholders and to the general public. Concluding, we will underline that the FLARECAST project responds squarely to the joint COSPAR - ILWS Global Roadmap to shield society from the adversities of space weather, addressing its primary goal and, in particular, its Research Recommendations 1, 2 and 4, Teaming Recommendations II and III, and Collaboration Recommendations A, B, and D. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  16. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  17. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  18. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect

    Olmedo, Oscar; Vourlidas, Angelos; Zhang Jie; Cheng Xin

    2012-09-10

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  19. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  20. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H. H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with Z = 6-30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  1. Solar Coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 Z or = 30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  2. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 = or Z or = 30. The ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  3. Solar Flares, Type III Radio Bursts, CMEs, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2004-01-01

    Despite the fact that it has been well known since the earliest observations that solar energetic particle events are well associated with solar flares it is often considered that the association is not physically significant. Instead, in large events, the particles are considered to be only accelerated at a shock driven by the coronal mass ejection (CME) that is also always present. If particles are accelerated in the associated flare, it is claimed that such particles do not find access to open field lines and therefore do not escape from the low corona. However recent work has established that long lasting type III radio bursts extending to low frequencies are associated with all prompt solar particle events. Such bursts establish the presence of open field lines. Furthermore, tracing the radio bursts to the lowest frequencies, generated near the observer, shows that the radio producing electrons gain access to a region of large angular extent. It is likely that the electrons undergo cross field transport and it seems reasonable that ions do also. Such observations indicate that particle propagation in the inner heliosphere is not yet fully understood. They also imply that the contribution of flare particles in major particle events needs to be properly addressed.

  4. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  5. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  6. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  7. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  8. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  9. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    SciTech Connect

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W.

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  10. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  11. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  12. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares. PMID:22665899

  13. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.

  14. Guided MHD waves as a coronal diagnostic tool

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.

  15. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  16. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  17. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  18. Coronal disturbances and their terrestrial effects /Tutorial Lecture/

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1983-01-01

    An assessment is undertaken of recent approaches to the prediction of the interplanetary consequences of coronal disturbances, with attention to the relationships of shocks and energetic particles to coronal transients, of proton events to gamma-ray and microwave bursts, of geomagnetic storms to filament eruptions, and of solar wind increases to the flare site magnetic field direction. A discussion is given concerning the novel phenomenon of transient coronal holes, which appear astride the long decay enhancements of 2-50 A X-ray emission following H-alpha filament eruptions. These voids in the corona are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. The transient coronal holes may also be associated with transient solar wind speed increases.

  19. SEISMOLOGY OF TRANSVERSELY OSCILLATING CORONAL LOOPS WITH SIPHON FLOWS

    SciTech Connect

    Terradas, J.; Arregui, I.; Verth, G.; Goossens, M.

    2011-03-10

    There are ubiquitous flows observed in the solar atmosphere of sub-Alfvenic speeds; however, after flaring and coronal mass ejection events flows can become Alfvenic. In this Letter, we derive an expression for the standing kink mode frequency due to siphon flow in coronal loops, valid for both low and high speed regimes. It is found that siphon flow introduces a linear, spatially dependent phase shift along coronal loops and asymmetric eigenfunctions. We demonstrate how this theory can be used to determine the kink and flow speed of oscillating coronal loops with reference to an observational case study. It is shown that the presence of siphon flow can cause the underestimation of magnetic field strength in coronal loops using the traditional seismological methods.

  20. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, S.; Vilmer, N.; Bommier, V.

    2015-12-01

    Solar flares are among the most energetic events in the solar system. Magnetic energy previously stored in the coronal magnetic field is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur in coronal currents sheets associated with regions of strong gradient of magnetic connectivity. Coronal current sheets can be traced by their footprints at the surface on the Sun, in e.g. photospheric current ribbons. We aim to study the relationship between the current ribbons observed at the photospheric level which trace coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density are calculated from SDO/HMI spectropolarimetric data using the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra are reconstructed from RHESSI data. In a first case (the GOES X2.2 flare of February 15, 2011), a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons (Musset et al., 2015). Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets. Propagation of the reconnection sites to new structures during the flare results in new X-ray emission sites and local increase of the photospheric currents We will examine in this contribution whether similar results are obtained for other X-class flares.

  1. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  2. A STUDY OF FAST FLARELESS CORONAL MASS EJECTIONS

    SciTech Connect

    Song, H. Q.; Chen, Y.; Ye, D. D.; Han, G. Q.; Du, G. H.; Li, G.; Zhang, J.; Hu, Q.

    2013-08-20

    Two major processes have been proposed to convert coronal magnetic energy into the kinetic energy of a coronal mass ejection (CME): resistive magnetic reconnection and the ideal macroscopic magnetohydrodynamic instability of a magnetic flux rope. However, it remains elusive whether both processes play a comparable role or one of them prevails during a particular eruption. To shed light on this issue, we carefully studied energetic but flareless CMEs, i.e., fast CMEs not accompanied by any flares. Through searching the Coordinated Data Analysis Workshops database of CMEs observed in Solar Cycle 23, we found 13 such events with speeds larger than 1000 km s{sup -1}. Other common observational features of these events are: (1) none of them originated in active regions, they were associated with eruptions of well-developed long filaments in quiet-Sun regions; (2) no apparent enhancement of flare emissions was present in soft X-ray, EUV, and microwave data. Further studies of two events reveal that (1) the reconnection electric fields, as inferred from the product of the separation speed of post-eruption ribbons and the photospheric magnetic field measurement, were generally weak; (2) the period with a measurable reconnection electric field is considerably shorter than the total filament-CME acceleration time. These observations indicate that for these fast CMEs, the magnetic energy was released mainly via the ideal flux-rope instability through the work done by the large-scale Lorentz force acting on the rope currents rather than via magnetic reconnections. We also suggest that reconnections play a less important role in accelerating CMEs in quiet-Sun regions of weak magnetic field than those in active regions of strong magnetic field.

  3. Stellar flares and the dark energy of CMEs

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Cohen, Ofer; Garraffo, Cecilia

    2015-08-01

    Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate much more particle kinetic energy in CMEs than flare radiative energy. Such monster CMEs pose a quandary for understanding the fraction of the energy budget stars can spend on magnetic activity. They could also be the dominant mechanism of angular momentum loss on active stars, and have the potential to ravage planetary atmospheres. We will discuss flare activity, how it might relate to coronal mass ejections, and efforts to understand stellar spin-down and the impact of CMEs on planetary atmospheres using detailed magnetohydrodynamic modelling.

  4. The response of the chromosphere during a stellar flare

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.

    1991-01-01

    A set of chromospheric models was developed, having a coronal loop geometry, energy balance through the entire loop from photosphere to corona, and a rigorous treatment of the radiative transfer in the important, optically thick, chromospheric emission lines. The models show that the soft X-ray emission and thermal conduction from a long lived hot corona are effective heating agents in the lower atmosphere during the gradual phase of stellar flares. The model predictions show the correct order of magnitude for the emission lines produced during the gradual phase of the flare with a reasonable coronal temperature evolution.

  5. Flare models: Chapter 9 of solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A. (Editor)

    1979-01-01

    By reviewing the properties of solar flares analyzed by each of the seven teams of the Skylab workshop, a set of primary and secondary requirements of flare models are derived. A number of flare models are described briefly and their properties compared with the primary requirements. It appears that, at this time, each flare model has some strong points and some weak points. It has not yet been demonstrated that any one flare model meets all the proposed requirements.

  6. STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES

    SciTech Connect

    Li, Y. P.; Gan, W. Q.; Feng, L.

    2012-03-10

    The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

  7. TRACKING CORONAL FEATURES FROM THE LOW CORONA TO EARTH: A QUANTITATIVE ANALYSIS OF THE 2008 DECEMBER 12 CORONAL MASS EJECTION

    SciTech Connect

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2013-05-20

    We have tracked a slow magnetic cloud associated coronal mass ejection (CME) continuously from its origin as a flux rope structure in the low solar corona over a four-day passage to impact with spacecraft located near Earth. Combining measurements from the STEREO, ACE, and Wind space missions, we are able to follow major elements with enough specificity to relate pre-CME coronal structure in the low corona to the corresponding elements seen in the near-Earth in situ data. Combining extreme ultraviolet imaging, quantitative Thomson scattering data throughout the flight of the CME, and ''ground-truth'' in situ measurements, we: (1) identify the plasma observed by ACE and Wind with specific features in the solar corona (a segment of a long flux rope); (2) determine the onset mechanism of the CME (destabilization of a filament channel following flare reconnection, coupled with the mass draining instability) and demonstrate that it is consistent with the in situ measurements; (3) identify the origin of different layers of the sheath material around the central magnetic cloud (closed field lifted from the base of the corona, closed field entrained during passage through the corona, and solar wind entrained by the front of the CME); (4) measure mass accretion of the system via snowplow effects in the solar wind as the CME crossed the solar system; and (5) quantify the kinetic energy budget of the system in interplanetary space, and determine that it is consistent with no long-term driving force on the CME.

  8. Observational Constraints on Stellar Flares and Prominences

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2016-07-01

    Multi-wavelength surveys have catalogued a wealth of stellar flare data for stars representing a broad range of masses and ages. Young solar analogs inform our understanding of the Sun's evolution and the influence of its activity on early solar system formation, while field star observations allow us to place its current activity into context within a statistical ensemble of main-sequence G-type stars. At the same time, stellar observations probe a variety of interior and coronal conditions, providing constraints on models of equilibrium (and loss thereof!) for magnetic structures. In this review, I will focus on our current understanding of stellar flares, prominences, and coronal mass ejections as a function of stellar parameters. As our interpretation of stellar data relies heavily on solar-stellar analogy, I will explore how far into extreme stellar parameter spaces this comparison can be invoked.

  9. Particle kinematics in solar flares: observations and theory

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina

    2008-12-01

    This thesis is devoted to the study of particle acceleration and propagation processes in solar flares. Solar flares are amongst the most powerful and energetic activity phenomena our Sun exhibits. They release energy of the order of 10(32) erg in seconds to minutes. In the process, electrons and protons are accelerated to relativistic energies, making flares very efficient particle accelerators. The most compelling observational signatures of flares can be found in X-rays and extreme ultra-violet wavelengths. Due to atmospheric absorption, those wavelengths can only be studied from space. Since the beginning of the space age, countless flares have been observed by satellites. The present work is largely based on observations by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), an X-ray satellite which has been observing the Sun since February 2002. It is a NASA mission with substantial Swiss hardware and software contribution. Using RHESSI observations of flares of different intensity, a deeper understanding of the particle transport and energy transport processes in flare loops, as well as the acceleration site and acceleration mechanism is sought. The time evolution of images and spectra is studied along with the quantitative relations between X-ray sources observed in the corona (coronal sources) and from the chromosphere (footpoints). The spectral relations found between coronal sources and footpoints are compared to the so-called ``intermediate thin-thick target model'', which was based on observations by the satellite Yohkoh. We show that the spectral relations between coronal sources and footpoints observed with RHESSI cannot be explained by the intermediate thin-thick target model. In a next step, return currents in the flare loop were considered. With this extension to the existing model, the spectra of the coronal source and the footpoints, as well as the relations between them can be explained, indicating the importance of return currents in

  10. Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian

    2016-05-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.

  11. Excitation of kink oscillations of coronal loops: statistical study

    NASA Astrophysics Data System (ADS)

    Zimovets, I. V.; Nakariakov, V. M.

    2015-05-01

    Context. Solar flares are often accompanied by kink (transverse) oscillations of coronal loops. Despite intensive study of these oscillations in recent years, the mechanisms that excite them are still not known. Aims: We aim to clarify the excitation mechanisms for these kink oscillations of coronal loops. Methods: We analysed 58 kink-oscillation events observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during its first four years (2010-2014) with the use of the JHelioviewer. Association of these oscillation events with flares, lower coronal (r ≲ 1.4 R⊙) eruptions and plasma ejections, coronal mass ejections (CMEs), and coronal Type-II radio bursts is studied. Results: We find that 44 of these 58 oscillation events (76%) were associated with CMEs observed in the white light emission. Moreover, 57 events (98%) were accompanied by lower coronal eruptions/ejections (LCEs) observed in the extreme-ultraviolet band in the parental active regions. In the remaining event an LCE was not clearly seen, but it was definitely associated with a CME too. The main observational finding is that the kink oscillations were excited by the deviation of loops from their equilibria by a nearby LCE in 55 events (95%). In three remaining events, it was difficult to reliably determine the cause of the oscillations because of limitations in the observational data. We also found that 53 events (91%) were associated with flares. In five remaining events, the parental active regions were behind the limb and we could not directly see flare sites. It indicates that there is a close relationship between these two kinds of solar activity. However, the estimated speeds of a hypothetical driver of kink oscillations by flares were found to be lower than 500 km s-1 in 80% of the cases. Such low speeds do not favour the association of the oscillation excitation with a shock wave, as usually assumed. That only 23 (40%) of the oscillation events were found

  12. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    NASA Astrophysics Data System (ADS)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-10-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011 plus an event on 2010 August 7, analyzed in a previous paper to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are \\begin{eqnarray*}{v}{CME} ≤ft[\\displaystyle \\frac{{km}}{{{s}}}\\right] & ≈ & 2.36× {10}6 ≤ft[\\displaystyle \\frac{{km}}{ % }\\right]× {s}\\dim ≤ft[\\displaystyle \\frac{ % }{{{s}}}\\right]\\ {m}{CME} [{{g}}] & ≈ & 2.59× {10}15≤ft[\\displaystyle \\frac{g}{ % }\\right]× \\sqrt{{d}\\dim } [ % ].\\end{eqnarray*} These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  13. A TRIO OF CONFINED FLARES IN AR 11087

    SciTech Connect

    Joshi, Anand D.; Park, Sung-Hong; Cho, Kyung-Suk; Forbes, Terry G. E-mail: freemler@kasi.re.kr E-mail: terry.forbes@unh.edu

    2015-01-10

    We investigate three flares that occurred in active region, AR 11087, observed by the Dutch Open Telescope (DOT) on 2010 July 13, in a span of three hours. The first two flares have soft X-ray class B3, whereas the third flare has class C3. The third flare not only was the largest in terms of area and brightness but also showed a very faint coronal mass ejection (CME) associated with it, while the earlier two flares had no associated CME. The active region, located at 27° N, 26° E, has a small U-shaped active region filament to the south of the sunspot, and a quiescent filament is located to its west. Hα observations from DOT, as well as extreme-ultraviolet images and magnetograms from the STEREO spacecraft and Solar Dynamics Observatory, are used to study the dynamics of the active region during the three flares. Our observations imply that the first two flares are confined and that some filament material drains to the surface during these flares. At the onset of the third flare downflows are again observed within the active region, but a strong upflow is also observed at the northern end of the adjacent quiescent filament to the west. It is at the latter location that the CME originates. The temporal evolution of the flare ribbons and the dynamics of the filaments are both consistent with the idea that reconnection in a pre-existing current sheet leads to a loss of equilibrium.

  14. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  15. Standing sausage modes in curved coronal slabs

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  16. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  17. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  18. TRACE observation of damped coronal loop oscillations: implications for coronal heating

    PubMed

    Nakariakov; Ofman; DeLuca; Roberts; Davila

    1999-08-01

    The imaging telescope on board the Transition Region and Coronal Explorer (TRACE) spacecraft observed the decaying transversal oscillations of a long [(130 +/- 6) x 10(6) meters], thin [diameter (2.0 +/- 0.36) x 10(6) meters], bright coronal loop in the 171 angstrom Fe(IX) emission line. The oscillations were excited by a solar flare in the adjacent active region. The decay time of the oscillations is 14.5 +/- 2.7 minutes for an oscillation with a frequency 3.90 +/- 0.13 millihertz. The coronal dissipation coefficient is estimated to be eight to nine orders of magnitude larger than the theoretically predicted classical value. The larger dissipation coefficient may solve existing difficulties with wave heating and reconnection theories. PMID:10436148

  19. Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostics (Corrigendum)

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.

    2010-06-01

    Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.

  20. Serf studies of mass motions arising in flares

    SciTech Connect

    Wagner, W.J.

    1982-01-01

    It is believed that radio type IVs, co-spatial with dense hot plasmoids, may be the result of a plasma radiation emission mechanism. The injection of mass into the corona was recently observed in chromospheric and coronal lines with magnetic field changes and also at very high speeds into loops. The start time of coronal loop transients, if extrapolated to the chromosphere, in most cases precedes flare H-alpha or X-ray emission. Observational inferences from polarization and other studies are seen as favoring the three-dimensional bubble over the planar loop as a description of coronal mass motions.

  1. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  2. Sunquake Generation by Coronal Magnetic Restructuring

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.; Hudson, H. S.

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  3. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  4. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Dudík, Jaroslav; Polito, Vanessa; Janvier, Miho; Mulay, Sargam M.; Karlický, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifčáková, Elena; Mason, Helen E.; Schmieder, Brigitte

    2016-05-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s‑1 are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  5. Flare evolution and magnetic configuration study

    NASA Astrophysics Data System (ADS)

    Berlicki, A.; Schmieder, B.; Aulanier, G.; Vilmer, N.; Yan, Y. H.

    We will present the analysis of M1.0 confined flare emission and evolution in the context of the topology of the coronal magnetic field. This flare was observed in NOAA 0162 on 22 October 2002. The multiwavelength data were taken during a coordinated observational campaign between ground based instruments and space observatories. The photospheric line-of-sight magnetic field observations were obtained with THEMIS and SOHO/MDI. We used these data to perform linear force-free field extrapolation of magnetic field into the corona. Our extrapolation provides an explanation of the appearance of H-alpha flare ribbons. An elongated shape of X-ray emission observed by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) also follow the predicted shape of extrapolated field lines. Moreover, the X-ray emission observed by RHESSI permit to see thermal emission of coronal loops heated probably by non-thermal electrons, accelerated during the reconnection processes. The presence of non-thermal particles can be deduced from RHESSI X-ray spectra reconstructed during the gradual phase of the flare. On Huairou vector magnetograms of the AR we see that there was strong shear between one of main negative spot and the north small positive spot. The extrapolation with non-constant alpha force-free field model did not obtain any loop to connect these two spots.

  6. A solar tornado caused by flares

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2014-01-01

    An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

  7. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  8. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  9. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  10. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    SciTech Connect

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.

  11. Temperature Dependence of the Flare Fluence Scaling Exponent

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.

