Sample records for major phosphorus source

  1. Watershed nitrogen and phosphorus balance: The upper Potomac River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, N.A.; Groffman, P.M.; Keller, A.A.

    1992-01-01

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less

  2. Influences of climate and land use on contemporary ...

    EPA Pesticide Factsheets

    Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked to a combination of human nitrogen sources and climate in the U.S., relatively less is known about how natural and anthropogenic landscape characteristics mediate losses of phosphorus from watersheds. We quantified major phosphorus inputs (fertilizer, manure, and human waste) and outputs (riverine export, crop harvest and sewage treatment) for 94 watersheds in 2012 across the continental U.S. and examined how climate, hydrology, soil characteristics, and land use influenced phosphorus exports from watersheds to rivers as total phosphorus and dissolved inorganic phosphorus concentrations and yields. We identified regional differences in major input sources as well as the importance of landscape mediating factors, highlighting the importance of both the biophysical and anthropogenic contexts on the relationship between major phosphorus sources and water quality. This study represents the most up-to-date spatially explicit inventory of anthropogenic P inputs and outputs for the conterminous United States. Linking this inventory with losses of phosphorus to waterways is an important step in understanding what policies and practices may be most effective in mitigating water quality problems.

  3. Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek Watershed, Wisconsin

    USGS Publications Warehouse

    Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.

    1998-01-01

    Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models. 

  4. Assessing risk of non-compliance of phosphorus standards for lakes in England and Wales

    NASA Astrophysics Data System (ADS)

    Duethmann, D.; Anthony, S.; Carvalho, L.; Spears, B.

    2009-04-01

    High population densities, use of inorganic fertilizer and intensive livestock agriculture have increased phosphorus loads to lakes, and accelerated eutrophication is a major pressure for many lakes. The EC Water Framework Directive (WFD) requires that good chemical and ecological quality is restored in all surface water bodies by 2015. Total phosphorus (TP) standards for lakes in England and Wales have been agreed recently, and our aim was to estimate what percentage of lakes in England and Wales is at risk of failing these standards. With measured lake phosphorus concentrations only being available for a small number of lakes, such an assessment had to be model based. The study also makes a source apportionment of phosphorus inputs into lakes. Phosphorus loads were estimated from a range of sources including agricultural loads, sewage effluents, septic tanks, diffuse urban sources, atmospheric deposition, groundwater and bank erosion. Lake phosphorus concentrations were predicted using the Vollenweider model, and the model framework was satisfactorily tested against available observed lake concentration data. Even though predictions for individual lakes remain uncertain, results for a population of lakes are considered as sufficiently robust. A scenario analysis was carried out to investigate to what extent reductions in phosphorus loads would increase the number of lakes achieving good ecological status in terms of TP standards. Applying the model to all lakes in England and Wales greater than 1 ha, it was calculated that under current conditions roughly two thirds of the lakes would fail the good ecological status with respect to phosphorus. According to our estimates, agricultural phosphorus loads represent the most frequent dominant source for the majority of catchments, but diffuse urban runoff also is important in many lakes. Sewage effluents are the most frequent dominant source for large lake catchments greater than 100 km². The evaluation in terms of total load can be misleading in terms of what sources need to be tackled by catchment management for most of the lakes. For example sewage effluents are responsible for the majority of the total load but are the dominant source in only a small number of larger lake catchments. If loads from all sources were halved this would potentially increase the number of complying lakes to two thirds but require substantial measures to reduce phosphorus inputs to lakes. For agriculture, required changes would have to go beyond improvements of agricultural practise, and need to include reducing the intensity of land use. The time required for many lakes to respond to reduced nutrient loading is likely to extend beyond the current timelines of the WFD due to internal loading and biological resistances.

  5. External nutrient sources, internal nutrient pools, and phytoplankton production in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnien, R.E.; Summers, R.M.; Sellner, K.G.

    1992-12-01

    External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary-the upper Mainstem, the Patuxent Estuary, and the Potomac Estuary-during 1985-1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Seven-16% of the nitrogen load entered the head of each estuary as particulate matter in contrast to 48-69% for phosphorus. The difference seems to favor a greater loss of phosphorus than nitrogen through sedimentation andmore » burial. A major storm event in the Potomac watershed greatly increased the particulate fraction of nitrogen and phosphorus and lowered the TN:TP in the river-borne loads and accounted for 11% of the nitrogen and 31% of the phosphorus delivered to the estuary by the Potomac River during the entire 60- month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region. indicating considerable internal recycling of nutrients to surface waters. A net sink of nitrate was indicated during summer. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. In the Patuxent and Potomac, the TN:TP ratios of external loads are 2-4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied. 66 refs., 6 figs., 7 tabs.« less

  6. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  7. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption

    Treesearch

    L.W. Ngatia; Y.P. Hsieh; D. Nemours; R. Fu; R.W. Taylor

    2017-01-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in...

  8. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.

    PubMed

    Morton, Siyuan C; Zhang, Yan; Edwards, Marc A

    2005-08-01

    Control of microbial regrowth in iron pipes is a major challenge for water utilities. This work examines the inter-relationship between iron corrosion and bacterial regrowth, with a special focus on the potential of iron pipe to serve as a source of phosphorus. Under some circumstances, corroding iron and steel may serve as a source for all macronutrients necessary for bacterial regrowth including fixed carbon, fixed nitrogen and phosphorus. Conceptual models and experimental data illustrate that levels of phosphorus released from corroding iron are significant relative to that necessary to sustain high levels of biofilm bacteria. Consequently, it may not be possible to control regrowth on iron surfaces by limiting phosphorus in the bulk water.

  9. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    USGS Publications Warehouse

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.

  10. Phosphate Additive Avoidance in Chronic Kidney Disease.

    PubMed

    St-Jules, David E; Goldfarb, David S; Pompeii, Mary Lou; Sevick, Mary Ann

    2017-05-01

    IN BRIEF Dietary guidelines for patients with diabetes extend beyond glycemic management to include recommendations for mitigating chronic disease risk. This review summarizes the literature suggesting that excess dietary phosphorus intake may increase the risk of skeletal and cardiovascular disease in patients who are in the early stages of chronic kidney disease (CKD) despite having normal serum phosphorus concentrations. It explores strategies for limiting dietary phosphorus, emphasizing that food additives, as a major source of highly bioavailable dietary phosphorus, may be a suitable target. Although the evidence for restricting phosphorus-based food additives in early CKD is limited, diabetes clinicians should monitor ongoing research aimed at assessing its efficacy.

  11. Phosphate Additive Avoidance in Chronic Kidney Disease

    PubMed Central

    Goldfarb, David S.; Pompeii, Mary Lou; Sevick, Mary Ann

    2017-01-01

    IN BRIEF Dietary guidelines for patients with diabetes extend beyond glycemic management to include recommendations for mitigating chronic disease risk. This review summarizes the literature suggesting that excess dietary phosphorus intake may increase the risk of skeletal and cardiovascular disease in patients who are in the early stages of chronic kidney disease (CKD) despite having normal serum phosphorus concentrations. It explores strategies for limiting dietary phosphorus, emphasizing that food additives, as a major source of highly bioavailable dietary phosphorus, may be a suitable target. Although the evidence for restricting phosphorus-based food additives in early CKD is limited, diabetes clinicians should monitor ongoing research aimed at assessing its efficacy. PMID:28588376

  12. The Sources and Solutions: Wastewater

    EPA Pesticide Factsheets

    Wastewater treatment plants process water from homes and businesses, which contains nitrogen and phosphorus from human waste, food and certain soaps and detergents, and they can be a major source of nutrient pollution.

  13. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  14. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    USGS Publications Warehouse

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  15. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  16. Removing soluble phosphorus from agricultural drainage waters using FGD gypsum filters

    USDA-ARS?s Scientific Manuscript database

    Decades of applying chicken litter to meet nitrogen demand has led to accumulation of phosphorus (P) in soils of the Delmarva Peninsula. This legacy P that now approaches levels up to ten times the agronomic optimum is a major source of P entering drainage ditches that eventually empty into the Ches...

  17. FGD gypsum filters remove soluble phosphorus from agricultural drainage waters

    USDA-ARS?s Scientific Manuscript database

    Decades of chicken litter applications has led to phosphorus (P) levels up to ten times the agronomic optimum in soils of the Delmarva Peninsula. This legacy P is a major source of P entering drainage ditches that eventually empty into the Chesapeake Bay. A Flue Gas Desulfurization (FGD) gypsum ditc...

  18. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  19. An Application of the Phosphorus Consistent Rule for Environmentally Acceptable Cost-Efficient Management of Broiler Litter in Crop Production

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Adhikari, Murali; Martin, Neil R., Jr.

    2004-01-01

    We calculated the profitability of using broiler litter as a source of plant nutrients using the phosphorus consistent litter application rule. The cost saving by using litter is 37% over the use of chemical fertilizer-only option to meet the nutrient needs of major crops grown in Alabama. In the optimal solution, only a few routes of all the possible routes developed were used for inter- and intra- county litter hauling. If litter is not adopted as the sole source of crop nutrients, the best environmental policy may be to pair the phosphorus consistent rule with taxes, marketable permits, and subsidies.flaws

  20. A Regional Modeling Framework of Phosphorus Sources and Transport in Streams of the Southeastern United States

    USGS Publications Warehouse

    Garcia, A.M.; Hoos, A.B.; Terziotti, S.

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  1. Preliminary analysis of phosphorus flow in Hue Citadel.

    PubMed

    Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S

    2016-01-01

    Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection.

  2. Estimated water and nutrient inflows and outflows, Lake Cochituate, eastern Massachusetts, 1977-79

    USGS Publications Warehouse

    Gay, F.B.

    1984-01-01

    Streamflow was the major source of water and nutrients (nitrogen and phosphorus) to Lake Cochituate, followed by ground water, and then precipitation during April 1978 through March 1979. Compared to all sources during that period, streams contributed 7,217 million gallons (a little over 82 percent) of water, 63 ,000 pounds (between 50 and 60 percent) of nitrogen, and 3,000 pounds (94 percent) of phosphorus. A little over 60 percent of all the water that entered Lake Cochituate flowed from Fisk Pond. This single source transported about 38,000 pounds of nitrogen and 2,000 pounds of phosphorus. Ground-water inflow to Lake Cochituate occurs along its shoreline except at the north end of Lake Cochituate 's North Pond where natural seepage from the lake is occurring and at locations on the lake 's Middle and South Ponds where municipal wells induce infiltration of lake water amounting to 1,228 million gallons for that period. Discharge of ground water to the lake was estimated to range from 462 to 816 million gallons and transported from 31,000 to 55,000 pounds of nitrogen and from 46 to 82 pounds of phosphorus. Bulk precipitation was estimated to contribute about the same volume of water to the lake as ground water but double its phosphorus load. However, the load of nitrogen, 8000 pounds, from bulk precipitation was the smallest of any source. (USGS)

  3. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.

    PubMed

    Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret

    2010-03-01

    The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.

  4. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  5. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.

  6. Contributions of Phosphorus from Groundwater to Streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States

    USGS Publications Warehouse

    Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.

    2011-01-01

    Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium, magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.

  7. Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Butternut Lake, Price and Ashland Counties, Wisconsin, with Special Emphasis on the Effects of Internal Phosphorus Loading in a Polymictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2008-01-01

    Butternut Lake is a 393-hectare, eutrophic to hypereutrophic lake in northcentral Wisconsin. After only minor improvements in water quality were observed following several actions taken to reduce the nutrient inputs to the lake, a detailed study was conducted from 2002 to 2007 by the U.S. Geological Survey to better understand how the lake functions. The goals of this study were to describe the water quality and hydrology of the lake, quantify external and internal sources of phosphorus, and determine the effects of past and future changes in phosphorus inputs on the water quality of the lake. Since the early 1970s, the water quality of Butternut Lake has changed little in response to nutrient reductions from the watershed. The largest changes were in near-surface total phosphorus concentrations: August concentrations decreased from about 0.09 milligrams per liter (mg/L) to about 0.05 mg/L, but average summer concentrations decreased only from about 0.055-0.060 mg/L to about 0.045 mg/L. Since the early 1970s, only small changes were observed in chlorophyll a concentrations and water clarity (Secchi depths). All major water and phosphorus sources, including the internal release of phosphorus from the sediments (internal loading), were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake during monitoring years (MY) 2003 and 2004. During these years, Butternut Creek, Spiller Creek, direct precipitation, small tributaries and near-lake drainage area, and ground water contributed about 62, 20, 8, 7, and 3 percent of the inflow, respectively. The average annual load of phosphorus to the lake was 2,540 kilograms (kg), of which 1,590 kg came from external sources (63 percent) and 945 kg came from the sediments in the lake (37 percent). Of the total external sources, Butternut Creek, Spiller Creek, small tributaries and near-lake drainage area, septic systems, precipitation, and ground water contributed about 63, 23, 9, 3, 1, and 1 percent, respectively. Because of the high internal phosphorus loading, the eutrophication models used in this study were unable to simulate the observed water-quality characteristics in the lake without incorporating this source of phosphorus. However, when internal loading of phosphorus was added to the BATHTUB model, it accurately simulated the average water-quality characteristics measured in MY 2003 and 2004. Model simulations demonstrated a relatively linear response between in-lake total phosphorus concentrations and external phosphorus loading; however, the changes in concentrations were smaller than the changes in external phosphorus loadings (about 25-40 percent of the change in phosphorus loading). Changes in chlorophyll a concentrations, the percentage of days with algal blooms, and Secchi depths were nonlinear and had a greater response to reductions in phosphorus loading than to increases in phosphorus loading. A 50-percent reduction in external phosphorus loading caused an 18-percent decrease in chlorophyll a concentrations, a 41-percent decrease in the percentage of days with algal blooms, and a 12-percent increase in Secchi depth. When the additional internal phosphorus loading was removed from model simulations, all of these constituents showed a much greater response to changes in external phosphorus loading. Because of Butternut Lake's morphometry, it is polymictic, which means it mixes frequently and does not develop stable thermal stratification throughout the summer. This characteristic makes it more vulnerable than dimictic lakes, which mix in spring and fall and develop stable thermal stratification during summer, to the high internal phosphorus loading that has resulted from historically high, nonnatural, external phosphorus loading. In polymictic lakes, the phosphorus released from the sediments is mixed into the upper part of the lake throughout summer. Once Butternut Lake became hypereutrophic (very p

  8. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  9. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2004-01-01

    The statistical watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes) was used to estimate the sources and transport of total phosphorus (TP) in surface waters of the United States. We calibrated the model using stream measurements of TP from 336 watersheds of mixed land use and spatial data on topography, soils, stream hydrography, and land use (agriculture, forest, shrub/grass, urban). The model explained 87% of the spatial variability in log transformed stream TP flux (kg yr-1). Predictions of stream yield (kg ha-1 yr-1) were typically within 45% of the observed values at the monitoring sites. The model identified appreciable effects of soils, streams, and reservoirs on TP transport, The estimated aquatic rates of phosphorus removal declined with increasing stream size and rates of water flushing in reservoirs (i.e. areal hydraulic loads). A phosphorus budget for the 2.9 million km2 Mississippi River Basin provides a detailed accounting of TP delivery to streams, the removal of TP in surface waters, and the stream export of TP from major interior watersheds for sources associated with each land-use type. ?? US Government 2004.

  10. Management of hypophosphatemia

    NASA Technical Reports Server (NTRS)

    Lloyd, C. W.; Johnson, C. E.

    1988-01-01

    The etiology, clinical presentation, and management of hypophosphatemia are reviewed. Phosphorus is a major intracellular anion and plays an important role in many biochemical pathways relating to normal physiologic functions. Approximately 60 to 90% of the 1 to 1.5 g of daily dietary phosphorus intake is absorbed, and of that amount, about two thirds is excreted in the urine. The overall incidence of hypophosphatemia is about 2 to 3% of all hospitalized patients. Factors associated with hypophosphatemia include phosphate-binding antacid therapy, nasogastric suction, liver disease, sepsis, alcoholism, and acidosis associated with diabetic ketoacidosis. Patients receiving parenteral nutrient solutions were also at higher risk for hypophosphatemia before the routine supplementation of these formulations with phosphate. Patients with hypophosphatemia may be asymptomatic or may experience weakness, malaise, anorexia, bone pain, and respiratory arrest. The major systems involved include the neuromuscular, hematologic, and skeletal systems. Phosphorus-containing products used to treat hypophosphatemia are a combination of monobasic and dibasic phosphate salts. Therefore, it is essential to calculate doses in millimoles rather than milligrams or milliequivalents to more accurately reflect the phosphorus concentration and to avoid potentially serious dosage errors. Normal daily requirements are readily maintained by dietary sources of phosphorus such as milk products or may be supplemented by phosphate-containing products administered orally or intravenously. Since phosphorus is a key factor in many organ systems, it is essential to monitor serum phosphorus concentrations in patients at risk for hypophosphatemia.

  11. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish

    2016-03-01

    The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.

  12. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas.

    PubMed

    Wykoff, D D; Grossman, A R; Weeks, D P; Usuda, H; Shimogawara, K

    1999-12-21

    Understanding the ways in which phosphorus metabolism is regulated in photosynthetic eukaryotes is critical for optimizing crop productivity and managing aquatic ecosystems in which phosphorus can be a major source of pollution. Here we describe a gene encoding a regulator of phosphorus metabolism, designated Psr1 (phosphorus starvation response), from a photosynthetic eukaryote. The Psr1 protein is critical for acclimation of the unicellular green alga Chlamydomonas reinhardtii to phosphorus starvation. The N-terminal half of Psr1 contains a region similar to myb DNA-binding domains and the C-terminal half possesses glutamine-rich sequences characteristic of transcriptional activators. The level of Psr1 increases at least 10-fold upon phosphate starvation, and immunocytochemical studies demonstrate that this protein is nuclear-localized under both nutrient-replete and phosphorus-starvation conditions. Finally, Psr1 and angiosperm proteins have domains that are similar, suggesting a possible role for Psr1 homologs in the control of phosphorus metabolism in vascular plants. With the identification of regulators such as Psr1 it may become possible to engineer photosynthetic organisms for more efficient utilization of phosphorus and to establish better practices for the management of agricultural lands and natural ecosystems.

  13. [The impact of human activities on the dynamics of phosphorus in the environment and its effect on public health].

    PubMed

    de Quevedo, Claudia Maria Gomes; Paganini, Wanderley da Silva

    2011-08-01

    Phosphorus is a nutrient with finite and non-renewable sources, the speed of exploitation of which is currently far higher than the rates of return to its natural cycle. It is already being predicted that available and known sources will soon be exhausted, with serious and irreversible economic, social and environmental impacts. In this context, this study sets out to present information about the dynamics of phosphorus in the environment, assessing the impacts caused by human activities and establishing what actions might contribute to preservation of the nutrient cycle. To contribute to enhanced understanding of the topic, the evolution of data on population density, the number of industries and the extension of cultivated areas in a river basin, was studied over 22 years in relation to concentrations of phosphorus in water and sediment. The Tietê River was used for the case study. The results revealed that the control of domestic effluent, especially the amount of sodium tripolyphosphate (STPP) used in detergents and soap products, is of major importance for improving water quality, ensuring environmental protection and safeguarding public health.

  14. Socio-Hydrological Approach to the Evaluation of Global Fertilizer Substitution by Sustainable Struvite Precipitants from Wastewater

    NASA Astrophysics Data System (ADS)

    Kok, Dirk-Jan Daniel; Pande, Saket; Renata Cordeiro Ortigara, Angela; Savenije, Hubert; Uhlenbrook, Stefan

    2018-02-01

    Despite Africa controlling the vast majority of the global phosphate it also faces the greatest food shortages - partially due to a lack of access to the fertilizer market. A more accessible source of phosphorus comes from wastewater flows, which is currently lost through the discharge to open surface waters. Analysing the potential phosphorus production of urban and livestock wastewater in meeting partial agricultural demand for phosphorus can improve food security, reduce consumption of unrenewable phosphorus, reduce pollution, and aid the transitioning to a circular economy. In this study, a global overview is provided where a selection of P-production and P-consumption sites have been determined using global spatial data. Distances, investment costs and associated carbon footprints are then considered in modelling a simple, alternative trade network of struvite phosphorus flows. The network reveals potential for increasing the phosphorus security through phosphorus recycling in particularly the South Africa, Lake Victoria and Nigeria regions. Given Africa's rapid urbanization, phosphorus recovery from wastewater will prove an important step in creating sustainable communities, protecting the environment while improving food security, and so contributing to the United Nations 2030 Agenda for Sustainable Development.

  15. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  16. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.

  17. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management.

    PubMed

    Li, Tong; Chu, Chunli; Zhang, Yinan; Ju, Meiting; Wang, Yuqiu

    2017-06-29

    Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures.

  18. Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew; Herschy, Barry; Kee, Terence P.

    2015-06-01

    The ubiquity of phosphorus (P) in modern biochemistry suggests that P may have participated in prebiotic chemistry prior to the emergence of life. Of the major biogenic elements, phosphorus alone lacks a substantial volatile phase and its ultimate source therefore had to have been a mineral. However, as most native P minerals are chemically un-reactive within the temperature-pressure-pH regimes of contemporary life, it begs the question as to whether the most primitive early living systems on earth had access to a more chemically reactive P-mineral inventory. The meteoritic mineral schreibersite has been proposed as an important source of reactive P on the early earth. The chemistry of schreibersite as a P source is summarized and reviewed here. Recent work has also shown that reduced oxidation state P compounds were present on the early earth; these compounds lend credence to the relevance of schreibersite as a prebiotic mineral. Ultimately, schreibersite will oxidize to phosphate, but several high-energy P intermediates may have provided the reactive material necessary for incorporating P into prebiotic molecules.

  19. Management of hyperphosphataemia: practices and perspectives amongst the renal care community.

    PubMed

    Nagel, Christina Johanna Maria; Casal, María Cruz; Lindley, Elizabeth; Rogers, Susan; Pancířová, Jitka; Kernc, Jennifer; Copley, J Brian; Fouque, Denis

    2014-12-01

    Protein-rich foods are a major source of dietary phosphorus; therefore, helping patients to increase their dietary protein intake, while simultaneously managing their hyperphosphataemia, poses a significant challenge for renal care professionals. To examine the clinical recommendations and practice perceptions of renal care professionals providing nutrition and phosphate control advice to patients with chronic kidney disease (CKD). Renal care professionals from four European countries completed an online survey on the clinical management of hyperphosphataemia. The majority of responders recommended a protein intake of less than 1.0 g/kg/day for pre-dialysis patients, 1.2 g/kg/day for patients undergoing peritoneal dialysis (PD) and 1.1-1.2 g/kg/day for patients undergoing haemodialysis (HD). The most common perception was that maintaining dietary protein intake and reducing dietary phosphorus intake are equally important for hyperphosphataemia management. For patients in the pre-dialysis stage, the majority of responders (59%) reported that their first-line management recommendation would be reduction of dietary phosphorus. For patients undergoing PD and HD, the majority of responders (53% and 59%, respectively) reported a first-line management recommendation of both reduction of dietary phosphorus and phosphate binder therapy. More renal nurses than dietitians perceived reducing dietary phosphorus to be more important than maintaining protein intake (for patients undergoing PD, 23% vs. 0%, respectively; for patients undergoing HD, 34% vs. 0%, respectively). This renal care community followed professionally accepted guidelines for patient nutrition and management of hyperphosphataemia. There was disparity in the perceptions and recommendations between nurses and dietitians, highlighting the need to standardise management practices amongst renal care professionals. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  20. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    PubMed

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  1. Characterization and source identification of stormwater runoff in tropical urban catchments.

    PubMed

    Chow, M F; Yusop, Z

    2014-01-01

    The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.

  2. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    PubMed

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  3. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management

    PubMed Central

    Li, Tong; Chu, Chunli; Zhang, Yinan; Ju, Meiting; Wang, Yuqiu

    2017-01-01

    Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures. PMID:28661417

  4. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  5. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  6. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi.

    PubMed

    Cao, Xin; Wang, Yiqi; He, Jian; Luo, Xingzhang; Zheng, Zheng

    2016-12-01

    This study was focused on the phosphorus mobility among sediments, water and cyanobacteria in eutrophic Lake Dianchi. Four conditions lake water, water and algae, water and sediments, and three objects together were conducted to investigate the effects of cyanobacteria growth on the migration and transformation of phosphorus. Results showed a persistent correlation between the development of cyanobacterial blooms and the increase of soluble reactive phosphorus (SRP) in the lake water under the condition of three objects together. Time-course assays measuring different forms of phosphorus in sediments indicated that inorganic phosphorus (IP) and NaOH-P were relatively more easier to migrate out of sediment to the water and cyanobacteria. Further studies on phosphorus mobility showed that up to 70.2% of the released phosphorus could be absorbed by cyanobacteria, indicating that sediment is a major source of phosphorus when external loading is reduced. Time-course assays also showed that the development of cyanobacterial blooms promoted an increase in pH and a decrease in the redox potential of the lake water. The structure of the microbial communities in sediments was also significantly changed, revealed a great impaction of cyanobacterial blooms on the microbial communities in sediments, which may contribute to phosphorus release. Our study simulated the cyanobacterial blooms of Lake Dianchi and revealed that the cyanobacterial blooms is a driving force for phosphorus mobility among sediments, water and cyanobacteria. The outbreak of algal blooms caused deterioration in water quality. The P in the sediments represented a significant supply for the growth of cyanobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  8. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  9. Sources and transport of phosphorus to rivers in California and adjacent states, U.S., as determined by SPARROW modeling

    USGS Publications Warehouse

    Domagalski, Joseph L.; Saleh, Dina

    2015-01-01

    The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.

  10. Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon

    NASA Astrophysics Data System (ADS)

    Nazneen, Sadaf; Raju, N. Janardhana

    2017-02-01

    The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia's largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49-3.41) and cores (4-11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58-2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.

  11. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal.

    PubMed

    Neal, Colin; Martin, Ellie; Neal, Margaret; Hallett, John; Wickham, Heather D; Harman, Sarah A; Armstrong, Linda K; Bowes, Mike J; Wade, Andrew J; Keay, David

    2010-10-15

    Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  13. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  14. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area. Water-quality data for Kawaguesaga Lake had a similar pattern to that of Minocqua Lake. Summer average chlorophyll a concentrations and Secchi depths also indicate that the lakes generally are mesotrophic but occasionally borderline eutrophic, with no long-term trends. During the study, major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lakes for monitoring years (MY) 2006 and 2007. During these years, the Minocqua Thoroughfare contributed about 38 percent of the total inflow to the lakes, and Tomahawk Thoroughfare contributed 34 percent; near-lake inflow, precipitation, and groundwater contributed about 1, 16, and 11 percent of the total inflow, respectively. Water leaves the lakes primarily through the Tomahawk River outlet (83 percent) or by evaporation (14 percent), with minor outflow to groundwater. Total input of phosphorus to both lakes was about 3,440 pounds in MY 2006 and 2,200 pounds in MY 2007. The largest sources of phosphorus entering the lakes were the Minocqua and Tomahawk Thoroughfares, which delivered about 39 and 26 percent of the total, respectively. The near-lake drainage area, containing most of the urban and residential developments, disproportionately accounted for about 12 percent of the total phosphorus input but only about 1 percent of the total water input (estimated with WinSLAMM). The next largest contributions were from septic systems and precipitation, each contributing about 10 percent, whereas groundwater delivered about 4 percent of the total phosphorus input. Empirical lake water-quality models within BATHTUB were used to simulate the response of Minocqua and Kawaguesaga Lakes to 19 phosphorus-loading scenarios. These scenarios included the current base years (2006?07) for which lake water quality and loading were known, nine general increases or decreases in phosphorus loading from controllable external sources (inputs from the tributa

  15. Advances in Holocene mountain geomorphology inspired by sediment budget methodology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel

    2003-09-01

    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments and the bioavailability of phosphorus (a key to ecosystem development) is low. Both examples illustrate the importance of variable sediment sources; the seasonality, frequency, and magnitude of sediment transfers; and the profound influence of ice cover over contemporary, neoglacial and Pleistocene time scales. They also signal the value of including both clastic and dissolved components in the sediment budget.