    2015-12-01

    Solar flares result in an increase of the solar irradiance at all wavelengths. While the distribution of the flare fluence observed in coronal emission has been widely studied and found to scale as f(E)˜ E^{-α}, with α slightly below 2, the distribution of the flare fluence in chromospheric lines is poorly known. We used the solar irradiance measurements observed by the SDO/EVE instrument at a 10 s cadence to investigate the dependency of the scaling exponent on the formation region of the lines (or temperature). We analyzed all flares above the C1 level since the start of the EVE observations (May 2010) to determine the flare fluence distribution in 16 lines covering a wide range of temperatures, several of which were not studied before. Our results show a weak downward trend with temperature of the scaling exponent of the PDF that reaches from above 2 at lower temperature (a few 104 K) to {˜ }1.8 for hot coronal emission (several 106 K). However, because colder lines also have fainter contrast, we cannot exclude that this behavior is caused by including more noise for smaller flares for these lines. We discuss the method and its limitations and tentatively associate this possible trend with the different mechanisms responsible for the heating of the chromosphere and corona during flares.

  12. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  13. FlareLab: early results

    NASA Astrophysics Data System (ADS)

    Soltwisch, H.; Kempkes, P.; Mackel, F.; Stein, H.; Tenfelde, J.; Arnold, L.; Dreher, J.; Grauer, R.

    2010-12-01

    The FlareLab experiment at Bochum University has been constructed to generate and investigate plasma-filled magnetic flux tubes similar to arch-shaped solar prominences, which often result in coronal mass ejections (CMEs). In its first version, the device has been used to reproduce and extend previous studies of Bellan et al (1998 Phys. Plasmas 5 1991). Here the plasma source consists of two electrodes, which can be connected to a 1.0 kJ capacitor bank, and of a horseshoe magnet, which provides an arch-shaped guiding field. The discharge is ignited in a cloud of hydrogen gas that has been puffed into the space above the electrodes. In the first few microseconds the plasma current rises at a rate of several kA µs-1, causing the plasma column to pinch along the guiding B-field and to form an expanding loop structure. The observed dynamics of the magnetic flux tubes is analysed by means of three-dimensional MHD simulations in order to determine the influence of parameters like the initial magnetic field geometry on magnetic stability. At present, FlareLab is redesigned to mimic a model that was proposed by Titov and Démoulin (1999 Astron. Astrophys. 351 707) to investigate twisted magnetic configurations in solar flares.

  14. Modeling Repeatedly Flaring δ Sunspots.

    PubMed

    Chatterjee, Piyali; Hansteen, Viggo; Carlsson, Mats

    2016-03-11

    Active regions (ARs) appearing on the surface of the Sun are classified into α, β, γ, and δ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the δ sunspots are known to be superactive and produce the most x-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin subphotospheric magnetic sheet breaks into multiple flux tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic δ sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections.

  15. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  16. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  17. Flares, Fears, and Forecasts: Public Misconceptions About the Sunspot Cycle

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2012-06-01

    Among the disaster scenarios perpetrated by 2012 apocalypse aficionados is the destruction of humankind due to solar flares and coronal mass ejections (CMEs). These scenarios reflect common misconceptions regarding the solar cycle. This paper (based on an annual meeting poster) sheds light on those misconceptions and how the AAVSO Solar Section can address them.

  18. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  19. Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2014-09-01

    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/ EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is

  20. On the Nature of Coronal EIT Waves

    NASA Astrophysics Data System (ADS)

    Ballai, I.; Erdélyi, R.; Pintér, B.

    2005-11-01

    Large-scale eruption events in the solar atmosphere can generate global waves, i.e., waves that propagate over distances comparable to the solar radius. In the low solar corona, global waves observed by SOHO EIT, generated by coronal mass ejections or flares, are usually referred to as ``EIT waves.'' The nature of these global waves is the subject of strong debate, and opinions are divided between different interpretations (e.g., fast magnetohydrodynamic waves, shock waves, nonwave feature, etc.). In the present Letter, we studied TRACE EUV data to show that these global coronal disturbances are indeed waves with a well-defined period. Supposing that the EIT waves transfer all their energy to interacting loops, we also estimate the minimum energy threshold carried by EIT waves.

  1. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; Török, T.; Mason, H.; Curdt, W.; Meyer, K.; Dalmasse, K.; Matsui, Y.

    2016-07-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  2. Radio Coronal Magnetography of a Large Active Region

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Gary, Dale E.; White, Stephen; Fleishman, Gregory; Chen, Bin

    2015-04-01

    Quantitative knowledge of coronal magnetic fields is fundamental to understanding energetic phenomena such as solar flares. Flares occur in solar active regions where strong, non-potential magnetic fields provide free energy. While constraints on the coronal magnetic field topology are readily available through high resolution SXR and EUV imaging of solar active regions, useful quantitative measurements of coronal magnetic fields have thus far been elusive. Recent progress has been made at infrared (IR) wavelengths in exploiting both the Zeeman and Hanle effects to infer the line-of-sight magnetic field strength or the orientation of the magnetic field vector in the plane of the sky above the solar limb. However, no measurements of coronal magnetic fields against the solar disk are possible using IR observations. Radio observations of gyroresonance emission from active regions offer the means of measuring coronal magnetic fields above the limb and on the solar disk. In particular, for plasma plasma conditions in the solar corona, active regions typically become optically thick to emission over a range of radio frequencies through gyroresonance absorption at a low harmonic of the electron gyrofrequency. The specific range of resonant frequencies depends on the range of coronal magnetic field strengths present in the active region.The Karl G. Jansky Very Large Array was used in November 2014 to image NOAA/USAF active region AR12209 over a continuous frequency range of 1-8 GHz, corresponding to a wavelength range of 3.75-30 cm. This frequency range is sensitive to coronal magnetic field strengths ranging from ~120-1400G. The active region was observed on four different dates - November 18, 20, 22, and 24 - during which the active region longitude ranged from -15 to +70 degrees, providing a wide range of aspect angles. In this paper we provide a preliminary description of the coronal magnetic field measurements derived from the radio observations.

  3. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  4. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    SciTech Connect

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this event

  5. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  6. STATISTICAL STUDY OF CORONAL MASS EJECTIONS WITH AND WITHOUT DISTINCT LOW CORONAL SIGNATURES

    SciTech Connect

    Ma, S.; Attrill, G. D. R.; Golub, L.; Lin, J.

    2010-10-10

    Taking advantage of the two viewpoints of the STEREO spacecraft, we present a statistical study of coronal mass ejections (CMEs) with and without distinct low coronal signatures (LCSs) from 2009 January 1 to August 31. During this period, the lines of sight from STEREO A and B are almost perpendicular and nearly a quarter of the Sun was observed by both. We identified 34 CMEs that originated from around this area and find that (1) about 1 out of 3 CMEs that were studied during 8 months of solar minimum activity are stealth CMEs; a CME is stealth if no distinct LCS (such as coronal dimming, coronal wave, filament eruption, flare, post-eruptive arcade) can be found on the disk. (2) The speeds of the stealth CMEs without LCSs are typically below 300 km s{sup -1}. Comparing with the slow CMEs with LCSs, the stealth CMEs did not show any clear differences in their velocity and acceleration evolution. (3) The source regions of the stealth CMEs are usually located in the quiet Sun rather than active regions. Detailed study indicates that more than half of the stealth CMEs in this paper showed some faint change of the coronal structures (likely parts of flux ropes) when they could be observed over the solar limb before or during the CME evolution. Finally, we note that space weather detection systems based on LCSs totally independent of coronagraph data may fail to detect a significant proportion of CMEs.

  7. ON THE ERUPTION OF CORONAL FLUX ROPES

    SciTech Connect

    Fan, Y.

    2010-08-10

    We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate, consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current layer developing. Preferential heating of field lines going through this current layer may give rise to the observed quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and the flare ribbons at their footpoints.

  8. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    SciTech Connect

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Liu, Rui; Pariat, Étienne; Wiegelmann, Thomas; Liu, Yang; Kleint, Lucia

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  9. Location of Decimetric Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.; Battaglia, Marina; Vilmer, Nicole

    This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30 - 240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.

  10. Location of Decimetric Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.; Battaglia, Marina; Vilmer, Nicole

    2011-11-01

    This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30 - 240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.

  11. Flare differentially rotates sunspot on Sun's surface

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-10-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50° h-1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

  12. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  13. Characteristics of energetic solar flare electron spectra

    NASA Technical Reports Server (NTRS)

    Moses, Dan; Droege, Wolfgang; Meyer, Peter; Evenson, Paul

    1989-01-01

    A 55 event survey of energy spectra of 0.1-100 MeV interplanetary electrons originating from solar flares as measured by two spectrometers onboard the ISEE 3 (ICE) spacecraft for the years 1978-1982 has been completed. Spectra generated using the maximum flux of a given event in each energy channel were restricted to events with a well-defined flux rise time. Two broad groups of electron spectra are considered. In one group, the spectra are well represented by a single power law in rigidity with spectral index in the range 3-4.5. The spectra in the other group deviate from a power law in rigidity systematically in that they harden with increasing rigidity. Events with near power-law spectra are found to be correlated with long-duration soft X-ray events, whereas those with hardening spectra are correlated with short-duration events. The possible variation of acceleration and propagation processes with the properties of the flare site is discussed, using the duration of the soft X-ray flare emission as an indicator of the physical parameters of the flare site (flare volume, density, coronal height, and magnetic field geometry).

  14. An MHD model for magnetar giant flares

    SciTech Connect

    Meng, Y.; Lin, J.; Zhang, Q. S.; Zhang, L.; Reeves, K. K.; Yuan, F. E-mail: jlin@ynao.ac.cn

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  15. Can we explain atypical solar flares?

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  16. Multi-wavelength Solar Flare Observations with Ground- and Space-based Observatories

    NASA Astrophysics Data System (ADS)

    Kleint, Lucia

    2016-07-01

    Solar flares affect a wide range of atmospheric heights from the corona to the photosphere. Solar instruments are generally designed for high-resolution observations in limited spectral windows and therefore only capture part of the flare. To obtain a more complete flare picture from coronal reconnection to the atmospheric response of the chromosphere and photosphere, it is necessary to combine data from multiple instruments. I will review multi-wavelength flare observations with ground- and space-based observatories. By taking the X1 flare on March 29, 2014 as an example, which was observed with an unprecedented number of telescopes, I will demonstrate how to investigate the origin of the flare by looking at a filament eruption, the chromospheric evaporation by means of spectroscopy, the flare heating by analyzing continuum emission, and the changes of chromospheric magnetic fields using polarimetric data.

  17. Three X-ray flares near primary eclipse of the RS CVn binary XY UMa

    NASA Astrophysics Data System (ADS)

    Gong, Hang; Osten, Rachel; Maccarone, Thomas; Reale, Fabio; Liu, Ji-Feng; Heckert, Paul A.

    2016-08-01

    We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa (P orb ≈ 0.48 d). In two Chandra ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly (< 0.125 P orb) after a primary eclipse, and the other two happening shortly (< 0.05 P orb) before a primary eclipse. Two flares occurred within roughly one orbital period (Δα ≈ 1.024 P orb) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales during both quiescence and flares, as well as the timing of the flares. We explore the possibility that the flares are orbit-induced by introducing a small orbital eccentricity, which is quite challenging for this close binary.

  18. SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE HALLOWEEN FLARE ON 2003 OCTOBER 28

    SciTech Connect

    Kazachenko, Maria D.; Canfield, Richard C.; Longcope, Dana W.; Qiu Jiong

    2010-10-20

    We study the X17 eruptive flare on 2003 October 28 using Michelson Doppler Imager observations of photospheric magnetic and velocity fields and TRACE 1600 A images of the flare in a three-dimensional model of energy buildup and release in NOAA 10486. The most dramatic feature of this active region is the 123{sup 0} rotation of a large positive sunspot over 46 hr prior to the event. We apply a method for including such rotation in the framework of the minimum current corona model of the buildup of energy and helicity due to the observed motions. We distinguish between helicity and energy stored in the whole active region and that released in the flare itself. We find that while the rotation of a sunspot contributes significantly to the energy and helicity budgets of the whole active region, it makes only a minor contribution to that part of the region that flares. We conclude that in spite of the fast rotation, shearing motions alone store sufficient energy and helicity to account for the flare energetics and interplanetary coronal mass ejection helicity content within their observational uncertainties. Our analysis demonstrates that the relative importance of shearing and rotation in this flare depends critically on their location within the parent active region topology.

  19. Comparing Dynamics in Eruptive and Non-Eruptive Flares

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki; Tarbell, Theodore D.; Slater, Gregory L.; Frank, Zoe Anne

    2016-05-01

    Close comparison of EUV and coronagraph data suggests that there may not be clear distinction between eruptive and non-eruptive flares as far as the coronal and chromospheric signatures are concerned. Here we define eruptive and non-eruptive flares in terms of the presence and absence of the associated coronal mass ejection (CME). We have studied several flares in both categories using Hinode/SOT and IRIS data. The pointing of the Hinode/SOT data has been updated by correlating them with AIA 1700 A images. We show our initial results about how the flare development compares in eruptive and non-eruptive flares, including the reconnection rate as derived from the magnetic field swept over by flare ribbons (in SOT Ca images), and the line-of-sight velocities at different locations and temperatures (in IRIS spectral data). We also discuss large-scale disturbances and related CMEs in SDO/AIA and SOHO/LASCO data as context information.

  20. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  1. A solar tornado triggered by flares?

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims: We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods: High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical developments of the tornado. The timings of the flares and EUV waves observed on-disk in 195 Å are analysed in relation to the tornado activities observed at the limb in 171 Å. Results: Each of the three flares and its related EUV wave occurred within ten hours of the onset of the tornado. They have an observed causal relationship with the commencement of activity in the prominence where the tornado develops. Tornado-like rotations along the side of the prominence start after the second flare. The prominence cavity expands with the accelerating tornado motion after the third flare. Conclusions: Flares in the neighbouring active region may have affected the cavity prominence system and triggered the solar tornado. A plausible mechanism is that the active-region coronal field contracted by the "Hudson effect" through the loss of magnetic energy as flares. Subsequently, the cavity expanded by its magnetic pressure to fill the surrounding low corona. We suggest that the tornado is the dynamical response of the helical prominence field to the cavity expansion. Movies are available in electronic form at http://www.aanda.org

  2. Coroners and death certification law reform: the Coroners and Justice Act 2009 and its aftermath.

    PubMed

    Luce, Tom

    2010-10-01

    After considering various different options for half a decade, the last Government legislated in 2009 to reform the England and Wales coroner and death certification systems. The Coroners and Justice Act 2009 provides for the creation of a new Chief Coroner post to lead the jurisdiction and for local medical examiners to oversee a new death certification scheme applicable equally to burial and cremation cases. In October 2010 the new Government announced that it judges the main coroner reform to be unaffordable, will not proceed with it and plans to repeal the provisions. It intends to implement the new death certification arrangements, which is welcome. The decision to abort the main coroner reform in spite of longstanding and widespread recognition of the need for major change is deplorable though in line with other failures over the last century to properly modernise this neglected service. PMID:21539281

  3. Coroners and death certification law reform: the Coroners and Justice Act 2009 and its aftermath.

    PubMed

    Luce, Tom

    2010-10-01

    After considering various different options for half a decade, the last Government legislated in 2009 to reform the England and Wales coroner and death certification systems. The Coroners and Justice Act 2009 provides for the creation of a new Chief Coroner post to lead the jurisdiction and for local medical examiners to oversee a new death certification scheme applicable equally to burial and cremation cases. In October 2010 the new Government announced that it judges the main coroner reform to be unaffordable, will not proceed with it and plans to repeal the provisions. It intends to implement the new death certification arrangements, which is welcome. The decision to abort the main coroner reform in spite of longstanding and widespread recognition of the need for major change is deplorable though in line with other failures over the last century to properly modernise this neglected service.

  4. The Role of Flares Cme's and CME Shocks in the Generation of Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Pérez Enríquez, R.; Mendoza, B.

    1995-09-01

    We examined solar energetic proton (SEP) events associated with intense Hα flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R⊙. We found that the SEP-associated Hα flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.

  5. Evolution of Currents of Opposite Signs in the Flare-productive Solar Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R.

    2011-10-01

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  6. EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R. E-mail: pvk@prl.res.in E-mail: ramit@prl.res.in

    2011-10-10

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  7. On the nature of the extreme-ultraviolet late phase of solar flares

    SciTech Connect

    Li, Y.; Ding, M. D.; Guo, Y.; Dai, Y.

    2014-10-01

    The extreme-ultraviolet (EUV) late phase of solar flares is a second peak of warm coronal emissions (e.g., Fe XVI) for many minutes to a few hours after the GOES soft X-ray peak. It was first observed by the EUV Variability Experiment on board the Solar Dynamics Observatory (SDO). The late-phase emission originates from a second set of longer loops (late-phase loops) that are higher than the main flaring loops. It is suggested to be caused by either additional heating or long-lasting cooling. In this paper, we study the role of long-lasting cooling and additional heating in producing the EUV late phase using the enthalpy based thermal evolution of loops model. We find that a long cooling process in late-phase loops can well explain the presence of the EUV late-phase emission, but we cannot exclude the possibility of additional heating in the decay phase. Moreover, we provide two preliminary methods based on the UV and EUV emissions from the Atmospheric Imaging Assembly on board SDO to determine whether or not additional heating plays a role in the late-phase emission. Using nonlinear force-free field modeling, we study the magnetic configuration of the EUV late phase. It is found that the late phase can be generated either in hot spine field lines associated with a magnetic null point or in large-scale magnetic loops of multipolar magnetic fields. In this paper, we also discuss why the EUV late phase is usually observed in warm coronal emissions and why the majority of flares do not exhibit an EUV late phase.

  8. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    SciTech Connect

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Wiegelmann, Thomas; Thalmann, Julia; Chen Qingrong

    2012-04-01

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.

  9. On the relationship between sunspots number and the flare index

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1994-01-01

    During the years 1976-1991, sunspot number and the Kleczek flare index have displayed a strong linear correlation (r = 0.94), one that can be described by the equation y = -0.15 + 0.10 x, where x denotes annual sunspot number. While true, the temporal behaviors of the two parameters have differed, with sunspot number peaking first in 1979 and the flare index peaking much later in 1982 during cycle 21 and with more contemporaneous behavior in cycle 22 (both peaking in 1989, with a secondary peak in 1991). The difference appears to be directly attributable to the way in which the Kleczek flare index has been defined; namely, the annual flare index is the sum of the product of each flare's intensity (importance) times its duration (in minutes) divided by the total number of flares during the year. Because the number of 'major' flares (those of importance greater than or equal to 2) and flares of very long duration (duration greater than or equal to 100 min) both peaked after sunspot maximum (1982/81, respectively) in cycle 21, one should have expected the flare index to also peak (which it did). Likewise, because the number of major flares and flares of very long duration peaked simultaneously with sunspot number (1989) in cycle 22, one should have expected the flare index to also peak (which it did).

  10. Study of geomagnetic storms, solar flares, and centers of activity in 1976, the year between solar activity cycles 20 and 21

    SciTech Connect

    Hedeman, E.R.; Prince, H.D.

    1980-09-02

    Solar and geophysical circumstances prior to the 34 principal geomagnetic storms in 1976 have been evaluated. In this year of sun spot minima, 21 of the storms were unambiguously classified as sequential. For 7 of the storms prior flares may have played a role. Six of the storms remain as 'problem' situations. The 3 most severe storms in 1976 were associated with the 3 flares in 1976 with Comprehensive Flare Indices > or = 10. Inspection of plots of daily geomagnetic character figures suggest that at least 6 different sequences contributed to the geomagnetic disturbance in 1976. Relationships were sought between inferred coronal holes and the observed locations of significant centers of activity as the possible origins of the sequential storm particles. All of the major recurrent storm sequences in 1976 apparently had at their roots significant centers of activity that could have been near the perimeters of deduced associated coronal holes. The sequential storms occurred as the active regions were dying and continued long after all optical events of the active regions had disappeared.

  11. Long-term containment of energetic particles in coronal loops

    NASA Technical Reports Server (NTRS)

    Lau, Yun-Tung; Northrop, Theodore G.; Finn, John M.

    1993-01-01

    Recent observation from the Compton Gamma-Ray Observatory shows that gamma-ray emission after a solar flare can last for as long as 8 hours. There is also evidence that electrons and protons are accelerated only during the impulsive phase of the flare and are subsequently mirror trapped in coronal magnetic loops. This poses the following dilemma: if the magnetic field lines in the loop are simple plane arches, the protons will drift across the cross section of the loop in seconds to minutes, rather than hours. To solve the dilemma, we use guiding center theory to show that long-term containment of energetic protons in a coronal loop is possible if magnetic field lines have enough twist. We also find that in the trapped region of the loop, the twist angle of field lines between the mirror points of a bounce orbit is approximately 2 pi.

  12. Initiation of Coronal Mass Ejection Event Observed on 2010 November 3: Multi-wavelength Perspective

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam; Subramanian, Srividya; Tripathi, Durgesh; Isobe, Hiroaki; Glesener, Lindsay

    2014-10-01

    One of the major unsolved problems in solar physics is that of coronal mass ejection (CME) initiation. In this paper, we have studied the initiation of a flare-associated CME that occurred on 2010 November 3 using multi-wavelength observations recorded by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Reuven Ramaty High Energy Solar Spectroscopic Imager. We report an observation of an inflow structure initially in the 304 Å and the 1600 Å images a few seconds later. This inflow structure was detected as one of the legs of the CME. We also observed a non-thermal compact source concurrent and near co-spatial with the brightening and movement of the inflow structure. The appearance of this compact non-thermal source, brightening, and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that the CME initiation was caused by magnetic reconnection.

  13. Initiation of coronal mass ejection event observed on 2010 November 3: multi-wavelength perspective

    SciTech Connect

    Mulay, Sargam; Subramanian, Srividya; Tripathi, Durgesh; Isobe, Hiroaki; Glesener, Lindsay

    2014-10-10

    One of the major unsolved problems in solar physics is that of coronal mass ejection (CME) initiation. In this paper, we have studied the initiation of a flare-associated CME that occurred on 2010 November 3 using multi-wavelength observations recorded by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Reuven Ramaty High Energy Solar Spectroscopic Imager. We report an observation of an inflow structure initially in the 304 Å and the 1600 Å images a few seconds later. This inflow structure was detected as one of the legs of the CME. We also observed a non-thermal compact source concurrent and near co-spatial with the brightening and movement of the inflow structure. The appearance of this compact non-thermal source, brightening, and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that the CME initiation was caused by magnetic reconnection.

  14. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  15. Confined Flares in Solar Active Region 12192 from 2014 October 18 to 29

    NASA Astrophysics Data System (ADS)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin

    2015-07-01

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40-105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  16. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  17. Solar flares, proton showers, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1982-01-01

    Attention is given the hazards posed to Space Shuttle crews by energetic proton radiation from inherently unpredictable solar flares, such as that of April 10-13, 1981, which was experienced by the Space Shuttle Columbia. The most energetic protons from this flare reached the earth's atmosphere an hour after flare onset, and would have posed a potentially lethal threat to astronauts engaged in extravehicular activity in a polar or geosynchronous orbit rather than the low-latitude, low-altitude orbit of this mission. It is shown that proton-producing flares are associated with energization in shocks, many of which are driven by coronal mass ejections. Insights gained from the Solar Maximum Year programs allow reconsideration of proton shower forecasting, which will be essential in the prediction of the weather that Space Shuttle astronauts will encounter during extravehicular activities.

  18. Do Large-Scale Topological Features Correlate with Flare Properties?

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Barnes, Graham

    2016-05-01

    In this study, we aim to identify whether the presence or absence of particular topological features in the large-scale coronal magnetic field are correlated with whether a flare is confined or eruptive. To this end, we first determine the locations of null points, spine lines, and separatrix surfaces within the potential fields associated with the locations of several strong flares from the current and previous sunspot cycles. We then validate the topological skeletons against large-scale features in observations, such as the locations of streamers and pseudostreamers in coronagraph images. Finally, we characterize the topological environment in the vicinity of the flaring active regions and identify the trends involving their large-scale topologies and the properties of the associated flares.

  19. Relativistic electron transport and bremsstrahlung production in solar flares

    NASA Astrophysics Data System (ADS)

    Miller, James A.; Ramaty, Reuven

    1989-09-01

    A Monte Carlo simulation of ultrarelativistic electron transport in solar flare magnetic loops has been developed. It includes Coulomb, synchrotron, and bremsstrahlung energy losses; pitch-angle scattering by Alfven and whistler turbulence in the coronal region of the loop; and magnetic mirroring in the converging magnetic flux tubes beneath the transition region. Depth distributions, time profiles, energy spectra, and angular distributions of the resulting bremsstrahlung emission are calculated. It is found that both the preferential detection of solar flares with greater than 10 MeV emission near the limb of the sun and the observation of ultrarelativistic electron bremsstrahlung from flares on the disk are consequences of the loop transport model. The declining portions of the observed time profiles of greater than 10 MeV emission from solar flares can also be accounted for, and it is proposed that these portions are determined by transport and not acceleration.

  20. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  1. Data Set of Flare-Ribbon Reconnected Magnetic Fluxes: A Critical Tool for Understanding Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Kazachenko, M.; Lynch, B. J.; Welsch, B. T.

    2015-12-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 141 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from January 2013 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes and reconnection flux rates, with the properties from theoretical models.

  2. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  3. Intermittent Flare Energy Release: A Signature of Contracting Magnetic Islands from Reconnection?

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; Karpen, J. T.; DeVore, C.

    2013-12-01

    Many flares show short-lived enhancements of emission that protrude above their smooth underlying emission. These spikes have been observed over a vast energy spectrum, from radio to hard x-rays. In hard X-rays, for example, their duration ranges from 0.2 to 2 s, with the majority occurring during the flare impulsive phase (Cheng 2012). In most cases, this intermittent energy release is situated at the footpoints of flare arcades where ionized particles, previously accelerated to high energies at coronal heights, are decelerated by the dense solar surface. It is not yet understood what mechanisms accelerate ionized particles to the energies required to produce the observed emission spikes. Drake et al. (2006) proposed a kinetic mechanism for accelerating electrons from contracting magnetic islands that form as reconnection proceeds, analogous to the energy gain of a ball bouncing between converging walls. They estimated that multi-island regions of macroscopic dimensions might account for the required acceleration rates in flares, but at this time it is impractical to simulate large-scale systems in kinetic models. On the other hand, our recent high-resolution MHD simulations of a breakout eruptive flare (Karpen et al. 2012) allow us to resolve in detail the generation and evolution of macroscopic magnetic islands in a flare current sheet. Incorporating a rigorous kinetic model into our global simulations is not feasible at present. However, we intend to breach the gap between kinetic and fluid models by characterizing the contractions of islands as they move away from the main reconnection site, to determine their plausibility as candidates for the observed bursts of radiation. With our null-tracking capabilities, we follow the creation and evolution of the X- and O-type (island) nulls that result from spatially and temporally localized reconnection. Different regimes of current-sheet reconnection (slow/fast), island sizes, rates of island coalescence, and rates

  4. Observations and modeling of plasma flows driven by solar flares

    NASA Astrophysics Data System (ADS)

    Brannon, Sean Robert

    One of the fundamental statements that can be made about the solar atmosphere is that it is structured. This structuring is generally believed to be the result of both the arrangement of the magnetic field in the corona and the distribution of plasma along magnetic loops. The standard model of solar flares involves plasma transported into coronal loops via a process known as chromospheric evaporation, and the resulting evolution of the flare loops is believed to be sensitive to the physical mechanism of energy input into the chromosphere by the flare. We present here the results of three investigations into chromospheric plasma flows driven by solar flare energy release and transport. First, we develop a 1-D hydrodynamic code to simulate the response of a simplified model chromosphere to energy input via thermal conduction from reconnection-driven shocks. We use the results from a set of simulations spanning a parameter space in both shock speed and chromospheric-to-coronal temperature ratio to infer power-law relationships between these quantities and observable evaporation properties. Second, we use imaging and spectral observations of a quasi-periodic oscillation of a flare ribbon to determine the phase relationship between Doppler shifts of the ribbon plasma and the oscillation. The phase difference we find leads us to suggest an origin in a current sheet instability. Finally, we use imaging and spectral data of an on-disk flare event and resulting flare loop plasma flows to generally validate the standard picture of flare loop evolution, including evaporation, cooling time, and draining downflows, and we use a simple free-fall model to produce the first direct comparison between observed and synthetic downflow spectra.

  5. A Model for Stealth Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lynch, Benjamin J.; Masson, Sophie; Li, Yan; DeVore, C. Richard; Luhmann, Janet; Antiochos, Spiro K.; Fisher, George H.

    2016-05-01

    Stealth coronal mass ejections (CMEs) are events in which there are almost no observable signatures of the CME eruption in the low corona but often a well-resolved slow flux rope CME observed in the coronagraph data. We present results from a three-dimensional numerical magnetohydrodynamics (MHD) simulation of the 2008 June 1-2 slow streamer blowout CME that Robbrecht et al. [2009] called “the CME from nowhere.” We model the global coronal structure using a 1.4 MK isothermal solar wind and a low-order potential field source surface representation of the Carrington Rotation 2070 magnetogram synoptic map. The bipolar streamer belt arcade is energized by simple shearing flows applied in the vicinity of the helmet streamer’s polarity inversion line. The slow expansion of the energized helmet-streamer arcade results in the formation of a radial current sheet. The subsequent onset of expansion-driven flare reconnection initiates the stealth CME while gradually releasing ~1.5E+30 erg of stored magnetic energy over the 20+ hour eruption duration. We show the energy flux available for flare heating and flare emission during the eruption is approximately two orders of magnitude below the energy flux required to heat the ambient background corona, thus confirming the “stealth” character of the 2008 June 1-2 CME’s lack of observable on disk signatures. We also present favorable comparisons between our simulation results and the multi-viewpoint SOHO-LASCO and STEREO-SECCHI coronagraph observations of the pre-eruption streamer structure and the initiation and evolution of the stealth streamer blowout CME.

  6. FOXSI-2 Observations and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.

    2015-12-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.

  7. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co

  8. Fast Waves in Smooth Coronal Slab

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2015-03-01

    This work investigates the effect of transverse density structuring in coronal slab-like waveguides on the properties of fast waves. We generalized previous results obtained for the exponential and Epstein profiles to the case of an arbitrary transverse density distribution. The criteria are given to determine the possible (trapped or leaky) wave regime, depending on the type of density profile function. In particular, there are plasma slabs with transverse density structuring that support pure trapped fast waves for all wavelengths. Their phase speed is nearly equal to the external Alfvén speed for the typical parameters of coronal loops. Our findings are obtained on the basis of Kneser’s oscillation theorem. To confirm the results, we analytically solved the wave equation evaluated at the cutoff point and the original wave equation for particular cases of transverse density distribution. We also used the WKB method and obtained approximate solutions of the wave equation at the cutoff point for an arbitrary transverse density profile. The analytic results were supplemented by numerical solutions of the obtained dispersion relations. The observed high-quality quasi-periodic pulsations of flaring loops are interpreted in terms of the trapped fundamental fast-sausage mode in a slab-like coronal waveguide.

  9. A slingshot model for solar flares

    NASA Technical Reports Server (NTRS)

    Benford, Gregory

    1991-01-01

    Recent observations of intense, impulsive gamma-ray and X-ray-emitting solar flares underline the suddenness of these events. The simultaneous emission of X-rays greater than 40 keV from electron bremsstrahlung and gamma-rays requiring several MeV protons shows that all particles must be accelerated in less than 5 s. This paper proposes a simple model to explain such events, using the energy stored in the stretched field lines of a coronal arch. When reconnection occurs at the top of the arch, field lines retract like stretched rubber bands, sweeping up plasma and acting like a piston or slingshot. When the slug of plasma caught in the magnetic fields strikes the photosphere, it deposits its considerable kinetic energy, heating and compressing the intruding slug. Ten slugs of 100 km radius striking the photosphere may account for the 10 to the 29th ergs radiation from loop flares.

  10. Multiple Wavelength Observations of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    The radio emission of quiescent active regions at 6 cm wavelength marks the legs of magnetic dipoles, and the emission at 20 cm wavelength delineates the radio wavelength counterpart of the coronal loops previously detected at X-ray wavelengths. At both wavelengths the temperatures have coronal values of a few million degrees. The polarization of the radio emission specifies the structure and strength of the coronal magnetic field (H ≈ 600 Gauss at heights h ≈ 4 x 109 cm above sunspot umbrae). At 6 cm and 20 cm wavelength the solar bursts have angular sizes between 5" and 30", brightness temperatures between 2 x 107 K and 2 x 108 K, and degrees of circular polarization between 10% and 90%. The location of the burst energy release is specified with second-of-arc accuracy. At radio wavelengths the bursts occur within the central regions of magnetic loops, while the flaring Ha kernels are located at the loop footpoints. Coronal loops exhibit enhanced radio emission (preburst heating) a few minutes before the release of burst energy. The radio polarization data indicate magnetic changes before and during solar bursts.

  11. Slipping Magnetic Reconnections with Multiple Flare Ribbons during an X-class Solar Flare

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-06-01

    With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  12. Stereoscopy and Tomography of Coronal Structures

    NASA Astrophysics Data System (ADS)

    de Patoul, J.

    2012-04-01

    The hot solar corona consists of a low density plasma, which is highly structured by the magnetic field. To resolve and study the corona, several solar Ultraviolet (UV) and X-ray telescopes are operated with high spatial and temporal resolution. EUV (Extreme UV) image sequences of the lower solar corona have revealed a wide variety of structures with sizes ranging from the Sun's diameter to the limit of the angular resolution. Active regions can be observed with enhanced temperature and density, as well as 'quiet' regions, coronal holes with lower density and numerous other transient phenomena such as plumes, jets, bright points, flares, filaments, coronal mass ejections, all structured by the coronal magnetic field. In this work, we analyze polar plumes in a sequence of Solar EUV images taken nearly simultaneously by the three telescopes on board of the spacecraft STEREO/SECCHI A and B, and SOHO/EIT. Plumes appear in EUV images as elongated objects starting on the surface of the Sun extending super-radially into the corona. Their formation and contribution to the fast solar wind and other coronal phenomena are still under debate. Knowledge of the polar plume 3-D geometry can help to understand some of the physical processes in the solar corona. In this dissertation we develop new techniques for the characterization of polar plume structures in solar coronal images (Part II) then we analyze these structures using the techniques (Part III): We design a new technique capable of automatically identifying plumes in solar EUV images close to the limb at 1.01-1.39 Ro. This plume identification is based on a multi-scale Hough-wavelet analysis. We show that the method is well adapted to identifying the location, width and orientation of plumes. Starting from Hough-wavelet analysis, we elaborate on two other techniques to determine 3-D plume localization and structure: (i) tomography employing data from a single spacecraft over more than half a rotation and (ii) stereoscopy

  13. Probing the Multi-Wavelength Nature of Stellar Flares

    NASA Astrophysics Data System (ADS)

    Osten, R. A.; Brown, A.; Ayres, T. R.; Linsky, J. L.

    2000-05-01

    The Extreme Ultraviolet Explorer has been instrumental in advancing our understanding of flares on late-type stars. Its long observations of coronal sources for > 100 ks are perfectly matched for studying flaring variability on active binary systems, whose flaring time scales can last for tens of hours. This ability makes EUVE an ideal companion for multi-wavelength observations of flares, as it can place the shorter observations of other satellites and telescopes in perspective of the coronal variability. For example, EUVE recently participated in a campaign to observe the RS CVn binary HR 1099 (V711 Tau) during a calibration observation with the Chandra X-ray Observatory, with accompanying high-resolution UV coverage from HST/STIS and radio coverage from the VLA. I will discuss the results of this campaign as well as earlier multi-wavelength observations involving EUVE and other satellites such as ASCA, RXTE, and BeppoSAX of flaring variability on active binary systems. RAO acknowledges funding from a NASA GSRP fellowship, grant number NGT5-50241. AB and TRA acknowledge funding from NASA grant NAG5-3226 and JLL acknowledges support from NASA through grants S-56500-D and H-04630D.

  14. A Cold Flare with Delayed Heating

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Meshalkina, Natalia; Lysenko, Alexandra L.; Kashapova, Larisa K.; Altyntsev, Alexander T.

    2016-05-01

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus-Wind, microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found to involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.

  15. 3-D Structure of Arcade Type Flares Deduced from Soft X-Ray Observations of a Homologous Flare Series

    NASA Astrophysics Data System (ADS)

    Morita, S.; Uchida, Y.; Hirose, S.

    2002-01-01

    In the solar flare problems, no ultimate model that matches observations has been established. One of the reasons for this is due to the restrictions in the observational data lacking information about the third dimension. Thus, many researchers have tried to get information about the three dimensional (3-D) coronal structures by using various techniques or ideas; like movie analysis, calculations using vector or line-of-sight components of photospheric magnetic data, and etc.. In the near future, a mission named STEREO which will obtain information about the 3-D coronal structures from two satellites, is planned. In the present paper, we noted the homology in a homologous flare series of February 1992. We derived a 3-D coronal structures by making use of the images obtained from the three different sight-lines at some common phases in them with Yohkoh SXT. The result of this analysis has made it clear that the so-called ``cusped arcade'' at the maximum phase in the well-known 1992 February 21 flare is, contrary to the general views, an ``elongated arch'' seen with a shallow oblique angle. It is not the ``flare arcade'' seen axis-on as widely conceived. This elongated arch coincides roughly with a diagonal of the main body of the "soft X-ray arcade" that came up later. The magnetic structure causing the flare as a whole turned out in this analysis to be a structure with quadruple magnetic sources. The relative locations of these four characteristic sources stayed almost the same throughout the period of this homologous flare series, determining the fundamental shape of this homologous series. We also examined the corresponding features for other similar events, also using information from other satellites, and will report the results.