  16. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  17. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    PubMed

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant organic phosphorus decreased in rhizosphere soil. The concentrations of labile and moderate labile organic phosphorus in rhizosphere soil of high P-efficiency wild barley were significantly higher than that of low P-efficiency wild barley in each phosphorus source treatment. However, moderate resistant organic phosphorus and resistant organic phosphorus concentrations had no significant difference between the two genotypes. Wild barley with high P-efficiency demonstrated a greater ability of mobilization and uptake Ca2-P, Ca8-P, Al-P and labile organic phosphorus than that with low P-efficiency under Pi deficiency.

  18. Seasonal Phosphorus Sources and Loads to Upper Klamath Lake, Oregon, as Determined by a Dynamic SPARROW Model

    NASA Astrophysics Data System (ADS)

    Saleh, D.; Domagalski, J. L.; Smith, R. A.

    2016-12-01

    The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.

  19. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  20. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui

    2017-07-01

    Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantitative Conversion of Phytate to Inorganic Phosphorus in Soybean Seeds Expressing a Bacterial Phytase1[OA

    PubMed Central

    Bilyeu, Kristin D.; Zeng, Peiyu; Coello, Patricia; Zhang, Zhanyuan J.; Krishnan, Hari B.; Bailey, April; Beuselinck, Paul R.; Polacco, Joe C.

    2008-01-01

    Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyledons. CAPPA exhibited high levels of phytase expression, ≥90% reduction in seed PA, and concomitant increases in total free phosphate. These traits were stable, and, although resulted in a trend for reduced emergence and a statistically significant reduction in germination rates, had no effect on the number of seeds per plant or seed weight. Because phytate is not digested by monogastric animals, untreated soymeal does not provide monogastrics with sufficient phosphorus and minerals, and PA in the waste stream leads to phosphorus runoff. The expression of a cytoplasmic phytase in the CAPPA line therefore improves phosphorus availability and surpasses gains achieved by other reported transgenic and mutational strategies by combining in seeds both high phytase expression and significant increases in available phosphorus. Thus, in addition to its value as a high-phosphate meal source, soymeal from CAPPA could be used to convert PA of admixed meals, such as cornmeal, directly to utilizable inorganic phosphorus. PMID:18162589

  2. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  3. Hypophosphataemia after major hepatectomy and the risk of post-operative hepatic insufficiency and mortality: an analysis of 719 patients

    PubMed Central

    Squires, Malcolm H; Dann, Gregory C; Lad, Neha L; Fisher, Sarah B; Martin, Benjamin M; Kooby, David A; Sarmiento, Juan M; Russell, Maria C; Cardona, Kenneth; Staley, Charles A; Maithel, Shishir K

    2014-01-01

    Background Hypophosphataemia after a hepatectomy suggests hepatic regeneration. It was hypothesized that the absence of hypophosphataemia is associated with post-operative hepatic insufficiency (PHI) and complications. Methods Patients who underwent a major hepatectomy from 2000–2012 at a single institution were identified. Post-operative serum phosphorus levels were assessed. Primary outcomes were PHI (peak bilirubin >7 mg/dl), major complications, and 30- and 90-day mortality. Results Seven hundred and nineteen out of 749 patients had post-operative phosphorus levels available. PHI and major complications occurred in 63 (8.8%) and 169 (23.5%) patients, respectively. Thirty- and 90-day mortality were 4.0% and 5.4%, respectively. The median phosphorus level on post-operative-day (POD) 2 was 2.2 mg/dl; 231 patients (32.1%) had phosphorus >2.4 on POD2. Patients with POD2 phosphorus >2.4 had a significantly higher incidence of PHI, major complications and mortality. On multivariate analysis, POD2 phosphorus >2.4 remained a significant risk factor for PHI [(hazard ratio HR):1.78; 95% confidence interval (CI):1.02–3.17; P = 0.048], major complications (HR:1.57; 95%CI:1.02–2.47; P = 0.049), 30-day mortality (HR:2.70; 95%CI:1.08–6.76; P = 0.034) and 90-day mortality (HR:2.51; 95%CI:1.03–6.15; P = 0.044). Similarly, patients whose phosphorus level reached nadir after POD3 had higher PHI, major complications and mortality. Conclusion Elevated POD2 phosphorus levels >2.4 mg/dl and a delayed nadir in phosphorus beyond POD3 are associated with increased post-operative hepatic insufficiency, major complications and early mortality. Failure to develop hypophosphataemia within 72 h after a major hepatectomy may reflect insufficient liver remnant regeneration. PMID:24830898

  4. Hypophosphataemia after major hepatectomy and the risk of post-operative hepatic insufficiency and mortality: an analysis of 719 patients.

    PubMed

    Squires, Malcolm H; Dann, Gregory C; Lad, Neha L; Fisher, Sarah B; Martin, Benjamin M; Kooby, David A; Sarmiento, Juan M; Russell, Maria C; Cardona, Kenneth; Staley, Charles A; Maithel, Shishir K

    2014-10-01

    Hypophosphataemia after a hepatectomy suggests hepatic regeneration. It was hypothesized that the absence of hypophosphataemia is associated with post-operative hepatic insufficiency (PHI) and complications. Patients who underwent a major hepatectomy from 2000-2012 at a single institution were identified. Post-operative serum phosphorus levels were assessed. Primary outcomes were PHI (peak bilirubin >7 mg/dl), major complications, and 30- and 90-day mortality. Seven hundred and nineteen out of 749 patients had post-operative phosphorus levels available. PHI and major complications occurred in 63 (8.8%) and 169 (23.5%) patients, respectively. Thirty- and 90-day mortality were 4.0% and 5.4%, respectively. The median phosphorus level on post-operative-day (POD) 2 was 2.2 mg/dl; 231 patients (32.1%) had phosphorus >2.4 on POD2. Patients with POD2 phosphorus >2.4 had a significantly higher incidence of PHI, major complications and mortality. On multivariate analysis, POD2 phosphorus >2.4 remained a significant risk factor for PHI [(hazard ratio HR):1.78; 95% confidence interval (CI):1.02-3.17; P = 0.048], major complications (HR:1.57; 95%CI:1.02-2.47; P = 0.049), 30-day mortality (HR:2.70; 95%CI:1.08-6.76; P = 0.034) and 90-day mortality (HR:2.51; 95%CI:1.03-6.15; P = 0.044). Similarly, patients whose phosphorus level reached nadir after POD3 had higher PHI, major complications and mortality. Elevated POD2 phosphorus levels >2.4 mg/dl and a delayed nadir in phosphorus beyond POD3 are associated with increased post-operative hepatic insufficiency, major complications and early mortality. Failure to develop hypophosphataemia within 72 h after a major hepatectomy may reflect insufficient liver remnant regeneration. © 2014 International Hepato-Pancreato-Biliary Association.

  5. Identification of Geologic and Anthropogenic Sources of Phosphorus to Streams in California and Portions of Adjacent States, U.S.A., Using SPARROW Modeling

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2013-12-01

    The SPARROW (Spatially Referenced Regressions On Watershed Attributes) model allows for the simulation of nutrient transport at un-gauged catchments on a regional scale. The model was used to understand natural and anthropogenic factors affecting phosphorus transport in developed, undeveloped, and mixed watersheds. The SPARROW model is a statistical tool that allows for mass balance calculation of constituent sources, transport, and aquatic decay based upon a calibration of a subset of stream networks, where concentrations and discharge have been measured. Calibration is accomplished using potential sources for a given year and may include fertilizer, geological background (based on bed-sediment samples and aggregated with geochemical map units), point source discharge, and land use categories. NHD Plus version 2 was used to model the hydrologic system. Land to water transport variables tested were precipitation, permeability, soil type, tile drains, and irrigation. For this study area, point sources, cultivated land, and geological background are significant phosphorus sources to streams. Precipitation and clay content of soil are significant land to water transport variables and various stream sizes show significance with respect to aquatic decay. Specific rock types result in different levels of phosphorus loading and watershed yield. Some important geological sources are volcanic rocks (andesite and basalt), granodiorite, glacial deposits, and Mesozoic to Cenozoic marine deposits. Marine sediments vary in their phosphorus content, but are responsible for some of the highest natural phosphorus yields, especially along the Central and Southern California coast. The Miocene Monterey Formation was found to be an especially important local source in southern California. In contrast, mixed metamorphic and igneous assemblages such as argillites, peridotite, and shales of the Trinity Mountains of northern California result in some of the lowest phosphorus yields. The agriculturally productive Central Valley of California has a low amount of background phosphorus in spite of inputs from streams draining upland areas. Many years of intensive agriculture may be responsible for the decrease of soil phosphorus in that area. Watersheds with significant background sources of phosphorus and large amounts of cultivated land had some of the highest per hectare yields. Seven different stream systems important for water management, or to describe transport processes, were investigated in detail for downstream changes in sources and loads. For example, the Klamath River (Oregon and California) has intensive agriculture and andesite-derived phosphorus in the upper reach. The proportion of agricultural-derived phosphorus decreases as the river flows into California before discharge to the ocean. The river flows through at least three different types of geological background sources from high to intermediate to very low. Knowledge of the role of natural sources in developed watersheds is critical for developing nutrient management strategies and these model results will have applicability for the establishment of realistic nutrient criteria.

  6. Studies on the phosphorus requirement and proper calcium/phosphorus ratio in the diet of the black sea bream ( Sparus macrocephalus)

    NASA Astrophysics Data System (ADS)

    Liu, Jingke; Li, Maotang; Wang, Keling; Wang, Xincheng; Liu, Jianking

    1993-06-01

    An expriment on the phosphorus requirement and the proper Ca/P ratio in the diet of the black sea bream using the phosphorus gradient method (with casein as basic diet, sodium dihydrogen phosphate as source of phosphorus, and calcium lactate as source of calcium) showed that growth was greatly affected by the diet's phosphorus content and Ca/P ratio. Inadequate phosphorus in the diet resulted in slow growth and poor food conversion ratio (FCR). Analyses of the fish body showed it contained a high level of lipid but a low level of moisture, ash, calcium and phosphorus. The optimal values of phosphorus and Ca/P ratio in the black sea bream diet are 0.68% and 1∶2 respectively. Phosphorus in excess of this optimum value resulted in slow growth or even death. The results of this experiment clearly indicated that phosphorus is the principal mineral additive affecting black sea bream growth.

  7. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  8. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  10. Climate change impacts on the nutrient losses of two watersheds in the Great Lakes region

    USDA-ARS?s Scientific Manuscript database

    Non-point sources (NPS) of agricultural chemical pollution are one major reason for the degradation of water quality in the Great Lakes. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus) losses from NPS in the Great Lakes region through the end of ...

  11. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    USGS Publications Warehouse

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  12. Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis.

    PubMed

    Cao, Di; Cao, Wenzhi; Fang, Jing; Cai, Longyan

    2014-08-30

    Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0-20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6-15) for red bloom algae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modeling and mitigation of denitrification 'woodchip' bioreactor phosphorus releases during treatment of aquaculture wastewater

    USDA-ARS?s Scientific Manuscript database

    Denitrification 'woodchip' bioreactors designed to remove nitrate from agricultural waters may either be phosphorus sources or sinks. A 24 d batch test showed woodchip leaching is an important source of phosphorus during bioreactor start-up with a leaching potential of approximately 20 -30 mg P per ...

  14. 77 FR 1684 - Imidacloprid, Oxamyl, and Methomyl; Notice of Receipt of Requests to Voluntarily Amend Pesticide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... notice announces receipt by EPA of requests from Bayer CropScience, United Phosphorus, Source Dynamics... Phosphorus, Source Dynamics, Willowood), March 14, 2011 (Sharda USA LLC), March 16, 2011 (Sharda Worldwide..., Raleigh, NC 27609. 70506 United Phosphorus, Inc., 630 Freedom Business Center, Suite 402, King of Prussia...

  15. Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed

    PubMed Central

    Gao, Yongnian; Gao, Junfeng; Chen, Jiongfeng

    2011-01-01

    The study presented in this paper attempts to evaluate the spatial pattern of soil available phosphorus, as well as the relation between soil available phosphorus and environment factors including elevation, slope, precipitation, percentage of cultivated land, percentage of forest land, percentage of construction land and NDVI using statistical methods and GIS spatial analysis techniques. The results showed that the Spline Tension method performed the best in the prediction of soil available phosphorus in the Chaohu Lake watershed. The spatial variation of surface soil available phosphorus was high in Chaohu Lake watershed and the upstream regions around Chaohu Lake, including the west of Chaohu lake (e.g., southwest of Feixi county, east of Shucheng county and north of Lujiang county) and to the north of Chaohu Lake (e.g., south of Hefei city, south of Feidong county, southwest of Juchao district), had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the elevation or slope increased. The cultivated land comprised 60.11% of the watershed and of that land 65.63% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the watershed and a potential source of phosphorus to Chaohu Lake resulting in eutrophication. Among the land use types, paddy fields have some of the highest maximum values and variation of coefficients. Subwatershed scale soil available phosphorus was significantly affected by elevation, slope, precipitation, percentage of cultivated land and percentage of forest land and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application. PMID:21909308

  16. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  17. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  18. Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: evaluating alternative strategies to meet WFD standards.

    PubMed

    Whitehead, P G; Jin, L; Crossman, J; Comber, S; Johnes, P J; Daldorph, P; Flynn, N; Collins, A L; Butterfield, D; Mistry, R; Bardon, R; Pope, L; Willows, R

    2014-05-15

    The issues of diffuse and point source phosphorus (P) pollution in the Hampshire Avon and Blashford Lakes are explored using a catchment model of the river system. A multibranch, process based, dynamic water quality model (INCA-P) has been applied to the whole river system to simulate water fluxes, total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations and ecology. The model has been used to assess impacts of both agricultural runoff and point sources from waste water treatment plants (WWTPs) on water quality. The results show that agriculture contributes approximately 40% of the phosphorus load and point sources the other 60% of the load in this catchment. A set of scenarios have been investigated to assess the impacts of alternative phosphorus reduction strategies and it is shown that a combined strategy of agricultural phosphorus reduction through either fertiliser reductions or better phosphorus management together with improved treatment at WWTPs would reduce the SRP concentrations in the river to acceptable levels to meet the EU Water Framework Directive (WFD) requirements. A seasonal strategy for WWTP phosphorus reductions would achieve significant benefits at reduced cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Influence of Diagenesis on Bioavailable Phosphorus in Lake Mendota, USA

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Armstrong, D.; Lathrop, R.; Penn, M.

    2013-12-01

    Phosphorus (P) is a major driver of productivity in many freshwater systems and in excess P can cause a variety of deleterious effects. Lake Mendota, located in Madison, Wisconsin (USA), is a eutrophic calcareous lake that is influenced by both urban and agricultural sources. As measures have been implemented to control point and non-point source pollution, internal sources, including release by sediments, has become more important. We collected multiple sediment cores from seven depositional basins to determine how diagenesis is influencing the bioavailability of sediment P. Cores were sliced in 1-cm intervals and analyzed for total P (TP), various P fractions, total metals, and multiple stable isotopes. While the average amount of total P that was bioavailable was 64.8%, the range noted was 39.2% to 88.6%. Spatial differences existed among the cores when comparing TP and bioavailable P among the cores. Depth profiles elucidated temporal differences as occasional increases in TP with depth were noted. These increases were found to contain a higher percent of bioavailable P. This variation was explored to determine if it resulted from differences in source material, for example inorganic P formed by diagenesis of organic P (algal derived) rather than soil P from external inputs. Saturation index modeling using MINEQL+ suggests that phosphorus concentrations in Lake Mendota pore waters are influenced by precipitation of vivianite (Fe3(PO4)2●8H2O) and certain calcium phosphates. However, hydroxyl apatite (Ca5(PO4)3(OH)), was highly supersaturated, indicating that precipitation of hydroxyl apatite is hindered and not important in controlling phosphate concentrations in these sediments. Yet even more important than precipitation reactions, adsorption/desorption characteristics of P seem to play a major role in P bioavailability. Sediment 210Pb and 137Cs activity profiles indicate differences exist among sedimentation rates for the various depositional sites in Lake Mendota. Implications for the modeling of P cycling and changes in internal loading following external P reduction in lakes will be discussed.

  20. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  1. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework.

    PubMed

    Mockler, Eva M; Deakin, Jenny; Archbold, Marie; Gill, Laurence; Daly, Donal; Bruen, Michael

    2017-12-01

    More than half of surface water bodies in Europe are at less than good ecological status according to Water Framework Directive assessments, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. Agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water. However, additional measures may be required in Ireland to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given on-going agricultural intensification. The Source Load Apportionment Model (SLAM) framework characterises sources of phosphorus (P) and nitrogen (N) emissions to water at a range of scales from sub-catchment to national. The SLAM synthesises land use and physical characteristics to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, etc.). The predicted annual nutrient emissions were assessed against monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that total average annual emissions to surface water in Ireland are over 2700tyr -1 of P and 82,000tyr -1 of N. The proportional contributions from individual sources show that the main sources of P are from municipal wastewater treatment plants and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. These policy-relevant results synthesised large amounts of information in order to identify the dominant sources of nutrients at regional and local scales, contributing to the national nutrient risk assessment of Irish water bodies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  3. Comparative phosphorus sorption by marine sediments and agricultural soils in a tropical environment.

    PubMed

    Fox, Robert L; Fares, Ali; Wan, Y; Evensen, Carl I

    2006-01-01

    The influence of soil phosphorus (P) sources on P sorption characteristics of marine sediments was investigated for Pearl Harbor and off shore Molokai in Hawaii. Estuary sediments were sampled in seven locations; these represented different soils and on-shore activities. The soil samples included nine major soils that contributed sediment to the Harbor and coastal sediments near the island of Molokai. Sediment and soil samples were equilibrated for 6 days in 0.01 M CaCl(2) solution and synthetic seawater containing differing amounts of P. Phosphorus sorption curves were constructed. The equilibrated solution P, with no P added, ranged from 0.01 to 0.2 mg L(-1); P sorption by sediments at standard solution concentration 0.2 mg L(-1), ranged from 0 to 230 mg kg(-1). Sediment P sorption corresponded closely with soil sorption characteristics. Soils contributing sediments to the west reach of Pearl Harbor are highly weathered Oxisols with high standard P sorption values while those in the southeast of the Harbor were Vertisols and Mollisols which sorb little P. The influence of source materials on sediment P sorption was also observed for off-shore sediments near Molokai. Sediments serve as both source and sink for P in Pearl Harbor and in this role can be a stabilizing influence on P concentration in the water column. Phosphorus sorption curves in conjunction with water quality data can help to understand P dynamics between sediments and the water column and help evaluate concerns about P loading to a water body. For Pearl Harbor, solution P in equilibrium with sediments from the Lochs was 0.021 mg L(-1); a value unlikely to produce an algal bloom. (Measured total P in the water columns (mean) was 0.060.).

  4. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    NASA Astrophysics Data System (ADS)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  5. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease.

    PubMed

    Moe, Sharon M; Zidehsarai, Miriam P; Chambers, Mary A; Jackman, Lisa A; Radcliffe, J Scott; Trevino, Laurie L; Donahue, Susan E; Asplin, John R

    2011-02-01

    Patients with advanced chronic kidney disease (CKD) are in positive phosphorus balance, but phosphorus levels are maintained in the normal range through phosphaturia induced by increases in fibroblast growth factor-23 (FGF23) and parathyroid hormone (PTH). This provides the rationale for recommendations to restrict dietary phosphate intake to 800 mg/d. However, the protein source of the phosphate may also be important. We conducted a crossover trial in nine patients with a mean estimated GFR of 32 ml/min to directly compare vegetarian and meat diets with equivalent nutrients prepared by clinical research staff. During the last 24 hours of each 7-day diet period, subjects were hospitalized in a research center and urine and blood were frequently monitored. The results indicated that 1 week of a vegetarian diet led to lower serum phosphorus levels and decreased FGF23 levels. The inpatient stay demonstrated similar diurnal variation for blood phosphorus, calcium, PTH, and urine fractional excretion of phosphorus but significant differences between the vegetarian and meat diets. Finally, the 24-hour fractional excretion of phosphorus was highly correlated to a 2-hour fasting urine collection for the vegetarian diet but not the meat diet. In summary, this study demonstrates that the source of protein has a significant effect on phosphorus homeostasis in patients with CKD. Therefore, dietary counseling of patients with CKD must include information on not only the amount of phosphate but also the source of protein from which the phosphate derives.

  6. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  7. Spatial variation in basic chemistry of streams draining a volcanic landscape on Costa Rica's Caribbean slope

    USGS Publications Warehouse

    Pringle, C.M.; Triska, F.J.; Browder, G.

    1990-01-01

    Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.

  8. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of an Environmental Decision Support System to a Water Quality Trading Program Affected by Surface Water Diversions

    NASA Astrophysics Data System (ADS)

    Obropta, Christopher C.; Niazi, Mehran; Kardos, Josef S.

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  10. Recovery of phosphorus compounds from thermally-processed wastes

    NASA Astrophysics Data System (ADS)

    Czechowska-Kosacka, A.; Pawłowski, L.; Niedbala, G.; Cel, W.

    2018-05-01

    Depletion of phosphorus deposits is one of the most serious global problems, which may soon lead to a crisis in food production. It is estimated that if the current living standard is maintained, the available reserves will be depleted in 130 years. Considering the principle of sustainable development, searching for alternative phosphorus sources is extremely important. The work presented the results of the research on the possibility of utilizing wastes as a source of phosphorus. The studies were conducted on poultry manure. The physicochemical properties of phosporus-rich wastes were determined as well. The fertilizing properties of ashes from poultry manure combustion – obtained from different systems, i.e. caged and barn production. The assimilability of phosphorus from the obtained ashes was determined. Potential applications of phosphorus-rich ashes were proposed as well.

  11. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    NASA Astrophysics Data System (ADS)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree growth but the highest ectomycorrhizal growth. Apatite amendment (a phosphorus source) increased fungal in-growth in the serpentinite sites, but had no effect on the other (not P-limited) sites, while hornblende and biotite had no effect on fungal in-growth on any sites. Mineral amendments in the mesh bags had a small but significant effect on fungal community composition; this effect was strongest in apatite-amended bags and on serpentinite sites. Fungal species-specific responses to different mineral amendments were also observed. These results indicate that the parent material from which a soil is formed has a major effect on the soil fungal community, and that ectomycorrhizal communities may respond to the phosphorus limitation of their host trees by increased colonization of phosphorus-containing minerals. In contrast, this response to nutrient limitation does not appear to exist for potassium or magnesium limitation.

  12. Phosphorus cycling in the Early Aptian

    NASA Astrophysics Data System (ADS)

    Oakes, R.; Dittrich, M.; Wortmann, U. G.

    2012-12-01

    Phosphorus is an essential nutrient for living organisms. It is vital for the formation of ATP, the energy store in cells, and is needed for DNA synthesis. Seawater phosphorus concentration therefore plays a critical role in controlling marine productivity on geological timescales. The majority of research on the P cycle focuses on modern lacustrine and marine settings. This follows the necessity to gain a further understanding on the effects of agricultural fertilisers on nutrient cycling; in particular on the mechanisms which lead to eutrophication. These studies use sequential extraction to determine the speciation of P. The results suggest that bottom sediments can act as both a source and a sink of phosphorus; the role they assume depends on range of factors including bottom water oxygen concentrations, sedimentation rate and the concentration of iron. This study applies a sequential extraction method developed in modern sediments to sediments from the Early Cretaceous, specifically the Early Aptian. During this time, globally synchronous oceanic anoxic events (OAE's) appear in the rock record. It has been suggested that these events represent an increase in marine productivity combined with bottom water anoxia. Our study investigates whether the speciation of sedimentary phosphorus can be used to reconstruct P cycling at this time. Our samples are taken from pre-, syn- and post-OAE1a but are not from the organic matter rich layers. Our results show that the original fractions of phosphorus have been altered during diagenesis with the majority of phosphorus now being preserved as either apatite (Ca-P) or phosphorus in organic matter (Porg). The dominance of Ca-P is expected as it is thought that redox-sensitive forms of P undergo 'sink switching' during diagenesis and are preserved as Ca-P. The high concentration of Porg however, differs from previous studies which generally find that Ca-P or iron (oxyhydr)oxide associated phosphorus (Fe-P) are dominant depending on deposition conditions. We find that during the anoxic event Ca-P preservation is enhanced, a trend which is not mirrored by an increase in total phosphorus concentration. This suggests that the formation of authigenic apatite via sink switching may have been enhanced during OAE1a. This agrees with the findings of a modern field and lab based study which proposes that more P is fixed than regenerated under anoxic conditions but contradicts earlier studies which suggest that more P will be refluxed from sediments under anoxic bottom-water conditions.

  13. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China.

    PubMed

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  14. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  15. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease

    PubMed Central

    Zidehsarai, Miriam P.; Chambers, Mary A.; Jackman, Lisa A.; Radcliffe, J. Scott; Trevino, Laurie L.; Donahue, Susan E.; Asplin, John R.

    2011-01-01

    Summary Background and objectives Patients with advanced chronic kidney disease (CKD) are in positive phosphorus balance, but phosphorus levels are maintained in the normal range through phosphaturia induced by increases in fibroblast growth factor-23 (FGF23) and parathyroid hormone (PTH). This provides the rationale for recommendations to restrict dietary phosphate intake to 800 mg/d. However, the protein source of the phosphate may also be important. Design, setting, participants, & measurements We conducted a crossover trial in nine patients with a mean estimated GFR of 32 ml/min to directly compare vegetarian and meat diets with equivalent nutrients prepared by clinical research staff. During the last 24 hours of each 7-day diet period, subjects were hospitalized in a research center and urine and blood were frequently monitored. Results The results indicated that 1 week of a vegetarian diet led to lower serum phosphorus levels and decreased FGF23 levels. The inpatient stay demonstrated similar diurnal variation for blood phosphorus, calcium, PTH, and urine fractional excretion of phosphorus but significant differences between the vegetarian and meat diets. Finally, the 24-hour fractional excretion of phosphorus was highly correlated to a 2-hour fasting urine collection for the vegetarian diet but not the meat diet. Conclusions In summary, this study demonstrates that the source of protein has a significant effect on phosphorus homeostasis in patients with CKD. Therefore, dietary counseling of patients with CKD must include information on not only the amount of phosphate but also the source of protein from which the phosphate derives. PMID:21183586

  16. MONITORING AND SOURCE APPORTIONMENT OF PARTICULATE MATTER NEAR A LARGE PHOSPHORUS PRODUCTION FACILITY

    EPA Science Inventory

    A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standard for 24-h PM10. Ambient data were collected at three monitoring sites from October 1996 through Ju...

  17. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  18. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate.

  19. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.

  20. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  1. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot

    PubMed Central

    Lambers, Hans; Ahmedi, Idriss; Berkowitz, Oliver; Dunne, Chris; Finnegan, Patrick M.; Hardy, Giles E. St J.; Jost, Ricarda; Laliberté, Etienne; Pearse, Stuart J.; Teste, François P.

    2013-01-01

    South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil. PMID:27293594

  2. Effects of Land Use Land Cover (LULC) and Climate on Simulation of Phosphorus loading in the Southeast United States Region

    NASA Astrophysics Data System (ADS)

    Jima, T. G.; Roberts, A.

    2013-12-01

    Quality of coastal and freshwater resources in the Southeastern United States is threatened due to Eutrophication as a result of excessive nutrients, and phosphorus is acknowledged as one of the major limiting nutrients. In areas with much non-point source (NPS) pollution, land use land cover and climate have been found to have significant impact on water quality. Landscape metrics applied in catchment and riparian stream based nutrient export models are known to significantly improve nutrient prediction. The regional SPARROW (Spatially Referenced Regression On Watershed attributes), which predicts Total Phosphorus has been developed by the Southeastern United States regions USGS, as part of the National Water Quality Assessment (NAWQA) program and the model accuracy was found to be 67%. However, landscape composition and configuration metrics which play a significant role in the source, transport and delivery of the nutrient have not been incorporated in the model. Including these matrices in the models parameterization will improve the models accuracy and improve decision making process for mitigating and managing NPS phosphorus in the region. The National Land Cover Data 2001 raster data will be used (since the base line is 2002) for the region (with 8321 watersheds ) with fragstats 4.1 and ArcGIS Desktop 10.1 for the analysis of landscape matrices, buffers and creating map layers. The result will be imported to the Southeast SPARROW model and will be analyzed. Resulting statistical significance and model accuracy will be assessed and predictions for those areas with no water quality monitoring station will be made.

  3. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot.