  16. A far-ultraviolet flare on a Pleiades G dwarf

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Stauffer, J. R.; Simon, Theodore; Stern, R. A.; Antiochos, S. K.; Basri, G. S.; Bookbinder, J. A.; Brown, A.; Doschek, G. A.; Linsky, J. L.

    1994-01-01

    The Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) recorded a remarkable transient brightening in the C IV lambda lambda 1548,50 emissions of the rapidly rotating Pleiades G dwarf H II 314. On the one hand the 'flare' might be a rare event luckily observed; on the other hand it might be a bellwether of the coronal heating in very young solar-mass stars. If the latter, flaring provides a natural spin-down mechanism through associated sporadic magnetospheric mass loss.

  17. Solar flares as cascades of reconnecting magnetic loops.

    PubMed

    Hughes, D; Paczuski, M; Dendy, R O; Helander, P; McClements, K G

    2003-04-01

    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale-free network of loops, indicating self-organized criticality. PMID:12689272

  18. Ion energy storage for post-flare loops

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1985-01-01

    Low-energy non-thermal protons may have long lifetimes in coronal loops with low density and high temperature. If energy were stored in such protons in the initial phases of a solar flare, it could be released slowly during the later phases. Within the present observational limits for post-flare loops, this mechanism should be considered in addition to a field-line reconnection theory of the Kopp and Pneuman type. The thin-target gamma ray emission from the trapped protons is below present limits, but more sensitive observations can test the hypothesis.

  19. Solar flares as cascades of reconnecting magnetic loops.

    PubMed

    Hughes, D; Paczuski, M; Dendy, R O; Helander, P; McClements, K G

    2003-04-01

    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale-free network of loops, indicating self-organized criticality.

  20. Spectral and Imaging Observations of a White-light Solar Flare in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Penn, Matt; Krucker, Säm; Hudson, Hugh; Jhabvala, Murzy; Jennings, Don; Lunsford, Allen; Kaufmann, Pierre

    2016-03-01

    We report high-resolution observations at mid-infrared wavelengths of a minor solar flare, SOL2014-09-24T17:50 (C7.0), using Quantum Well Infrared Photodetector cameras at an auxiliary of the McMath-Pierce telescope. The flare emissions, the first simultaneous observations in two mid-infrared bands at 5.2 and 8.2 μ {{m}} with white-light and hard X-ray coverage, revealed impulsive time variability with increases on timescales of ˜4 s followed by exponential decay at ˜10 s in two bright regions separated by about 13\\prime\\prime . The brightest source is compact, unresolved spatially at the diffraction limit (1\\_\\_AMP\\_\\_farcs;72 at 5.2 μ {{m}}). We identify the IR sources as flare ribbons also seen in white-light emission at 6173 Å observed by SDO/HMI, with twin hard X-ray sources observed by Reuven Ramaty High Energy Solar Spectroscopic Imager, and with EUV sources (e.g., 94 Å) observed by SDO/AIA. The two infrared points have nearly the same flux density (fν, W m-2 Hz) and extrapolate to a level of about an order of magnitude below that observed in the visible band by HMI, but with a flux of more than two orders of magnitude above the free-free continuum from the hot (˜15 MK) coronal flare loop observed in the X-ray range. The observations suggest that the IR emission is optically thin; this constraint and others suggest major contributions from a density less than about 4× {10}13 cm-3. We tentatively interpret this emission mechanism as predominantly free-free emission in a highly ionized but cool and rather dense chromospheric region.

  1. The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field

    NASA Astrophysics Data System (ADS)

    Mitra-Kraev, U.; Harra, L. K.; Williams, D. R.; Kraev, E.

    2005-06-01

    We present the first X-ray observation of an oscillation during a stellar flare. The flare occurred on the active M-type dwarf AT Mic and was observed with XMM-Newton. The soft X-ray light curve (0.2-12 keV) is investigated with wavelet analysis. The flare's extended, flat peak shows clear evidence for a damped oscillation with a period of around 750 s, an exponential damping time of around 2000 s, and an initial, relative peak-to-peak amplitude of around 15%. We suggest that the oscillation is a standing magneto-acoustic wave tied to the flare loop, and find that the most likely interpretation is a longitudinal, slow-mode wave, with a resulting loop length of (2.5 ± 0.2)×1010 cm. The local magnetic field strength is found to be 105 ± 50 G. These values are consistent with (oscillation-independent) flare cooling time models and pressure balance scaling laws. Such a flare oscillation provides an excellent opportunity to obtain coronal properties like the size of a flare loop or the local magnetic field strength for the otherwise spatially-unresolved star.

  2. Modeling solar flare hard X-ray images and spectra observed with RHESSI

    NASA Astrophysics Data System (ADS)

    Sui, Linhui

    2004-12-01

    Observations obtained with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of a flare on February 20, 2002 indicate a hard X-ray (HXR) coronal source at or near the top of a flare loop (called a HXR looptop source). The existence of the HXR looptop source suggests that magnetic reconnection, which is believed to power flares, occurs above the loop. In order to explain this HXR looptop source, I created a steady-state particle transport model, in which high-energy electrons are continuously injected at the top of a semicircular flare loop. Based on the simulation results, I find that the model predictions are consistent with the RHESSI observations in many respects, but the spectrum of the looptop source obtained from the model is steeper than that from the RHESSI data. This suggests that, instead of being accelerated above the loop as generally believed, the particles might be accelerated in the looptop itself. RHESSI observations of three other homologous flares that occurred between April 14 and 16, 2002, provide strong evidence for the presence of a large- scale current sheet above a flare loop, which is the basis of standard flare models. The most convincing finding is the presence of the temperature distribution of a separate coronal source above the flare loops: the hotter part of the coronal source was located lower in altitude than the cooler part. Together with the fact that the hotter flare loops are higher than the cooler loops, the observations support the existence of a large-scale current sheet between the top of the flare loops and the coronal source above. Blob-like sources along a line above the loop in the decay phase of the April 15, 2002, flare, which are suggestive of magnetic islands initiated by the tearing-mode instability, and the observation of a cusp structure in microwaves, further support the presence of the current sheet. The observations of the three homologous flares reveal two other features which are beyond the

  3. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  4. Coronal magnetic structure and the latitude and longitude distribution of energetic particles, 1-5 AU

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Mitchell, D. G.

    1979-01-01

    The relation of the coronal magnetic field structure to the distribution of approximately 1 MeV protons in interplanetary space between 1 and 5 AU is discussed. After ordering the interplanetary data by its estimated coronal emission source location in heliographic coordinates, the multispacecraft measured proton fluxes are compared with coronal magnetic field structure infrared as observed in soft X-ray photographs and potential field calculations. Evidence for the propagation and possible acceleration of solar flare protons on high magnetic loop structure in the corona is presented. Further, it is shown that corotating proton flux enhancements are associated with regions of low coronal X-ray emission (including coronal holes), usually in association with solar wind stream structure.

  5. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  6. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  7. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  8. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  9. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  10. Evolution of two Flaring Active Regions With CME Association

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2008-12-01

    We study the coronal magnetic field structure of two active regions, one during solar activity minimum (June 2007) and another one during a more active time (January 2004). The temporal evolution was explored with the help of nonlinear force-free coronal magnetic field extrapolations of SOLIS/VSM and NAOJ/SFT photospheric vector magnetograms. We study the active region NOAA 10960 observed on 2007 June 7 with three SOLIS/VSM snapshots taken during a small C1.0 flare of time cadence 10 minutes and six snapshots during a quiet period. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy was about 5~% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential configuration at the beginning of the quiet period. The return to an almost potential structure can be assigned to a CME as recorded by the SoHO/LASCO instrument on 2007 June 07 around 10 minutes after the flare peaked, so that whatever magnetic helicity was bodily removed from the structure. This was compared with active region 10540 observed on 2004 January 18 -- 21, which was analyzed with the help of vector magnetograph data from the Solar Flare Telescope in Japan of time cadence of about 1 day. The free energy was Efree≈ 66~% of the total energy which was sufficiently high to power a M6.1 flare on January 20, which was associated with a CME 20 minutes later. The activity of AR 10540 was significantly higher than for AR 10960, as was the total magnetic energy. Furthermore, we found the common feature that magnetic energy accumulates before the flare/CME and a significant part of the excess energy is released during the eruption.

  11. Solar Flares and their Effects on Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward Francis; Engle, Scott G.

    2015-08-01

    The effects of flares from the Sun on Earth and other solar-system planets are discussed. The strong X-ray - UV radiation and high plasma fluxes from flares can strongly effect solar system planets even as far out as the Jovian planets and their moons. Data from our "Sun in Time" program are used to study the flare properties of the Sun and solar-type stars from youth to old age. These data imply that the young Sun had numerous, very powerful flares that may have played major roles in the development and evolution of the early atmospheres of Earth and other terrestiral planets. These strong X-UV fluxes from flares can greatly effect the photochemistry of planetary atmospheres as well as ionizing and possibly eroding their atmospheres. Some examples are given. Also briefly discussed are effects of large flares from the present Sun on the Earth. Even though strong solar flares are rarer and less powerful than from the youthful Sun, they can cause significant damage to our communication and satellite systems, electrical networks, and threaten the lives of astronauts in space.This research is supported by grants from NASA (HST and Chandra) and NSF. We gratefully acknowledge this support

  12. Early evolution of an energetic coronal mass ejection and its relation to EUV waves

    SciTech Connect

    Liu, Rui; Wang, Yuming; Shen, Chenglong

    2014-12-10

    We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (∼1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (∼6 MK), which we interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (∼10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s{sup –2}. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.

  13. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    SciTech Connect

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  14. The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions?

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Schrijver, Carolus J.; Janvier, Miho; Toriumi, Shin; Hudson, Hugh; Matthews, Sarah; Woods, Magnus M.; Hara, Hirohisa; Guedel, Manuel; Kowalski, Adam; Osten, Rachel; Kusano, Kanya; Lueftinger, Theresa

    2016-08-01

    This paper explores the characteristics of 42 solar X-class flares that were observed between February 2011 and November 2014, with data from the Solar Dynamics Observatory (SDO) and other sources. This flare list includes nine X-class flares that had no associated CMEs. In particular our aim was to determine whether a clear signature could be identified to differentiate powerful flares that have coronal mass ejections (CMEs) from those that do not. Part of the motivation for this study is the characterization of the solar paradigm for flare/CME occurrence as a possible guide to the stellar observations; hence we emphasize spectroscopic signatures. To do this we ask the following questions: Do all eruptive flares have long durations? Do CME-related flares stand out in terms of active-region size vs. flare duration? Do flare magnitudes correlate with sunspot areas, and, if so, are eruptive events distinguished? Is the occurrence of CMEs related to the fraction of the active-region area involved? Do X-class flares with no eruptions have weaker non-thermal signatures? Is the temperature dependence of evaporation different in eruptive and non-eruptive flares? Is EUV dimming only seen in eruptive flares? We find only one feature consistently associated with CME-related flares specifically: coronal dimming in lines characteristic of the quiet-Sun corona, i.e. 1 - 2 MK. We do not find a correlation between flare magnitude and sunspot areas. Although challenging, it will be of importance to model dimming for stellar cases and make suitable future plans for observations in the appropriate wavelength range in order to identify stellar CMEs consistently.

  15. Magnetic helicity injection in NOAA 11261 associated with flares

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Zhang, Hongqi; Su, Jiangtao; Ruan, Guiping; liu, Jihong

    2013-07-01

    Magnetic helicity was found important in understanding solar activities such as flares and coronal mass ejections (CME). Berger and field (1984) derived an expression for helicity flux dHm/dt, that can be applied to an individual solar active region (AR) occupying an area S of the photosphere, (1) \\begin{linenomath}dHm/dt=-2\\ints[(\\mathbf{Ap}\\cdot \\mathbf{V})\\mathbf{B}-(\\mathbf{Ap} \\cdot \\mathbf{B})\\mathbf{V}] dS, \\eqno{(1)}\\end{linenomath} where Ap is the vector potential of potential field, and V is the plasma velocity at the surface S. The first term describes the effect of magnetic footpoint motions on the surface S. The second term describes the flux of helicity advected through the surface when already twisted and/or writhed flux ropes emerge. Chae (2001) proposed a method of self-consistently determining magnetic helicity injection rate, dH/dt, using a time series of longitudinal magnetograms only: (2) \\begin{linenomath}dH/dt=-\\int2(\\textbf{A}p\\cdot \\textbf{V}LCT)BndS, \\eqno{(2)}\\end{linenomath} where n is the normal component of magnetic field. Ap is the vector potential computed from Bn by Fourier transform method. V LCT is the horizontal component of velocity determined by the technique of local correlation tracking (LCT). This technique was applied by some scientists (e.g., Chae et al., 2001; Nindos and Zhang, 2002; Romano et al., 2003). Magnetic helicity injection was found to be strongly correlated with the occurrence of major flares (Moon et al. 2002a, 2002b; Park et al., 2008; Labonte et al., 2007; Maeshiro et al., 2009).

  16. SYMPATHETIC MAGNETIC BREAKOUT CORONAL MASS EJECTIONS FROM PSEUDOSTREAMERS

    SciTech Connect

    Lynch, B. J.; Edmondson, J. K. E-mail: jkedmond@umich.edu

    2013-02-10

    We present high-resolution 2.5D MHD simulation results of magnetic breakout-initiated coronal mass ejections (CMEs) originating from a coronal pseudostreamer configuration. The coronal null point in the magnetic topology of pseudostreamers means that the initiation of consecutive sympathetic eruptions is a natural consequence of the system's evolution. A generic source region energization process-ideal footpoint shearing parallel to the pseudostreamer arcade polarity inversion lines-is all that is necessary to store sufficient magnetic energy to power consecutive CME eruptions given that the pseudostreamer topology enables the breakout initiation mechanism. The second CME occurs because the eruptive flare reconnection of the first CME simultaneously acts as the overlying pre-eruption breakout reconnection for the sympathetic eruption. We examine the details of the magnetic and kinetic energy evolution and the signatures of the overlying null point distortion, current sheet formation, and magnetic breakout reconnection giving rise to the runaway expansion that drives the flare reconnection below the erupting sheared field core. The numerical simulation's spatial resolution and output cadence are sufficient to resolve the formation of magnetic islands during the reconnection process in both the breakout and eruptive flare current sheets. We quantify the flux transfer between the pseudostreamer arcades and show that the eruptive flare reconnection processes flux {approx}10 times faster than the pre-eruption breakout reconnection. We show that the breakout reconnection jets cause bursty, intermittent upflows along the pseudostreamer stalk, as well as downflows in the adjacent pseudostreamer arcade, both of which may be observable as pre-eruption signatures. Finally, we examine the flux rope CME trajectories and show that the breakout current sheet provides a path of least resistance as an imbalance in the surrounding magnetic energy density and results in a non

  17. RHESSI and Trace Observations of the 21 April 2002 X1.5 Flare

    NASA Technical Reports Server (NTRS)

    Gallagher, Peter T.; Dennis, Brian R.; Krucker, Saem; Schwartz, Richard A.; Tolbert, A. Kimberly

    2002-01-01

    Observations of the X1.5 flare on 21 April 2002 are reviewed using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Transition Region and Coronal Explorer (TRACE). The major findings are as follows: 1. The 3-25 keV X-rays started 54 mins before the EUV (195 A) emission suggesting that the initial energy release heated plasma directly to 220 MK, well above the 1.6 MK needed to produce the Fe XII (195 A) line. 2. Using coaligned 12-25 keV RHESSI and TRACE images, further evidence is found for the existence of hot (15-20 MK) plasma in the 195 A passband. This hot, diffuse emission is attributed to the presence of the Fe XXIV (192 A) line within the TRACE 195 A passband. 3. The 12-25 keV source centroid moves away from the limb with an apparent velocity of approx. 9.9 km/ s, slowing to approx. 1.7 km/ s after 3 hours, its find altitude being approx. 120 Mm after approx. 12 hours. This suggests that the energy release site moves to higher altitudes in agreement with classical flare models. 4. The 50-100 keV emission correlates well with EUV flare ribbons, suggesting thick-target interactions at the footpoints of the magnetic arcade. The 50-100 keV time profile matches the time derivative of the GOES light curve (Neupert effect), which suggests that the same electrons that produced the thick-target hard X-ray emission also heat the plasma seen in soft X-rays. 5. X-ray footpoint emission has an E(sup -3) spectrum down to approx. 10 keV suggesting a lower electron cutoff energy than previously thought. 6. The hard X-ray (25-200 keV) peaks have FWHM durations of approx. 1 min suggesting a more gradual energy release process than expected. 7. The TRACE images reveal a bright symmetric front propagating away from the main flare site at speeds of greater than or = 120 km/ s. This may be associated with fast CME observed several minutes later by LASCO. 8. Dark sinuous lanes are observed in the TRACE images that extend almost radially from the post-flare loop

  18. Fast-mode Coronal Wave Trains Detected by SDO/AIA: Recent Observational Progress

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Downs, Cooper; Ofman, Leon

    2016-05-01

    Quasi-periodic Fast Propagating wave trains (QFPs) are a new observational phenomenon discovered by SDO/AIA in extreme ultraviolet (EUV). They are fast-mode magnetosonic waves, closely related to quasi-periodic pulsations in solar flare emission ranging from radio to X-ray wavelengths. The significance of QFPs lies in their diagnostic potential, because they can provide critical clues to flare energy release and serve as new tools for coronal seismology. In this presentation, we report recent advances in observing QFPs. In particular, using differential emission measure (DEM) inversion, we found clear evidence of heating and cooling cycles that are consistent with alternating compression and rarefaction expected for magnetosonic wave pulses. We also found that different local magnetic and plasma environments can lead to two distinct types of QFPs located in different spatial domains with respect to their accompanying coronal mass ejections (CMEs). Moreover, recent IRIS observations of QFP source regions revealed sawtooth-like flare ribbon motions, indicative of pulsed magnetic reconnection, that are correlated with QFP excitation. More interestingly, from a statistical survey of over 100 QFP events, we found a preferential association with eruptive flares rather than confined flares. We will discuss the implications of these results and the potential roles of QFPs in coronal heating, energy transport, and solar eruptions.

  19. SPE in Solar Cycle 24 : Flare and CME characteristic

    NASA Astrophysics Data System (ADS)

    Neflia, Neflia

    SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.

  20. Emergency flare tip repair

    SciTech Connect

    Harrison, G.A.

    1982-07-01

    Two damaged propane storage tank flares serving a large LPG storage facility near the Arabian Gulf were given emergency service. A diagram of over-all layout and spatial relationships between tanks and piping, and tables with general information relevant to selecting an acceptable radiant heat load factor and flare line flow characteristics were presented. The general equation for predicting radiant heat flux from a point source was used. The ignition of the temporary flare was discussed.

  1. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-03-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  2. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  3. Solar flares. [plasma physics

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  4. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  5. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  6. TRANSITION REGION EMISSION FROM SOLAR FLARES DURING THE IMPULSIVE PHASE

    SciTech Connect

    Johnson, H.; Raymond, J. C.; Murphy, N. A.; Suleiman, R.; Giordano, S.; Ko, Y.-K.; Ciaravella, A.

    2011-07-10

    There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by the Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer, we derive the O VI {lambda}1032 luminosities for 29 flares during the impulsive phase and the Ly{alpha} luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases, we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and five events show speeds in the 40-80 km s{sup -1} range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.

  7. Low-coronal Sources of Stealth CMEs

    NASA Astrophysics Data System (ADS)

    Alzate, N.; Morgan, H.

    2015-10-01

    Coronal mass ejections (CMEs) usually exhibit lower-corona dynamics such as flares, magnetic reconfiguration, EUV waves, jets or filaments. Recent studies have observed CMEs without a lowcoronal signatures (LCS) which have been referred to as stealth CMEs. Through new image processing applied to EUV images we find clear evidence of LCS leading to stealth CMEs. The LCS of stealth CMEs are fairly sizeable yet faint eruptions with structure consistent with a rising flux tube, possibly formed higher in the corona in regions of weaker magnetic field. We believe these flux tubes are formed mostly in polar regions due to the large shear resulting from the slowly-rotating lower atmosphere below the more rapidly rotating corona. This would allow the formation of large flux tubes in weaker field regions, leading to low-energy and low-density flux tube eruptions.

  8. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-01-01

    A gigantic coronal jet greater than 3 x 10(exp 5) km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s(exp -1), with the corresponding kinetic energy estimated to be of order of 10(exp 28) ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  9. Relationship Between a Coronal Mass Ejection-Driven Shock and a Coronal Metric Type II Burst

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Luhmann, J. G.; Bale, S. D.; Lin, R. P.

    2009-02-01

    It has been an intense matter of debate whether coronal metric type II bursts are generated by coronal mass ejection (CME)-driven shocks or flare blast waves. Using unprecedented high-cadence observations from STEREO/SECCHI, we investigate the relationship between a metric type II event and a shock driven by the 2007 December 31 CME. The existence of the CME-driven shock is indicated by the remote deflection of coronal structures, which is in good timing with the metric type II burst. The CME speed is about 600 km s-1 when the metric type II burst occurs, much larger than the Alfvén speed of 419-489 km s-1 determined from band splitting of the type II burst. A causal relationship is well established between the metric and decametric-hectometric type II bursts. The shock height-time curve determined from the type II bands is also consistent with the shock propagation obtained from the streamer deflection. These results provide unambiguous evidence that the metric type II burst is caused by the CME-driven shock.

  10. Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lin, Haosheng

    2007-05-01

    Centuries after the birth of modern solar astronomy, the Sun's corona still keeps many of its secrets: How is it heated to a million-degree temperature? How does it harbor the cool and dense prominence gas amid the tenuous and hot atmosphere? How does it drive the energetic events that eject particles into interplanetary space with speed exceeding 1% of the speed of light? We have greatly improved our knowledge of the solar corona with decades of space X-ray and EUV coronal observations, and many theories and models were put forward to address these problems. In our current understanding, magnetic fields are undoubtedly the most important fields in the corona, shaping its structure and driving its dynamics. It is clear that the resolution of these important questions all hinge on a better understanding of the organization, evolution, and interaction of the coronal magnetic field. However, as the direct measurement of coronal magnetic field is a very challenging observational problem, most of our theories and models were not experimentally verified. Nevertheless, we have finally overcome the experimental difficulties and can now directly measure the coronal magnetic field with great accuracy. This new capability can now be used to study the static magnetic structure of the corona, and offers hope that we will, in the near future, be able to directly observe the evolution of the coronal magnetic field of energetic solar events. More importantly, it finally allows us to conduct vigorous observational tests of our theories and models. In this lecture, I will review current research activities related to the observation, interpretation, and modeling of the coronal magnetic field, and discuss how they can help us resolve some of the long standing mysteries of the solar corona.

  11. A Hertzsprung-Russell-like Diagram for Solar/Stellar Flares and Corona: Emission Measure versus Temperature Diagram

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Yokoyama, Takaaki

    2002-09-01

    In our previous paper, we presented a theory to explain the observed universal correlation between the emission measure (EM=n2V) and temperature (T) for solar/stellar flares on the basis of the magnetic reconnection model with heat conduction and chromospheric evaporation. Here n is the electron density and V is the volume. By extending our theory to general situations, we examined the EM-T diagram in detail and found the following properties: (1) The universal correlation sequence (``main-sequence flares'') with EM~T17/2 corresponds to the case of constant heating flux or, equivalently, the case of constant magnetic field strength in the reconnection model. (2) The EM-T diagram has a forbidden region, in which gas pressure of flares exceeds magnetic pressure. (3) There is a coronal branch with EM~T15/2 for T<107 K and EM~T13/2 for T>107 K. This branch is situated on the left side of the main-sequence flares in the EM-T diagram. (4) There is another forbidden region determined by the length of flare loop; the lower limit of the flare loop is 107 cm. Small flares near this limit correspond to nanoflares observed by the Solar and Heliospheric Observatory EUV Imaging Telescope. (5) We can plot the flare evolution track on the EM-T diagram. A flare evolves from the coronal branch to main-sequence flares, then returns to the coronal branch eventually. These properties of the EM-T diagram are similar to those of the H-R diagram for stars, and thus we propose that the EM-T diagram is quite useful for estimating the physical quantities (loop length, heating flux, magnetic field strength, total energy, and so on) of flares and coronae when there are no spatially resolved imaging observations.

  12. Episodic coronal heating

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Dixon, W. W.; Klimchuk, J. A.; Antiochos, S. K.

    1990-01-01

    A study is made of the observational consequences of the hypothesis that there is no steady coronal heating, the solar corona instead being heated episodically, such that each short burst of heating is followed by a long period of radiative cooling. The form of the resulting contribution to the differential emission measure (DEM), and to a convenient related function (the differential energy flux, DEF) is calculated. Observational data for the quiet solar atmosphere indicate that the upper branch of the DEM, corresponding to temperatures above 100,000 K, can be interpreted in terms of episodic energy injection at coronal temperatures.

  13. Conduction-driven chromospheric evaporation in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Lemen, James R.

    1988-01-01

    Observations of gentle chromospheric evaporation during the cooling phase of a solar flare are presented. Line profiles of the low-temperature (T of about 6 x 10 to the 6th K) coronal Mg XI line, observed with the X-Ray Polychromator on the Solar Maximum Mission, show a blueshift that persisted for several minutes after the impulsive heating phase. This result represents the first detection of an evaporation signature in a soft X-ray line formed at this low temperature. By combining the Mg XI blueshift velocity data with simultaneous measurements of the flare temperature derived from Ca XIX observations, it is demonstrated that the upward flux of enthalpy transported by this gently evaporating plasma varies linearly with the downward flux of thermal energy conducted from the corona. This relationship is consistent with models of solar flares in which thermal conduction drives chromospheric evaporation during the early part of the cooling phase.

  14. Doppler-Shifted Flare Emissions Observed by SDO/EVE

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) has been obtaining unprecedented observations of solar variation on times scales of seconds during flares and over the rising phase of Solar Cycle 24 since its start of normal operations in May 2010. Unexpectedly, as first pointed out in Hudson et. al., Ap.j. (2011), even with EVE's spectral resolution of 0.1 nm and 'irradiance' measurements, EVE has the ability to very accurately determine Doppler shifts in all emissions during solar flares and coronal mass ejections (CMEs). The technique for deriving these absolute velocities is not straightforward, as the optical and instrumental effects must first be eliminated in order to separate the absolute plasma velocities from the instrument effects. This talk will discuss these efforts to eliminate the instrumental component, as well as show some of the first results of absolute velocities of multiple emissions at a wide range of temperatures during solar flares.

  15. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  16. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.

    2016-07-01

    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric

  17. Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons

    NASA Astrophysics Data System (ADS)

    Galloway, R. K.; Helander, P.; MacKinnon, A. L.; Brown, J. C.

    2010-09-01

    Context. Most theoretical descriptions of the production of solar flare bremsstrahlung radiation assume the collision of dilute accelerated particles with a cold, dense target plasma, neglecting interactions of the fast particles with each other. This is inadequate for situations where collisions with this background plasma are not completely dominant, as may be the case in, for example, low-density coronal sources. Aims: We aim to formulate a model of a self-interacting, entirely fast electron population in the absence of a dense background plasma, to investigate its implications for observed bremsstrahlung spectra and the flare energy budget. Methods: We derive approximate expressions for the time-dependent distribution function of the fast electrons using a Fokker-Planck approach. We use these expressions to generate synthetic bremsstrahlung X-ray spectra as would be seen from a corresponding coronal source. Results: We find that our model qualitatively reproduces the observed behaviour of some flares. As the flare progresses, the model's initial power-law spectrum is joined by a lower energy, thermal component. The power-law component diminishes, and the growing thermal component proceeds to dominate the total emission over timescales consistent with flare observations. The power-law exhibits progressive spectral hardening, as is seen in some flare coronal sources. We also find that our model requires a factor of 7-10 fewer accelerated electrons than the cold, thick target model to generate an equivalent hard X-ray flux. Conclusions: This model forms the basis of a treatment of self-interactions among flare fast electrons, a process which affords a more efficient means to produce bremsstrahlung photons and so may reduce the efficiency requirements placed on the particle acceleration mechanism. It also provides a useful description of the thermalisation of fast electrons in coronal sources.

  18. Evidence for Magnetic Reconnection in Three Homologous Solar Flares Observed by RHESSI

    NASA Technical Reports Server (NTRS)

    Sui, Lin-Hui; Holman, Gordon D.; Dennis, Brian R.

    2004-01-01

    We present RHESSI observF5oss of three homologous flares, which occurred between April 14 and 16, 2002. We find that the RHESSI images of all three flares at energies between 6 and 25 keV had some common features: (1) A. separate coronal source up to approx. 30 deg. above the flare loop appeared in the early impulsive phase and stayed stationary for several minutes. (2) Before the flare loop moved upward; previously reported by others, the flare loop-top centroid moved downward for 2-4 minutes during the early impulsive phase of the Ears: falling by 13 - 30% of its initial height with a speed between 8 and 23 km/s. We conclude that these features are associated with the formation and development of a current sheet between the loop-top and the coronal source. In the April 14-15 flare, we find that the hard X-ray flux (greater than 25 keV) is correlated with the rate at which the flare loop moves upward, indicating that the faster the loop grows, the faster the reconnection rate, and therefore, the greater the flux of accelerated electrons. Subject headings: Sun: L'iaies-Sun: X-1-ay-s -

  19. Diagnosis and treatment of lupus nephritis flares--an update.

    PubMed

    Sprangers, Ben; Monahan, Marianne; Appel, Gerald B

    2012-12-01

    Relapses or flares of systemic lupus erythematosus (SLE) are frequent and observed in 27-66% of patients. SLE flares are defined as an increase in disease activity, in general, requiring alternative treatment or intensification of therapy. A renal flare is indicated by an increase in proteinuria and/or serum creatinine concentration, abnormal urine sediment or a reduction in creatinine clearance rate as a result of active disease. The morbidity associated with renal flares is derived from both the kidney damage due to lupus nephritis and treatment-related toxic effects. Current induction treatment protocols achieve remission in the majority of patients with lupus nephritis; however, few studies focus on treatment interventions for renal flares in these patients. The available data, however, suggest that remission can be induced again in a substantial percentage of patients experiencing a lupus nephritis flare. Lupus nephritis flares are independently associated with an increased risk of deterioration in renal function; prevention of renal flares might, therefore, also decrease long-term morbidity and mortality. Appropriate immunosuppressive maintenance therapy might lead to a decrease in the occurrence of renal and extrarenal flares in patients with SLE, and monitoring for the early detection and treatment of renal flares could improve their outcomes.

  20. Sunquakes and their relationship with coronal magnetic topology

    NASA Astrophysics Data System (ADS)

    Green, Lucie; Zharkov, Sergei; Matthews, Sarah; Zharkova, Valentina

    2015-08-01

    Sunquakes were first predicted in 1972 by Wolff and are seen in the Sun’s photosphere as a burst of outwardly emanating ripples, caused by sudden a release of energy below the surface that produces sound waves. Typically the formation of a sunquake is discussed in the context of a solar flare in which a propagation of energy and momentum downward from the corona occurs via accelerated particles, Lorentz force transients, MHD wave conversion or so-called back-warming from coronal and chromospheric radiation at the footpoints of the flare loops. But many sunquakes also occur in concert with a coronal mass ejection and therefore within a magnetic field that is evolving on an active region-wide scale. More specifically, the locations of some of these sunquakes have a magnetic connection to the erupting magnetic field rather than the flare loops themselves.So, how can the sunquake generation scenarios be informed/constrained by considering the overall magnetic field configuration in which they are formed? This talk will use data spanning the photosphere to corona to reveal the magnetic field configuration and its evolution, so that sunquake generation scenarios can be placed in the context of an erupting magnetic configuration with associated energy and momentum transport.

  1. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  2. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  3. Global energetics of solar flares. I. Magnetic energies

    SciTech Connect

    Aschwanden, Markus J.; Xu, Yan; Jing, Ju E-mail: yan.xu@njit.edu

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  4. A Moreton Wave and its Coronal Counterparts

    NASA Astrophysics Data System (ADS)

    Francile, Carlos N.; Mandrini, Cristina H.; Long, David; Cremades, Hebe; Lopez, Fernando M.; Luoni, Maria Luisa

    2016-07-01

    On 29 March 2014, a Moreton wave was detected in AR 12017 with the Halpha Solar Telescope for Argentina (HASTA) in association with an X1 flare. Several phenomena took place in various regimes in connection with this event, such as low coronal waves and a coronal mass ejection (CME). We investigate their role and relationship with the Moreton wave to shed light on issues so far under debate. We analyze its connection with waves observed in the low corona with the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA), as well as with the ensuing CME, via kinematics analyses. We build stack plots from sequences of images obtained at different wavelengths to track wave fronts along several directions and find links between the features observed in the chromosphere and low corona, as well as in the associated CME. We also derive the shock front properties. We propose a geometrical model of the wave to explain the observed wave fronts as the photospheric and chromospheric traces of an expanding and outward-traveling bubble intersecting the Sun.

  5. Low-coronal Sources of Stealth CMEs

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Morgan, Huw

    2016-01-01

    Coronal mass ejections (CMEs) are eruptions in the solar atmosphere which expand and propagate into space. They are generally associated with eruptive phenomena in the lower corona such as solar flares, filament eruptions, EUV waves or jets, known as low-coronal signatures (LCS). Recent studies have observed CMEs without a LCS which have been referred to as stealth CMEs. Through new image processing applied to EUV images we find clear evidence of LCS leading to stealth CMEs. In this work, the new processing methods are applied to some of the data identified to contain stealth CMEs in previous studies to investigate the possible existence of observable LCS. The LCS of stealth CMEs are fairly sizeable yet faint eruptions with structure consistent with a rising flux tube, possibly formed higher in the corona in regions of weaker magnetic field. We believe these flux tubes are formed mostly in polar regions due to the larger shear resulting from the slowly-rotating lower atmosphere below the more rapidly rotating corona. This would allow the formation of large flux tubes in weaker field regions, leading to low-energy and low-density flux tube eruptions.

  6. Low-Coronal Sources of Stealth CMEs

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Morgan, Huw

    2016-05-01

    Coronal mass ejections (CMEs) are eruptions in the solar atmosphere, which expand and propagate into space. They are generally associated with eruptive phenomena in the lower corona such as solar flares, filament eruptions, EUV waves or jets, known as low-coronal signatures (LCS). Recent studies have observed CMEs without a LCS and these have been referred to as stealth CMEs. Through new image processing applied to EUV images we find clear evidence of LCS leading to stealth CMEs. In this work, the new processing methods are applied to some of the data identified to contain stealth CMEs in previous studies to investigate the possible existence of observable LCS. The LCS of stealth CMEs are fairly sizeable yet faint eruptions with structure consistent with a rising flux tube, possibly formed higher in the corona in regions of weaker magnetic field. We believe these flux tubes are formed mostly in polar regions due to the larger shear resulting from the more slowly rotating lower atmosphere below the more rapidly rotating corona. This would allow the formation of large flux tubes in weaker field regions, leading to low-energy and low-density flux tube eruptions

  7. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  8. A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES

    SciTech Connect

    Masson, S.; Antiochos, S. K.; DeVore, C. R.

    2013-07-10

    We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

  9. Coronal mass ejections and coronal structures

    NASA Technical Reports Server (NTRS)

    Hildner, E.; Bassi, J.; Bougeret, J. L.; Duncan, R. A.; Gary, D. E.; Gergely, T. E.; Harrison, R. A.; Howard, R. A.; Illing, R. M. E.; Jackson, B. V.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles even observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results.

  10. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  11. TEMPORAL EVOLUTION OF MULTIPLE EVAPORATING RIBBON SOURCES IN A SOLAR FLARE

    SciTech Connect

    Graham, D. R.; Cauzzi, G.

    2015-07-10

    We present new results from the Interface Region Imaging Spectrograph (IRIS) showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 s cadence “sit-and-stare” mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal upflows of up to ∼300 km s{sup −1} and chromospheric downflows up to 40 km s{sup −1}. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, “elementary” flare kernel.