    PubMed

    Lambers, Hans; Ahmedi, Idriss; Berkowitz, Oliver; Dunne, Chris; Finnegan, Patrick M; Hardy, Giles E St J; Jost, Ricarda; Laliberté, Etienne; Pearse, Stuart J; Teste, François P

    2013-01-01

    South-western Australia harbours a global biodiversity hotspot on the world's most phosphorus (P)-impoverished soils. The greatest biodiversity occurs on the most severely nutrient-impoverished soils, where non-mycorrhizal species are a prominent component of the flora. Mycorrhizal species dominate where soils contain slightly more phosphorus. In addition to habitat loss and dryland salinity, a major threat to plant biodiversity in this region is eutrophication due to enrichment with P. Many plant species in the south-western Australian biodiversity hotspot are extremely sensitive to P, due to a low capability to down-regulate their phosphate-uptake capacity. Species from the most P-impoverished soils are also very poor competitors at higher P availability, giving way to more competitive species when soil P concentrations are increased. Sources of increased soil P concentrations include increased fire frequency, run-off from agricultural land, and urban activities. Another P source is the P-fertilizing effect of spraying natural environments on a landscape scale with phosphite to reduce the impacts of the introduced plant pathogen Phytophthora cinnamomi, which itself is a serious threat to biodiversity. We argue that alternatives to phosphite for P. cinnamomi management are needed urgently, and propose a strategy to work towards such alternatives, based on a sound understanding of the physiological and molecular mechanisms of the action of phosphite in plants that are susceptible to P. cinnamomi. The threats we describe for the south-western Australian biodiversity hotspot are likely to be very similar for other P-impoverished environments, including the fynbos in South Africa and the cerrado in Brazil.

  4. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  5. Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.

    PubMed

    Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas

    2013-02-01

    This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.

  6. Nutrient and Suspended-Sediment Trends in the Missouri River Basin, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Clark, Melanie L.; Rus, David L.; Zelt, Ronald B.; Flynn, Jennifer L.; Davis, Jerri V.

    2007-01-01

    Trends in streamflow and concentration of total nitrogen, nitrite plus nitrate, ammonia, total phosphorus, orthophosphorus, and suspended sediment were determined for the period from 1993 to 2003 at selected stream sites in the Missouri River Basin. Flow-adjusted trends in concentration (the trends that would have occurred in the absence of natural changes in streamflow) and non-flow-adjusted trends in concentration (the overall trends resulting from natural and human factors) were determined. In the analysis of flow-adjusted trends, the removal of streamflow as a variable affecting concentration allowed trends caused by other factors such as implementation of best management practices to be identified. In the analysis of non-flow-adjusted trends, the inclusion of any and all factors affecting concentration allowed trends affecting aquatic ecosystems and the status of streams relative to water-quality standards to be identified. Relations between the flow-adjusted and non-flow-adjusted trends and changes in streamflow, nutrient sources, ground-water inputs, and implementation of management practices also were examined to determine the major factors affecting the trends. From 1993 to 2003, widespread downward trends in streamflow indicated that drought conditions from about 2000 to 2003 led to decreasing streamflow throughout much of the Missouri River Basin. Flow-adjusted trends in nitrite plus nitrate and ammonia concentrations were split nearly equally between nonsignificant and downward; at about one-half of the sites, management practices likely were contributing to measurable decreases in concentrations of nitrite plus nitrate and ammonia. Management practices had less of an effect on concentrations of total nitrogen; downward flow-adjusted trends in total nitrogen concentrations occurred at only 2 of 19 sites. The pattern of non-flow-adjusted trends in nitrite plus nitrate concentrations was similar to the pattern of flow-adjusted trends; non-flow-adjusted trends were split nearly equally between nonsignificant and downward. A substantial source of nitrite plus nitrate to these streams likely was ground water; because of the time required for ground water to travel to streams, there may have been a lag time between the implementation of some pollution-control strategies and improvement in stream quality, contributing to the nonsignificant trends in nitrite plus nitrate. There were more sites with downward non-flow-adjusted trends than flow-adjusted trends in both ammonia and total nitrogen concentrations, possibly a result of decreased surface runoff from nonpoint sources associated with the downward trends in streamflow. No strong relations between any of the nitrogen trends and changes in nutrient sources or landscape characteristics were identified. Although there were very few upward trends in nitrogen from 1993 to 2003, there were upward flow-adjusted trends in total phosphorus concentrations at nearly one-half of the sites. At these sites, not only were pollution-control strategies not contributing to measurable decreases in total phosphorus concentrations, there was likely an increase in phosphorus loading on the land surface. There were fewer upward non-flow-adjusted than flow-adjusted trends in total phosphorus concentrations; at the majority of sites, overall total phosphorus concentrations did not change significantly during this period. The preponderance of upward flow-adjusted trends and nonsignificant non-flow-adjusted trends indicates that in some areas of the Missouri River Basin, overall concentrations of total phosphorus would have been higher without the decrease in streamflow and the associated decrease in surface runoff during the study period. During the study period, phosphorus loads from fertilizer generally increased at over one-half of the sites in the basin. Upward flow-adjusted trends were related to increasing fertilizer use in the upstream drainage area, particularly in the 10 percent

  7. Indicators: Phosphorus

    EPA Pesticide Factsheets

    Phosphorus, like nitrogen, is a critical nutrient required for all life. Phosphate (PO4), which plays major roles in the formation of DNA, cellular energy, and cell membranes (and plant cell walls). Too much phosphorus can create water quality problems.

  8. Re-examining the phosphorus-protein dilemma: Does phosphorus restriction compromise protein status?

    PubMed Central

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary-Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2015-01-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis (HD) patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in HD patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Further, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives; (2) food preparation method; and (3) bioavailability of phosphorus; which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally-equivalent foods that are lower in bioavailable phosphorus. PMID:26873260

  9. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  10. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin upstream from Dayton. An evaluation of monthly mean loads shows that nutrient loads were highest during winter 1999 and lowest during the drought of summer and autumn 1999. During the 1999 drought, point sources were the primary contributors of nitrogen and phosphorus loads to most of the study area. Nonpoint sources, however, were the primary contributors of nitrogen and phosphorus loads during months of high streamflow. Nonpoint sources were also the primary contributors of nitrogen loads to the Mad River during the 1999 drought, owing to unusually large amounts of ground-water discharge to the stream. The Stillwater River Basin had the highest nutrient yields in the study area during months of high streamflow; however, the Mad River Basin had the highest yields of all nutrients except ammonia during the months of the 1999 drought. The high wet-weather yields in the Stillwater River Basin were caused by agricultural runoff, whereas high yields in the Mad River Basin during drought resulted from the large, sustained contribution of ground water to streamflow throughout the year. In the basins upstream from Dayton, an estimated 19 to 25 percent of the nonpoint source of nitrogen and 4 to 5 percent of the nonpoint source of phosphorus that was deposited or applied to the land was transported into streams.

  11. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  12. A 3D parameterization of nutrients atmospheric deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Nenes, A.; Baker, A. R.; Mihalopoulos, N.; Kanakidou, M.

    2016-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (such as iron and phosphorus) to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. The global atmospheric iron (Fe) and phosphorus (P) cycles are here parameterized in a global 3-D chemical transport model. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings and model results are evaluated by comparison with available observations. The effect of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The link between the soluble Fe and P atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified.

  13. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  14. Emerging technologies to remove nonpoint phosphorus sources from surface water and groundwater

    USDA-ARS?s Scientific Manuscript database

    New innovative remediation practices are currently being developed that address phosphorus transfers from soils and applied sources to surface and ground waters. These practices include reactive barriers placed along field ditches and drainage ways, retention filters at the end of tile drains, mater...

  15. Nitrifying aerobic granular sludge fermentation for releases of carbon source and phosphorus: The role of fermentation pH.

    PubMed

    Zou, Jinte; Pan, Jiyang; He, Hangtian; Wu, Shuyun; Xiao, Naidong; Ni, Yongjiong; Li, Jun

    2018-07-01

    The effect of fermentation pH (uncontrolled, 4 and 10) on the releases of carbon source and phosphorus from nitrifying aerobic granular sludge (N-AGS) was investigated. Meanwhile, metal ion concentration and microbial community characterization were explored during N-AGS fermentation. The results indicated that N-AGS fermentation at pH 10 significantly promoted the releases of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs). However, SCOD and TVFA released from N-AGS were inhibited at pH 4. Moreover, acidic condition promoted phosphorus release (mainly apatite) from N-AGS during anaerobic fermentation. Nevertheless, alkaline condition failed to increase phosphorus concentration due to the formation of chemical-phosphate precipitates. Compared with the previously reported flocculent sludge fermentation, N-AGS fermentation released more SCOD and TVFAs, possibly due to the greater extracellular polymeric substances content and some hydrolytic-acidogenic bacteria in N-AGS. Therefore, N-AGS alkaline fermentation facilitated the carbon source recovery, while N-AGS acidic fermentation benefited the phosphorus recovery. Copyright © 2018. Published by Elsevier Ltd.

  16. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality

    USGS Publications Warehouse

    Litke, David W.

    1999-01-01

    Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.

  17. An in-situ phosphorus source for the synthesis of Cu 3P and the subsequent conversion to Cu 3PS 4 nanoparticle clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheets, Erik J.; Stach, Eric A.; Yang, Wei -Chang

    2015-09-20

    The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I-V-VI chalcogenides including copper phosphide (Cu 3P) and copper thiophosphate (Cu 3PS 4). Herein, we report a one-pot, solution-based synthesis of Cu 3P nanocrystals utilizing an in-situ phosphorus source: phosphorus pentasulfide (P 2S 5) in trioctylphosphine (TOP). By injecting this phosphorus source into a copper solution in oleylamine (OLA), uniform and size controlled Cu 3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cumore » 3P nanocrystals with decomposing thiourea forms nanoscale Cu 3PS 4 particles having p-type conductivity and an effective optical band gap of 2.36 eV.« less

  18. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    PubMed

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  19. Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach.

    PubMed

    Mörth, Carl-Magnus; Humborg, Christoph; Eriksson, Hanna; Danielsson, Asa; Medina, Miguel Rodriguez; Löfgren, Stefan; Swaney, Dennis P; Rahm, Lars

    2007-04-01

    We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.

  20. Phosphorus Availability, Phytoplankton Community Dynamics, and Taxon-Specific Phosphorus Status in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Labiosa, R. G.; Calhoun, M.; Street, J. H.; Post, A. F.; Paytan, A.

    2006-12-01

    The relationships among phytoplankton taxon-specific phosphorus-status, phytoplankton community composition, and nutrient levels were assessed over three seasons in the Gulf of Aqaba, Red Sea. During summer and fall, stratified surface waters were depleted of nutrients and picophytoplankton populations comprised the majority of cells (80% and 88% respectively). In winter, surface nutrient concentrations were higher and larger phytoplankton were more abundant (63%). Cell specific alkaline phosphatase activity (APA) derived from enzyme labeled fluorescence was consistently low (less than 5%) in the picophytoplankton throughout the year, whereas larger cells expressed elevated APA during the summer and fall but less in the winter. A nutrient addition bioassay during the fall showed that, relative to control, APA was reduced by half in larger cells following addition of orthophosphate, whereas the APA of picophytoplankton remained low (less than 1%) across all treatments and the control. These results indicate that the most abundant phytoplankton are not limited by orthophosphate and only some subpopulations (particularly of larger cells) exhibit orthophosphate-limitation throughout the year. Our results indicate that orthophosphate availability influences phytoplankton ecology, correlating with shifts in phytoplankton community structure and the nutrient status of individual cells. The role of dissolved organic phosphorus as an important phosphorus source for marine phytoplankton in oligotrophic settings and the need for evaluating nutrient limitation at the taxa and/or single cell level (rather than inferring it from nutrient concentrations and ratios or bulk enzyme activity measurements) are highlighted.

  1. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  3. Changes phosphorus associated to phosphatase activity because of application of carbon, nitrogen and manure

    NASA Astrophysics Data System (ADS)

    Paredes, Cecilia; Gianfreda, Liliana; Mora, María de la Luz

    2015-04-01

    The Chilean Andisols are of great importance in the economy of southern Chile supporting the bulk of agricultural production. The major characteristics of Chilean volcanic soils are the high adsorption capacity of P with a concomitant low P availability to plants. Studies preliminary using dairy cattle dung suggest that we can improve P availability using organic P sources within the soil because of microorganism. Phosphorous solubilization by microorganisms is a complex phenomenon, which depends on many factors such as nutritional, physiological and growth condition of the culture. The principal mechanism for mineral phosphate solubilization is the production of organic acids where the enzyme phosphatases play a major role in the mineralization of organic phosphorous in soil. The objective of this study was to evaluate changes in soil phosphorus fractions due to application the cattle dung, glucose, nitrogen (N) and phosphorus (P). In this experiment we incubated soil samples with 300 g of cattle dung, 30 mg kg-1 of N and P and 1000 mg glucose kg-1. The soil samples were moistened to field capacity and incubated in plastic bags to room temperature by different time. The changes in P forms in soil were monitored through the Hedley fractionation procedure and phosphatase activity. Our preliminary results indicated that the application of cattle dung, glucose nitrogen and phosphorus, caused the increased phosphatase activity until to 7 days and then apparently return to normal values. Interestingly, we observed a rise in the inorganic P fraction extracted by NaHCO3 in the same period. In summary, the increase biological activity by carbon and nitrogen increase P availability. Acknowledgements: The authors thank Fondecyt 1141247 Project.

  4. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics

    NASA Astrophysics Data System (ADS)

    Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan

    2016-04-01

    Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.

  5. Analyzing the distribution of hydrogeomorphic characteristics across Pennsylvania as a precursor to Phosphorus Index modifications

    USDA-ARS?s Scientific Manuscript database

    Phosphorus site assessment is used nationally and internationally to assess the vulnerability of agricultural fields to phosphorus (P) loss and identify “critical source areas” controlling watershed P export. Current efforts to update P site assessment tools must ensure that the tools are representa...

  6. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  7. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems

    PubMed Central

    Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong

    2017-01-01

    There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157

  8. Origin and Fate of Phosphorus In The Seine River Watershed

    NASA Astrophysics Data System (ADS)

    Némery, J.; Garnier, J.; Billen, G.; Meybeck, M.; Morel, C.

    In the large man impacted river systems, like the Seine basin, phosphorus originates from both diffuse sources, i.e. runoff on agricultural soils and point sources generally well localised and quantified, i.e. industrial and domestic sewage. On the basis of our biogeochemical model of the Seine river ecological functioning (RIVERSTRAHLER: Billen et al., 1994; Garnier et al., 1995), a reduction of eutrophication and a better oxygenation of the larger streamorders could only be obtained by reducing P-point sources by 80 %. We are considering here P-sources, pathways and budgets through a nested approach from the Blaise sub-basin (600 km2, cattle breeding), the Grand Morin (1200 km, agricultural), the Marne (12 000 km, agricultural/urbanized) and the whole Seine catchment (65 000 km2, 17 M inhabitants). Particulate P mobility is also studied by the 32P isotopic exchange method developed in agronomy (Fardeau, 1993; Morel, 1995). The progressive reduction of polyphosphate content in washing powders and phosphorus retention in sewage treatment plants over the last ten years has led to a marked relative decrease of P point sources with regards to the diffuse ones, particularly for Paris megacity (10 M inhabitants). Major P inputs on the Marne basin are fertilizers (17 000 106 g P y-1) and 400 106 g P y-1 for treated wastewaters. Riverine output (900 106 g P y-1) is 1/3 associated to suspended matter (TSS) and is 2/3 as P-PO43-. Most fertilizer P is therefore retained on soils and exported in food supply. First results on P mobility show an important proportion of potentially remobilised P from TSS used for phytoplankton development (streamorder 5 to 8) and from deposited sediment used by macrophytes (streamorder 2 to 5). These kinetics of P exchange will improve the P sub-model in the whole basin ecological model.

  9. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.

    PubMed

    Ngatia, L W; Hsieh, Y P; Nemours, D; Fu, R; Taylor, R W

    2017-08-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in turn influence the phosphorus sorption optimization. Biochar was produced from switchgrass, kudzu and Chinese tallow at 200, 300, 400, 500, 550, 650,750 °C. Carbon thermal stability was determined by multi-element scanning thermal analysis (MESTA), C composition was determined using solid state 13 C NMR. Phosphorus sorption was determined using a mixture of 10% biochar and 90% sandy soil after incubation. Results indicate increased P sorption (P < 0.0001) and decreased P availability (P < 0.0001) with increasing biochar pyrolysis temperature. However, optimum P sorption was feedstock specific with switchgrass indicating P desorption between 200 and 550 °C. Phosphorus sorption was in the order of kudzu > switchgrass > Chinese tallow. Total C, C thermal stability, aromatic C and alkalinity increased with elevated pyrolysis temperature. Biochar alkalinity favored P sorption. There was a positive relationship between high thermal stable C and P sorption for Kudzu (r = 0.62; P = 0.0346) and Chinese tallow (r = 0.73; P = 0.0138). In conclusion, biochar has potential for P eutrophication mitigation, however, optimum biochar pyrolysis temperature for P sorption is feedstock specific and in some cases might be out of 300-500 °C temperature range commonly used for agronomic application. High thermal stable C dominated by aromatic C and alkaline pH seem to favor P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  11. Rethinking early Earth phosphorus geochemistry.

    PubMed

    Pasek, Matthew A

    2008-01-22

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.

  12. Effects of land use on water quality and transport of selected constituents in streams in Mecklenburg County, North Carolina, 1994–98

    USGS Publications Warehouse

    Ferrell, Gloria M.

    2001-01-01

    Transport rates for total solids, total nitrogen, total phosphorus, biochemical oxygen demand, chromium, copper, lead, nickel, and zinc during 1994–98 were computed for six stormwater-monitoring sites in Mecklenburg County, North Carolina. These six stormwater-monitoring sites were operated by the Mecklenburg County Department of Environmental Protection, in cooperation with the City of Charlotte, and are located near the mouths of major streams. Constituent transport at the six study sites generally was dominated by nonpoint sources, except for nitrogen and phosphorus at two sites located downstream from the outfalls of major municipal wastewater-treatment plants.To relate land use to constituent transport, regression equations to predict constituent yield were developed by using water-quality data from a previous study of nine stormwater-monitoring sites on small streams in Mecklenburg County. The drainage basins of these nine stormwater sites have relatively homogeneous land-use characteristics compared to the six study sites. Mean annual construction activity, based on building permit files, was estimated for all stormwater-monitoring sites and included as an explanatory variable in the regression equations. These regression equations were used to predict constituent yield for the six study sites. Predicted yields generally were in agreement with computed yields. In addition, yields were predicted by using regression equations derived from a national urban water-quality database. Yields predicted from the regional regression equations generally were about an order of magnitude lower than computed yields.Regression analysis indicated that construction activity was a major contributor to transport of the constituents evaluated in this study except for total nitrogen and biochemical oxygen demand. Transport of total nitrogen and biochemical oxygen demand was dominated by point-source contributions. The two study basins that had the largest amounts of construction activity also had the highest total solids yields (1,300 and 1,500 tons per square mile per year). The highest total phosphorus yields (3.2 and 1.7 tons per square mile per year) attributable to nonpoint sources also occurred in these basins. Concentrations of chromium, copper, lead, nickel, and zinc were positively correlated with total solids concentrations at most of the study sites (Pearson product-moment correlation >0.50). The site having the highest median concentrations of chromium, copper, and nickel also was the site having the highest computed yield for total solids.

  13. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    USGS Publications Warehouse

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the Pleistocene terrace deposits in Memphis, Tennessee, were oxic, and the maximum nitrate concentration measured was 6.2 milligrams per liter. Additionally, soils overlying the Holocene alluvium and Pleistocene valley trains, generally in areas near the wells, had lower infiltration rates and higher percentages of clay than soils overlying the shallow Tertiary and Pleistocene terrace deposits wells. Differences in these soil properties were associated with differences in the occurrence of pesticides. Pesticides were most commonly detected in samples from wells in the Pleistocene terrace deposits, which generally had the highest infiltration rates and lowest clay content. Median dissolved phosphorus concentrations were 0.07, 0.11, and 0.65 milligram per liter in samples from the shallow Tertiary, Pleistocene valley trains, and Holocene alluvium, respectively. The widespread occurrence of dissolved phosphorus at concentrations greater than 0.02 milligram per liter suggests either a natural source in the soils or aquifer sediments, or nonpoint sources such as fertilizer and animal waste or a combination of natural and human sources. Although phosphorus concentrations in samples from the Holocene alluvium were weakly correlated to concentrations of several inorganic constituents, elevated concentrations of phosphorus could not be attributed to a specific source. Phosphorus concentrations generally were highest where samples indicated anoxic and reducing conditions in the aquifers. Elevated dissolved phosphorus concentrations in base-flow samples from two streams in the study area suggest that transport of phosphorus with groundwater is a potential source contributing to high yields of phosphorus in the lower Mississippi River basin. Water from 55 deep wells (greater than 200 feet deep) completed in regional aquifers of Tertiary age represent a sample of the principal aquifers used for drinking-water supply in the study area. The wells were screened in both confined and

  14. Streambanks: A net source of sediment and phosphorus to streams and rivers

    USDA-ARS?s Scientific Manuscript database

    Sediment and phosphorus (P) are two primary pollutants of surface waters. Many studies have investigated loadings from upland sources or even streambed sediment, but in many cases, limited to no data exist to determine sediment and P loading from streambanks on a watershed scale. The objectives of t...

  15. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  16. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  17. 77 FR 39949 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and..., such as nonpoint source contributors to nitrogen/phosphorus pollution in Florida's waters may be... numeric nutrient criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and...

  18. Examining the proportion of dietary phosphorus from plants, animals and food additives excreted in urine

    PubMed Central

    St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-01-01

    Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals and food additives excreted in urine from four controlled feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. PMID:27810171

  19. Examining the Proportion of Dietary Phosphorus From Plants, Animals, and Food Additives Excreted in Urine.

    PubMed

    St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2017-03-01

    Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine from four controlled-feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    NASA Astrophysics Data System (ADS)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  1. Anaerobic utilization of phosphite/phosphine as a sole source of phosphorus: implication to growth in the Jovian environment.

    PubMed

    Foster, T L; Winans, L

    1977-01-01

    The objective of the investigation was to isolate anaerobic micro-organisms which had the ability to utilize inorganic phosphorus in forms other than phosphate. The first part of this investigation was to isolate from Cape Canaveral soil micro-organisms capable of utilizing phosphite as their phosphorus source under anaerobic conditions. In an attempt to demonstrate this ability, a medium was prepared which contained hypophosphite as the phosphorus source. This was inoculated with soil samples, and growth was subcultured at least four times. To verify that these isolates could use hypophosphite, they were inoculated into defined hypophosphite medium, and samples were removed periodically and killed with formalin. Growth was determined by turbidity measurements and the sample was then filtered. The filtrate was separated by chromatography and the total amounts of hypophosphite, phosphate and phosphate in the filtrate were measured. By this procedure it appeared that the hypophosphite level began decreasing after 14 hr of incubation suggesting utilization of the hypophosphite under anaerobic conditions. The third part of this investigation used labeled (32P) hypophosphite in a defined medium; the cells were then lysed and the metabolic compounds separated by the use of paper chromatography and autoradiograms, demonstrating the presence of 32P in intermediate metabolic compounds. Similar investigations are now being performed with phosphine as the phosphorus source.

  2. Use of acoustic backscatter to estimate continuous suspended sediment and phosphorus concentrations in the Barton River, northern Vermont, 2010-2013

    USGS Publications Warehouse

    Medalie, Laura; Chalmers, Ann T.; Kiah, Richard G.; Copans, Benjamin

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Vermont Department of Environmental Conservation, investigated the use of acoustic backscatter to estimate concentrations of suspended sediment and total phosphorus at the Barton River near Coventry, Vermont. The hypothesis was that acoustic backscatter—the reflection of sound waves off objects back to the source from which they came—measured by an acoustic Doppler profiler (ADP) and recorded as ancillary data for the calculation of discharge, also could be used to generate a continuous concentration record of suspended sediment and phosphorus at the streamgage, thereby deriving added value from the instrument. Suspended-sediment and phosphorus concentrations are of particular interest in Vermont, where impairment of surface waters by suspended sediments and phosphorus is a major concern. Regression models for estimating suspended-sediment concentrations (SSCs) and total phosphorus concentrations evaluated several independent variables: measured backscatter (MB), water-corrected backscatter (WCB), sediment-corrected backscatter (SCB), discharge, fluid-absorption coefficient, sediment-driven acoustic attenuation coefficient, and discharge hysteresis. The best regression equations for estimating SSC used backscatter as the predictor, reflecting the direct relation between acoustic backscatter and SSC. Backscatter was a better predictor of SSC than discharge in part because hysteresis between SSC and backscatter was less than for SSC and discharge. All three backscatter variables—MB, WCB, and SCB—performed equally as predictors of SSC and phosphorus concentrations at the Barton River site. The similar abilities to predict SSC among backscatter terms may partially be attributed to the low values and narrow range of the sediment-driven acoustic attenuation in the Barton River. The regression based on SCB was selected for estimating SSC because it removes potential bias caused by attenuation and temperature fluctuations. The best regression model for estimating phosphorus concentrations included terms for discharge and discharge hysteresis. The finding that discharge hysteresis was a significant predictor of phosphorus concentrations might be related to preferential sorption of phosphorus to fine-grained sediments, which have been found to be particularly sensitive to hysteresis. Regression models designed to estimate phosphorus concentrations had less predictive power than the models for SSCs. Data from the Barton River did not fully support one of the study’s hypotheses—that backscatter is mostly caused by sands, and attenuation is mostly caused by fines. Sands, fines, and total SSCs in the Barton River all related better to backscatter than to sediment-driven acoustic attenuation. The weak relation between SSC and sediment-driven acoustic attenuation may be related to the low values and narrow range of SSCs and sediment attenuations observed at Barton River. A weak relation between SSC and sediment-driven acoustic attenuation also suggests that the diameters of the fine-sized suspended sediments in the Barton River may be predominantly greater than 20 micrometers (μm). Long-term changes in the particle-size distribution (PSD) were not observed in Barton River; however, some degree of within-storm changes in sediment source and possibly PSD were inferred from the hysteresis between SSC and SCB.

  3. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Calculations showing the total nitrogen and phosphorus to be applied to each field, including sources other than manure, litter, or process wastewater; (8) Total amount of nitrogen and phosphorus actually...

  4. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Calculations showing the total nitrogen and phosphorus to be applied to each field, including sources other than manure, litter, or process wastewater; (8) Total amount of nitrogen and phosphorus actually...

  5. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.

  6. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  7. Analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics in Lake Maumelle, Arkansas, 1991-92

    USGS Publications Warehouse

    Green, W. Reed

    2001-01-01

    Lake Maumelle is the major drinking-water source for the Little Rock metropolitan area in central Arkansas. Urban and agricultural development has increased in the Lake Maumelle Basin and information is needed related to constituent transport and waterquality response to changes in constituent loading or hydrologic regime. This report characterizes ambient conditions in Lake Maumelle and its major tributary, Maumelle River; describes the calibration and verification of a numerical model of hydrodynamics and water quality; and provides several simulations that describe constituent transport and water quality response to changes in constituent loading and hydrologic regime. Ambient hydrologic and water-quality conditions demonstrate the relatively undisturbed nature of Lake Maumelle and the Maumelle River. Nitrogen and phosphorus concentrations were low, one to two orders of magnitude lower than estimates of national background nutrient concentrations. Phosphorus and chlorophyll a concentrations in Lake Maumelle demonstrate its oligotrophic/mesotrophic condition. However, concentrations of chlorophyll a appeared to increase since 1990 within the upper and middle reaches of the reservoir. A two-dimensional, laterally averaged hydrodynamic and water-quality model developed and calibrated for Lake Maumelle simulates water level, currents, heat transport and temperature distribution, conservative material transport, and the transport and transformation of 11 chemical constituents. Simulations included the movement and dispersion of spills or releases in the reservoir during stratified and unstratified conditions, release of the fish nursery pond off the southern shore of Lake Maumelle, and algal responses to changes in external loading. The model was calibrated using 1991 data and verified using 1992 data. Simulated temperature and dissolved oxygen concentrations related well when compared to measured values. Simulated nutrient and algal biomass also related reasonably well when compared to measured values. A simulated spill of conservative material at the upper end of Lake Maumelle during a major storm event took less than 102 hours to disperse the entire length of the reservoir. Simulation of a nursery pond release into a tributary to Lake Maumelle demonstrated how the released water plunges within the receiving embayment and enters the main stem of the reservoir at mid depths. Simulations of algal response to increases of nitrogen and phosphorus loads demonstrate the phosphorus limiting condition in Lake Maumelle. Results from this study will provide waterresource management with information to better understand how changes in hydrology and water quality in the basin affects water quality in the reservoir. With this information, managers will be able to more effectively manage their drinking-water source supply.

  8. Phosphorus Loadings Associated with a Park Tourist Attraction: Limnological Consequences of Feeding the Fish

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Ruhl, Nathan

    2007-04-01

    The Linesville spillway of Pymatuning State Park is one of the most visited tourist attractions in Pennsylvania, USA, averaging more than 450,000 visitors · year-1. Carp ( Cyprinus carpio Linnaeus) and waterfowl congregate at the spillway where they are fed bread and other foods by park visitors. We hypothesized that the “breadthrowers” constitute a significant nutrient vector to the upper portion of Pymatuning Reservoir. In the summer of 2002, we estimated phosphorus loadings attributable to breadthrowers, and compared these values to background loadings from Linesville Creek, a major tributary to the upper reservoir. Items fed to fish included bread, donuts, bagels, canned corn, popcorn, corn chips, hot dogs, birthday cakes, and dog food. Phosphorus loading associated with park visitors feeding fish was estimated to be 3233 g day-1, and estimated P export from the Linesville Creek watershed was 2235 g·day-1. P loading attributable to breadthrowers exceeded that of the entire Linesville Creek watershed on 33 of the 35 days of study, with only a heavy rainfall event triggering watershed exports that exceeded spillway contributions. Averaged across 5 weeks, breadthrowers contributed 1.45-fold more P to Pymatuning Reservoir than the Linesville Creek watershed. If Linesville Creek P exports are extrapolated to the entire Sanctuary Lake watershed, spillway contributions of P added 48% to the non-point source watershed P entering the lake. Park visitors feeding fish at the Linesville Spillway are a significant source of nutrients entering Sanctuary Lake.

  9. 21 CFR 573.320 - Diammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (nitrogen × 6.25) and 20 percent phosphorus. It contains not more than the following: 1 part fluorine to 100 parts phosphorus. 75 parts per million or arsenic (as As). 30 parts per million of heavy metals, as lead (Pb). (b) It is used in ruminant feeds as a source of phosphorus and nitrogen in an amount that...

  10. 21 CFR 573.320 - Diammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (nitrogen × 6.25) and 20 percent phosphorus. It contains not more than the following: 1 part fluorine to 100 parts phosphorus. 75 parts per million or arsenic (as As). 30 parts per million of heavy metals, as lead (Pb). (b) It is used in ruminant feeds as a source of phosphorus and nitrogen in an amount that...

  11. Phosphorus, iron, and aluminum losses in runoff from a rotationally-grazed pasture in Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Pastures can be a source of phosphorus (P) contributing to eutrophication and impairment of water resources. Phosphorus is tightly held in soils that are highly weathered, acidic, and with high iron (Fe) and aluminum (Al) content like the Ultisols of southeastern USA. We used 11-yr (1999-2009) of da...

  12. [Research advances in mechanism of high phosphorus use efficiency of plants].

    PubMed

    Ma, Xiangqing; Liang, Xia

    2004-04-01

    Phosphorus deficiency is one of the main factors influencing agricultural and forestry productions. Fertilization and soil improvement are the major measures to meet the demand of phosphorus for crops in traditional agriculture and forestry management. Recently, the plants with high phosphorus use efficiency have been discovered to replace the traditional measures to improve phosphorus use efficiency of crops. This paper reviewed the research advances in the morphological, physiological and genetics mechanisms of plants with high phosphorus use efficiency. There were three mechanisms for the plants with high phosphorus use efficiency to grow under phosphorus stress: (1) under low phosphorus stress, the root morphology would change (root system grew fast, root axes became small, the number and density of lateral root increased) and more photosynthesis products would transport from the crown to the root, (2) under low phosphorus stress, plant root exudation increased, mycorrhizae invaded into root system, the feature of root absorption kinetics changed, and the internal phosphorus cycling of plant reinforced to tolerate phosphorus deficiency, and (3) under long selection stress of low phosphorus, some plants would form the genetic properties of phosphorus nutrition that could exploit the hardly soluble phosphorus in the soil.

  13. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.

  14. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  15. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    DOE PAGES

    Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.; ...

    2017-10-30

    Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less

  16. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.

    Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less

  17. Runoff phosphorus in a small rotationally-grazed pasture in Georgia with no history of broiler litter application

    USDA-ARS?s Scientific Manuscript database

    Pastures are sources of phosphorus (P) into water sources and can contribute to eutrophication and impairment. Close to 4 million ha of land in the Southern Coastal Plain and the Southern Piedmont in eastern USA is used for pasture and hay production. We present an 11-yr (1999 to 2009) of dissolved ...

  18. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan

    2017-07-01

    Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.

  19. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  20. Phosphorus in sediment in the Kent Park Lake watershed, Johnson County, Iowa, 2014–15

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2016-07-12

    Phosphorus data were collected from the Kent Park Lake watershed in Johnson County, Iowa, in 2014 and 2015 to obtain information to assist in the management of the water quality in the lake. Phosphorus concentrations were measured for sediment from several ponds in the watershed and sediment deposited in the lake. The first set of samples was collected in 2014 to understand phosphorus in several potential sources to the lake and the spatial variability in lake sediments. Phosphorus concentrations ranged from 68 to 380 milligrams per kilogram in lake sediment and from 57 to 220 milligrams per kilogram in sedimentation and dredge spoil ponds. Additional samples were collected in 2015 to determine how phosphorus concentrations vary with depth in the lake sediment. Phosphorus concentrations generally decreased with increasing depth within the lake sediment. In 2015, total phosphorus concentrations in lake sediment ranged from 50 to 340 milligrams per kilogram.

  1. Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas

    1999-01-01

     The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.

  2. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients.

    PubMed

    Benini, Omar; D'Alessandro, Claudia; Gianfaldoni, Daniela; Cupisti, Adamasco

    2011-07-01

    Restriction of dietary phosphorus is a major aspect of patient care in those with renal disease. Restriction of dietary phosphorus is necessary to control for phosphate balance during both conservative therapy and dialysis treatment. The extra amount of phosphorus which is consumed as a result of phosphate-containing food additives is a real challenge for patients with renal disease and for dieticians because it represents a "hidden" phosphate load. The objective of this study was to measure phosphorus content in foods, common protein sources in particular, and comprised both those which included a listing of phosphate additives and those which did not. Determinations of dry matter, nitrogen, total and soluble phosphate ions were carried out in 60 samples of foods, namely cooked ham, roast breast turkey, and roast breast chicken, of which, 30 were with declared phosphate additives and the other 30 similar items were without additives. Total phosphorus (290 ± 40 mg/100 g vs. 185 ± 23 mg/100 g, P < .001) and soluble phosphorus (164 ± 25 mg/100 g vs. 100 ± 19 mg/100 g, P < .001) content were higher in products containing additives than in foods without additives. No difference was detected between the 2 groups regarding dry matter (27.2 ± 2.0 g/100 g vs. 26.7 ± 1.9 g/100 g) or total nitrogen (3.15 ± 0.40 g/100 g vs. 3.19 ± 0.40 g/100 g). Consequently, phosphorus intake per gram of protein was much greater in the foods containing phosphorus additives (15.0 ± 3.1 mg/g vs. 9.3 ± 0.7 mg/g, P < .001). Our results show that those foods which contain phosphate additives have a phosphorus content nearly 70% higher than the samples which did not contain additives. This creates a special concern because this extra amount of phosphorus is almost completely absorbed by the intestinal tract. These hidden phosphates worsen phosphate balance control and increase the need for phosphate binders and related costs. Information and educational programs are essential to make patients with renal disease aware of the existence of foods with phosphate additives. Moreover, these facts highlight the need for national and international authorities to devote more attention to food labels which should clearly report the amount of natural or added phosphorus. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.

  4. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.

  5. [Growth peculiarities and properties of Bacillus subtilis IMV B-7023 cell surface in the medium with glycerophosphate].

    PubMed

    Roĭ, A A; Gordienko, A S; Kurdish, I K

    2009-01-01

    It is established that, depending on the amount of the basic elements of carbon and phosphorus nutrition in the cultivation medium, Bacillus subtilis IMV B-7023 can use glycerophosphate as a source of carbon, carbon and phosphorus, or phosphorus. The found differences in bacterium physiology correlate with the change of cell surface properties.

  6. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.

    PubMed

    Adenan, Nurul Salma; Yusoff, Fatimah Md; Medipally, Srikanth Reddy; Shariff, M

    2016-07-01

    Microalgae are important food sources for aquaculture animals. Among the different factors which influence the biochemical composition of microalgae, nitrogen and phosphorus are two of the most important nutrient sources for growth and development. The present study aimed to assess the effects of nitrogen and phosphorus deficiency on lipid production of Chlorella sp. and Chaetoceros calcitrans. Early stationary phase culture of these species were exposed to different stress levels of nitrogen and phosphorus (25%, 50% and 75% of the full NO(3)-N and PO(4)-P concentration in the Conway media), and solvent extraction and gas-liquid chromatography methods were performed for analysis of lipid and fatty acid composition. The results revealed that lipid production in these two species significantly increased (P<0.05) as nitrogen and phosphorus decreased. The fatty acid proportion remained unaffected under nitrogen deficiency, while phosphorus limitation resulted in a decrease of saturated fatty acids and promoted a higher content of omega-3 fatty acids in these species. The protein and carbohydrate levels were also altered under limited nutrients. Therefore, these conditions could be used for enhanced lipid production in microalgae for aquaculture and other industrial applications.

  7. Barium as a potential indicator of phosphorus in agricultural runoff.

    PubMed

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Optimization of urban wastewater treatment plants process with low C/N ratio

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, G. M.; Chen, J.; Chen, B.; Lv, Z.; Yang, Y. A.

    2016-08-01

    In southern China, the inflow of water to wastewater treatment plants has a lower concentration of organic matter. This causes treatment plants to face issues in the denitrification and phosphorus removal processes such as deficient carbon sources, high energy consumption, and unstable nitrogen removal. To resolve these issues, we propose the reconstruction of the internal reflux port, improvement of the internal reflux ratio to 200%, the addition of carbon source to anoxic zone, and the addition of phosphorus removal agents in secondary settling tank. The results of study show significantly improved efficiency of nitrogen and phosphorus removal, which ensures the stability of subsequent supply of reused water.

  9. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    PubMed Central

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  10. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    PubMed

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  11. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn only, but lowest in rice fields. Slope gradient had a significant positive correlation with TN’s and total phosphorus (TP)’s concentration losses. Concentrations of TN, NO3-N, and total phosphorus were significantly correlated with rainfall. Peak concentrations of ammoniacal nitrogen occurred during the fertilizer application period in spring and autumn. Different structures of land use types had a significant influence on the concentration losses of nitrogen and phosphorus; thus, using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective solution to control non-point source pollution of the Three Gorges Region.

  12. Phosphorus recovery from municipal and fertilizer wastewater: China's potential and perspective.

    PubMed

    Zhou, Kuangxin; Barjenbruch, Matthias; Kabbe, Christian; Inial, Goulven; Remy, Christian

    2017-02-01

    Phosphorus (P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within generations. China is the largest phosphate fertilizer producing and consuming country in the world. China's municipal wastewater contains up to 293,163Mgyear of phosphorus, which equals approximately 5.5% of the chemical fertilizer phosphorus consumed in China. Phosphorus in wastewater can be seen not only as a source of pollution to be reduced, but also as a limited resource to be recovered. Based upon existing phosphorus-recovery technologies and the current wastewater infrastructure in China, three options for phosphorus recovery from sewage sludge, sludge ash and the fertilizer industry were analyzed according to the specific conditions in China. Copyright © 2016. Published by Elsevier B.V.

  13. 75 FR 54651 - Notice of Lodging of Proposed Consent Decree Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... contaminants of concern (including phosphorus) at or near Simplot's phosphoric acid plant; the development and implementation of a verifiable plan to control the sources of phosphorus and other contaminants of concern within...

  14. Effects of phosphorus fertilization, seed source, and soil type on growth of Acacia koa

    Treesearch

    P. G. Scowcroft; J. A. Silva

    2005-01-01

    The endemic tree Acacia koa is used to reforest abandoned agricuItural lands in Hawaii. Growth may be constrained by soil infertility and toxic concentrations of aluminum (AI) and manganese (Mn) in acidic Oxisols and Ultisols, The effects of phosphorus (P) fertilization at time of planting, soil type, and seed source on koa growth were studied for three years....

  15. Estimating the leakage contribution of phosphate dosed drinking water to environmental phosphorus pollution at the national-scale.

    PubMed

    Ascott, M J; Gooddy, D C; Lapworth, D J; Stuart, M E

    2016-12-01

    Understanding sources of phosphorus (P) to the environment is critical for the management of freshwater and marine ecosystems. Phosphate is added at water treatment works for a variety of reasons: to reduce pipe corrosion, to lower dissolved lead and copper concentrations at customer's taps and to reduce the formation of iron and manganese precipitates which can lead to deterioration in the aesthetic quality of water. However, the spatial distribution of leakage into the environment of phosphate added to mains water for plumbosolvency control has not been quantified to date. Using water company leakage rates, leak susceptibility and road network mapping, we quantify the total flux of P from leaking water mains in England and Wales at a 1km grid scale. This is validated against reported leaks for the UKs largest water utility. For 2014, we estimate the total flux of P from leaking mains to the environment to be c. 1.2ktP/year. Spatially, P flux is concentrated in urban areas where pipe density is highest, with major cities acting as a significant source of P (e.g. London into the Thames, with potentially 30% of total flux). The model suggests the majority (69%) of the P flux is likely to be to surface water. This is due to leakage susceptibility being a function of soil corrosivity and shrink-swell behaviour which are both controlled by presence of low-permeability clays. The location of major cities such as London close to the coast results in a potentially significant flux of P from mains leakage to estuarine environments. The contribution of leakage of phosphate dosed mains water should be considered in future source apportionment and ecosystem management. The methodology presented is generic and can be applied in other countries where phosphate dosing is undertaken or used prior to dosing during investment planning. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  17. Effects of four different phosphorus-locking materials on sediment and water quality in Xi'an moat.

    PubMed

    Wang, Guanbai; Wang, Yi; Guo, Yu; Peng, Dangcong

    2017-01-01

    To lower phosphorus concentration in Xi'an moat, four different phosphorus-locking materials, namely, calcium nitrate, sponge-iron, fly ash, and silica alumina clay, were selected in this experiment to study their effects on water quality and sediment. Results of the continuous 68-day experiment showed that calcium nitrate was the most effective for controlling phosphorus concentration in overlying and interstitial water, where the efficiency of locking phosphorus was >97 and 90 %, respectively. Meanwhile, the addition of calcium nitrate caused Fe/Al-bound phosphorus (Fe/Al-P) content in sediment declining but Ca-bound phosphorus (Ca-P) and organic phosphorus (OP) content ascending. The phosphorus-locking efficiency of sponge-iron in overlying and interstitial water was >72 and 66 %, respectively. Meanwhile, the total phosphorus (TP), OP, Fe/Al-P, and Ca-P content in sediment increased by 33.8, 7.7, 23.1, and 23.1 %, respectively, implying that under the action of sponge-iron, the locked phosphorus in sediment was mainly inorganic form and the phosphorus-locking efficiency of sponge-iron could be stable and persistent. In addition, the phosphorus-locking efficiency of fly ash was transient and limited, let alone silica alumina clay had almost no capacity for phosphorus-locking efficiency. Therefore, calcium nitrate and sponge-iron were excellent phosphorus-locking agents to repair the seriously polluted water derived from an internal source.

  18. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated ‘Omics Approach

    PubMed Central

    Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.; Markillie, L. M.; Taylor, Ronald C.; Huang, Eric; Chrisler, William B.; Wiley, H. S.; Lipton, Mary S.; Nelson, William C.; Fredrickson, James K.; Romine, Margaret F.

    2017-01-01

    The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities. PMID:28659875

  19. Potential export of soluble reactive phosphorus from a coastal wetland in a cold-temperate lagoon system: Buffer capacities of macrophytes and impact on phytoplankton.

    PubMed

    Berthold, M; Karstens, S; Buczko, U; Schumann, R

    2018-03-01

    The main pathways for phosphorus flux from land to sea are particle-associated (erosion) and dissolved runoff (rivers, groundwater, and agricultural drainage systems). These pathways can act as diffused sources for aquatic systems and support primary production, therefore, counteracting the efforts aimed at reducing phosphorus input from point sources such as sewage treatment plants. Phosphorus supports primary production in the water column and can elevate phytoplankton and macrophyte growth. Coastal wetlands with emerged (Phragmites australis) and submerged (Stuckenia pectinata and Chara sp.) macrophytes can affect phosphorus fluxes in the land-water transitional zone. The macrophytes have the potential to act as a buffer for phosphorus run-off. The aim of this study was to determine the phosphorus stocks in the transitional land-sea zone of a cold temperate lagoon at the southern Baltic Sea. Phosphorus in macrophytes, water samples, and phytoplankton growth were analyzed along a gradient moving away from the wetland. The phosphorus stocks in the above ground biomass of the Phragmites plants were the highest at the end of August and with more than 8000mgPm -2 in the interior zone of the wetland, threefold the amount of P in Phragmites plant tissue at the wetland fringe. The submerged macrophytes stored only 300mgPm -2 , close to the wetland. Concentrations of soluble reactive phosphorus in the water column were higher in the zones of emerged macrophytes than in the zones of submerged macrophytes and decreased along the land-sea transect. Phytoplankton could grow proximal to the wetland during all seasons, but not further away. This study indicates that macrophytes can act as phosphorus sinks. However, short-term releases of phosphate within the Phragmites wetland have the potential to lead to phytoplankton growth. Phytoplankton can use these nutrient pulses either immediately or later, and support high biomass and turbidity within the system. Copyright © 2017. Published by Elsevier B.V.

  20. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  1. Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-P soils

    USDA-ARS?s Scientific Manuscript database

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice protein kinase, OsPSTOL1, was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum performance und...

  2. Sodium and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease

    PubMed Central

    Gutiérrez, Orlando M.

    2012-01-01

    Sodium and phosphorus-based food additives are among the most commonly consumed nutrients in the world. This is because both have diverse applications in processed food manufacturing, leading to their widespread utilization by the food industry. Since most foods are naturally low in salt, sodium additives almost completely account for the excessive consumption of sodium throughout the world. Similarly, phosphorus additives represent a major and “hidden” phosphorus load in modern diets. These factors pose a major barrier to successfully lowering sodium or phosphorus intake in patients with chronic kidney disease. As such, any serious effort to reduce sodium or phosphorus consumption will require reductions in the use of these additives by the food industry. The current regulatory environment governing the use of food additives does not favor this goal, however, in large part because these additives have historically been classified as generally safe for public consumption. To overcome these barriers, coordinated efforts will be needed to demonstrate that high intakes of these additives are not safe for public consumption and as such, should be subject to greater regulatory scrutiny. PMID:23439374

  3. Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease.

    PubMed

    Gutiérrez, Orlando M

    2013-03-01

    Sodium- and phosphorus-based food additives are among the most commonly consumed nutrients in the world. This is because both have diverse applications in processed food manufacturing, leading to their widespread use by the food industry. Since most foods are naturally low in salt, sodium additives almost completely account for the excessive consumption of sodium throughout the world. Similarly, phosphorus additives represent a major and "hidden" phosphorus load in modern diets. These factors pose a major barrier to successfully lowering sodium or phosphorus intake in patients with CKD. As such, any serious effort to reduce sodium or phosphorus consumption will require reductions in the use of these additives by the food industry. The current regulatory environment governing the use of food additives does not favor this goal, however, in large part because these additives have historically been classified as generally safe for public consumption. To overcome these barriers, coordinated efforts will be needed to demonstrate that high intake of these additives is not safe for public consumption and as such should be subject to greater regulatory scrutiny. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Socio-hydrological approach to the evaluation of global fertilizer substitution by sustainable struvite precipitants from wastewater

    NASA Astrophysics Data System (ADS)

    Kok, Dirk-Jan; Pande, Saket; Renata Cordeiro Ortigara, Angela; Savenije, Hubert; Uhlenbrook, Stefan

    2017-04-01

    Phosphorus is an element necessary for the development of organic tissue as it forms a key, structural component of DNA and RNA. Currently, much of this unrenewable resource is being wasted to the ocean through the discharge of untreated or partially treated wastewater from urban areas and livestock industries. Analysing the potential phosphorus production of these two sectors in possibly meeting the partial demand of the agricultural sector, will be an important tool in tackling both phosphorus depletion from natural sources as well as phosphorus pollution of water sources . In this study, a global overview is provided where a selection of P-production nodes and P-consumption nodes have been determined using global spatial data. Distances, investment costs and associated carbon footprints are then considered in modelling a simple, alternative trade network of struvite precipitant, phosphorus flows. The network is then optimized to maximum trade flow after which an international, free-market P-commodity price is determined. Carrot-stick policy measures such as subsidies and carbon taxes are evaluated in their benefits to supporting sustainable phosphorus consumption over the non-sustainable counterpart. Preliminary results have revealed that there exists a total anthropogenic production potential of 3.3 MtP for 2005. Very crudely, but in accordance to results by Milhelcic et al. (2011) who reported 22%, approximately 20% of the reported global fertilizer consumption could then be satisfied by recovering urban phosphorus. Phosphorus recovery from wastewater for secondary utilization will prove an important step in creating sustainable communities through closed circle economic development. It is also a step towards prolonging our phosphate rock reserves, granting more time to revise our current phosphorus throughput cycle before the depletion of the remaining reserves.

  5. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.

    PubMed

    Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P

    2015-05-15

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.

  6. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients.

    PubMed

    D'Alessandro, Claudia; Piccoli, Giorgina B; Cupisti, Adamasco

    2015-01-20

    Phosphorus retention plays a pivotal role in the onset of mineral and bone disorders (MBD) in chronic kidney disease (CKD). Phosphorus retention commonly occurs as a result of net intestinal absorption exceeding renal excretion or dialysis removal. The dietary phosphorus load is crucial since the early stages of CKD, throughout the whole course of the disease, up to dialysis-dependent end-stage renal disease.Agreement exits regarding the need for dietary phosphate control, but it is quite challenging in the real-life setting. Effective strategies to control dietary phosphorus intake include restricting phosphorus-rich foods, preferring phosphorus sourced from plant origin, boiling as the preferred cooking procedure and avoiding foods with phosphorus-containing additives. Nutritional education is crucial in this regard.Based on the existing literature, we developed the "phosphorus pyramid", namely a novel, visual, user-friendly tool for the nutritional education of patients and health-care professionals. The pyramid consists of six levels in which foods are arranged on the basis of their phosphorus content, phosphorus to protein ratio and phosphorus bioavailability. Each has a colored edge (from green to red) that corresponds to recommended intake frequency, ranging from "unrestricted" to "avoid as much as possible".The aim of the phosphorus pyramid is to support dietary counseling in order to reduce the phosphorus load, a crucial aspect of integrated CKD-MBD management.

  7. Dynamic modelling of five different phytoplankton groups in the River Thames (UK)

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Whitehead, Paul; Bowes, Michael; Read, Daniel; Dadson, Simon

    2015-04-01

    Phytoplankton play a vital role in fluvial ecosystems, being a major producer of organic carbon, a food source for primary consumers and a relevant source of oxygen for many low-gradient rivers, but also a producer of potentially harmful toxins (e.g. cyanobacteria). For these reasons, the forecast and prevention of algal blooms is fundamental for the safe management of river systems. In this study, we developed a new process-based phytoplankton model for operational management and forecast of algal and cyanobacteria blooms subject to environmental change. The model is based on a mass-balance and it reproduces phytoplankton growth and death, taking into account the controlling effect played by water temperature, solar radiation, self-shading and dissolved phosphorus and silicon concentrations. The model was implemented in five reaches of the River Thames (UK) with a daily time step over a period of three years, and its results were compared to a novel dataset of cytometric data which includes community cell abundance of chlorophytes, diatoms, cyanobacteria, microcystis-like cyanobacteria and picoalgae. The model results were satisfactory in terms of fitting the observed data. A Multi-Objective General Sensitivity Analysis was also carried out in order to quantify model sensitivity to its parameters. It showed that the most influential parameters are phytoplankton growth and death rates, while phosphorus concentration showed little influence on phytoplankton growth, due to the high levels of phosphorus in the River Thames. The model was demonstrated to be a reliable tool to be used in algal bloom forecasting and management.

  8. Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review.

    PubMed

    Dougherty, Warwick J; Fleming, Nigel K; Cox, Jim W; Chittleborough, David J

    2004-01-01

    Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.

  9. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), not more than 15 percent. Phosphorus, not less than 2.25 percent. (c) Uses. It is used or intended for use as a source of animal protein, phosphorus, and salt (NaCl) as follows: (1) In poultry and swine...

  10. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), not more than 15 percent. Phosphorus, not less than 2.25 percent. (c) Uses. It is used or intended for use as a source of animal protein, phosphorus, and salt (NaCl) as follows: (1) In poultry and swine...

  11. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    PubMed

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin

    2013-03-01

    One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.

  13. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  14. Glycerophosphate as a phosphorus source in a defined medium for Pichia pastoris fermentation.

    PubMed

    Zhang, Wenhui; Sinha, Jayanta; Meagher, Michael M

    2006-08-01

    Pichia pastoris has emerged as a commercially important yeast for the production of a vast majority of recombinant therapeutic proteins and vaccines. The organism can be grown to very high cell densities using a defined basal salts media (BSM). However, BSM contains bi-cation or tri-cation phosphate, which precipitates out of the medium at pH above 5.5, although the optimal fermentation pH of most recombinant protein fermentation varies between 5.5 and 7.0. In this article, the application of glycerophosphates was investigated as a substitute phosphate source in an effort to eliminate precipitation. The solubility of BSM containing sodium or potassium glycerophosphates was examined before and after autoclaving at various pHs. Sodium glycerophosphate was found stable at autoclave temperature but formed complexes with coexisting magnesium and calcium ions that were insoluble above pH 7.0. Medium where sodium glycerophosphate was autoclaved separately and then added to the growth medium did not produce any precipitate up to pH 10.5. The performance of P. pastoris fermentations expressing alpha-galactosidase and ovine interferon-tau using a glycerolphosphate-based medium was found to be comparable to a conventional BSM. The results from this work demonstrate that sodium glycerophosphate can be assimilated by the P. pastoris strains and can be employed as a reliable phosphorus source for both cell growth and recombinant protein production.

  15. Impact of vacancies on electronic properties of black phosphorus probed by STM

    NASA Astrophysics Data System (ADS)

    Riffle, J. V.; Flynn, C.; St. Laurent, B.; Ayotte, C. A.; Caputo, C. A.; Hollen, S. M.

    2018-01-01

    Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent bandgap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand the native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare the atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of p-doping. We also compare these native defects to those induced by air exposure and show that they are distinct and likely more important for the control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially available materials, and call for better control of vacancy defects.

  16. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease

    PubMed Central

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2018-01-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (~60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic-phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular low-cost foods. In a non-enhanced mixed diet, the digestible phosphorus is closely correlated with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is more appropriately limited in pre-dialysis patients who are on low protein diets (~0.6 g/kg/day), whereas dialysis patients who require higher protein intake (~1.2 g/kg/day) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Protein-rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counselling to address the foregoing aspects of dietary phosphorus management is instrumental for achieving reduction of phosphorus load. PMID:23465504

  17. 40 CFR 418.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Average of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride... consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 [39 FR 12836, Apr. 8, 1974...

  18. 40 CFR 418.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Average of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride... consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 [39 FR 12836, Apr. 8, 1974...

  19. Response curves for phosphorus plume lengths from reactive-solute-transport simulations of onland disposal of wastewater in noncarbonate sand and gravel aquifers

    USGS Publications Warehouse

    Colman, John A.

    2005-01-01

    Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less

  1. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    PubMed

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that will most benefit from the phosphorus reduction approach.

  2. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle

    NASA Astrophysics Data System (ADS)

    Van Mooy, B. A. S.; Krupke, A.; Dyhrman, S. T.; Fredricks, H. F.; Frischkorn, K. R.; Ossolinski, J. E.; Repeta, D. J.; Rouco, M.; Seewald, J. D.; Sylva, S. P.