  12. SOLAR CYCLE VARIATIONS OF CORONAL NULL POINTS: IMPLICATIONS FOR THE MAGNETIC BREAKOUT MODEL OF CORONAL MASS EJECTIONS

    SciTech Connect

    Cook, G. R.; Mackay, D. H.; Nandy, Dibyendu E-mail: duncan@mcs.st-and.ac.u

    2009-10-20

    In this paper, we investigate the solar cycle variation of coronal null points and magnetic breakout configurations in spherical geometry, using a combination of magnetic flux transport and potential field source surface models. Within the simulations, a total of 2843 coronal null points and breakout configurations are found over two solar cycles. It is found that the number of coronal nulls present at any time varies cyclically throughout the solar cycle, in phase with the flux emergence rate. At cycle maximum, peak values of 15-17 coronal nulls per day are found. No significant variation in the number of nulls is found from the rising to the declining phase. This indicates that the magnetic breakout model is applicable throughout both phases of the solar cycle. In addition, it is shown that when the simulations are used to construct synoptic data sets, such as those produced by Kitt Peak, the number of coronal nulls drops by a factor of 1/6. The vast majority of the coronal nulls are found to lie above the active latitudes and are the result of the complex nature of the underlying active region fields. Only 8% of the coronal nulls are found to be connected to the global dipole. Another interesting feature is that 18% of coronal nulls are found to lie above the equator due to cross-equatorial interactions between bipoles lying in the northern and southern hemispheres. As the majority of coronal nulls form above active latitudes, their average radial extent is found to be in the low corona below 1.25 R {sub sun} (175, 000 km above the photosphere). Through considering the underlying photospheric flux, it is found that 71% of coronal nulls are produced though quadrupolar flux distributions resulting from bipoles in the same hemisphere interacting. When the number of coronal nulls present in each rotation is compared to the number of bipoles emerging, a wide scatter is found. The ratio of coronal nulls to emerging bipoles is found to be approximately 1/3. Overall

  13. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona.

  14. Characterization of Intensity Variations Along Fe XIV Coronal Loops - A Case Study

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Stenborg, Guillermo

    2004-08-01

    We discuss a method, and corresponding results, to analyze the dynamics of localized small-scale coronal (post-flare) loops observed with the MICA (Mirror Coronagraph for Argentina) telescope in the well-known green coronal line at 530.3 nm. In particular, we designed a procedure to measure intensity variations along the structure of a loop, both in space and time. The method was applied to a loop on the southwest limb on green-line images taken on October 1st, 2001 with a cadence of about one per minute. Significant coronal variability was detected in a compact loop system suggesting different types of plasma flow. One of them shows a brightening at the top, which moves down along the axis of the loop with mean velocities that suggest scenarios of high-speed plasma flows. The results obtained allow the flow inside coronal structures to be characterized and theoretical descriptions related to different physical scenarios to be compared.

  15. An equation for the evolution of solar and stellar flare loops

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Hawley, Suzanne L.

    1990-01-01

    An ordinary differential equation describing the evolution of a coronal loop subjected to a spatially uniform but time-varying heating rate is discussed. It is assumed that the duration of heating is long compared to the sound transit time through the loop, which is assumed to have uniform cross section area. The form of the equation changes as the loop evolves through three states: 'strong evaporation', 'scaling law behavior', and 'strong condensation'. Solutions to the equation may be used to compute the time dependence of the average coronal temperature and emission measure for an assumed temporal variation of the flare heating rate. The results computed from the model agree reasonably well with recent published numerical simulations and may be obtained with far less computational effort. The model is then used to study the May 21, 1980, solar flare observed by SMM and the giant April 12, 1985, flare observed on the star AD Leo.

  16. Flare and CME onset: UV spectra show fast 3-D flow

    NASA Astrophysics Data System (ADS)

    Innes, D. E.

    We present observations taken in the corona above a flare that occurred on the west limb of the Sun. SUMER spectra show large red (400 km/s) and blue (700 km/s) Dopplershifts in Fe XX (107 K), Cr XVI (5×106 K), Si IX (106 K) and O III (105 K) emission lines. These shifts are associated with a fast moving (500 km/s) optical emission front detected in high cadence images, taken with the coronagraph MICA. Yohkoh images, taken 8 min after the hard X-ray peak, show fast soft X-ray ejecta that can be extrapolated back to the position of pre-flare coronal arcade structure seen in EIT 195 images. The observations are interpreted as evidence of a blast wave propagating through the active region coronal loop structure very early in the flare evolution.

  17. Tube flare inspection tool

    NASA Technical Reports Server (NTRS)

    Meunier, G. E.

    1980-01-01

    Flare angle and symmetry of tube ends can be checked by simple tool that consists of two stainless steel pins bonded to rubber plug. Primary function of tool is to inspect tubes before they are installed, thereby eliminating expense and inconvenience of repairing leaks caused by imperfect flares. Measuring hole tapers, countersink angles, and bearing race angles are other possible uses. Tool is used with optical comparator. Axis of tool is alined with centerline of tube. Shadow of seated pins on comparator screen allows operator to verify flare angle is within tolerance.

  18. A TYPE II RADIO BURST WITHOUT A CORONAL MASS EJECTION

    SciTech Connect

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q. E-mail: dmd@nju.edu.cn

    2015-05-10

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ∼600 km s{sup −1} during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  19. A Type II Radio Burst without a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q.

    2015-05-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ˜600 km s-1 during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  20. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  1. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  2. Internal and External reconnection in a Series of Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  3. Quasi-static evolution of force-free magnetic fields and a model for two-ribbon solar flares

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1985-01-01

    It is shown that a two-dimensional force-free field in the solar corona can evolve in a quasi-static manner toward an open configuration, assuming the coronal field is invariant with respect to translations parallel to the x-axis. The theoretical result is applied to the quantitative theory of the evolution of two-ribbon solar flares of Kopp and Pneuman (1976), and the results are discussed. It is concluded that the two-dimensional force is the principal mechanism for the opening of the coronal magnetic field prior to reconnection during a solar flare.

  4. Coronal plasmas on the sun and nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The current understanding of the quiescent, or non-flaring, microwave emission from solar active regions is summarized. The thermal radiation mechanisms that account for most of the quiescent emission is reviewed, while it is also pointed out that current-amplified magnetic fields or non-thermal radiation may be required in some instances. The 20 cm radiation of coronal loops and the thermal cyclotron lines that accurately specify their magnetic field strength are discussed. The 20 cm and X ray emission of the coronal plasma are then compared. The coronae of nearby stars is next discussed, where coherent radiation processes seem to prevail. Some thoughts toward directions for future exploration are given.

  5. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  6. A MAGNETOHYDRODYNAMIC MODEL OF THE 2006 DECEMBER 13 ERUPTIVE FLARE

    SciTech Connect

    Fan, Y.

    2011-10-20

    We present a three-dimensional magnetohydrodynamic simulation that qualitatively models the coronal magnetic field evolution associated with the eruptive flare that occurred on 2006 December 13 in the emerging {delta}-sunspot region NOAA 10930 observed by the Hinode satellite. The simulation is set up to drive the emergence of an east-west-oriented magnetic flux rope at the lower boundary into a preexisting coronal field constructed from the Solar and Heliospheric Observatory/Michelson Doppler Imager full-disk magnetogram at 20:51:01 UT on 2006 December 12. The resulting coronal flux rope embedded in the ambient coronal magnetic field first settles into a stage of quasi-static rise and then undergoes a dynamic eruption, with the leading edge of the flux rope cavity accelerating to a steady speed of about 830 km s{sup -1}. The pre-eruption coronal magnetic field shows morphology that is in qualitative agreement with that seen in the Hinode soft X-ray observation in both the magnetic connectivity as well as the development of an inverse-S-shaped X-ray sigmoid. We examine the properties of the erupting flux rope and the morphology of the post-reconnection loops, and compare them with the observations.

  7. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  8. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Sterling, Alphonse; Moore, Ronald

    2015-04-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or at disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 Å, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted "standard" picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  9. THE FLARE-ONA OF EK DRACONIS

    SciTech Connect

    Ayres, Thomas R.

    2015-07-15

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal “hot-line” emission of Si iv 1400 Å (T ∼ 8 × 10{sup 4} K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30–40 km s{sup −1}, even after compensating for small systematics in the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ∼10 km s{sup −1} hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by “Doppler imaging” (bright surface patches near a receding limb). Density diagnostic O iv] 1400 Å multiplet line ratios of EK Dra suggest n{sub e} ∼ 10{sup 11} cm{sup −3}, an order of magnitude larger than in low-activity solar twin α Centauri A, but typical of densities inferred in large stellar soft X-ray events. The self-similar FUV hot-line profiles between the flare decay and the subsequent more quiet periods, and the unchanging but high densities, reinforce a long-standing idea that the coronae of hyperactive dwarfs are flaring all the time, in a scale-free way; a flare-ona if you will. In this picture, the subsonic hot-line downflows probably are a byproduct of the post-flare cooling process, something like “coronal rain” on the Sun. All in all, the new STIS/COS program documents a complex, energetic, dynamic outer atmosphere of the young sunlike star.

  10. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  11. Coronal mass ejections

    SciTech Connect

    Steinolfson, R.S.

    1990-01-01

    Coronal mass ejections (CMEs) are now recognized as an important component of the large-scale evolution of the solar corona. Some representative observations of CMEs are reviewed with emphasis on more recent results. Recent observations and theory are examined as they relate to the following aspects of CMEs: (1) the role of waves in determining the white-light signature; and (2) the mechanism by which the CME is driven (or launched) into the corona.

  12. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Janvier, M.; Aulanier, G.; Schmieder, B.; Karlický, M. E-mail: mjanvier@maths.dundee.ac.uk

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.

  13. A COMPARATIVE STUDY OF CONFINED AND ERUPTIVE FLARES IN NOAA AR 10720

    SciTech Connect

    Cheng, X.; Ding, M. D.; Guo, Y.; Zhang, J.; Su, J. T.

    2011-05-10

    We investigate the distinct properties of two types of flares: eruptive flares associated with coronal mass ejections (CMEs) and confined flares without CMEs. Our study sample includes nine M- and X-class flares, all from the same active region (AR), six of which are confined and three others which are eruptive. The confined flares tend to be more impulsive in the soft X-ray time profiles and show slenderer shapes in the Extreme-ultraviolet Imaging Telescope 195 A images, while the eruptive ones are long-duration events and show much more extended brightening regions. The location of the confined flares is closer to the center of the AR, while the eruptive flares are at the outskirts. This difference is quantified by the displacement parameter, which is the distance between the AR center and the flare location; the average displacement of the six confined flares is 16 Mm, while that of the eruptive ones is as large as 39 Mm. Further, through nonlinear force-free field extrapolation, we find that the decay index of the transverse magnetic field in the low corona ({approx}10 Mm) is larger for eruptive flares than for confined ones. In addition, the strength of the transverse magnetic field over the eruptive flare sites is weaker than it is over the confined ones. These results demonstrate that the strength and the decay index of the background magnetic field may determine whether or not a flare is eruptive or confined. The implication of these results on CME models is discussed in the context of torus instability of the flux rope.

  14. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, J. C.; Moradi, H.; Donea, A.-C.

    2008-09-01

    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond to previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-rays, visible continuum, and radio emission. Time distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential-field extrapolations in the flaring region suggests that there is a significant anti-correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

  15. Evidence of Sympathetic Flares at Sub-THz Frequencies

    NASA Astrophysics Data System (ADS)

    Gutierrez Escate, Maria Victoria

    2015-08-01

    Sympathetic solar flares are events occurring nearly simultaneously at distinct active regions with physical connection between them. Two flares that occurred on March 8, 2011 in active regions NOAA (National Oceanic and Atmospheric Administration) 11163 (N17W91) and AR 11165 (S20W91) is being studied. The larger flare occurred in the Southern region and was preceded by a smaller flare in the Northern region, about 3 minutes before. Both events were observed by RHESSI. The first explosion was detected by SST in the AR of north hemisphere, in two stages. There are also EUV SDO high cadence images that exhibit a distinct rapid flash coinciding with the SST burst as well as clear large scale magnetic connections between the two active regions. Three possible flare triggering agents from the Northern region towards the Southern region are being investigated: (a) hydrodynamic waves along the large coronal interconnecting magnetic structure, (b) surface Moreton-like shock waves, (c) sub-photosphere flux rope coupling.

  16. Statistical properties of super-hot solar flares

    SciTech Connect

    Caspi, Amir; Krucker, Säm; Lin, R. P.

    2014-01-20

    We use Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopy observations from ∼6 to 100 keV to determine the statistical relationships between measured parameters (temperature, emission measure, etc.) of hot, thermal plasma in 37 intense (GOES M- and X-class) solar flares. The RHESSI data, most sensitive to the hottest flare plasmas, reveal a strong correlation between the maximum achieved temperature and the flare GOES class, such that 'super-hot' temperatures >30 MK are achieved almost exclusively by X-class events; the observed correlation differs significantly from that of GOES-derived temperatures, and from previous studies. A nearly ubiquitous association with high emission measures, electron densities, and instantaneous thermal energies suggests that super-hot plasmas are physically distinct from cooler, ∼10-20 MK GOES plasmas, and that they require substantially greater energy input during the flare. High thermal energy densities suggest that super-hot flares require strong coronal magnetic fields, exceeding ∼100 G, and that both the plasma β and volume filling factor f cannot be much less than unity in the super-hot region.

  17. The Origin of the EUV Late Phase: A Case Study of the C8.8 Flare on 2010 May 5

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Klimchuk, J. A.; Eparvier, F. G.; Jones, A. R.

    2012-01-01

    Since the launch of NASA's Solar Dynamics Observatory on 2010 February 11, the Extreme ultraviolet Variability Experiment (EVE) has observed numerous flares. One interesting feature observed by EVE is that a subset of flares exhibit an additional enhancement of the 2-3 million K emission several hours after the flares soft X-ray emission. From the Atmospheric Imaging Assembly (AIA) images, we observe that this secondary emission, dubbed the EUV late phase, occurs in the same active region as the flare but not in the same coronal loops. Here, we examine the C8.8 flare that occurred on 2010 May 5 as a case study of EUV late phase flares. In addition to presenting detailed observations from both AIA and EVE, we develop a physical model of this flare and test it using the Enthalpy Based Thermal Evolution of Loops (EBTEL) model.

  18. What Causes Lupus Flares?

    PubMed

    Fernandez, David; Kirou, Kyriakos A

    2016-03-01

    Systemic lupus erythematosus (SLE), the prototypic systemic autoimmune disease, follows a chronic disease course, punctuated by flares. Disease flares often occur without apparent cause, perhaps from progressive inherent buildup of autoimmunity. However, there is evidence that certain environmental factors may trigger the disease. These include exposure to UV light, infections, certain hormones, and drugs which may activate the innate and adaptive immune system, resulting in inflammation, cytotoxic effects, and clinical symptoms. Uncontrolled disease flares, as well as their treatment, especially with glucocorticoids, can cause significant organ damage. Tight surveillance and timely control of lupus flares with judicial use of effective treatments to adequately suppress the excessive immune system activation are required to bring about long term remission of the disease. We hope that new clinical trials will soon offer additional effective and target-specific biologic treatments for SLE.

  19. Fields and Flares: Understanding the Complex Magnetic Topologies of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Murray, Sophie A.

    2013-01-01

    Sunspots are regions of decreased brightness on the visible surface of the Sun (photosphere) that are associated with strong magnetic fields. They have been found to be locations associated with solar flares, which occur when energy stored in sunspot magnetic fields is suddenly released. The processes involved in flaring and the link between sunspot magnetic fields and flares is still not fully understood, and this thesis aims to gain a better understanding of these topics. The magnetic field evolution of a number of sunspot regions is examined using high spatial resolution data from the Hinode spacecraft. The research presented in this thesis gives insight into both photospheric and coronal magnetic field evolution of flaring regions. Significant increases in vertical field strength, current density, and field inclination angle towards the vertical are observed in the photosphere just hours before a flare occurs, which is on much shorter timescales than previously studied. First observations of spatial changes in field inclination across a magnetic neutral line (generally believed to be a typical source region of flares) are also discovered. 3D magnetic field extrapolation methods are used to study the coronal magnetic field, using the photospheric magnetic field data as a boundary condition. Magnetic energy and free magnetic energy are observed to increase significantly a few hours before a flare, and decrease afterwards, which is a similar trend to the photospheric field parameter changes observed. Evidence of partial Taylor relaxation is also detected after a flare, as predicted by several previous studies. The results outlined in this thesis show that this particular field of research is vital in furthering our understanding of the magnetic nature of sunspots and its link to flare processes.

  20. Comparison of Cone Model Parameters for Halo Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Y.-J.; Jang, Soojeong; Lee, Kyoung-Sun; Kim, Hae-Yeon

    2013-11-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [ γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another ( R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from -0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km s-1, 169 km s-1, and 152 km s-1. We obtain the correlation coefficients between the location from the models and the flare location ( R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.

  1. Unresolved fine-scale structure in solar coronal loop-tops

    SciTech Connect

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.; Antolin, P.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  2. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  3. Detection of the Acceleration Site in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  4. Are Spicules the Primary Source of Hot Coronal Plasma?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  5. Modern observations and models of Solar flares

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    As well known, that fast particles propagating along flare loop generate bremsstrahlung hard x-ray emission and gyro-synchrotron microwave emission. We present the self-consistent kinetic description of propagation accelerated particles. The key point of this approach is taking into account the effect of reverse current. In our two-dimensional model the electric field of reverse current has the strong influence to the beam of accelerated particles. It decelerates part of the electrons in the beam and turns back other part of them without significant energy loss. The exact analytical solution for the appropriate kinetic equation with Landau collision integral was found. Using derived distribution function of electrons we’ve calculated evolution of their energy spectrum and plasma heating, coronal microwave emission and characteristics of hard x-ray emission in the corona and in the chromosphere. All results were compared with modern high precision space observations.

  6. SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE ERUPTIVE FLARE ON 2005 MAY 13

    SciTech Connect

    Kazachenko, Maria D.; Canfield, Richard C.; Longcope, Dana W.; Qiu, Jiong; DesJardins, Angela; Nightingale, Richard W.

    2009-10-20

    We use the Michelson Doppler Imager and TRACE observations of photospheric magnetic and velocity fields in NOAA 10759 to build a three-dimensional coronal magnetic field model. The most dramatic feature of this active region is the 34{sup 0} rotation of its leading polarity sunspot over 40 hr. We describe a method for including such rotation in the framework of the Minimum Current Corona model. We apply this method to the buildup of energy and helicity associated with the eruptive flare of 2005 May 13. We find that including the sunspot rotation almost triples the modeled flare energy (1.0 x 10{sup 31} erg) and flux rope self-helicity (-7.1 x 10{sup 42} Mx{sup 2}). This makes the results consistent with observations: the energy derived from GOES is 1.0 x 10{sup 31} erg, the magnetic cloud helicity from WIND is -5 x 10{sup 42} Mx{sup 2}. Our combined analysis yields the first quantitative picture of the helicity and energy content processed through a flare in an active region with an obviously rotating sunspot and shows that rotation dominates the energy and helicity budget of this event.

  7. CORONAL RAIN AS A MARKER FOR CORONAL HEATING MECHANISMS

    SciTech Connect

    Antolin, P.; Vissers, G.; Shibata, K. E-mail: g.j.m.vissers@astro.uio.n

    2010-06-10

    Reported observations in H{alpha}, Ca II H, and K or other chromospheric lines of coronal rain trace back to the days of the Skylab mission. Corresponding to cool and dense plasma, coronal rain is often observed falling down along coronal loops in active regions. A physical explanation for this spectacular phenomenon has been put forward thanks to numerical simulations of loops with footpoint-concentrated heating, a heating scenario in which cool condensations naturally form in the corona. This effect has been termed 'catastrophic cooling' and is the predominant explanation for coronal rain. In this work, we further investigate the link between this phenomenon and the heating mechanisms acting in the corona. We start by analyzing observations of coronal rain at the limb in the Ca II H line performed by the Hinode satellite, and derive interesting statistical properties concerning the dynamics. We then compare the observations with 1.5-dimensional MHD simulations of loops being heated by small-scale discrete events concentrated toward the footpoints (that could come, for instance, from magnetic reconnection events), and by Alfven waves generated at the photospheric level. Both our observation and simulation results suggest that coronal rain is a far more common phenomenon than previously thought. Also, we show that the structure and dynamics of condensations are far more sensitive to the internal pressure changes in loops than to gravity. Furthermore, it is found that if a loop is predominantly heated from Alfven waves, coronal rain is inhibited due to the characteristic uniform heating they produce. Hence, coronal rain may not only point to the spatial distribution of the heating in coronal loops but also to the agent of the heating itself. We thus propose coronal rain as a marker for coronal heating mechanisms.

  8. Magnetic fields and coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.

    1980-01-01

    General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.

  9. Overview of the solar and interplanetary phenomena leading to the major geomagnetic disturbance on 24 March 1991

    SciTech Connect

    Shea, M.A.; Smart, D.F.

    1996-07-01

    Solar activity associated with NOAA Region 6555 was unusually high during its transit across the solar disk in March 1991. A major and very impulsive solar flare with soft X-ray onset at 2242 UT occurred on 22 March. This 3B, X9.4 flare was accompanied by strong solar gamma ray emission and the type of radio emission often used as coronal mass ejection (CME) proxies. Approximately four hours later, a series of major flares gave rise to long duration X-ray emission but without the radio signatures used as CME indicators. Although these major solar events were similar to other activity this solar cycle, the combination of extremely powerful solar activity, a major solar particle event and rapidly moving interplanetary shocks combined to give one of the most intense geomagnetic storms of this solar cycle. There were two momentum impulses to the magnetosphere. The first at 0342 UT on 24 March is associated with the rapidly moving interplanetary shock. The second at 1920 UT is associated with the major increase in geomagnetic activity. The solar and interplanetary events that preceded the geomagnetic storm are discussed together with the effects of the storm on the cosmic ray intensity at the earth. Finally, using data from historical events such as those in July 1959 and November 1960, we speculate on the combination of solar and interplanetary circumstances that lead to increased radiation in the trapped radiation belts. {copyright} {ital 1996 American Institute of Physics.}

  10. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  11. FUNDAMENTAL-MODE OSCILLATIONS OF TWO CORONAL LOOPS WITHIN A SOLAR MAGNETIC ARCADE

    SciTech Connect

    Jain, Rekha; Maurya, Ram A.; Hindman, Bradley W.

    2015-05-01

    We analyze intensity variations, as measured by the Atmospheric Imaging Assembly in the 171 Å passband, in two coronal loops embedded within a single coronal magnetic arcade. We detect oscillations in the fundamental mode with periods of roughly 2 minutes and decay times of 5 minutes. The oscillations were initiated by interaction of the arcade with a large wavefront issuing from a flare site. Further, the power spectra of the oscillations evince signatures consistent with oblique propagation to the field lines and for the existence of a two-dimensional waveguide instead of a one-dimensional one.

  12. A Prominence/filament eruption triggered by eight homologous flares

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse; Innes, Davina; Moore, Ronald

    2015-04-01

    Eight homologous flares occurred in active region NOAA 11237 over 16 - 17 June 2011. A prominence system with a surrounding coronal cavity was adjacent to, but still magnetically connected to the active region. The eight eruptions expelled hot material from the active region into the prominence/filament cavity system (PFCS) where the ejecta became confined. We mainly aim to diagnose the 3D dynamics of the PFCS during the series of eight homologous eruptions by using data from two instruments: SDO/AIA and STEREO/EUVI-B, covering the Sun from two directions. The field containing the ejected hot material interacts with the PFCS and causes it to inflate, resulting in a discontinuous rise of the prominence/filament approximately in steps with the homologous eruptions. The eighth eruption triggers the PFCS to move outward slowly, accompanied by a weak coronal dimming. Subsequently the prominence/filament material drains to the solar surface. This PFCS eruption evidently slowly opens field overlying the active region, which results in a final ‘ejective’ eruption from the core of the active region. A strong dimming appears adjacent to the final eruption’s flare loops in the EUVI-B images, followed by a CME. We propose that the eight homologous flares gradually disrupted the PFCS and removed the overlying field above the active region, leading to the CME via the ‘lid removal’ mechanism.

  13. Motion of 3-6 keV Nonthermal Sources Along the Legs of a Flare Loop

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2007-01-01

    Observations of nonthermal X-ray sources me critical to studying electron acceleration and transport in solar flares. Strong thermal emission radiated from the preheated plasma before the flare impulsive phase often makes it difficult to detect low-energy X-ray sources that are produced by relatively low-energy nonthermal electrons. Knowledge of the distribution of these low-energy nonthermal electrons is particularly important in determining the total nonthermal electron energy in solar flares. We report on an 'early impulsive flare' in which impulsive hard X-ray emission was seen early in the flare before the soft X-ray emission had risen significantly, indicating limited plasma pre-heating. Early in the flare, RHESSI < 25 keV images show coronal sources that moved first downward and then upwards along the legs of a flare loop. In particular, the 3-6 keV source appeared as a single coronal source at the start of the flare, and then it involved into two coronal sources moving down along the two legs of the loop. After nearly reaching the two footpoints at the hard X-ray peak, the two sources moved back up to the looptop again. RHESSI images and light curves all indicate that nonthermal emission dominated at energies as low as 3-6 keV. We suggest that the evolution of both the spectral index and the low-energy cutoff of the injected electron distribution could result in the accelerated electrons reaching a lower altitude along the legs of the dense flare loop and hence result in the observed downward and upward motions of the nonthermal sources.

  14. Study on the triggering process of solar flares based on Hinode/SOT observations

    SciTech Connect

    Bamba, Y.; Kusano, K.; Yamamoto, T. T.; Okamoto, T. J.

    2013-11-20

    We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca II H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

  15. Management of distal humeral coronal shear fractures

    PubMed Central

    Yari, Shahram S; Bowers, Nathan L; Craig, Miguel A; Reichel, Lee M

    2015-01-01

    Coronal shear fractures of the distal humerus are rare, complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface following distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach (direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails. PMID:25984515

  16. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on the Non-thermal and Thermal Aspects of Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-06-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  17. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  18. Nonpotential magnetic fields at sites of gamma ray flares

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Venkatakrishnan, P.; Smith, J. B., Jr.

    1988-01-01

    The relation between the degree of nonpotentiality of photospheric magnetic fields and the occurrence of gamma ray flares is examined. The parameter delta phi (magnetic shear) and the strength of the magnetic field intensity are used as measures of the degree of nonpotentiality, where delta phi is defined as the angular difference between the observed direction of the transverse component of the photospheric field and the direction of the potential field prescribed by the distribution of measured photospheric flux. An analysis of the great flare of April 24 to 25, 1984 is presented as an example of this technique to quantify the nonpotential characteristics of the pre-flare magnetic field. For this flare, which produced a large gamma ray event, strong shear and high field strengths prevailed over an extended length of the magnetic neutral line where the flare occurred. Moreover, the flare began near the area of strongest measured shear (89 to 90 deg). Four other flaring regions were analyzed; one of these produced a moderate gamma ray event while the other three did not produce detectable gamma rays. For all four regions the flares were located in the area where the field was not nonpotential, regardless of the class of flare. The fields of the gamma ray flares were compared with those associated with the flares without gamma rays, and little distinction was found in the degree of magnetic shear. The major difference is seen in the extent of the sheared field: for gamma ray events, the field is sheared over a longer length of the neutral line.

  19. Flares and habitability

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.

    2012-07-01

    At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

  20. FLARING PATTERNS IN BLAZARS

    SciTech Connect

    Paggi, A.; Cavaliere, A.; Tavani, M.; Vittorini, V.; D'Ammando, F.

    2011-08-01

    Blazars radiate from relativistic jets launched by a supermassive black hole along our line of sight; the subclass of flat spectrum radio quasars exhibits broad emission lines, a telltale sign of a gas-rich environment and high accretion rate, contrary to the other subclass of the BL Lacertae objects. We show that this dichotomy of the sources in physical properties is enhanced in their flaring activity. The BL Lac flares yielded spectral evidence of being driven by further acceleration of highly relativistic electrons in the jet. Here, we discuss spectral fits of multi-{lambda} data concerning strong flares of the two flat spectrum radio quasars 3C 454.3 and 3C 279 recently detected in {gamma}-rays by the AGILE and Fermi satellites. We find that optimal spectral fits are provided by external Compton radiation enhanced by increasing production of thermal seed photons by growing accretion. We find such flares to trace patterns on the jet-power-electron-energy plane that diverge from those followed by flaring BL Lac objects and discuss why these occur.

  1. Gamma rays from pion decay - Evidence for long-term trapping of particles in solar flares

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The energy spectrum and time dependence of the 50 MeV to 2 GeV gamma rays observed from the 1991 June 11 solar flare are analyzed. It is shown that the emission detected at the late phase of this flare with EGRET on the Compton Gamma-Ray Observatory can be explained by a model in which the bulk of the particles were accelerated during the impulsive phase and subsequently trapped in coronal magnetic loops. The observed spectrum was fit with a combination of pion decay radiation and primary electron bremsstrahlung. The 1991 June 11 data are compared with data for the 1982 June 3 and 1991 June 15 flares from which pion decay emission was also observed. The fact that the fluxes from these three flares are ordered in time in accordance with the predicted time dependence of emission produced by trapped particles provides support for the model.

  2. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.

    2004-03-01

    We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite, using simultaneously its X-ray detectors and the Optical Monitor with its U band filter. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable on at least three time scales (a slow decay of several hours, modulation on a time scale of 1 hr, and weak flares with time scales of a few minutes). Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. In the course of the observation, a very large X-ray flare started and was observed essentially in its entirety. Its peak luminosity reached 3.9× 1028 erg s-1 [0.15-10 keV], and the total X-ray energy released in the same band is derived to be 1.5× 1032 ergs. This flare has for the first time allowed to measure significant density variations across several phases of the flare from X-ray spectroscopy of the O VII He-like triplet; we find peak densities reaching up to 4× 1011 cm-3 for plasma of about 1-5 MK. Abundance ratios show little variability in time, with a tendency of elements with a high first ionization potential to be overabundant relative to solar photospheric values. Using Fe XVII lines with different oscillator strengths, we do not find significant effects due to opacity during the flare, indicating that large opacity increases are not the rule even in extreme flares. We model the large flare in terms of an analytic 2-Ribbon flare model and find that the flaring loop system should have large characteristic sizes (≈ 1R*) within the framework of this simplistic model. These results are supported by full hydrodynamic simulations. Comparing the large flare to flares of similar

  3. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  4. WARM CORONAL RAIN ON YOUNG SOLAR ANALOG EK DRACONIS?

    SciTech Connect

    Ayres, Thomas; France, Kevin E-mail: Kevin.France@Colorado.ed

    2010-11-01

    We report a moderate-resolution, 1290-1430 A spectrum of young solar analog EK Draconis (HD 129333: G1.5 V), obtained by Cosmic Origins Spectrograph on Hubble Space Telescope. The 20 minute observation, remarkably, captured two distinct 'flares' in the Si IV 1400 A doublet (T {approx} 6 x 10{sup 4} K); very broad profiles of Si IV and the C II 1335 A multiplet (T {approx} 3 x 10{sup 4} K); and prominent Fe XXI {lambda}1354 coronal forbidden line emission (T {approx} 10 MK). The bright Si IV features are significantly redshifted compared to the milder, although still redshifted, equivalent components of solar-twin {alpha}{sup 1} Cen (HD 128620: G2 V). The broad, shifted, flaring hot-line profiles of EK Dra indicate not only that the subcoronal plasma of the young sun is highly dynamic, but also that the Si IV-bearing gas must be continually accreting onto the lower atmosphere, perhaps the stellar equivalent of warm 'coronal rain'.

  5. New techniques for the characterisation of dynamical phenomena in solar coronal images

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.

    2007-02-01

    ) was an important step on the way to subarcsecond telescopes. It allows a spatial resolution of 1" in the EUV and UV bands and, simultaneously, a temporal resolution of the order of a few seconds. Coronal physics studies are dominated by two major and interlinked problems: coronal heating and solar wind acceleration. Above the chromosphere there is a thin transition layer in which the temperature suddenly increases and density drops. How can the temperature of the solar corona be three orders of magnitude higher than the temperature of the photosphere? In order for this huge temperature gradient to be stationary, non-thermal energy must be transported from below the photosphere towards the chromosphere and corona and converted into heat to balance the radiative and conductive losses. This puzzle of origin, transport and conversion of energy is referred to as the "coronal heating problem". Due to its fundamental role in the structuring of the corona, the magnetic field is supposed to play an important role in the heating. In this dissertation we describe two aspects of solar coronal dynamics: waves in coronal loops (Part I) and coronal mass ejections (Part II). We investigate the influence of (semi-) automated techniques on solar coronal research. This is a timely discussion since the observation of solar phenomena is transitioning from manual detection to "Solar Image Processing". Our results are mainly based on images from the Extreme UV Imaging Telescope (EIT) and the Large Angle and Spectrometric Coronagraph (LASCO), two instruments onboard the satellite SOHO (Solar and Heliospheric Observatory) of which we recently celebrated its 11th anniversary. The high quality of the images together with the long timespan created a valuable database for solar physics research. Part I reports on the first detection of slow magnetoacoustic waves in transequatorial coronal loops observed in high cadence image sequences simultaneously produced by EIT and TRACE (Transition Region

  6. Observational Signatures of Coronal Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Judge, Philip

    1998-11-01

    Many mechanisms for heating the corona have been proposed since the problem was identified by Edlen more than 50 years ago. Identifying those that are important is a challenging problem that has so far not been resolved. One thing is clear: based upon a variety of observations, the corona is heated by conversion of magnetic flux into thermal energy. The flux emerges from sub-photospheric layers and is buffeted by photospheric dynamics. The ``coronal heating problem'' is to identify how, given the high conductivities of coronal plasma, the magnetic energy is dissipated. After reviewing some basic observational facts and placing the corona into appropriate physical regimes, I will focus on two pieces of information recently obtained from spacecraft. In one, I will discuss the interpretation of line profiles from the UVCS instrument on the SOHO spacecraft, presented by Kohl and colleagues. These observations indicate the presence of asymmetric particle distribution functions low in the solar wind, so I will discuss implications for heating mechanisms for plasma on these ``open'' field lines, in terms of ion cyclotron resonant heating by high frequency Alfven waves. In the other, I will try to review evidence for the ``nano-flare'' heating mechanism proposed by Parker to explain the heating of plasma along closed field lines, such as are present in active regions, based upon data from the SOHO and TRACE spacecraft. Parker's picture is one of slow field line ``braiding'', driven by random footpoint motions, with sudden energy release at critical energies. An attempt will be made to relate these different mechanisms by looking for the source of the high frequency waves implied by the UVCS observations.

  7. Key aspects of coronal heating

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.

    2015-04-01

    We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better.

  8. Key Aspects of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.

    2015-04-01

    We highlight ten key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite buildup of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behavior responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require a coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized 3D MHD simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better.

  9. Variations in Abundance Enhancements in Impulsive Solar Energetic-Particle Events and Related CMEs and Flares

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.; Cliver, Edward W.; Kahler, Stephen W.

    2014-12-01

    We study event-to-event variations in the abundance enhancements of the elements He through Pb for Fe-rich impulsive solar energetic-particle (SEP) events, and their relationship with properties of associated coronal mass ejections (CMEs) and solar flares. Using a least-squares procedure we fit the power-law enhancement of element abundances as a function of their mass-to-charge ratio A/ Q to determine both the power and the coronal temperature (which determines Q) in each of 111 impulsive SEP events identified previously. Individual SEP events with the steepest element enhancements, e.g. ˜ ( A/ Q)6, tend to be smaller, lower-fluence events with steeper energy spectra that are associated with B- and C-class X-ray flares, with cooler (˜ 2.5 MK) coronal plasma, and with narrow (< 100∘), slower (< 700 km s-1) CMEs. On the other hand, higher-fluence SEP events have flatter energy spectra, less-dramatic heavy-element enhancements, e.g. ˜ ( A/ Q)3, and come from somewhat hotter coronal plasma (˜ 3.2 MK) associated with C-, M-, and even X-class X-ray flares and with wider CMEs. Enhancements in 3He/4He are uncorrelated with those in heavy elements. However, events with 3He/4He≥0.1 are even more strongly associated with narrow, slow CMEs, with cooler coronal plasma, and with B- and C-class X-ray flares than are other Fe-rich impulsive SEP events with smaller enhancements of 3He.

  10. Perimenstrual Flare of Adult Acne

    PubMed Central

    Geller, Lauren; Rosen, Jamie; Frankel, Amylynne; Goldenberg, Gary

    2014-01-01

    Background: Acne is typically regarded as an adolescent disease. A significant body of literature suggests a post-adolescent or adult form of acne. Female patients are known to experience perimenstrual acne flares, the exact prevalence of which is unknown. Objective: To establish a pattern of perimenstrual acne flare in adult women in order to better characterize the disorder. Methods: Subjects aged 18 and over were recruited during previously scheduled visits with their dermatologist at Mount Sinai Hospital in New York. An anonymous survey was distributed to women who reported their first menses at least six months earlier and had a complaint of acne within the last 30 days. Women <18 years of age and postmenopausal women were excluded from the study population. Results: Participants included women 18- to 29-years old (67%) and women 30- to 49-years old (33%). The ethnicity of respondents was Caucasian (50%), African American (20%), Latino (19%), Asian (5%), and Other (6%). The majority of participants with perimenstrual acne reported the onset of acne between the ages of 12 and 18 years. Sixty-five percent of participants reported that their acne symptoms were worse with their menses. Of those who reported perimenstrual acne symptoms, 56 percent reported worsening symptoms in the week preceding their menses, 17 percent reported worsening symptoms during their menses, three percent reported worsening symptoms after their menses, and 24 percent reported worsening symptoms throughout their cycle. Thirty-five percent of patients with perimenstrual acne reported oral contraceptive pill use. Conclusion: A significant number of adult women have perimenstrual acne symptoms. This study has proven to be useful in characterizing perimenstrual acne flare and is one of the first qualitative documentations of the presence and degree of this disorder. PMID:25161758

  11. Wavelet analysis of CME, X-ray flare, and sunspot series

    NASA Astrophysics Data System (ADS)

    Guedes, M. R. G.; Pereira, E. S.; Cecatto, J. R.