    2015-05-01

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle.

  3. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  4. Photoinduced reductive perfluoroalkylation of phosphine oxides: synthesis of P-perfluoroalkylated phosphines using TMDPO and perfluoroalkyl iodides.

    PubMed

    Sato, Yuki; Kawaguchi, Shin-ichi; Ogawa, Akiya

    2015-07-04

    A photoinduced reaction between TMDPO (diphenyl(2,4,6-trimethylbenzoyl)-phosphine oxide) and perfluoroalkyl iodides successfully affords P-(perfluoroalkyl)diphenylphosphines as promising ligands for recyclable catalysts. Interestingly, the perfluoroalkylation reaction involves the reduction of phosphorus(V) compounds to phosphorus(III) species. The advantages of the present reaction include the use of an air-stable phosphorus source and good yields of P-perfluoroalkylphosphines in short reaction times.

  5. Intra- and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA)

    USGS Publications Warehouse

    Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.

    2012-01-01

    Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.

  6. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  7. 40 CFR 422.45 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as... phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH (1) (1) 1 Within the range 6.0 to 9.5. ...

  8. 40 CFR 422.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P... consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH (1) (1) 1 Within...

  9. 40 CFR 422.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P... consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH (1) (1) 1 Within...

  10. 40 CFR 422.45 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of daily values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as... phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH (1) (1) 1 Within the range 6.0 to 9.5. ...

  11. PRECIPITATION AND INACTIVATION OF PHOSPHORUS AS A LAKE RESTORATION TECHNIQUE

    EPA Science Inventory

    Many eutrophic lakes respond slowly following nutrient diversion because of long water retention times, and the recycling of phosphorus from sediments and other internal sources. Treatment of lakes with aluminum sulfate and/or sodium aluminate is a successful method for removing ...

  12. Molecular mechanisms in response to phosphate starvation in rice.

    PubMed

    Panigrahy, Madhusmita; Rao, D Nageswara; Sarla, N

    2009-01-01

    Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.

  13. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  14. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).

  15. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    PubMed

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop biotechnologies involving such enzymes will require a very careful evaluation of phytase source and activity. Overall, our data suggest feasibility of using bacterial phytases to improve plant growth in conditions of phosphorus deficiency and demonstrate that inducible expression of recombinant enzymes should be investigated further as a viable approach to plant biotechnology.

  16. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    PubMed Central

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop biotechnologies involving such enzymes will require a very careful evaluation of phytase source and activity. Overall, our data suggest feasibility of using bacterial phytases to improve plant growth in conditions of phosphorus deficiency and demonstrate that inducible expression of recombinant enzymes should be investigated further as a viable approach to plant biotechnology. PMID:29515604

  17. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  18. Osteophagia provide giraffes with phosphorus and calcium?

    PubMed

    Bredin, I P; Skinner, J D; Mitchell, G

    2008-03-01

    The daily requirement for calcium and phosphorus by giraffes to sustain the growth and maintenance of their skeletons is large. The source of sufficient calcium is browse. The source of necessary phosphorus is obscure, but it could be osteophagia, a frequently observed behaviour in giraffes. We have assessed whether bone ingested as a result of osteophagia can be digested in the rumen. Bone samples from cancellous (cervical vertebrae) and dense bones (metacarpal shaft) were immersed in the rumens of five sheep, for a period of up to 30 days, and the effect compared to immersion in distilled water and in artificial saliva for 30 days. Distilled water had no effect on the bones. Dense bone samples were softened by exposure to the saliva and rumen fluid, but did not lose either calcium or phosphorus. In saliva and rumen fluid the cancellous bone samples also softened, and their mass and volume decreased as a result of exposure to saliva, but in neither fluid did they lose significant amounts of calcium and phosphorus. We conclude that although saliva and rumen fluid can soften ingested bones, there is an insignificant digestion of bones in the rumen.

  19. Hidden sources of phosphorus: presence of phosphorus-containing additives in processed foods.

    PubMed

    Lou-Arnal, Luis M; Arnaudas-Casanova, Laura; Caverni-Muñoz, Alberto; Vercet-Tormo, Antonio; Caramelo-Gutiérrez, Rocío; Munguía-Navarro, Paula; Campos-Gutiérrez, Belén; García-Mena, Mercedes; Moragrera, Belén; Moreno-López, Rosario; Bielsa-Gracia, Sara; Cuberes-Izquierdo, Marta

    2014-01-01

    An increased consumption of processed foods that include phosphorus-containing additives has led us to propose the following working hypothesis: using phosphate-rich additives that can be easily absorbed in processed foods involves a significant increase in phosphorus in the diet, which may be considered as hidden phosphorus since it is not registered in the food composition tables. The quantity of phosphorus contained in 118 processed products was determined by spectrophotometry and the results were contrasted with the food composition tables of the Higher Education Centre of Nutrition and Diet, those of Morandeira and those of the BEDCA (Spanish Food Composition Database) Network. Food processing frequently involves the use of phosphoric additives. The products whose label contains these additives have higher phosphorus content and higher phosphorus-protein ratio. We observed a discrepancy with the food composition tables in terms of the amount of phosphorus determined in a sizeable proportion of the products. The phosphorus content of prepared refrigerated foods hardly appears in the tables. Product labels provide little information on phosphorus content. We observed a discrepancy in phosphorus content in certain foods with respect to the food composition tables. We should educate our patients on reviewing the additives on the labels and on the limitation of processed foods. There must be health policy actions to deal with the problem: companies should analyse the phosphorus content of their products, display the correct information on their labels and incorporate it into the food composition tables. Incentives could be established to prepare food with a low phosphorus content and alternatives to phosphorus-containing additives.

  20. [Effects of soil data and map scale on assessment of total phosphorus storage in upland soils.

    PubMed

    Li, Heng Rong; Zhang, Li Ming; Li, Xiao di; Yu, Dong Sheng; Shi, Xue Zheng; Xing, Shi He; Chen, Han Yue

    2016-06-01

    Accurate assessment of total phosphorus storage in farmland soils is of great significance to sustainable agricultural and non-point source pollution control. However, previous studies haven't considered the estimation errors from mapping scales and various databases with different sources of soil profile data. In this study, a total of 393×10 4 hm 2 of upland in the 29 counties (or cities) of North Jiangsu was cited as a case for study. Analysis was performed of how the four sources of soil profile data, namely, "Soils of County", "Soils of Prefecture", "Soils of Province" and "Soils of China", and the six scales, i.e. 1:50000, 1:250000, 1:500000, 1:1000000, 1:4000000 and1:10000000, used in the 24 soil databases established for the four soil journals, affected assessment of soil total phosphorus. Compared with the most detailed 1:50000 soil database established with 983 upland soil profiles, relative deviation of the estimates of soil total phosphorus density (STPD) and soil total phosphorus storage (STPS) from the other soil databases varied from 4.8% to 48.9% and from 1.6% to 48.4%, respectively. The estimated STPD and STPS based on the 1:50000 database of "Soils of County" and most of the estimates based on the databases of each scale in "Soils of County" and "Soils of Prefecture" were different, with the significance levels of P<0.001 or P<0.05. Extremely significant differences (P<0.001) existed between the estimates based on the 1:50000 database of "Soils of County" and the estimates based on the databases of each scale in "Soils of Province" and "Soils of China". This study demonstrated the significance of appropriate soil data sources and appropriate mapping scales in estimating STPS.

  1. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    PubMed

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  2. Historical contributions of phosphorus from natural and agricultural sources and implications for stream water quality, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Milligan, Chad R.; Mau, David Phillip

    2002-01-01

    An examination of soil cores collected from 43 nonagricultural coring sites in the Cheney Reservoir watershed of south-central Kansas was conducted by the U.S. Geological Survey in September 1999. The cores were collected as part of an ongoing cooperative study with the city of Wichita, Kansas. The 43 sites (mostly cemeteries) were thought to have total phosphorus concentrations in the soil that are representative of natural conditions (unaffected by human activity). The purpose of this report is to present the analysis and evaluation of these soil cores, to quantify the phosphorus contributions to Cheney Reservoir from natural and agricultural sources, and to provide estimates of stream-water-quality response to natural concentrations of total phosphorus in the soil. Analysis of soil cores from the 43 sites produced natural concentrations of total phosphorus that ranged from 74 to 539 milligrams per kilogram with a median concentration of 245 milligrams per kilogram in 2-inch soil cores and from 50 to 409 milligrams per kilogram with a median concentration of 166 milligrams per kilogram in 8-inch soil cores. Natural concentrations of total phosphorus in soil were statistically larger in samples from coring sites in the eastern half of the watershed than in samples from coring sites in the western half of the watershed. This result partly explains a previously determined west-to-east increase in total phosphorus yields in streams of the Cheney Reservoir watershed. A comparison of total phosphorus concentrations in soil under natural conditions to the historical mean total phosphorus concentration in agriculturally enriched bottom sediment in Cheney Reservoir indicated that agricultural activities within the watershed have increased total phosphorus concentrations in watershed soil that is transported in streams to about 2.9 times natural concentrations. Retention efficiencies for phosphorus and sediment historically transported to Cheney Reservoir were calculated at 92 and 99 percent, respectively. Most of the phosphorus was retained in bottom sediment. Sediment accumulation in Cheney Reservoir was less than reservoir design-life specifications on the basis of the age of the reservoir. Estimates of mean total phosphorus concentrations for selected streams in the Cheney Reservoir watershed under natural concentrations of total phosphorus in soil and a historic set of watershed conditions indicate that water from two of the five streamflow sampling sites would not meet the total phosphorus water-quality goal of 0.10 milligram per liter established by the Cheney Reservoir Watershed Task Force Committee. These results imply that the water-quality goal for total phosphorus in some streams of the watershed may not be met simply by reducing the amount of phosphorus applied. Instead, meeting the goal could involve a combination of approaches-for example, reducing the agricultural distribution of phosphorus and implementing changes in watershed activities to mitigate phosphorus movement to surface water.

  3. Evaluation of the phosphorus site assessment tools:lessons from the U.S.

    USDA-ARS?s Scientific Manuscript database

    Freshwater eutrophication is generally limited or accelerated by phosphorus (P) inputs, with agriculture considered a contributor along with point sources. To help assess the impairments, NRCS incorporated the P Indexing risk assessment tool into the 590 Nutrient Management Conservation Practice St...

  4. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants.

    PubMed

    Antonini, Samantha; Arias, Maria Alejandra; Eichert, Thomas; Clemens, Joachim

    2012-11-01

    A selection of six urine-derived struvite fertilizers generated by innovative precipitation technologies was assessed for their quality and their effectiveness as phosphorus sources for crops. Struvite purity was influenced by drying techniques and magnesium dosage. In a greenhouse experiment, the urine fertilizers led to biomass yields and phosphorus uptakes comparable to or higher than those induced by a commercial mineral fertilizer. Heavy metal concentrations of the different struvite fertilizers were below the threshold limits specified by the German Fertilizer and Sewage Sludge Regulations. The computed loading rates of heavy metals to agricultural land were also below the threshold limits decreed by the Federal Soil Protection Act. Urine-derived struvite contributed less to heavy metal inputs to farmland than other recycling products or commercial mineral and organic fertilizers. When combined with other soil conditioners, urine-derived struvite is an efficient fertilizer which covers the magnesium and more than half of the phosphorus demand of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    PubMed

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture.

    PubMed

    Metson, Geneviève S; MacDonald, Graham K; Haberman, Daniel; Nesme, Thomas; Bennett, Elena M

    2016-01-15

    The supply of phosphorus (P) is a critical concern for food security. Concentrated mineral P deposits have been the source of almost all new P entering the biosphere. However, this resource is often used inefficiently, raising concerns about both nutrient pollution and future access to fertilizers. One solution to both of these problems is to enhance our ability to capture and recycle P from waste streams. However, the efficacy of doing this has not been rigorously explored. Here, we examine the potential for recycling major P sources in the United States to supply the necessary P for domestic corn (maize) production. Using 2002 population and agricultural census data, we examine the distribution of three key recyclable P sources (human food waste, human excreta, and animal manure) and P demand from grain and silage corn across the country to determine the distance P would need to be transported from sources to replenish P removed from soils in harvested corn plants. We find that domestic recyclable P sources, predominantly from animal manures, could meet national corn production P demands with no additional fertilizer inputs. In fact, only 37% of U.S. sources of recyclable P would be required to meet all P demand from U.S. corn harvested annually. Seventy-four percent of corn P demand could be met by recyclable P sources in the same county. Surplus recyclable P sources within-counties would then need to travel on average 302 km to meet the largest demand in and around the center of the 'Corn Belt' region where ~50% of national corn P demand is located. We find that distances between recyclable sources and crop demands are surprisingly short for most of the country, and that this recycling potential is mostly related to manure. This information can help direct where recycling efforts should be most-effectively directed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  8. A brief history of phosphorus: from the philosopher's stone to nutrient recovery and reuse.

    PubMed

    Ashley, K; Cordell, D; Mavinic, D

    2011-08-01

    The element phosphorus has no substitute in sustaining all life and food production on our planet. Yet today's phosphorus use patterns have resulted in both a global environmental epidemic of eutrophication and led to a situation where the future availability of the world's main sources of phosphorus is uncertain. This paper examines the important history of human interference with the phosphorus cycle from initial discovery to present, highlighting key interrelated events and consequences of the Industrial Revolution, Sanitation Revolution and Green Revolution. Whilst these events led to profound advances in technology, public health and food production, they have fundamentally broken the global phosphorus cycle. It is clear a 'Fourth Revolution' is required to resolve this dilemma and ensure humanity can continue to feed itself into the future while protecting environmental and human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.

    PubMed

    Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory

    2015-07-21

    The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.

  10. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  11. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  12. Novel Alleles of Phosphorus-Starvation Tolerance 1 Gene (PSTOL1) from Oryza rufipogon Confers High Phosphorus Uptake Efficiency

    PubMed Central

    Neelam, Kumari; Thakur, Shiwali; Neha; Yadav, Inderjit S.; Kumar, Kishor; Dhaliwal, Salwinder S.; Singh, Kuldeep

    2017-01-01

    Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon, we investigated phosphorus uptake1 (Pup1) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 (PSTOL1) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1-K46, a diagnostic marker for PSTOL1, however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars. PMID:28443109

  13. Novel Alleles of Phosphorus-Starvation Tolerance 1 Gene (PSTOL1) from Oryza rufipogon Confers High Phosphorus Uptake Efficiency.

    PubMed

    Neelam, Kumari; Thakur, Shiwali; Neha; Yadav, Inderjit S; Kumar, Kishor; Dhaliwal, Salwinder S; Singh, Kuldeep

    2017-01-01

    Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon , we investigated phosphorus uptake1 ( Pup1 ) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 ( PSTOL1 ) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1 -K46, a diagnostic marker for PSTOL1 , however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars.

  14. Phosphorus indices: why we need to take stock of how we are doing

    USDA-ARS?s Scientific Manuscript database

    Many states have invested a great deal of research into defining the necessary components of their P Index, particularly source factors, which reliably estimates the risk of phosphorus (P) loss and incentivizes conservation management. However, differences in management recommendations and outcomes...

  15. Managing surface water inputs to reduce phosphorus loss from Cranberry farms

    USDA-ARS?s Scientific Manuscript database

    Calcium phosphate (Ca-P) precipitation holds great promise in the mitigation of dissolved phosphorus (DP) loss from cranberry bogs, with precipitated Ca-P potentially serving as a fertilizer source for the subsequent cranberry crop. We quantified Ca-P precipitation following calcite application to h...

  16. Assessing the impact of manure application method on runoff phosphorus using controlled and natural rainfall

    USDA-ARS?s Scientific Manuscript database

    Land application of manure is a cost-effective method for recycling nutrients from livestock operations. Increasingly, there has been interest in promoting alternative methods of manure application that minimize nonpoint source phosphorus pollution. Watershed and nutrient trading programs rely upon ...

  17. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China.

    PubMed

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States

    USGS Publications Warehouse

    McMahon, Gerard; Tervelt, Larinda; Donehoo, William

    2007-01-01

    This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.

  19. Overexpression of phyA and appA Genes Improves Soil Organic Phosphorus Utilisation and Seed Phytase Activity in Brassica napus

    PubMed Central

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  20. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated ‘Omics Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.

    The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp.more » OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.« less

  1. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated ‘Omics Approach

    DOE PAGES

    Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.; ...

    2017-06-13

    The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp.more » OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.« less

  2. Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.

    PubMed

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift towards organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. Copyright © 2017 American Society for Microbiology.

  3. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  4. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Manure-derived biochars for use as a phosphorus fertilizer in cotton production

    USDA-ARS?s Scientific Manuscript database

    Biochars made from animal manure feedstocks appear to be a potential P fertilizer source. Our objective was to assess five different manure-derived biochars, pyrolyzed at two different temperatures (350 and 700 °C), for their potential as a Phosphorus (P) fertilizer for cotton (Gossypium hirsutum L....

  8. Reducing Phosphorus Runoff from Biosolids with Water Treatment Residuals

    USDA-ARS?s Scientific Manuscript database

    A large fraction of the biosolids produced in the U.S. are placed in landfills or incinerated to avoid potential water quality problems associated with non-point source phosphorus (P) runoff. The objective of this study was to determine the effect of various chemical amendments on P runoff from bi...

  9. Utilizing water treatment residuals to reduce phosphorus runoff from biosolids

    USDA-ARS?s Scientific Manuscript database

    Approximately 40% of biosolids (sewage sludge) produced in the U.S. are incinerated or landfilled rather than land applied due to concern over non-point source phosphorus (P) runoff. The objective of this study was to determine the impact of chemical amendments on water-extractable P (WEP) in appli...

  10. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  11. Phosphorus Loading Trends in Lake Michigan: A Historic Surprise

    EPA Science Inventory

    Total phosphorus (TP) loads to the Great Lakes have been of interest to researchers since the 1960s. The International Joint Commission (IJC) was the primary source of Great Lakes TP loading data during the 1970s and 1980s when the IJC released annual reports detailing Great Lake...

  12. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  13. Role of organic phosphorus in sediment in a shallow eutrophic lake

    NASA Astrophysics Data System (ADS)

    Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo

    2017-08-01

    We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.

  14. Legacy phosphorus accumulation and management in the global context: insights from long-term analysis of major river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Burt, T. P.; Chan, N. I.; Elser, J. J.; Haygarth, P. M.; Howden, N. J. K.; Jarvie, H. P.; Peterson, H. M.; Shen, J.; Worrall, F.; Sharpley, A. N.

    2014-12-01

    Phosphorus (P) is closely linked to major societal concerns including food security and water quality, and human activities strongly control the modern global P cycle. Current knowledge of the P cycle includes many insights about relatively short-term processes, but a long-term and landscape-level view may be needed to understand P status and optimize P management towards P sustainability. We reconstructed long-term (>40 years) P mass balances and rates of P accumulation in three major river basins where excess P pollution is demanding improvements in P management at local, national, and international levels. We focus on: Maumee River Basin, a major source of agricultural P to Lake Erie, the southernmost and shallowest of the Laurentian Great Lakes; Thames River Basin, where fluxes of effluent P from the London, England metropolitan area have declined following improvements in wastewater treatment; Yangtze (Changjiang) River Basin, the largest in China, which is undergoing rapid economic development. The Maumee and Thames are intensively monitored, and show long-term declines in basin P inputs that represent a step towards P sustainability. However, river P outputs have been slower to decline, consistent with the hypothesis that legacy P is mobilizing from soils or from within the river network. Published data on the Yangtze indicate the P flux from land to water has clearly increased with industrialization and population growth. Historical trajectories of P accumulation and depletion in major river basins are providing new understanding about the long-term impacts of P management, including watershed P legacies and response times, that may inform future policy towards local, national, and global P sustainability.

  15. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    USGS Publications Warehouse

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.

  16. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  17. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  18. Visualizing Alternative Phosphorus Scenarios for Future Food Security

    PubMed Central

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems. PMID:27840814

  19. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    PubMed

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in crop and livestock systems.

  20. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.

    2018-01-01

    The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.

  1. A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system.

    PubMed

    Whitehead, P G; Crossman, J; Balana, B B; Futter, M N; Comber, S; Jin, L; Skuras, D; Wade, A J; Bowes, M J; Read, D S

    2013-11-13

    The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

  2. Simulating stream transport of nutrients in the eastern United States, 2002, using a spatially-referenced regression model and 1:100,000-scale hydrography

    USGS Publications Warehouse

    Hoos, Anne B.; Moore, Richard B.; Garcia, Ana Maria; Noe, Gregory B.; Terziotti, Silvia E.; Johnston, Craig M.; Dennis, Robin L.

    2013-01-01

    Existing Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models for the northeastern and southeastern regions of the United States were recalibrated to achieve a hydrographically consistent model with which to assess nutrient sources and stream transport and investigate specific management questions about the effects of wetlands and atmospheric deposition on nutrient transport. Recalibrated nitrogen models for the northeast and southeast were sufficiently similar to be merged into a single nitrogen model for the eastern United States. The atmospheric deposition source in the nitrogen model has been improved to account for individual components of atmospheric input, derived from emissions from agricultural manure, agricultural livestock, vehicles, power plants, other industry, and background sources. This accounting makes it possible to simulate the effects of altering an individual component of atmospheric deposition, such as nitrate emissions from vehicles or power plants. Regional differences in transport of phosphorus through wetlands and reservoirs were investigated and resulted in two distinct phosphorus models for the northeast and southeast. The recalibrated nitrogen and phosphorus models account explicitly for the influence of wetlands on regional-scale land-phase and aqueous-phase transport of nutrients and therefore allow comparison of the water-quality functions of different wetland systems over large spatial scales. Seven wetland systems were associated with enhanced transport of either nitrogen or phosphorus in streams, probably because of the export of dissolved organic nitrogen and bank erosion. Six wetland systems were associated with mitigating the delivery of either nitrogen or phosphorus to streams, probably because of sedimentation, phosphate sorption, and ground water infiltration.

  3. Nitrate and pesticides in surficial aquifers and trophic state and phosphorus sources for selected lakes, eastern Otter Tail County, west-central Minnesota, 1993-96

    USGS Publications Warehouse

    Ruhl, J.F.

    1997-01-01

    Phosphorus at depth in Little Pine and Big Pine Lakes was mostly orthophosphate. During the fall turnover of the lakes, this orthophosphate may have circulated to near the lake surface and became an available nutrient for phytoplankton during the following growing season. The internal phosphorus load to Little Pine Lake may have been important because about three-fourths of the lake probably became stratified and anoxic in the hypolimnion. The internal phosphorus load to Big Pine Lake may not have been important because only a small portion of the lake became stratified and anoxic at depth.

  4. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  5. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer pipes can be critical to more effectively minimizing urban nonpoint nutrient sources. The sources, fluxes, and flowpaths of groundwater should be prioritized in management efforts to improve stream restoration by locating hydrologic hot spots where stream restoration is most likely to succeed.

  6. The phosphorus cost of agricultural intensification in the tropics.

    PubMed

    Roy, Eric D; Richards, Peter D; Martinelli, Luiz A; Coletta, Luciana Della; Lins, Silvia Rafaela Machado; Vazquez, Felipe Ferraz; Willig, Edwin; Spera, Stephanie A; VanWey, Leah K; Porder, Stephen

    2016-04-18

    Agricultural intensification in the tropics is one way to meet rising global food demand in coming decades(1,2). Although this strategy can potentially spare land from conversion to agriculture(3), it relies on large material inputs. Here we quantify one such material cost, the phosphorus fertilizer required to intensify global crop production atop phosphorus-fixing soils and achieve yields similar to productive temperate agriculture. Phosphorus-fixing soils occur mainly in the tropics, and render added phosphorus less available to crops(4,5). We estimate that intensification of the 8-12% of global croplands overlying phosphorus-fixing soils in 2005 would require 1-4 Tg P yr(-1) to overcome phosphorus fixation, equivalent to 8-25% of global inorganic phosphorus fertilizer consumption that year. This imposed phosphorus 'tax' is in addition to phosphorus added to soils and subsequently harvested in crops, and doubles (2-7 Tg P yr(-1)) for scenarios of cropland extent in 2050(6). Our estimates are informed by local-, state- and national-scale investigations in Brazil, where, more than any other tropical country, low-yielding agriculture has been replaced by intensive production. In the 11 major Brazilian agricultural states, the surplus of added inorganic fertilizer phosphorus retained by soils post harvest is strongly correlated with the fraction of cropland overlying phosphorus-fixing soils (r(2) = 0.84, p < 0.001). Our interviews with 49 farmers in the Brazilian state of Mato Grosso, which produces 8% of the world's soybeans mostly on phosphorus-fixing soils, suggest this phosphorus surplus is required even after three decades of high phosphorus inputs. Our findings in Brazil highlight the need for better understanding of long-term soil phosphorus fixation elsewhere in the tropics. Strategies beyond liming, which is currently widespread in Brazil, are needed to reduce phosphorus retention by phosphorus-fixing soils to better manage the Earth's finite phosphate rock supplies and move towards more sustainable agricultural production.

  7. Phosphorus and E. coli in the Fanno and Bronson Creek subbasins of the Tualatin River basin, Oregon, during summer low-flow conditions, 1996

    USGS Publications Warehouse

    McCarthy, Kathleen A.

    2000-01-01

    As part of an ongoing cooperative study between the Unified Sewerage Agency of Washington County, Oregon, and the U.S. Geological Survey, phosphorus and Escherichia coli (E. coli) concentrations were measured in the Fanno and Bronson Creek subbasins of the Tualatin River Basin during September 1996. Data were collected at 19 main-stem and 22 tributary sites in the Fanno Creek subbasin, and at 14 main-stem and 4 tributary sites in the Bronson Creek subbasin. These data provided the following information on summer base-flow conditions in the subbasins. Concentrations of total phosphorus at 70% of the sites sampled in the Fanno Creek subbasin were between 0.1 and 0.2 mg/L (milligrams per liter), very near the estimated background level of 0.14 mg/L attributed to ground-water base flow. These data indicate that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.Concentrations of phosphorus at all but one of the sites sampled in the Bronson Creek subbasin were also between 0.1 and 0.2 mg/L, indicating that ground-water discharge could account for the phosphorus measured at most sites in this subbasin.A few sites in the Fanno Creek subbasin had phosphorus concentrations above background levels, indicating a source other than ground water. Some of these sites- Pendleton Creek and the tributary near Gemini, for example-were probably affected by the decomposition of avian waste materials and the release of phosphorus from bottom sediments in nearby ponds.Concentrations of E. coli--an indicator of fecal contamination and the potential presence of bacterial pathogens-exceeded the current single-sample criterion for recreational contact in freshwater (406 organisms/100 mL [organisms per 100 milliliters]) at 70% of the sites sampled in the Fanno Creek subbasin.Concentrations of E. coli in the Bronson Creek subbasin exceeded the single-sample criterion at one-third of the sites sampled.Most occurrences of elevated E. coli levels were probably due to sources such as domestic pet and wildlife waste, failing septic systems, or improperly managed hobby farms. The data did not indicate any large breaks in sewer lines or other large-scale sources of bacterial contamination to surface water in either subbasin during this low-flow period.

  8. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2010-10-15

    Dissolved organic phosphorus (DOP) has been recognized as dominant components in total dissolved phosphorus (TDP) pools in many coastal waters, and its exchange between sediment and water is an important process in biogeochemical cycle of phosphorus. Adenosine monophosphate (AMP) was employed as a model DOP compound to simulate phosphorus exchange across sediment-water interface in Florida Bay. The sorption data from 40 stations were fitted to a modified Freundlich equation and provided a detailed spatial distribution both of the sediment's zero equilibrium phosphorus concentration (EPC(0-T)) and of the distribution coefficient (K(d-T)) with respect to TDP. The K(d-T) was found to be a function of the index of phosphorus saturation (IPS), a molar ratio of the surface reactive phosphorus to the surface reactive iron oxide content in the sediment, across the entire bay. However, the EPC(0-T) was found to correlate to the contents of phosphorus in the eastern bay only. Sediment in the western bay might act as a source of the phosphorus in the exchange process due to their high EPC(0-T) and low K(d-T), whereas sediments in the eastern bay might act as a sink because of their low EPC(0-T) and high K(d-T). These results strongly support the hypothesis that both phosphorus and iron species in calcareous marine sediments play a critical role in governing the sediment-water exchange of both phosphate and DOP in the coastal and estuarine ecosystems.

  9. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  10. Mitigation measures to reduce losses of phosphorus during the non-cropping period - a northern European perspective

    USDA-ARS?s Scientific Manuscript database

    Degradation of natural waters by phosphorus (P) due to agricultural activities has been a problem in several countries for many years. Accordingly, mitigation measures to minimize this issue have been developed and used with varying success. Non-point source P from agricultural fields is one of the ...

  11. 40 CFR 426.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...— Metric units (g/kkg of product) TSS 0.70 0.70 Oil 1.40 1 .40 Phosphorus 0.05 .05 pH (1) (1) English units (lb/ton of product) TSS 0.0014 0.0014 Oil 0.0028 .0028 Phosphorus 0.0001 .0001 pH (1) (1) 1 Within the...

  12. 40 CFR 426.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...— Metric units (g/kkg of product) TSS 0.70 0.70 Oil 1.40 1 .40 Phosphorus 0.05 .05 pH (1) (1) English units (lb/ton of product) TSS 0.0014 0.0014 Oil 0.0028 .0028 Phosphorus 0.0001 .0001 pH (1) (1) 1 Within the...

  13. Modeling phosphorus losses from soils amended with cattle manure and chemical fertilizers

    USDA-ARS?s Scientific Manuscript database

    While applied manure/fertilizer is an important source of P loss in surface runoff, few models simulate the direct transfer of phosphorus (P) from soil-surface-applied manure/fertilizer to runoff. The SurPhos model was tested with 2008-2010 growing season, daily surface runoff data from clay loam ex...

  14. Evaluation of phosphorus site assessment tools: lessons from the USA

    USDA-ARS?s Scientific Manuscript database

    Critical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the U.S. To date, the P Index has been the primary tool for P site assessment adopted by US states, but there has been only patchy testing of the many versions ...

  15. Long-term effects of biosolid-amended soils on phosphorus, copper, manganese and zinc uptake by wheat

    USDA-ARS?s Scientific Manuscript database

    Biosolids have been applied to agricultural land for many years as a source of plant nutrients. There are growing concerns of residual phosphorus and metals from long-term biosolids amended fields and their potential impact on the environment. Objectives of this study were to determine, i) phosphor...

  16. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  18. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    USGS Publications Warehouse

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Nutrient fate and transport through the Chesapeake Bay watershed to the bay reflect the diferent physical and chemical properties of nitrogen and phosphorus compounds. Groundwater is an important pathway for nitrogen transport (as nitrate), and TN flux is greatest in areas with greater groundwater flow and in areas of the Piedmont underlain by carbonate rocks. TN flux decreases with increasing vegetative growth (likely indicative of plant uptake) and soil available water capacity (likely indicative of reducing conditions). Phosphorus transport to streams, conversely, is greatest in areas most likely to generate overland runoff and related erosion, including those with less permeable and more erodible soils and greater precipitation. Phosphorus transport also is greater in the Coastal Plain than in other areas, possibly due to saturation of soils with historical phosphorus applications. Both nitrogen and phosphorus are lost within watershed impoundments (lakes, ponds, or reservoirs), and nitrogen is also lost significantly along flowing reaches, particularly in small streams and in larger streams in warmer areas.

  19. Phosphorus recovery prior to land application of biosolids using the "quick wash" process developed by USDA

    USDA-ARS?s Scientific Manuscript database

    Excess soil phosphorus (P) beyond the assimilative capacity of soils is a major factor to discontinue application of biosolids to land nearby municipal wastewater treatment plants. For this reason, municipalities incur in hefty fees for transportation and landfilling biosolids that otherwise could b...

  20. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    PubMed Central

    Fortin, Nathalie; Munoz-Ramos, Valentina; Bird, David; Lévesque, Benoît; Whyte, Lyle G.; Greer, Charles W.

    2015-01-01

    Missisquoi Bay (MB) is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes) and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP) ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages. PMID:25984732

  1. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.

    PubMed

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.

  2. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  3. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  4. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.

    PubMed

    Van Mooy, Benjamin A S; Fredricks, Helen F; Pedler, Byron E; Dyhrman, Sonya T; Karl, David M; Koblízek, Michal; Lomas, Michael W; Mincer, Tracy J; Moore, Lisa R; Moutin, Thierry; Rappé, Michael S; Webb, Eric A

    2009-03-05

    Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.

  5. Factors effective on peritoneal phosphorus transport and clearance in peritoneal dialysis patients
.

    PubMed

    Cebeci, Egemen; Gursu, Meltem; Uzun, Sami; Karadag, Serhat; Kazancioglu, Rumeyza; Ozturk, Savas

    2017-02-01

    Transport characteristics of phosphorus are different from other small solutes that are evaluated in routine peritoneal equilibration test (PET) in peritoneal dialysis (PD) patients. We aimed to evaluate peritoneal phosphorus clearance and permeability, and their relationship with peritoneal membrane transport type and creatinine clearance as well as factors affecting peritoneal phosphorus clearance. 70 adult patients on a PD program were included in our study. Phosphorus transport status was classified according to dialysate/plasma (D/P) phosphorus at the 4th hour of PET as slow transporter (< 0.47), slow-average transporter (0.47 - 0.56), fast-average transporter (0.57 - 0.67), and fast transporter (> 0.67). We evaluated the relationship of peritoneal phosphorus clearance and transport type with PD regime, phosphorus level, and presence of residual renal function in addition to investigating factors that are effective on peritoneal phosphorus clearance. D/P phosphorus and peritoneal phosphorus clearance were positively correlated with D/P creatinine and peritoneal creatinine clearance, respectively. Automated PD and continuous ambulatory PD patients were similar regarding phosphorus and creatinine clearances and transport status based on D/P phosphorus. The major determinant of peritoneal phosphorus clearance was anuria status. Anuric patients had higher dialysate volume (11.6 ± 3.0 L vs. 8.4 ± 2.1 L, p < 0.001) and therefore higher peritoneal phosphorus clearance (61.7 ± 15.1 L/week/1.73 m2 vs. 48.4 ± 14.0 L/week/1.73 m2, p = 0.001). Hyperphosphatemia was present in 40% and 11% of anuric patients and those with residual renal function, respectively (p = 0.005). Peritoneal phosphorus transport characteristics are similar to that of creatinine. Although increased dialysis dose may increase peritoneal phosphorus clearance, it may be insufficient to prevent hyperphosphatemia in anuric patients.
.

  6. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total phosphorus concentrations in the impaired-reach areas ranged from 0.0046 to 0.91 milligrams per liter (mg/L) in individual samples (number of samples (n)=331), with a median of 0.090 mg/L; total nitrogen concentrations ranged from 0.34 to 14 mg/L in individual samples (n=139), with a median of 1.35 mg/L; and total suspended solids concentrations ranged from 2/d) for total phosphorus and 100 lb/mi2/d for total nitrogen in these reaches. In most of the impaired reaches not affected by the Brockton Advanced Water Reclamation Facility outfall, yields were lower than in reaches downstream from the outfall, and the difference between measured and threshold yields was fairly uniform over a wide range of flows, suggesting that multiple processes contribute to nonpoint loading in these reaches. The Northeast and Mid-Atlantic SPAtially-Referenced Regression On Watershed (SPARROW) models for total phosphorus and total nitrogen also were used to estimate annual nutrient loads in the impaired tributary stream reaches and main stem of the Taunton River and predict the distribution of these loads among point and diffuse sources in reach drainage areas. SPARROW is a regional, statistical model that relates nutrient loads in streams to upstream sources and land-use characteristics and can be used to make predictions for streams that do not have nutrient-load data. The model predicts mean annual loads based on longterm streamflow and water-quality data and nutrient source conditions for the year 2002. Predicted mean annual nutrient loads from the SPARROW models were consistent with the measured yield and load data from sampling sites in the basin. For conditions in 2002, the Brockton Advanced Water Reclamation Facility outfall accounted for over 75 percent of the total nitrogen load and over 93 percent of the total phosphorus load in the Salisbury Plain and Matfield Rivers downstream from the outfall. Municipal point sources also accounted for most of the load in the main stem of the Taunton River. Multiple municipal wastewater discharges in the basin accounted for about 76 and 46 percent of the delivered loads of total phosphorus and total nitrogen, respectively, to Mount Hope Bay. For similarly sized watersheds, total delivered loads were lower in watersheds without point sources compared to those with point sources, and sources associated with developed land accounted for most of the delivered phosphorus and nitrogen loads to the impaired reaches. The concentration, yield, and load data evaluated in this study may not be representative of current (2012) point-source loading in the basin; in particular, most of the water-quality data used in the study (1999-2006) were collected prior to completion of upgrades to the Brockton Advanced Water Reclamation Facility that reduced total phosphorus and nitrogen concentrations in treated effluent. Effluent concentration data indicate that, for a given flow rate, effluent loads of total phosphorus and total nitrogen declined by about 80 and 30 percent, respectively, between the late 1990s and 2008 in response to plant upgrades. Consequently, current (2012) water-quality conditions in the impaired reaches downstream from the facility likely have improved compared to conditions described in the report.

  7. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  8. Sources of nitrogen and phosphorus emissions to Irish rivers: estimates from the Source Load Apportionment Model (SLAM)

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Deakin, Jenny; Archbold, Marie; Daly, Donal; Bruen, Michael

    2017-04-01

    More than half of the river and lake water bodies in Europe are at less than good ecological status or potential, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. In Ireland, it is evident that agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water, mitigating the potential impact on water quality. However, additional measures may be required in order to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given the on-going agricultural intensification in Ireland. Catchment management can be greatly supported by modelling, which can reduce the resources required to analyse large amounts of information and can enable investigations and measures to be targeted. The Source Load Apportionment Model (SLAM) framework was developed to support catchment management in Ireland by characterising the contributions from various sources of phosphorus (P) and nitrogen (N) emissions to water. The SLAM integrates multiple national spatial datasets relating to nutrient emissions to surface water, including land use and physical characteristics of the sub-catchments to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, peatlands, etc.). The annual nutrient emissions predicted by the SLAM were assessed against nutrient monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that the total average annual emissions to surface water in Ireland are over 2,700 t yr-1 of P and 80,000 t yr-1 of N. The SLAM results include the proportional contributions from individual sources at a range of scales from sub-catchment to national, and show that the main sources of P are from wastewater and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. The SLAM results have been incorporated into an Integrated Catchment Management process and used in conjunction with monitoring data and local knowledge during the characterisation of all Irish water bodies by the Environmental Protection Agency. This demonstrates the successful integration of research into catchment management to inform the identification of (i) the sources of nutrients at regional and local scales and (ii) the potential significant pressures and appropriate mitigation measures.

  9. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    USGS Publications Warehouse

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.

  10. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.

    2008-01-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.

  11. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.

    1978-01-01

    On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)

  12. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  13. Modeling nutrient release in the Tai Lake basin of China: source identification and policy implications.

    PubMed

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  14. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  15. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    PubMed

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China.

    PubMed

    Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei

    2018-02-01

    In order to clarify the effects of selective cutting on soil phosphorus availability in Korean pine broad-leaved forest, surface soil (0-10 cm) samples from original Korean pine broad-leaved forest and natural forests with mild, medium and intensive cutting disturbances were collected. The Sui modified Hedley phosphorus fractionation method was used to continuously extract soil samples and analyzed the differences and changes of soil phosphorus fractions from different experimental stands. The results showed that the soil total phosphorus content of Korean pine broad-leaved forest varied from 1.09 to 1.66 g·kg -1 , with the original stand and intensive cutting disturbance stand being the maximum and minimum one, respectively. The differences of soil total phosphorus content among cutting disturbance levels were significant. The Olsen phosphorus and phosphorus activation coefficients changed with an amplitude of 7.26-17.79 mg·kg -1 and 0.67%-1.07%, respectively. Both of them significantly decreased with the increase of selective cutting disturbance level. The concentrations of all P fractions except HCl-P o , i.e., H 2 O-P i , NaHCO 3 -P, NaOH-P, HCl-P i , Residual-P, decreased with increasing cutting disturbance levels compared with original forest. The correlation coefficient between H 2 O-P i and soil Olsen phosphorus was the highest (0.98), though it only accounted for 1.5%-2.2% of the total phosphorus. NaOH-P content contributed to more than 48.0% of the total phosphorus, acknowledged as the potential source of soil phosphorus. In conclusion, selective cutting disturbance could constrain phosphorus storage and soil phosphorus availabi-lity of the Korean pine broad-leaved forests by significantly reducing the content of soil inorganic phosphorus and NaOH-P o , and such trends were positively dependent on the intensity of selective cutting.

  17. Sources of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin, 1994-95

    USGS Publications Warehouse

    Waschbusch, Robert J.; Selbig, W.R.; Bannerman, Roger T.

    1999-01-01

    Street-dirt samples were collected using industrial vacuum equipment. Leaves in these samples were separated out and the remaining sediment was sieved into >250 mm, 250-63 mm, 63-25 mm, <25 mm size fractions and were analyzed for total phosphorus. Approximately 75 percent of the sediment mass resides in the >250 mm size fractions. Less than 5 percent of the mass can be found in the particle sizes less than 63 mm. The >250 mm size fraction also contributed nearly 50 percent of the total-phosphorus mass and the leaf fraction contributed an additional 30 percent. In each particle size, approximately 25 percent of the total-phosphorus mass is derived from leaves or other vegetation.

  18. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  19. Water extractable phosphorus in animal manure and manure compost: quantities, characteristics, and temporal changes

    USDA-ARS?s Scientific Manuscript database

    Water extractable phosphorus (WEP) in manure and manure compost is widely used as an indicator of P release to runoff from manures and composts that are land applied. A survey of 600 manures and composts was conducted to assess trends in WEP related to manure and compost types from sources in Pennsy...

  20. Background and overview on the contribution of dairy nutrition to addressing environmental concerns in Wisconsin: nitrogen, phosphorus, and methane

    USDA-ARS?s Scientific Manuscript database

    During the last part of the 20th century, public concern increased over non-point source pollution originating primarily from agricultural practices. Two chemical elements, nitrogen and phosphorus, which are important to the growth and development of crops and livestock, have been associated with no...

  1. 40 CFR 426.75 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not exceed— Metric units (q/sq m of product) TSS 0.88 0.88 Oil 1.76 1.76 Phosphorus 0.30 .30 pH (1) (1) English units (lb/1,000 lb of product) TSS 0.18 0.18 Oil 0.36 .36 Phosphorus 0.06 .06 pH (1) (1) 1 Within...

  2. Nitrogen and Phosphorus in Water, An Annotated Selected Bibliography of Their Biological Effects.

    ERIC Educational Resources Information Center

    Mackenthun, Kenneth M.

    Included in this bibliography are annotations of quantitative data on the content or concentration of nitrogen and phosphorus in plants and animals, the contribution to water of these elements from various sources (soil, fertilizers, excretion, sewage, precipitation, urban run-off), and the effect their presence has on aquatic standing crops and…

  3. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Treesearch

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  4. 40 CFR 426.75 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not exceed— Metric units (q/sq m of product) TSS 0.88 0.88 Oil 1.76 1.76 Phosphorus 0.30 .30 pH (1) (1) English units (lb/1,000 lb of product) TSS 0.18 0.18 Oil 0.36 .36 Phosphorus 0.06 .06 pH (1) (1) 1 Within...

  5. Phosphorus leaching from soil cores from a twenty-year study evaluating alum treatment of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Adding alum (aluminum sulfate) to poultry litter is a best management practice (BMP) used to stabilize phosphorus (P) in less soluble forms, reducing non-point source P runoff. However, little research has been conducted on the effects of alum-treated poultry litter on P leaching. The objective of...

  6. Total phosphorus, zinc, copper, and manganese concentrations in cecil soil through ten years of poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Poultry litter (PL) is an inexpensive and effective source of plant nutrients. However, over application could result in phosphorus and heavy metal accumulation in soils. A field experiment evaluating PL application to a Cecil soil used for cotton and corn production has been maintained for 10 years...

  7. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton community structure. PMID:26985828

  8. Vivianite as an important iron phosphate precipitate in sewage treatment plants.

    PubMed

    Wilfert, P; Mandalidis, A; Dugulan, A I; Goubitz, K; Korving, L; Temmink, H; Witkamp, G J; Van Loosdrecht, M C M

    2016-11-01

    Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Understanding Hydrological Processes in Variable Source Areas in the Glaciated Northeastern US Watersheds under Variable Climate Conditions

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.

    2017-12-01

    The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.

  10. Changes in total phosphorus concentration in the Red River of the North Basin, 1970-2012

    USGS Publications Warehouse

    Ryberg, Karen R.; Akyüz, F. Adnan; Lin, Wei

    2015-01-01

    The Red River of the North drains much of eastern North Dakota and northwestern Minnesota and flows north into Manitoba, Canada, ultimately into Lake Winnipeg; therefore, water quality is an International concern. With increased runoff in the past few decades, phosphorus flux (the amount of phosphorus transported by the river) has increased. This is a concern, especially with respect to Lake Winnipeg, an important inland fishery and recreational destination. There is pressure at the State and International levels to reduce phosphorus flux, an expensive proposition. Depending on the method (controlling sources, settling ponds, buffer strips), control of phosphorus flux is not always effective during spring runoff. This work represents a first step in developing a causal model for phosphorus flux by examining available data and changes in concentration over time. Total phosphorus concentration data for the Red River at Emerson, Manitoba, and at Fargo, North Dakota-Moorhead, Minnesota, were summarized and then analyzed using WRTDS (Weighted Regressions on Time, Discharge, and Season) to describe total phosphorus changes over time in two analysis periods: 1970-1993 and 1993-2012. Total phosphorus concentration increased in the first period at Emerson, Manitoba, indicating phosphorus was likely being transported to streams during runoff events. A very different pattern occurred at Fargo-Moorhead with declines in concentration, except at high discharge. While concentration continually changes, during the second period it decreased during spring runoff at Emerson and Fargo-Moorhead and during the growing season at Fargo-Moorhead, perhaps because of improved agricultural practices and declines in some uses of phosphorus.

  11. Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Radtke, H.; Neumann, T.; Voss, M.; Fennel, W.

    2012-09-01

    A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observed δ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.

  12. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    USDA-ARS?s Scientific Manuscript database

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  13. From wastewater to fertilisers--Technical overview and critical review of European legislation governing phosphorus recycling.

    PubMed

    Hukari, Sirja; Hermann, Ludwig; Nättorp, Anders

    2016-01-15

    The present paper is based on an analysis of the EU legislation regulating phosphorus recovery and recycling from wastewater stream, in particular as fertiliser. To recover phosphorus, operators need to deal with market regulations, health and environment protection laws. Often, several permits and lengthy authorisation processes for both installation (e.g. environmental impact assessment) and the recovered phosphorus (e.g. End-of-Waste, REACH) are required. Exemptions to certain registration processes for recoverers are in place but rarely applied. National solutions are often needed. Emerging recovery and recycling sectors are affected by legislation in different ways: Wastewater treatment plants are obliged to remove phosphorus but may also recover it in low quantities for operational reasons. Permit processes allowing recovery and recycling operations next to water purification should thus be rationalised. In contrast, the fertiliser industry relies on legal quality requirements, ensuring their market reputation. For start-ups, raw-material sourcing and related legislation will be the key. Phosphorus recycling is governed by fragmented decision-making in regional administrations. Active regulatory support, such as recycling obligation or subsidies, is lacking. Legislation harmonisation, inclusion of recycled phosphorus in existing fertiliser regulations and support of new operators would speed up market penetration of novel technologies, reduce phosphorus losses and safeguard European quality standards.

  14. Runoff phosphorus losses as related to phosphorus source, application method, and application rate on a Piedmont soil.

    PubMed

    Tarkalson, David D; Mikkelsen, Robert L

    2004-01-01

    Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.

  15. Estimation of environmental capacity of phosphorus in Gorgan Bay, Iran, via a 3D ecological-hydrodynamic model.

    PubMed

    Ranjbar, Mohammad Hassan; Hadjizadeh Zaker, Nasser

    2016-11-01

    Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea in Iran and is an important marine habitat for fish and seabirds. In the present study, the environmental capacity of phosphorus in Gorgan Bay was estimated using a 3D ecological-hydrodynamic numerical model and a linear programming model. The distribution of phosphorus, simulated by the numerical model, was used as an index for the occurrence of eutrophication and to determine the water quality response field of each of the pollution sources. The linear programming model was used to calculate and allocate the total maximum allowable loads of phosphorus to each of the pollution sources in a way that eutrophication be prevented and at the same time maximum environmental capacity be achieved. In addition, the effect of an artificial inlet on the environmental capacity of the bay was investigated. Observations of surface currents in Gorgan Bay were made by GPS-tracked surface drifters to provide data for calibration and verification of numerical modeling. Drifters were deployed at five different points across the bay over a period of 5 days. The results indicated that the annual environmental capacity of phosphorus is approximately 141 t if a concentration of 0.0477 mg/l for phosphorus is set as the water quality criterion. Creating an artificial inlet with a width of 1 km in the western part of the bay would result in a threefold increase in the environmental capacity of the study area.

  16. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.

    PubMed

    Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P

    2011-05-01

    Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots.

    PubMed

    Panzer, René; Guhrenz, Chris; Haubold, Danny; Hübner, René; Gaponik, Nikolai; Eychmüller, Alexander; Weigand, Jan J

    2017-11-13

    Tri(pyrazolyl)phosphanes (5 R1,R2 ) are utilized as an alternative, cheap and low-toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long-term stable stock solutions (>6 months) of P(OLA) 3 (OLAH=oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA) 3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530-620 nm and photoluminescence quantum yields (PL QYs) between 51-62 %. A proof-of-concept white light-emitting diode (LED) applying the InP/ZnS QDs as a color-conversion layer was built to demonstrate their applicability and processibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Prediction of phosphorus loads in an artificially drained lowland catchment using a modified SWAT model

    NASA Astrophysics Data System (ADS)

    Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd

    2017-04-01

    Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of P in rivers are groundwater and tile flow. P was also released by surface runoff during large storm events when sediment was eroded into the rivers. The contributions of point sources in terms of waste water treatment plants to the overall P loading were low. The modifications made in the SWAT source code should be considered as a starting point to simulate P loads in artificially drained landscapes more precisely. Further testing and development of the code is required.

  19. Effect of Citric Acid Surface Modification on Solubility of Hydroxyapatite Nanoparticles.

    PubMed

    Samavini, Ranuri; Sandaruwan, Chanaka; De Silva, Madhavi; Priyadarshana, Gayan; Kottegoda, Nilwala; Karunaratne, Veranja

    2018-04-04

    Worldwide, there is an amplified interest in nanotechnology-based approaches to develop efficient nitrogen, phosphorus, and potassium fertilizers to address major challenges pertaining to food security. However, there are significant challenges associated with fertilizer manufacture and supply as well as cost in both economic and environmental terms. The main issues relating to nitrogen fertilizer surround the use of fossil fuels in its production and the emission of greenhouse gases resulting from its use in agriculture; phosphorus being a mineral source makes it nonrenewable and casts a shadow on its sustainable use in agriculture. This study focuses on development of an efficient P nutrient system that could overcome the inherent problems arising from current P fertilizers. Attempts are made to synthesize citric acid surface-modified hydroxyapatite nanoparticles using wet chemical precipitation. The resulting nanohybrids were characterized using powder X-ray diffraction to extract the crystallographic data, while functional group analysis was done by Fourier transform infrared spectroscopy. Morphology and particle size were studied using scanning electron microscopy along with elemental analysis using energy-dispersive X-ray diffraction spectroscopy. Its effectiveness as a source of P was investigated using water release studies and bioavailability studies using Zea mays as the model crop. Both tests demonstrated the increased availability of P from nanohybrids in the presence of an organic acid compared with pure hydroxyapatite nanoparticles and rock phosphate.

  20. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils.

    PubMed

    Du, Yu-Mei; Tian, Jiang; Liao, Hong; Bai, Chang-Jun; Yan, Xiao-Long; Liu, Guo-Dao

    2009-06-01

    Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood. Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils. Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype 'TPRC2001-1' had higher Al tolerance than the P-inefficient genotype 'Fine-stem' as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, 'TPRC2001-1', had superior ability to utilize phytate-P. The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.

  1. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  2. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  3. County-level estimates of nutrient inputs to the landsurface of the conterminous United States, 1982-2001

    USGS Publications Warehouse

    Ruddy, Barbara C.; Lorenz, David L.; Mueller, David K.

    2006-01-01

    Nutrient input data for fertilizer use, livestock manure, and atmospheric deposition from various sources were estimated and allocated to counties in the conterminous United States for the years 1982 through 2001. These nationally consistent nutrient input data are needed by the National Water-Quality Assessment Program for investigations of stream- and ground-water quality. For nitrogen, the largest source was farm fertilizer; for phosphorus, the largest sources were farm fertilizer and livestock manure. Nutrient inputs from fertilizer use in nonfarm areas, while locally important, were an order of magnitude smaller than inputs from other sources. Nutrient inputs from all sources increased between 1987 and 1997, but the relative proportions of nutrients from each source were constant. Farm-fertilizer inputs were highest in the upper Midwest, along eastern coastal areas, and in irrigated areas of the West. Nonfarm-fertilizer use was similar in major metropolitan areas throughout the Nation, but was more extensive in the more populated Eastern and Central States and in California. Areas of greater manure inputs were located throughout the South-central and Southeastern States and in scattered areas of the West. Nitrogen deposition from the atmosphere generally increased from west to east and is related to the location of major sources and the effects of precipitation and prevailing winds. These nutrient-loading data at the county level are expected to be the fundamental basis for national and regional assessments of water quality for the National Water-Quality Assessment Program and other large-scale programs.

  4. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River and Oak Grove Fork) had the highest concentrations of phosphorus (and lowest concentrations of nitrogen), and streams draining forestland in the middle basin (Clear Creek, Eagle Creek, and the North Fork of the Clackamas River) had relatively high concentrations of nitrogen (and low concentrations of phosphorus). In contrast, relatively low concentrations of both nitrogen and phosphorus were found at the two reference streams, reflecting their pristine condition. Relatively high phosphorus levels in the upper basin are probably due to the erosion of naturally occurring phosphorus deposits in this area. Likely sources of nitrogen (mostly nitrate) in the forested watersheds include nitrogen-fixing plants, atmospheric deposition, timber harvesting, and applications of urea fertilizers.

  5. Comprehensive trends assessment of nitrogen sources and loads to estuaries of the coterminous United States

    EPA Science Inventory

    Sources of nitrogen and phosphorus to estuaries and estuarine watersheds of the coterminous United States have been compiled from a variety of publically available data sources (1985 – 2015). Atmospheric loading was obtained from two sources. Modelled and interpolated meas...

  6. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    PubMed

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  7. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per year) and 45% ($ 3.2 million per year), respectively. It is important to note that the realization of the environmental and economic benefits of this market-based alternative is also contingent on other important factors, such as the market structure, the specific program rules, the risk perception, and the education and outreach to develop trusted relationships among regulatory agencies, the public sector, and other stakeholders. Nevertheless, this research provided the foundation for stakeholders to better understand whether water quality trading has the potential to work in the Lake Okeechobee watershed and to facilitate the development of a pilot program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  9. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir

    PubMed Central

    Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing

    2018-01-01

    As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793

  10. Hindcasting of nutrient loadings from its catchment on a highly valuable coastal lagoon: the example of the Fleet, Dorset, UK, 1866–2004

    PubMed Central

    Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul

    2006-01-01

    Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108

  11. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium and phosphorus uptake by peanut

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...

  12. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China.

    PubMed

    Wang, Xinglei; Wei, Jinxing; Bai, Na; Cha, Hancaicike; Cao, Can; Zheng, Kexuan; Liu, Ying

    2018-05-11

    The phosphorus (P) fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake were investigated through molybdenum blue/ascorbic acid method and indoor simulation experiments, respectively. The results showed that the highest total phosphorus concentration in overlying water (W-TP) was found in S1 which was in the hypereutrophic type. The mean concentration of particulate organic phosphorus (POP) was the most abundant P fraction (31.35% of the W-TP). The results of TP contents in sediments (S-TP) indicated that the most sampling sites were in the mild level of pollution. The contents of calcium-bound P (HCl-P) and residual P (Res-P) fractions together comprised 83.03-98.10% of the S-TP. Pseudo-second-order models fitted well with the adsorption-desorption kinetic of P fractions. The Langmuir and Freundlich models well described the adsorption isotherm of P fractions. The results of adsorption-desorption of P fractions indicated that the adsorption capacity was strong, the chemical adsorption was dominant, and the sediments was a source of P. Accordingly, we concluded that the Wuliangsuhai Lake was in the moderate pollution level, and the sediments as a source could desorb P in natural aquatic environment.