    2015-01-01

    Context. Coronal mass ejections (CMEs) and solar flares are the most energetic transient phenomena taking place at the Sun. Together they are principally responsible for disturbances in outer geospace. Coronal mass ejections and solar flares are believed to be correlated with the solar cycle, which is mainly characterized by sunspot numbers. Aims: Here, we search for pattern identification in CMEs, X-ray solar flares, and sunspot number time series using a new data mining process and a quantitative procedure to correlate these series. Methods: This new process consists of the combination of a decomposition method with the wavelet transform technique applied to the series ranging from 2000 until 2012. A simple moving average is used for the time-series decomposition as a high-pass filter. A continuous wavelet transform is applied to the series in sequence, which permits us to uncover signals previously masked by the original time series. We made use of the wavelet coherence to find some correlation between the data. Results: The results have shown the existence of periodic and intermittent signals in the CMEs, flares, and sunspot time series. For the CME and flare series, few and relatively short time intervals without any signal were observed. Signals with an intermittent character take place during some epochs of the maximum and descending phases of the solar cycle 23 and rising phase of solar cycle 24. A comparison among X-ray flares, sunspots, and CME time series shows a stronger relation between flare and CMEs, although during some short intervals (four-eight months) and in a relatively narrow band. Yet, in contrast we have obtained a fainter or even absent relation between the X-ray flares and sunspot number series as well as between the CMEs and sunspot number series.

  12. The Effect of Magnetic Topology on the Escape of Flare Particles

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Masson, S.; DeVore, C. R.

    2012-01-01

    Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS).

  13. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    SciTech Connect

    Susino, R.; Bemporad, A.; Mancuso, S.

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{sub ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.

  14. Valentines Day X2 Flare

    NASA Video Gallery

    Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. This video was taken...

  15. Observations and Modeling of Solar Flare Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  16. BATSE Solar Flare Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1998-01-01

    This final report describes the progress originally proposed: (1) the continued improvement of a software and database environment capable of supporting all users of BATSE solar data as well as providing scientific expertise and effort to the BATSE solar community; (2) the continued participation with the PI team and other guest investigators in the detailed analysis of the BATSE detectors' response at low energies; (3) using spectroscopic techniques to fully exploit the potential of electron time-of-flight studies; and, (4) a full search for flare gamma-ray line emission at 2.2 MeV from all GOES X-class flares observed with BATSE.

  17. Complex Dynamic Flows in Solar Flare Sheet Structures

    NASA Technical Reports Server (NTRS)

    McKenzie, David E.; Reeves, Katharine K.; Savage, Sabrina

    2012-01-01

    Observations of high-energy emission from solar flares often reveal the presence of large sheet-like structures, sometimes extending over a space comparable to the Sun's radius. Given that these structures are found between a departing coronal mass ejection and the post-eruption flare arcade, it is natural to associate the structure with a current sheet; though the relationship is unclear. Moreover, recent high-resolution observations have begun to reveal that the motions in this region are highly complex, including reconnection outflows, oscillations, and apparent wakes and eddies. We present a detailed first look at the complicated dynamics within this supra-arcade plasma, and consider implications for the interrelationship between the plasma and its embedded magnetic field.

  18. A Comparison of Flare Forecasting Parameters Derived From Photospheric Magnetograms

    NASA Astrophysics Data System (ADS)

    Barnes, G.; Leka, K.

    2007-12-01

    A variety of researchers have proposed parameters for use in forecasting of solar flares. However, the parameters have been calculated from different data sources, and their performance has been judged based on various different criteria. We present here a systematic comparison of a small number of parameters which can be derived from the photospheric magnetic field, some of which characterize the photospheric field itself, and some which characterize the coronal magnetic topology. We compute the parameters for a collection of over 1200 vector magnetograms from the Imaging Vector Magnetograph at Haleakala, and judge their ability to forecast flares based on discriminant analysis, climatological skill scores, and the ability to provide an "all-clear" forecast.

  19. Singly charged energetic helium emitted in solar flares

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Hoefner, H.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1981-01-01

    First direct charge state measurements of 0.41-1.05 MeV per nucleon helium accelerated at the sun reveal surprisingly large abundances of singly ionized helium, with typical He(+)/He(++) ratios between 0.04 and 0.21. This unexpected overabundance of He(+) was observed in each of the three large solar-flare particle events which occurred between 1978 August and 1979 October. The data were obtained with the Max-Planck-Institut/University of Maryland Experiment on board the ISEE-3 spacecraft. The observations suggest either strong coronal temperature inhomogeneities including cool regions of approximately 100,000 K or injection of 'cold' chromospheric/photospheric material into the flare acceleration region.

  20. Solar Flare Abundances of Potassium, Argon, and Sulphur

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Landi, E.

    2003-01-01

    The absolute coronal abundances of potassium has been determined for the first time from X-ray solar flare line and continuous spectra together with absolute and relative abundances of Ar and S. Potassium is of importance in the continuing debate concerning the nature of the coronal/photospheric element abundance ratios which are widely considered to depend on first ionization potential since it has the lowest FIP of any common element in the Sun. The measurements were obtained with the RESIK crystal spectrometer on the Coronas-F spacecraft. A differential emission measure DEM = const. x exp (-(beta)T(sub e) was found to be the most consistent with the data out of three models considered. We find that the coronal ratio [K/H] = 3.7 x 10(exp - 7), a factor 3 times photospheric, in agreement with other observations using line-to-line ratios. Our measured value for the coronal ratio [Ar/H] = 1.5 x 10(exp -6) is significantly less than photospheric, indicating that there is a slight depletion of this high-FIP element in the corona. For S (an intermediate-FIP element) we obtained [S/H] = 2.2 x 10(exp - 5), approximately the same as in previous work.

  1. High sensitivity dynamic spectral search for flare star radio

    NASA Technical Reports Server (NTRS)

    Abada-Simon, M.; Lecacheux, A.; Louarn, P.; Dulk, G. A.; Belkora, L.; Bookbinder, J. A.; Rosolen, C.

    1994-01-01

    We observed ten well-known flare stars with the Arcibo radio telescope at 1.4 GHz and 5 GHz, using a special observing technique to discriminate between real flares and radio freqeuncy interference. With a high sensitivity of 5.5 K/Jy at 1.4 GHz when averaged over a 50 MHz band, we are able to recognize flux enhancements as weak as approximately 6 mJy above the sky background variations. In about 85 hours of observation, about a dozen bursts were detected, only from AD Leo. All had flux densities lower than 70 mJy, which probably explains their lack of fine structures (except for the strongest one), such as were reported in the literature for stronger flares. Half of the bursts that we recorded are 100% circularly polarized, and half are not circularly polarized. Our results are a first attempt of reliable statistics on dMe flare rates at 1.4 GHz. The high brightness temperatures we infer for the observed bursts are interpreted in terms of coherent emission processes, either the cyclotron maser instability or plasma radiation. Efficiencies are comparable to those of solar or planetary radio emissions in the case of the cyclotron maser, and higher than the solar efficiency in the case of plasma radiation, with the caveat that there are great uncertainties in the coronal model and the source size.

  2. Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2016-10-01

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transport of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen & Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched (3He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.

  3. Soft X-ray emission in kink-unstable coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Vilmer, Nicole; Brun, Allan Sacha

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in simulated kink-unstable magnetic flux-ropes. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. The magnetic flux-rope reconnects with the background flux after the triggering of the kink instability and is then allowed to relax to a lower energy state. Strong ohmic heating leads to strong and quick heating (up to more than 15 MK), to a strong peak of X-ray emission and to the hardening of the thermal X-ray spectrum. The emission pattern is often filamentary and the amount of twist deduced from the X-ray emission alone is considerably lower than the maximum twist in the simulated flux-ropes. The flux-rope plasma becomes strongly multi-thermal during the flaring episode. The emission measure evolves into a bi-modal distribution as a function of temperature during the saturation phase, and later converges to the power-law distribution mathrm{EM}~ T(-4.2) (during the relaxation/cooling) phase. These soft X-ray emission properties are maintained for a large range of coronal magnetic field strength, plasma density and flux-rope twist values.

  4. Spatial and temporal variation of the Fe XIV line (530,3 nm) along coronal loops

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Costa, A.; Stenborg, G.

    We report on a method to quantify intensity variations along coronal loops and corresponding results. The presentation is particularly aimed to analyze the dynamics of localized small scale coronal (post-flaring) loops observed with the MICA (Mirror Coronagraph for Argentina) telescope in the green coronal line at 530.3 nm on October 6th, 2001. The temporal cadence was of about one image per minute. This work continues the analysis started in a previous paper (Costa and Stenborg, 2004, Solar Phys., in press) where the authors introduce a procedure to measure intensity variations, both in space and time, along the structure of a coronal loop, reporting a case study on October 1st, 2001. Comparison of both events is given. Significant coronal intensity variability was detected in compact loop systems suggesting different types of plasma flow. In particular, some of them show a brightening at the top, which moves down along the axis of the loop with mean velocities that suggest scenarios of high-speed plasma flows. The results obtained allow the flow inside coronal structures to be characterized and theoretical descriptions related to different physical scenarios to be compared.

  5. Soft X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  6. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  7. Finding X-ray Coronal Cycles in Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Guenther, Hans Moritz; Auchettl, Katie

    2015-01-01

    We seek to increase the number of stars known to have an X-ray coronal cycle. Four stars (including the Sun) are known to experience periodic long-term coronal flux variability but the statistics are not superb. In this analysis, we analyze four stellar sources that have been observed frequently by Chandra and XMM-Newton over the last ~11 years. These four sources were the brightest among numerous stellar point sources within the Chandra Deep Field South. Solar flares can dramatically increase the flux measured for our stars on short time intervals and, in observations with insufficient time coverage, can be confused for the maximum of the stars' magnetic cycles (if they have one). We have discarded times where solar proton flares are detected in the data. We utilize an APEC model, which represents the coronal plasma, to fit our stellar spectra. As our sources are very faint, we do not subtract the background, but instead we fit the background and source spectra simultaneously. We use the chi-squared statistic to evaluate the confidence of our fits. We present four light curves which suggest that a long-term X-ray flux variability similar to our Sun (the solar X-ray flux can vary by a factor of 10 over ~11 years) is not present in these stellar sources. None of our stars experienced a flux variability exceeding a factor of 3 over an 11 year time scale but one of the four stars in our sample exhibits short term variability over a one year period. However, our stellar sources are too faint to conclusively state that the flux remains constant throughout all epochs.This work is supported by the National Science Foundation REU and Department of Defense AS-SURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  8. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  9. Coronal heating via nanoflares

    SciTech Connect

    Poletto, G.; Kopp, R.

    1993-10-01

    It has been recently proposed that the coronae of single late-type main sequence stars represent the radiative output from a large number of tiny energy release events, the so-called nanoflares. Although this suggestion is attractive and order of magnitude estimates of the physical parameters involved in the process are consistent with available data, nanoflares have not yet been observed and theoretical descriptions of these phenomena are still very crude. In this paper we examine the temporal behavior of a magnetic flux tube subject to the repeated occurrence of energy release events, randomly distributed in time, and we show that an originally empty cool loop may, in fact, reach typical coronal density and temperature values via nanoflare heating. By choosing physical parameters appropriate to solar conditions we also explore the possibilities for observationally detecting nanoflares. Although the Sun is the only star where nanoflares might be observed, present instrumentation appears to be inadequate for this purpose.

  10. The coronal fricative problem.

    PubMed

    Dinnsen, Daniel A; Dow, Michael C; Gierut, Judith A; Morrisette, Michele L; Green, Christopher R

    2013-07-01

    This paper examines a range of predicted versus attested error patterns involving coronal fricatives (e.g. [s, z, θ, ð]) as targets and repairs in the early sound systems of monolingual English-acquiring children. Typological results are reported from a cross-sectional study of 234 children with phonological delays (ages 3 years; 0 months to 7;9). Our analyses revealed different instantiations of a putative developmental conspiracy within and across children. Supplemental longitudinal evidence is also presented that replicates the cross-sectional results, offering further insight into the life-cycle of the conspiracy. Several of the observed typological anomalies are argued to follow from a modified version of Optimality Theory with Candidate Chains (McCarthy, 2007). PMID:24790247

  11. Coronal shock acceleration and heliospheric transport of solar energetic protons

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen Asenov

    Solar flares and coronal mass ejections (CME) in the Sun's atmosphere produce highly energetic charged particles during violent bursts of activity. Protons, the most numerous and important species of these solar energetic particles (SEP), accelerate and propagate throughout the heliosphere, probing the interplanetary transport conditions. They also present a significant radiation hazard to space operations. Nevertheless, SEP acceleration in the low corona is currently not well constrained and poorly understood. In this dissertation, I examine off-limb extreme ultraviolet (EUV) wave dynamics between 1.3 and 2.0 solar radii in the corona, and I show that the EUV signatures are consistent with CME-driven shocks. Therefore, such shocks may form very low in the corona. I also develop a data-driven model for estimating the maximum energy to which protons may be accelerated in coronal shocks. I apply it to an observed shock and show that it may accelerate protons up to tens of MeV during its fast coronal passage, consistent with in-situ observations. To explore further coronal SEP acceleration by CME-driven shocks, I modify a global, 3D numerical model for interplanetary SEP transport for the coronal conditions, and adapt it to incorporate results from a realistic magnetohydrodynamic coronal and CME model. Furthermore, I apply a diffusive shock acceleration model, which explicitly treats proton energization at traveling shocks, to an MHD simulation of a real CME event. I find that the source population becomes strongly accelerated. In addition, I simulate the proton transport between the Sun and Earth, and find that the modeled fluxes are consistent with particle observations near Earth. Results suggest that CME-driven shocks in the corona may be the primary source of SEPs in solar storms. In addition, conditions along coronal shock fronts vary greatly, influencing the amount of acceleration. Finally, I model the global proton transport between Earth and 5 AU during a

  12. An overview of coronal seismology.

    PubMed

    De Moortel, I

    2005-12-15

    The idea of exploiting observed oscillations as a diagnostic tool for determining the physical conditions of the coronal plasma was first suggested several decades ago (Roberts et al. 1984 Astrophys. J. 279, 857). Until recently, the application of this idea has been very limited by a lack of high-quality observations of coronal oscillations. However, during the last few years, this situation has changed dramatically, especially due to space-based observations by the Solar and Heliospheric Observatory and the Transition Region and Coronal Explorer and waves and oscillations have now been observed in a wide variety of solar structures, such as coronal loops, polar plumes and prominences. This paper will briefly summarize MHD wave theory, which forms the basis for coronal seismology, as well as present an overview of the variety of recently observed waves and oscillations in the solar corona. The present state of coronal seismology will also be discussed. Currently, the uncertainty associated with the obtained parameters is still considerable and, hence, the results require a cautious interpretation. However, these examples do show that coronal seismology is rapidly being transformed from a theoretical possibility to a viable technique.

  13. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  14. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  15. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    SciTech Connect

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

  16. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  17. Projection effects in coronal dimmings and associated EUV wave event

    NASA Astrophysics Data System (ADS)

    Dissauer, Karin; Temmer, Manuela; Veronig, Astrid; Vanninathan, Kamalam; Magdalenic, Jasmina

    2016-04-01

    We investigate the high-speed (v > 1000 km s-1) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283. This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120 s in SDO/AIA 171, 193, 211 Å data, whereas the 335 Å filter, sensitive to hotter plasmas (T˜ 2.5 MK), shows a continuous evolution of the wave front. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution. We identify on-disk coronal dimming regions in SDO/AIA, reminiscent of core dimmings, that have no corresponding on-disk dimming signatures in STEREO-A/EUVI. Reconstructing the SDO line-of-sight (LOS) direction in STEREO-A clearly shows that the observed SDO on-disk dimming areas are not the footprints of the erupting fluxrope but result from decreased emission from the expanding CME body integrated along the LOS. In this context, we conclude that the intermittent disappearance of the EUV wave in the AIA 171, 193, 211 Å filters, which are channels sensitive to plasma with temperatures below ˜ 2 MK is also caused by such LOS integration effects. These observations clearly demonstrate that single-view image data provide us with limited insight to correctly interpret coronal features.

  18. Fast-sausage oscillations in coronal loops with smooth boundary

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2014-12-01

    Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.

  19. Characteristics of the photospheric magnetic field associated with solar flare initiation

    SciTech Connect

    Yang, Ya-Hui; Chen, P. F.; Hsieh, Min-Shiu; Wu, S. T.; He, Han; Tsai, Tsung-Che E-mail: chenpf@nju.edu.cn E-mail: wus@uah.edu E-mail: tctsai@narlabs.org.tw

    2014-05-01

    The physical environment governing the solar flare initiation is not fully understood, although there are significant efforts to address the relationship between magnetic non-potential parameters and early flare signatures. In this study, we attempt to characterize the flare initiation based on the processed Helioseismic and Magnetic Imager vector magnetograms, Atmospheric Imaging Assembly 1600 Å, and RHESSI hard X-ray observations. Three flare events, the M6.6 flare on 2011 February 13, the X2.2 flare on 2011 February 15, and the X2.1 flare on 2011 September 6, in two active regions AR 11158 and AR 11283 are investigated. We analyze the source field strength in the photosphere, which is defined as the magnitude of the observed magnetic field deviation from the potential field. It is found that one of the strong source field regions above the magnetic polarity inversion line well connects the initial bright kernels of two conjugate ribbons. The results imply that the distribution of the photospheric source field strength can be used to locate the initiation site of flaring loops regardless of the configuration of pre-flare magnetic fields or the evolution of active regions. Moreover, the field configuration in the strong source field regions tends to become more inclined after flares, which is consistent with the coronal implosion scenario. We also employ a fast method to derive the total current density from the photospheric vector magnetogram in the framework of force-free field. This method can provide fast estimation of photospheric current density within a reasonable accuracy without appealing for the more accurate calculation from a model extrapolation.

  20. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    SciTech Connect

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  1. Coronal Magnetism: Hanle Effect in UV and IR Spectral Lines

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Riley, P.

    2014-12-01

    The plasma thermodynamics in the solar upper