  13. Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.

    PubMed

    Zhang, Qi; Carroll, John J; Dixon, Alan J; Anastasio, Cort

    2002-12-01

    Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest fires could be important sources of both N and P.

  14. Phosphorous digestibility and activity of intestinal phytase in hybrid tilapia, Oreochromis niloticus X O. aureus

    USGS Publications Warehouse

    La Vorgna, M.W.; Hafez, Y.; Hughes, S.G.; Handwerker, T.

    2003-01-01

    Experiments were conducted to determine the degree to which phytate-bound phosphorus from plant protein sources could be used by hybrid tilapia (Oreochromis niloticus X O. aureus). Utilizing an inert marker technique with chromic oxide, hybrid tilapia in our study were effective at utilizing both inorganic and phytate phosphorus as evidenced by average apparent digestibility values of 93.2% and 90.0% for total and phytate phosphorus, respectively. Analysis of the intestinal brush border membrane of the tilapia revealed enzyme activity that was capable of hydrolyzing phytic acid. The presence of phytic acid hydrolyzing enzyme activity in the intestinal brush border provides a probable mechanism by which these hybrid tilapia are able to utilize phytate phosphorus effectively. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  15. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    USGS Publications Warehouse

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decrease in median concentrations of ammonia nitrogen at both sites was not statistically significant at the 0.05 significance level. Multiple linear regression analyses were used to remove the effects of climatologic conditions and seasonality from computed storm loads. For both Eagle and Joos Valley Creeks, the median storm loads for suspended solids, total phosphorus, and ammonia nitrogen were lower during the post-BMP period compared to the pre-BMP period and were statistically significant at the 0.05 significance level. The decreases in storm-load regression residuals from the pre- to the post-BMP periods for both Eagle and Joos Valley Creeks were statistically significant for all three constituents at the 0.05 significance level and indicated an apparent improvement in water-quality in the post-BMP period. Because the rainfall characteristics for individual storms in the pre- and post-BMP periods are likely to be different, separate pre- and post-BMP regressions were used to estimate the theoretical pre- and post-BMP storm loads to allow estimates of precent reductions between the pre- and post-BMP periods. The estimated percent reductions in storm loads for suspended solids, total phosphorus, and ammonia nitrogen were 89, 77, and 66 respectively for Eagle Creek and 84, 67, and 60 respectively for Joos Valley Creek. The apparent improvement in water quality is attributed to the implemented BMPs and to a reduction in the number of cattle in the watersheds.

  16. Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.

    PubMed

    Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P

    2011-03-01

    High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  17. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012)

    PubMed Central

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 105, 3.1 × 106 and 2.8 × 105 tons, respectively, while in 2006, the nutrient load was 7.4 × 105, 2.2 × 106 and 1.6 × 105 tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 105 tons), 70% of TN (2.2 × 106 tons) and 87% of TP (2.5 × 105 tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  18. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    PubMed

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-11-19

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger.

  19. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    NASA Astrophysics Data System (ADS)

    Pasquier, Benoît; Holzer, Mark

    2017-09-01

    The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the phosphorus and opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source. Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional contribution to the total source. Per source-injected molecule, aeolian iron supports 3. 1 ± 0. 8 times more phosphorus export and 2. 0 ± 0. 5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2. 3 ± 0. 6 and 4. ± 2. times less phosphorus export, and 1. 9 ± 0. 5 and 2. ± 1. times less opal export than the other iron types.

  20. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.

  1. Phosphorus cycles of forest and upland grassland ecosystems and some effects of land management practices.

    PubMed

    Harrison, A F

    The distribution of phosphorus capital and net annual transfers of phosphorus between the major components of two unfertilized phosphorus-deficient UK ecosystems, an oak--ash woodland in the Lake District and an Agrostis-Festuca grassland in Snowdonia (both on acid brown-earth soils), have been estimted in terms of kg P ha--1. In both ecosystems less than 3% of the phosphorus, totalling 1890 kg P ha--1 and 3040 kg P ha--1 for the woodland and grassland, respectively, is contained in the living biomass and half that is below ground level. Nearly all the phosphorus is in the soil matrix. Although the biomass phosphorus is mostly in the vegetation, the soil fauna and vegetation is slower (25%) than in the grassland vegetatation (208%). More than 85% of the net annual vegetation uptake of phosphorus from the soil is returned to the soil, mainly in organic debris, which in the grassland ecosystem is more than twice as rich in phosphorus (0.125% P) as in the woodland ecosystem (0.053% P). These concentrations are related to the rates of turnover (input/P content) of phosphorus in the litter layer on the soil surface; it is faster in the grassland (460%) than in the woodland (144%). In both cycles plant uptake of phosphorus largely depends on the release of phosphorus through decomposition of the organic matter returned to soil. In both the woodland and the grassland, the amount of cycling phosphorus is potentially reduced by its immobilization in tree and sheep production and in undecomposed organic matter accumulating in soil. It is assumed that the reductions are counterbalanced by the replenishment of cycling phosphorus by (i) some mineralization of organically bound phosphorus in the mineral soil, (ii) the income in rainfall and aerosols not being effectively lost in soil drainage waters and (iii) rock weathering. The effects of the growth of conifers and sheep grazing on the balance between decomposition and accumulation of organic matter returned to soil are considered in relation to the rate of phosphorus cycling and the pedogenetic changes in soil phosphorus condition leading to reduced fertility. Although controlled sheep grazing speeds up phosphorus cycling and may reverse the pedogenetic trend in favour of soil improvement, conifers may slow down phosphorus cycling and promote the pedogenetic trend towards infertility.

  2. Spatial and temporal variation of stream chemistry associated with contrasting geology and land-use patterns in the Chesapeake Bay watershed—Summary of results from Smith Creek, Virginia; Upper Chester River, Maryland; Conewago Creek, Pennsylvania; and Difficult Run, Virginia, 2010–2013

    USGS Publications Warehouse

    Hyer, Kenneth E.; Denver, Judith M.; Langland, Michael J.; Webber, James S.; Böhlke, J.K.; Hively, W. Dean; Clune, John W.

    2016-11-17

    Despite widespread and ongoing implementation of conservation practices throughout the Chesapeake Bay watershed, water quality continues to be degraded by excess sediment and nutrient inputs. While the Chesapeake Bay Program has developed and maintains a large-scale and long-term monitoring network to detect improvements in water quality throughout the watershed, fewer resources have been allocated for monitoring smaller watersheds, even though water-quality improvements that may result from the implementation of conservation practices are likely to be first detected at smaller watershed scales.In 2010, the U.S. Geological Survey partnered with the U.S. Environmental Protection Agency and the U.S. Department of Agriculture to initiate water-quality monitoring in four selected small watersheds that were targeted for increased implementation of conservation practices. Smith Creek watershed is an agricultural watershed in the Shenandoah Valley of Virginia that is dominated by cattle and poultry production, and the Upper Chester River watershed is an agricultural watershed on the Eastern Shore of Maryland that is dominated by row-cropping activities. The Conewago Creek watershed is an agricultural watershed in southeastern Pennsylvania that is characterized by mixed agricultural activities. The fourth watershed, Difficult Run, is a suburban watershed in northern Virginia that is dominated by medium density residential development. The objective of this study was to investigate spatial and temporal variations in water chemistry and suspended sediment in these four relatively small watersheds that represent a range of land-use patterns and underlying geology to (1) characterize current water-quality conditions in these watersheds, and (2) identify the dominant sources, sinks, and transport processes in each watershed.The general study design involved two components. The first included intensive routine water-quality monitoring at an existing streamgage within each study area (including continuous water-quality monitoring as well as discrete water-quality sampling) to develop a detailed understanding of the temporal and hydrologic variability in stream chemistry and sediment transport in each watershed. The second component involved extensive water-quality monitoring at various sites throughout each watershed to develop a detailed understanding of spatial patterns. Both components were used to improve understanding of sources and transport processes affecting stream chemistry, including nutrients and suspended sediments, and their implications for detecting long-term trends related to best management practices. This report summarizes the results of monitoring that was performed from April 2010 through September 2013.Individual Small Watershed SummariesSummaries for each of the four small watersheds are presented below. Each watershed has a more descriptive and detailed section in the report, but these summaries may be particularly useful for some watershed managers and stakeholders desiring slightly less technical detail.Smith CreekSmith Creek is a 105.39-mi2 watershed within the Shenandoah Valley that drains to the North Fork Shenandoah River. The long-term Smith Creek base-flow index is 72.3 percent, indicating that on average, approximately 72 percent of Smith Creek flow was base flow, which suggests that Smith Creek streamflow is dominated by groundwater discharge rather than stormwater runoff. A series of cluster and principal components analyses demonstrated that the majority of the variability in Smith Creek water quality could be attributed to hydrologic and seasonal variability. Statistically significant positive correlations with flow were observed for turbidity, suspended sediments, total nitrogen, ammonium, orthophosphate, iron, total phosphorus, and the ratio of calcium to magnesium. Statistically significant inverse correlations with flow were observed for specific conductance, magnesium, δ15N of nitrate, pH, bicarbonate, calcium, and δ18O of nitrate. Of particular note, flow and nitrate were not statistically significantly correlated, likely because of the relatively complex concentration-discharge relationship observed in continuous and discrete datasets. Statistically significant seasonal patterns were observed for numerous water-quality constituents: water temperature, turbidity, orthophosphate, total phosphorus, suspended-sediment concentration, and silica were higher during the warm season, but pH, dissolved oxygen, and sulfate were higher during the cool season. Surrogate regression models were developed to compute sediment and nutrient loads in Smith Creek using the continuous water-quality monitors. The mean Smith Creek in-stream sediment load was approximately 6,900 tons per year, with nearly 90 percent of the sediment load over the 3-year study period contributed during the eight largest storm events during that period. The Smith Creek total phosphorus load was approximately 21,000 pounds of phosphorus per year, with the majority of the load contributed during stormflow periods, although a substantial phosphorus load still occurs during base-flow conditions. The Smith Creek total nitrogen load was approximately 400,000 pounds per year, with total nitrogen accumulation less dominated by stormflow contributions (as was the case for sediment and total phosphorus) and strongly affected by base-flow export of nitrogen from the basin.Extensive water-quality monitoring throughout the Smith Creek watershed revealed how the complex geology and hydrology interacted to result in variable water chemistry. During relatively dry and low base-flow periods, much of the discharge in Smith Creek was contributed by a single dominant spring—Lacey Spring. During wetter base-flow periods, the flows in Smith Creek were largely generated by a mixture of headwater springs and forested mountain tributaries with very different geochemical composition. The headwater springs generally issued from limestone bedrock and were characterized as having relatively high nitrate, specific conductance, calcium, and magnesium, as well as relatively low concentrations of phosphorus, ammonium, iron, and manganese. The undeveloped, high-gradient, forested mountain sites were generally characterized by low ionic strength waters with low nutrient concentrations. Nitrate isotope data from the limestone springs generally were consistent with manure-derived nitrogen sources (such as cattle and poultry), although the possibility of other mixed sources cannot be excluded. Nitrate isotope data from the undeveloped, high-gradient forested mountain sites were more consistent with nitrogen from undisturbed soils, atmospheric deposition, or nitrogen fixation. Regardless of the nitrogen source, oxygen isotope data indicate that the nitrate was largely a result of nitrification. Land-use data indicate that manure sources of nitrogen dominated watershed nitrogen inputs. Phosphorus sources were less well studied. The presence of a single point-source discharge near the town of New Market contributed the majority of the phosphorus to Smith Creek under base-flow conditions, but nonpoint sources of phosphorus dominated the loading to Smith Creek during stormflow periods.Implementation of conservation practices increased in the Smith Creek watershed during the study period, and even though a broad range of practice types was implemented, the most common practices included stream fencing (for cattle exclusion), the development of nutrient management plans, conservation crop rotation, and the planting of cover crops. While the implementation of these conservation practices is encouraging, results indicate small increases in nitrate concentrations at the streamgage over the last 29 years, concurrent with small decreases in nitrate fluxes. It will likely be years before the cumulative effect of these practices can be detected in the Smith Creek water quality, and the magnitude of the effect of these conservation practices detected in Smith Creek will depend largely on whether nutrient loading (of manure and commercial fertilizer) is reduced over time.Upper Chester RiverThe Upper Chester River watershed includes the 36-square-mile (mi2) watershed area around several nontidal tributaries that drain into the tidal Chester River. The streamgage is on Chesterville Branch, the largest nontidal tributary (approximately 6.12 mi2) and is the site for continuous water-quality monitoring for this project. The base-flow index at Chesterville Branch is about 72 percent and indicates that, as in most of the Coastal Plain, groundwater is the greatest contributor to streamflow. As such, more than 90 percent of the nitrogen in the stream is in the form of nitrate from groundwater. Continuous and discrete data collected at Chesterville Branch show the effects of streamflow and season on water quality. Significantly positive correlations with flow were observed for ammonium, dissolved and total phosphorus, sediment, and turbidity as runoff carried these constituents from the land surface into Chesterville Branch. Other constituents that increased significantly with flow include potassium, sulfate, iron, and manganese, which are likely contributed from near-stream areas and ponds with high organic-matter content. Total nitrogen, pH, and specific conductance, along with chemical constituents associated with groundwater inputs including nitrate, calcium, ratio of calcium to magnesium, silica, bicarbonate, and sodium, were negatively correlated with flow because concentrations of these constituents were diluted by runoff.Seasonal differences in water chemistry, which are most likely related to increased biologic effects on the uptake and release of chemicals in the stream and near-stream areas, also were observed. Water temperature, orthophosphate, δ15N of nitrate, bicarbonate, sodium, and the ratio of sodium to chloride were higher during the warm season, and dissolved oxygen, total nitrogen, nitrate, magnesium, sulfate, and manganese were higher during the cool season.Surrogate-regression models developed by using continuous water-quality data showed that the annual sediment load for the 2013 water year was about 2,600 tons, with more than 90 percent of this sediment contributed during two storms. The total phosphorus load in 2013 was about 13,000 pounds with more than 90 percent contributed during the same two storms as sediment. The load of total nitrogen, 140,000 pounds, accumulated steadily throughout the 2013 water year as nitrate in groundwater continuously discharged into the stream. The same two large storms that contributed 90 percent of the suspended-sediment and total phosphorus load only contributed about 20 percent of the annual total nitrogen load.Extensive water-quality monitoring of stream base flow throughout the Upper Chester River watershed identified how differences in land use and hydrogeology affected water chemistry. In parts of the watershed with well-drained soil and thick sandy aquifer sediments, concentrations of nitrate and other chemicals associated with fertilizer and lime application increased in streams as agricultural land use increased. More than 90 percent of the nitrogen in streams from these areas was in the form of nitrate, and concentrations ranged from about 5 milligrams per liter (mg/L) to 8 mg/L as nitrogen in the two largest tributaries. Stream nitrate concentrations were about 1 mg/L as nitrogen where soils were more poorly drained, the surficial aquifer sediments were thinner, and forests and wetlands were more widespread than agriculture. Nitrate isotope data were consistent with inorganic fertilizers ± atmospheric deposition and N2 fixation as sources of nitrogen, and with nitrification as the dominant nitrate-forming process. Nitrate reduction was indicated by elevated δ15N and δ18O values in some samples from streams draining watersheds with poorly drained soils. An analysis of land-use data and SPARROW modeling input data attributed almost 90 percent of the nitrogen sources in the Upper Chester River watershed to inorganic fertilizer and fixation of atmospheric nitrogen by legumes, which is in agreement with the isotopic characteristics of nitrate in this watershed. Local sources of manure are limited in this area. Total phosphorus concentrations during base flow ranged from below detection to about 0.2 mg/L. Stream phosphorus concentrations during base flow were generally lower than those measured during storms because most phosphorus transport likely occurs as phosphorus attached to sediment particles during runoff. Because manure is not widely used in this area, the major source of phosphorus is likely fertilizer.The implementation of conservation practices in the Upper Chester River watershed increased substantially during the study period, with a total implementation of 1,194 U.S. Department of Agriculture-compliant practices. The most frequently used practices were oriented towards nutrient and sediment control, including cover crops, nutrient management planning, conservation crop rotation, conservation tillage, and irrigation management. The current Chesapeake Bay model for this area predicts that implementation of best management practices should result in a 13-percent decrease in overall delivery of nitrogen to the Upper Chester River. Because most nitrogen travels through the groundwater system for years to decades before being discharged to streams, the time period of monitoring was not sufficient to see the effects of these practices on water quality. The magnitude of the effect that may eventually be detected will depend on the degree to which nitrate leaching into the groundwater system is reduced over time. Loadings of phosphorus and sediment are primarily transported during large runoff events and are difficult to control and analyze for trends because of their timing and episodic nature.Conewago CreekConewago Creek has two primary monitoring locations—one near the middle of the 47-mi2 watershed and the other near the outlet just upstream of the Susquehanna River. The base-flow index was 47.3 percent for 2012–2013, indicating that on average, approximately 53 percent of the streamflow in Conewago Creek exited the watershed as surface flow, which suggests that the stormwater runoff was somewhat greater than groundwater discharge (base flow). A series of cluster and principal components analyses demonstrated that the majority of the variability in the Conewago Creek water quality could be attributed to hydrologic and seasonal variability. Statistically significant positive correlations with flow were observed at both monitoring sites for ammonium, total phosphorus, orthophosphate, iron, and manganese; additionally, at the upstream monitoring station, total nitrogen demonstrated a statistically significant positive correlation with flow. Statistically significant inverse correlations with flow were observed at both sites for water temperature, specific conductance (at the downstream site only), sulfate, chloride, calcium, and magnesium. Statistically significant seasonal patterns were observed for several water-quality constituents. Water temperature, phosphorus (upstream site only), and orthophosphate were higher during the warm season, and nitrate and total nitrogen (upstream site only) were higher during the cool season.Surrogate regression models were developed to compute sediment and nutrient load in Conewago Creek by using the continuous water-quality monitors and water-quality samples. Conewago Creek sediment load was approximately 9,900 tons in 2012 and approximately 18,900 tons in 2013, with nearly 80 percent of the sediment load in 2013 contributed by the three largest storm events. Annual total nitrogen loads could not be estimated due to poor model performance. The addition of continued monitoring or a continuously recording nitrate sensor could improve estimates of total nitrogen loads. During 2012 and 2013, phosphorus loads in Conewago Creek were approximately 50,000 pounds in each year.Combining data from one high-flow synoptic sampling with the data from routine sampling revealed how the geology and hydrology interact to result in variable water chemistry throughout the Conewago Creek watershed. The areas above the upstream gage in the headwaters are generally underlain by forested non-carbonate bedrock and are characterized by relatively low nitrate, specific conductance, calcium, and magnesium, as well as relatively low concentrations of phosphorus, ammonium, iron, and manganese. The more developed, agricultural areas below the upstream site were generally characterized by higher ionic strength waters with higher nutrient and metal concentrations. An analysis of land-use data and SPAtially Referenced Regressions On Watershed (SPARROW) modeling data indicates that manure sources of nitrogen dominate the input of nitrogen to the watershed.Implementation of conservation practices increased in the Conewago Creek watershed during the study period, and while a broad range of practice types were implemented, the most common practices included residue and tillage management, cover crops, nutrient management, terracing, and stream fencing (for animal exclusion or bank restoration). While the implementation of these conservation practices is encouraging, the cumulative effects of these practices probably will not be detected in Conewago Creek water quality for several years. The magnitude of the effects of these conservation practices on water quality in Conewago Creek will depend largely on the extent to which nutrient loading (septic, manure, and commercial fertilizer) and sediment-producing activities are reduced over time.Difficult RunThe Difficult Run watershed is a 57.82-mi2 watershed that drains to the Potomac River. The long-term Difficult Run base-flow index (from 1936 to 2010) was 57.9, indicating that approximately 58 percent of streamflow exited the watershed as base flow and 42 percent as stormflow; however, with continued development and urbanization of the watershed, the base-flow index has decreased to 50 percent during the last 20 years. This base-flow index was less than those of the other watersheds evaluated in this study, likely because the Difficult Run watershed largely is underlain by crystalline piedmont metamorphic rocks and has a greater proportion of impervious urban land cover. A series of cluster and principal components analyses indicated that most of the variability in Difficult Run water quality could be attributed to hydrologic variability and seasonality. Statistically significant positive correlations with flow were observed for turbidity, dissolved oxygen, suspended sediments, ammonium, orthophosphate, iron, and total phosphorus. Statistically significant inverse correlations with flow were observed for water temperature, pH, specific conductance, bicarbonate, calcium, magnesium, nitrate, δ15N of nitrate, and silica. Statistically significant seasonal patterns were observed for numerous water-quality constituents: water temperature, ammonium, orthophosphate, and δ15N of nitrate were higher during the warm season, and dissolved oxygen, nitrate, and manganese were higher during the cool season. Surrogate regression models were developed to compute sediment and nutrient loading rates. The Difficult Run sediment load was approximately 8,000 tons per year, with greater than 95 percent of the sediment load in the 2013 water year contributed by the seven largest storm events. The total phosphorus load in Difficult Run was approximately 14,000 pounds of phosphorus per year, with the majority of the load contributed during stormflow periods. The total nitrogen load in Difficult Run is estimated to have been approximately 140,000 pounds per year, with total nitrogen accumulation less dominated by stormflow contributions than that of phosphorus and strongly affected by base-flow export of nitrogen from the basin.Extensive water-quality monitoring throughout the Difficult Run watershed revealed relatively uniform generation of flow per unit of watershed area, as well as spatial variation in water quality that is strongly related to land-use activities. Elevated nitrate concentrations were observed in a subset of monitoring sites that are inversely correlated with population density and positively correlated to the septic system density within each subwatershed. The majority of the elevated nitrate concentrations for these sites are hypothesized to be caused by nitrate leaching from septic systems, more so than homeowner fertilizer usage among these subwatersheds that have lower population densities than other parts of the watershed. Nitrate isotope data, temporal patterns in the water-quality data, mass-balance computations, and a separate land-use analysis all generally indicate that leachate from septic systems was the likely source of the elevated nitrate. Another group of water-quality sites have relatively low nitrogen concentrations, are located in areas that are served by city sewer lines, and have experienced stream restoration activities. A final group of sites drained the areas with the highest imperviousness and had strongly elevated specific conductance, chloride, and sodium, which were likely caused by a combination of road salting and other anthropogenic sources draining these urbanized areas in the watershed. A fourth group of sites represents a mixture of water sources and had water quality similar to that at the Difficult Run streamgage. Analysis of the nitrate isotope data generally indicates a broad range of composition indicative of mixed natural and anthropogenic nitrogen sources. Implementation of conservation practices increased in the Difficult Run watershed during the study period, and while a broad range of practice types was implemented, the most common practices included stream restoration. While the implementation of these conservation practices is encouraging, the cumulative effect of these practices probably will not be detected in Difficult Run water quality for several years.

  3. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.

  4. Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico.

    PubMed

    Carro, Marco Mijangos; Dávila, Jorge Izurieta; Balandra, Antonieta Gómez; López, Rubén Hernández; Delgadillo, Rubén Huerto; Chávez, Javier Sánchez; Inclán, Luís Bravo

    2008-01-01

    In the catchment area of the Lake Patzcuaro in Central Mexico (933 km2) the apportionments of erosion, sediment, nutrients and pathogen coming from thirteen micro basins were estimated with the purpose of identifying critical areas in which best management practices need to be implemented in order to reduce their contribution to the lake pollution and eutrophication. The ArcView Generalized Watershed Loading Functions model (AV-GWLF) was applied to estimate the loads and sources of nutrients. The main results show that the total annual contribution of nitrogen from point sources were 491 tons and from diffuse pollution 2,065 tons, whereas phosphorus loads where 116 and 236 tons, respectively during a thirty year simulation period. Micro basins with predominant agricultural and animal farm land use (56% of the total area) accounts for a high percentage of nitrogen load 33% and phosphorus 52%. On the other hand, Patzcuaro and Quiroga micro basins which comprise approximately 10% of the total catchment area and are the most populated and visited towns by tourist 686,000 people every year, both contributes with 10.1% of the total nitrogen load and 3.2% of phosphorus. In terms of point sources of nitrogen and phosphorus the last towns contribute with 23.5% and 26.6% respectively. Under this situation the adoption of best management practices are an imperative task since the sedimentation and pollution in the lake has increased dramatically in the last twenty years. Copyright (c) IWA Publishing 2008.

  5. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers

    PubMed Central

    Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian

    2015-01-01

    Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491

  6. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    NASA Technical Reports Server (NTRS)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  7. Forecasting future phosphorus export to the Laurentian Great Lakes from land-derived nutrient inputs

    NASA Astrophysics Data System (ADS)

    LaBeau, M. B.; Robertson, D. M.; Mayer, A. S.; Pijanowski, B. C.

    2011-12-01

    Anthropogenic use of the land through agricultural and urban activities has significantly increased phosphorus loading to rivers that flow to the Great Lakes. Phosphorus (P) is a critical element in the eutrophication of the freshwater ecosystems, most notably the Great Lakes. To better understand factors influencing phosphorus delivery to aquatic systems and thus their potential harmful effects to lake ecosystems, models that predict P export should incorporate account for changing changes in anthropogenic activities. Land-derived P from high yielding sources, such as agriculture and urban areas, affect eutrophication at various scales (e.g. specific bays to all of Lake Erie). SPARROW (SPAtially Referenced Regression On Watershed attributes) is a spatially explicit watershed model that has been used to understand linkages between land-derived sources and nutrient transport to the Great Lakes. The Great Lakes region is expected to experience a doubling of urbanized areas along with a ten percent increase in agricultural use over the next 40 years, which is likely to increase P loading. To determine how these changes will impact P loading, SPARROW have been developed that relate changes in land use to changes in nutrient sources, including relationships between row crop acreage and fertilizer intensity and urban land use and point source intensity. We used land use projections from the Land Transformation Model, a, spatially explicit, neural-net based land change model. Land use patterns from current to 2040 were used as input into HydroSPARROW, a forecasting tool that enables SPARROW to simulate the effects of various land-use and climate scenarios. Consequently, this work is focusing on understanding the effects of how specific agriculture and urbanization activities affect P loading in the watersheds of the Laurentian Great Lakes to potentially find strategies to reduce the extent and severity of future eutrophication.

  8. Phytate Degradation by Fungi and Bacteria that Inhabit Sawdust and Coffee Residue Composts

    PubMed Central

    Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting. PMID:23100024

  9. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

    PubMed

    Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio

    2017-01-01

    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.

    PubMed

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-05-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.

  11. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, May; Zhang, Zhonglong

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat,more » and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.« less

  12. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  13. Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003

    USGS Publications Warehouse

    Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.

    2012-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to ecoregion-based nutrient criteria proposed by the U.S. Environmental Protection Agency. Instream concentrations of total nitrogen and total phosphorus persist at levels higher than proposed criteria at more than one-third and about one-half, respectively, of the 46 stations analyzed. Long-term trends in nutrient loads were primarily downward, with downward trends in total nitrogen and total phosphorus loads detected at 12 and 17 of 32 stations, respectively. Upward trends were rare, with one upward trend for total nitrogen loads and none for total phosphorus. Trends in loads of nitrite-plus-nitrate nitrogen included 7 upward and 8 downward trends among 32 stations. Downward trends in loads of ammonia nitrogen and total Kjeldahl nitrogen were detected at all six stations evaluated. Long-term downward trends detected in four of the five largest drainage basins evaluated include: total nitrogen loads for the Connecticut, Delaware, and James Rivers; total Kjeldahl nitrogen and ammonia nitrogen loads for the Susquehanna River; ammonia nitrogen and nitrite-plus-nitrate nitrogen loads for the James River; and total phosphorus loads for the Connecticut and Delaware Rivers. No trends in load were detected for the Potomac River. Nutrient yields were evaluated relative to the extent of land development in 93 drainage basins. The undeveloped land-use category included forested drainage basins with undeveloped land ranging from 75 to 100 percent of basin area. Median total nitrogen yields for the 27 undeveloped drainage basins evaluated, including 9 basins evaluated in a national NAWQA study, ranged from 290 to 4,800 pounds per square mile per year (lb/mi2/yr). Total nitrogen yields even in the most pristine drainage basins may be elevated relative to natural conditions, because of high rates of atmospheric deposition of nitrogen in parts of the northeastern United States. Median total phosphorus yields ranged from 12 to 330 lb/mi2/yr for the 26 undeveloped basins evaluated. The undeveloped category includes some large drainage basins with point-source discharges and small percentages of developed land; in these basins, streamflow from undeveloped headwater areas dilutes streamflow in more urbanized reaches, and dampens but does not eliminate the point-source "signal" of higher nutrient loads. Median total nitrogen yields generally do not exceed 1,700 lb/mi2/yr, and median total phosphorus yields generally do not exceed 100 lb/mi2/yr, in the drainage basins that are least affected by human land-use and waste-disposal practices. Agricultural and urban land use has increased nutrient yields substantially relative to undeveloped drainage basins. Median total nitrogen yields for 24 agricultural basins ranged from 1,700 to 26,000 lb/mi2/yr, and median total phosphorus yields ranged from 94 to 1,000 lb/mi2/yr. The maximum estimated total nitrogen and total phosphorus yields, 32,000 and 16,000 lb/mi2/yr, respectively, for all stations in the region were in small (less than 50 square miles (mi2)) agricultural drainage basins. Median total nitrogen yields ranged from 1,400 to 17,000 lb/mi2/yr in 26 urbanized drainage basins, and median total phosphorus yields ranged from 43 to 1,900 lb/mi2/yr. Urbanized drainage basins with the highest nutrient yields are generally small (less than 300 mi2) and are drained by streams that receive major point-source discharges. Instream nutrient loads were evaluated relative to loads from point-source discharges in four drainage basins: the Quinebaug River Basin in Connecticut, Massachusetts, and Rhode Island; the Raritan River Basin in New Jersey; the Patuxent River Basin in Maryland; and the James River Basin in Virginia. Long-term downward trends in nutrient loads, coupled with similar trends in flow-adjusted nutrient concentrations, indicate long-term reductions in the delivery of most nutrients to these streams. However, the absence of recent downward trends in load for most nutrients, coupled with instream concentrations that exceed proposed nutrient criteria in several of these waste-receiving streams, indicates that challenges remain in reducing delivery of nutrients to streams from point sources. During dry years, the total nutrient load from point sources in some of the drainage basins approached or equaled the nutrient load transported by the stream.

  14. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton

    USDA-ARS?s Scientific Manuscript database

    Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...

  15. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in lake Erie

    USGS Publications Warehouse

    Elsbury, K.E.; Paytan, A.; Ostrom, N.E.; Kendall, C.; Young, M.B.; McLaughlin, K.; Rollog, M.E.; Watson, S.

    2009-01-01

    Water samples collected during three sampling trips to Lake Erie displayed oxygen isotopic values of dissolved phosphate (??18O p) that were largely out of equilibrium with ambient conditions, indicating that source signatures may be discerned. ??18O p values in the Lake ranged from +10??? to +17???, whereas the equilibrium value was expected to be around +14???. The riverine weighted average ??18Op value was +11??? and may represent one source of phosphate to the Lake. The lake ?? 18Op values indicated that there must be one or more as yet uncharacterized source(s) of phosphate with a high ?? 18Op value. Potential sources other than rivers are not yet well-characterized with respect to ??18O of phosphate, but we speculate that a likely source may be the release of phosphate from sediments under reducing conditions created during anoxic events in the hypolimnion of the central basin of Lake Erie. Identifying potential phosphorus sources to the Lake is vital for designing effective management plans for reducing nutrient inputs and associated eutrophication. ?? 2009 American Chemical Society.

  17. Modelling of in-stream nitrogen and phosphorus concentrations using different sampling strategies for calibration data

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could reproduce the total phosphorus during the period 2011-2013 only when the sediment transport-related model parameters was re-identified again considering the automatic sampling during the high-flow conditions.

  18. Assessing past and present P Retention in Sediments in Lake Ontario (Bay of Quinte) by Reaction-Transport Diagenetic Modeling

    NASA Astrophysics Data System (ADS)

    Doan, Phuong; Berry, Sandra; Markovic, Stefan; Watson, Sue; Mugalingam, Shan; Dittrich, Maria

    2016-04-01

    Phosphorus (P) is an important macronutrient that can limit aquatic primary production and the risk of harmful algal blooms. Although there is considerable evidence that P release from sediments can represent a significant source of P and burial in sediments returns P to the geological sink; these processes have been poorly characterised. In this study, we applied a non-steady state reactive transport diagenetic model to gain insights into the dynamics of phosphorus binding forms in sediments and the phosphorus cycling of the Bay of Quinte, an embayment of Lake Ontario, Canada. The three basins of the bay (Belleville, Hay Bay and Napanee) that we investigated had differences in their phosphorus binding forms and phosphorus release, reflecting the distinct spatial temporal patterns of land use and urbanization levels in the watershed. Sediment cores from the three stations were collected during summer and under ice cover in 2013-14. Oxygen, pH and redox potential were monitored by microsensors; porewater and sediment solid matter were analyzed for P content, and a sequential extraction was used to analyze P binding forms. In the reaction-transport model, total phosphorus was divided into adsorbed phosphorus, phosphorus bound with aluminium, organic phosphorus, redox sensitive and apatite phosphorus. Using the fluxes of organic and inorganic matter as dynamic boundary conditions, we simulated the depth profiles of solute and solid components. The model closely reproduced the fractionation data of phosphorus binding forms and soluble reactive phosphorus. The past and present P fluxes were calculated and estimated; they related to geochemical conditions, and P binding forms in sediments. Our results show that P release from sediments is dominated by the redox-sentive P fraction accounting for higher percentage at Napanee station. The main P binding form that can be immobilized through diagenesis is apatite P contributing highest P retention at HayBay station. The mass balance of P was closed by our model.

  19. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  20. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    PubMed

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.

  2. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; nutrients, bacteria, organic carbon, and suspended sediment in surface water, 1993-95

    USGS Publications Warehouse

    Davis, Jerri V.; Bell, Richard W.

    1998-01-01

    Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.

  3. 40 CFR 422.65 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates... consecutive days shall not exceed— TSS 0.35 0.18 Total phosphorus (as P) .56 .28 Fluoride (as F) .21 .11 pH (1...

  4. 40 CFR 422.65 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Sodium Phosphates... consecutive days shall not exceed— TSS 0.35 0.18 Total phosphorus (as P) .56 .28 Fluoride (as F) .21 .11 pH (1...

  5. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  6. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that stream water in the study basins is affected by septic tank effluent. Fecal coliform bacteria concentrations were measured on a monthly basis; of 115 samples, 63 percent exceeded the State of Florida fecal coliform bacteria standard for Class III surface waters of 800 colonies per 100 milliliters of water on any 1 day. Fecal coliform bacteria concentrations ranged from less than 20 colonies per 100 milliliters of sample to greater than or equal to 160,000 colonies per 100 milliliters of sample. Antibiotic resistance patterns of fecal coliform bacteria were used to identify the sources of fecal coliform bacteria. Significant sources of fecal coliform bacteria included wild animals, dogs, and humans. A majority of the fecal coliform bacteria were classified to be from human sources. Because the primary source of fecal coliform bacteria is from human sources, and most likely septic tank effluent, management of human sources may substantially improve microbiological water quality in both the Fishing Creek and South Branch Big Fishweir Creek basins.

  7. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.

  8. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  9. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    PubMed

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  11. Response to comments on "A bacterium that can grow using arsenic instead of phosphorus"

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C.W.; Anbar, Ariel D.; Oremland, Ronald S.

    2011-01-01

    Concerns have been raised about our recent study suggesting that arsenic (As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable.

  12. Detecting and analyzing soil phosphorus loss associated with critical source areas using a remote sensing approach.

    PubMed

    Lou, Hezhen; Yang, Shengtian; Zhao, Changsen; Shi, Liuhua; Wu, Linna; Wang, Yue; Wang, Zhiwei

    2016-12-15

    The detection of critical source areas (CSAs) is a key step in managing soil phosphorus (P) loss and preventing the long-term eutrophication of water bodies at regional scale. Most related studies, however, focus on a local scale, which prevents a clear understanding of the spatial distribution of CSAs for soil P loss at regional scale. Moreover, the continual, long-term variation in CSAs was scarcely reported. It is impossible to identify the factors driving the variation in CSAs, or to collect land surface information essential for CSAs detection, by merely using the conventional methodologies at regional scale. This study proposes a new regional-scale approach, based on three satellite sensors (ASTER, TM/ETM and MODIS), that were implemented successfully to detect CSAs at regional scale over 15years (2000-2014). The approach incorporated five factors (precipitation, slope, soil erosion, land use, soil total phosphorus) that drive soil P loss from CSAs. Results show that the average area of critical phosphorus source areas (CPSAs) was 15,056km 2 over the 15-year period, and it occupied 13.8% of the total area, with a range varying from 1.2% to 23.0%, in a representative, intensive agricultural area of China. In contrast to previous studies, we found that the locations of CSAs with P loss are spatially variable, and are more dispersed in their distribution over the long term. We also found that precipitation acts as a key driving factor in the variation of CSAs at regional scale. The regional-scale method can provide scientific guidance for managing soil phosphorus loss and preventing the long-term eutrophication of water bodies at regional scale, and shows great potential for exploring factors that drive the variation in CSAs at global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  14. Woodchip bioreactors effectively treat aquaculture effluent

    USDA-ARS?s Scientific Manuscript database

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  15. Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region

    NASA Astrophysics Data System (ADS)

    Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; Severin, Tatiana; Pujo-Pay, Mireille; Caparros, Jocelyne; Raimbault, Patrick; Pasqueron de Fommervault, Orens; D'Ortenzio, Fabrizio; Taillandier, Vincent; Testor, Pierre; Conan, Pascal

    2017-12-01

    The aim of this study is to understand the biogeochemical cycles of the northwestern Mediterranean Sea (NW Med), where a recurrent spring bloom related to dense water formation occurs. We used a coupled physical-biogeochemical model at high resolution to simulate realistic 1 year period and analyze the nitrogen (N) and phosphorus (P) cycles. First, the model was evaluated using cruises carried out in winter, spring, and summer and a Bio-Argo float deployed in spring. Then, the annual cycle of meteorological and hydrodynamical forcing and nutrients stocks in the upper layer were analyzed. Third, the effect of biogeochemical and physical processes on N and P was quantified. Fourth, we quantified the effects of the physical and biological processes on the seasonal changes of the molar NO3:PO4 ratio, particularly high compared to the global ocean. The deep convection reduced the NO3:PO4 ratio of upper waters, but consumption by phytoplankton increased it. Finally, N and P budgets were estimated. At the annual scale, this area constituted a sink of inorganic and a source of organic N and P for the peripheral area. NO3 and PO4 were horizontally advected from the peripheral regions into the intermediate waters (130-800 m) of the deep convection area, while organic matter was exported throughout the whole water column toward the surrounding areas. The annual budget suggests that the NW Med deep convection constitutes a major source of nutrients for the photic zone of the Mediterranean Sea.

  16. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.

    PubMed

    Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I

    2009-03-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.

  17. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  18. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    PubMed

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  19. Rhodhiss Lake, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94

    USGS Publications Warehouse

    Giorgino, M.J.; Bales, J.D.

    1997-01-01

    From January 1993 through March 1994, the U.S. Geological Survey conducted an investigation of Rhodhiss Lake in cooperation with the Western Piedmont Council of Governments. Objectives of the investigation were to describe ambient hydrologic and water-quality conditions, to estimate loadings of nutrients and suspended solids from selected tributaries and point sources, and to simulate hydraulic circulation and water-quality characteristics in Rhodhiss Lake using a hydrodynamic computer model. The riverine headwaters of Rhodhiss Lake were unstratified, well oxygenated, and contained relatively high concentrations of suspended solids and nutrients throughout the study period. In general, concentrations of suspended solids, nitrate, orthophosphate, and total phosphorus decreased in a downstream direction from the headwaters to the Rhodhiss Dam. However, increases in specific conductance frequently were observed downstream from a wastewater discharge near mid-reservoir. From mid-reservoir to the dam, Rhodhiss Lake thermally stratified during the summer of 1993. In this reach, dissolved oxygen was rapidly depleted from the bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion through the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia, orthophosphate, and total phosphorus increased in the hypolimnion. During fall and winter, Rhodhiss Lake was characterized by alternating periods of stratification and mixing. A maximum chlorophyll-a concentration of 52 micrograms per liter was observed at mid-reservoir on November 17, 1993, and was the only value that exceeded the North Carolina water-quality standard of 40 micrograms per liter. Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in the headwaters of Rhodhiss Lake 37 percent of the time, and at mid-reservoir and in the forebay 16 percent of the time. In Lower Creek, a tributary to Rhodhiss Lake, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 76 percent of the samples. This stream also contained elevated concentrations of nitrite plus nitrate, phosphorus, and specific conductance. Loading estimates showed that almost all of the suspended solids and the majority of the nitrogen and phosphorus entering the headwaters of Rhodhiss Lake originated from nonpoint sources. During the investigation, point sources accounted for less than 1 percent of the suspended solids load to the reservoir headwaters, but point sources accounted for up to 27 and 22 percent of the total nitrogen and total phosphorus loads, respectively. Additional loadings of nitrogen and phosphorus entered Rhodhiss Lake by municipal wastewater discharge near mid-reservoir. The U.S. Army Corps of Engineers CE-QUAL-W2 model is a two-dimensional, laterally averaged model that simulates hydrodynamics and water quality. The model was applied to Rhodhiss Lake from Huffman Bridge to Rhodhiss Dam--a distance of 18.5 kilometers--and was calibrated using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.32 meters, and water temperatures ranged from 4 to 30 degrees Celsius. The calibrated model provided good agreement between measured and simu- lated water levels at Rhodhiss Dam. Likewise, simulated water temperatures were generally within 2 degrees Celsius of measured values; however, the model tended to overpredict temperatures near the bottom of the reservoir by 1 to 3 degrees Celsius during warm months. This suggests that the model, as calibrated, overpredicts vertical mixing. Simulated dissolved oxygen concentrations followed the same general patterns and magnitudes as measured values, and there was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 5 milligra

  20. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study.

    PubMed

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-02-21

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71-2551 mg/day), 1176 ± 8 mg/day, (331-4429 mg/day), 222 ± 2 mg/day (73-782 mg/day), and 4.4 ± 0.1 µg/day (0.0-74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D.

  1. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.

  2. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    PubMed

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  3. Urban snow indicates pollution originating from road traffic.

    PubMed

    Kuoppamäki, Kirsi; Setälä, Heikki; Rantalainen, Anna-Lea; Kotze, D Johan

    2014-12-01

    Traffic is a major source of pollutants in cities. In this well-replicated study we analysed a broad array of contaminants in snowpacks along roads of different traffic intensities. The majority of pollutants showed a similar pattern with respect to traffic intensity: pH and conductivity as well as concentrations of PAHs, total suspended solids, phosphorus and most heavy metals were higher next to high intensity roads compared to low intensity roads. These pollutant levels also decreased considerably up to 5 m distance from the roads. Furthermore, apart from nitrogen, these variables increased in concentration from control sites in urban forest patches to road bank sites next to roads of low, intermediate and high traffic intensities. The deposition pattern of various traffic-derived pollutants--whether gaseous or particle-bound--was the same. Such information can be useful for the purposes of managing pollutants in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    PubMed

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow groundwater beneath a bahiagrass-based pasture and forage availability at four different landscape positions and soil depth (for soil samples only) in 2004, 2005, and 2006 were analyzed statistically following a two-way analysis of variance using the SAS PROC general linear models model. Where the F-test indicated a significant (p

  5. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.

    2015-12-01

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater contamination was also suggested by additional tracer measurements including fluoride (added to drinking water) and iodide (contained in dietary salt). Our results suggest that integrating stream restoration with restoration of aging sanitary infrastructure can be critical to more effectively minimize watershed nutrient export. Given that both stream restoration and sanitary pipe repairs both involve extensive channel manipulation, they can be considered simultaneously in management strategies. In addition, ground water can be a major source of nutrient fluxes in urban watersheds, which has been less considered compared with upland sources and storm drains. Goundwater sources, fluxes, and flowpath should also be targeted in efforts to improve stream restoration strategies and prioritize hydrologic "hot spots" along watersheds where stream restoration is most likely to succeed.

  6. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus

    PubMed Central

    Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

    2013-01-01

    The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

  8. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    PubMed

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  9. Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng

    2012-02-01

    SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.

  10. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    PubMed Central

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602

  11. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    PubMed

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  12. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.

  13. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  14. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Carl S

    2005-12-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  15. Nutrients in Streams and Rivers Across the Nation -- 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Spahr, Norman E.

    2006-01-01

    Nutrient compounds of nitrogen and phosphorus were investigated in streams and rivers sampled as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Nutrient data were collected in 20 NAWQA study units during 1992-95, 16 study units during 1996-98, and 15 study units during 1999-2001. To facilitate comparisons among sampling sites with variable sampling frequency, daily loads were determined by using regression models that relate constituent transport to streamflow and time. Model results were used to compute mean annual loads, yields, and concentrations of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus, which were compared among stream and river sampling sites. Variations in the occurrence and distribution of nutrients in streams and rivers on a broad national scale reflect differences in the sources of nutrient inputs to the upstream watersheds and in watershed characteristics that affect movement of those nutrients. Sites were classified by watershed size and by land use in the upstream watershed: agriculture, urban, and undeveloped (forest or rangeland). Selection of NAWQA urban sites was intended to avoid effects of major wastewater-treatment plants and other point sources, but in some locations this was not feasible. Nutrient concentrations and yields generally increased with anthropogenic development in the watershed. Median concentrations and yields for all constituents at sites downstream from undeveloped areas were less than at sites downstream from agricultural or urban areas. Concentrations of ammonia, orthophosphate, and total phosphorus at agricultural and urban sites were not significantly different; however, concentrations of nitrate and total nitrogen were higher at agricultural than at urban sites. Total nitrogen concentrations at agricultural sites were higher in areas of high nitrogen input or enhanced transport, such as irrigation or artificial drainage that can rapidly move water from cropland to streams (Midwest, Northern Plains, and western areas of the United States). Concentrations were lower in the Southeast, where more denitrification occurs during transport of nitrogen compounds in shallow ground water. At urban sites, high concentrations of ammonia and orthophosphate were more prevalent downstream from wastewater-treatment plants. At sites with large watersheds and high mean-annual streamflow ('large-watershed' sites), concentrations of most nutrients were significantly less than at sites downstream from agricultural or urban areas. Total nitrogen concentrations at large-watershed sites were higher in Midwest agricultural areas and lower in the Western United States, where agricultural and urban development is less extensive. Total phosphorus concentrations at large-watershed sites were higher in areas of greater potential erosion and low overall runoff such as the arid areas in the West. Although not as distinct as seasonal patterns of streamflow, geographic patterns of seasonally high and low concentrations of total nitrogen and total phosphorus were identified in the data. Seasonal patterns in concentrations of total nitrogen generally mirror seasonal patterns in streamflow in the humid Eastern United States but are inverse to seasonal patterns in streamflow in the semiarid interior West. Total phosphorus concentrations typically have the opposite regional relation with streamflow; high concentrations coincide with high streamflows in the interior West. In the NAWQA Program, sites downstream from relatively undeveloped areas were selected to provide a baseline for comparison to sites with potential effects of urban development and agriculture. Concentrations of nitrate, total nitrogen, and total phosphorus at NAWQA undeveloped sites were found to be greater than values reported by other studies for conditions of essentially no development (background conditions). Concentrations at NAWQA undeveloped sites represent conditions

  16. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  17. Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)

    NASA Astrophysics Data System (ADS)

    Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.

    2009-02-01

    The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.

  18. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs.

    PubMed

    Yao, Xiaolong; Zhang, Yunlin; Zhang, Lu; Zhou, Yongqiang

    2018-04-01

    The global application of nitrogen is far greater than phosphorus, and it is widely involved in the eutrophication of lakes and reservoirs. We used a bibliometric method to quantitatively and qualitatively evaluate nitrogen research in eutrophic lakes and reservoirs to reveal research developments, current research hotspots, and emerging trends in this area. A total of 2695 articles in the past 25years from the online database of the Scientific Citation Index Expended (SCI-Expanded) were analyzed. Articles in this area increased exponentially from 1991 to 2015. Although the USA was the most productive country over the past 25years, China achieved the top position in terms of yearly publications after 2010. The most active keywords related to nitrogen in the past 25years included phosphorus, nutrients, sediment, chlorophyll-a, carbon, phytoplankton, cyanobacteria, water quality, modeling, and stable isotopes, based on analysis within 5-year intervals from 1991 to 2015 as well as the entire past 25years. In addition, researchers have drawn increasing attention to denitrification, climate change, and internal loading. Future trends in this area should focus on: (1) nutrient amounts, ratios, and major nitrogen sources leading to eutrophication; (2) nitrogen transformation and the bioavailability of different nitrogen forms; (3) nitrogen budget, mass balance model, control, and management; (4) ecosystem responses to nitrogen enrichment and reduction, as well as the relationships between these responses; and (5) interactions between nitrogen and other stressors (e.g., light intensity, carbon, phosphorus, toxic contaminants, climate change, and hydrological variations) in terms of eutrophication. Copyright © 2017. Published by Elsevier B.V.

  19. The diversity and abundance of phytase genes (β-propeller phytases) in bacterial communities of the maize rhizosphere.

    PubMed

    Cotta, S R; Cavalcante Franco Dias, A; Seldin, L; Andreote, F D; van Elsas, J D

    2016-03-01

    The ecology of microbial communities associated with organic phosphorus (P) mineralization in soils is still understudied. Here, we assessed the abundance and diversity of bacteria harbouring genes encoding β-propeller phytases (BPP) in the rhizosphere of traditional and transgenic maize cultivated in two Brazilian soils. We found a soil-dependent effect towards a higher abundance of phytase genes in the rhizosphere, and an absence of any impact of plant genotype. Phylogenetic analyses indicated members of the genera Pseudomonas, Caulobacter, Idiomarina and Maricaulis, close to 'uncultured bacteria', to constitute the dominant bacteria hosting this gene. The results obtained validate a methodology to target bacteria that are involved in the organic P cycle, and depict the responsiveness of such bacteria to the rhizosphere, albeit in dependency of the soil in which maize is cultivated. The data also identified the major bacterial groups that are associated with the organic P mineralization function. Micro-organisms play a key role in nutrient balance in soil ecosystems that are essential to life on the planet. However, some processes such as organic phosphorus mineralization, an important source of phosphorus supply in soil, is poorly studied mainly due the absence of an efficient methodology to assess the phytase-producing micro-organisms. In this study, a method to assess beta-propeller phytase (BPP)-carrying bacteria in soil was validated. This method may contribute to the knowledge of how these micro-organisms behave in the environment and contribute for plant growth promotion. © 2015 The Society for Applied Microbiology.

  20. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.

    PubMed

    Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi

    2016-10-01

    In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and management of pollution and better protection of important riverine water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparative Proteomic Analyses Provide New Insights into Low Phosphorus Stress Responses in Maize Leaves

    PubMed Central

    Zhang, Kewei; Liu, Hanhan; Tao, Peilin; Chen, Huan

    2014-01-01

    Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated separately with 1,000 µM (control, +P) and 5 µM of KH2PO4 (intervention group, −P) for 25 days. In total, 1,342 protein spots were detected on 2-DE maps and 15.43% had changed (P<0.05; ≥1.5-fold) significantly in quantity between the +P and −P groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the down-regulation of the proteins involved in CO2 enrichment, the Calvin cycle and the electron transport system. Electron transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different reactive oxygen species (ROS) scavenging mechanisms to cope with low phosphorus stress, including up-regulating its antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition. These results provide important information about how maize responds to low phosphorus stress. PMID:24858307

  2. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  3. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Groundwater nutrient concentrations during prairie reconstruction on an Iowa landscape

    USGS Publications Warehouse

    Tomer, M.D.; Schilling, K.E.; Cambardella, C.A.; Jacobson, P.; Drobney, P.

    2010-01-01

    One anticipated benefit of ecosystem restoration is water quality improvement. This study evaluated NO3-N and phosphorus in subsurface waters during prairie establishment following decades of row-crop agriculture. A prairie seeding in late 2003 became established in 2006. Wells and suction cup samplers were monitored for NO3-N and phosphorus. Nitrate-N varied with time and landscape position. Non-detectable NO3-N concentrations became modal along ephemeral drainageways in 2006, when average concentrations in uplands first became <10mg NO3-NL-1. This decline continued and upland groundwater averaged near 2mg NO3-NL-1 after 2007. The longer time lag in NO3-N response in uplands was attributed to greater quantities of leachable N in upland subsoils. Spatial differences in vadose-zone travel times were less important, considering water table dynamics. Phosphorus showed a contrasting landscape pattern, without any obvious temporal trend. Phosphorus was greatest along and near ephemeral drainageways. Sediment accumulation from upland agricultural erosion provided a source of P along drainageways, where shallow, reductive groundwater increased P solubility. Phosphorus exceeded eutrophication risk thresholds in these lower areas, where saturation-excess runoff could readily transport P to surface waters. Legacy impacts of past agricultural erosion and sedimentation may include soluble phosphorus in shallow groundwater, at sites prone to saturation-excess runoff. ?? 2010.

  5. Acetate injection into anaerobic settled sludge for biological P-removal in an intermittently aerated reactor.

    PubMed

    Ahn, K H; Yoo, H; Lee, J W; Maeng, S K; Park, K Y; Song, K G

    2001-01-01

    Injecting acetate into the sludge layer during the settling and decanting periods was adopted to enhance phosphorus release inside the sludge layer during those periods and phosphorus uptake during the subsequent aeration period in a KIST Intermittently Decanted Extended Aeration (KIDEA) process. The relationship among nitrification, denitrification and phosphorus removal was investigated in detail and analyzed with a qualitative floc model. Dependencies of nitrification on the maximum DO level during the aerobic phase and phosphorus release on residual nitrate concentration during the settling phase were significant. High degree of nitrification resulted that phosphorus release inside the sludge layer was significantly interfered with nitrate due to the limitation of available acetate and the carbon sources from influent. Such limitation was related to the primary utilization of organic substance for denitrification in the outer layer of the floc and the retarded mass transfer into the inner layer of the floc. Nevertheless, effects of acetate injection on both denitrification and phosphorus release during the settling phase were significant. Denitrification rate after acetate injection was two times as high as that before acetate injection, and phosphorus release reached about 14 mg PO4(3-)-P/g MLVSS/hr during the decanting phase after the termination of denitrification inside the sludge layer. Extremely low level of maximum DO (around 0.5 mg/L) during the aerobic phase may inhibited nitrification, considerably, and thus nearly no nitrate was present. However, the absence of nitrate increased when the phosphorus release rate was reached up to 33 mg PO4(3-)-P/g MLVSS/hr during the settling and decanting phase, and nearly all phosphorus was taken up during subsequent aerobic phase. Since the sludge layer could function as a blocking layer, phosphorus concentrations in the supernatant was not influenced by the released phosphorus inside the sludge layer during the settling and decanting period. Phosphorus removal was directly (for uptake) and indirectly (for release) dependent on the median and maximum DO concentration during the aerobic phase, and those optimal values may exist within the range from 0.2 to 0.6 mg/L and 0.4 to 1.2 mg/L, respectively.

  6. The Influence of Erosional Hotspots on Watershed-scale Phosphorus Dynamics in Intensively Managed Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Baker, A.; Finlay, J. C.; Gran, K. B.; Karwan, D. L.; Engstrom, D. R.; Atkins, W.; Muramoto-Mathieu, M.

    2017-12-01

    The Minnesota River Basin is an intensively-managed agricultural watershed which contributes disproportionately to downstream sediment and nutrient loading. The Le Sueur River, an actively eroding tributary to the Minnesota River, has been identified as a disproportionate contributor of sediment and nutrients to this system. In an effort to identify best practices for reduction of phosphorus (P) in the context of intensifying agriculture and climate change pressure, we coupled investigation of source sediment P chemistry with an existing fine sediment budget to create a watershed mass balance for sediment-associated P. Sediments collected from primary source areas including agricultural fields, glacial till bluffs, alluvial streambanks, ravines, and agricultural ditches were analyzed for total- and extractable-P, and sorptive properties. Preliminary integration of these data into a mass-balance suggests that less than a quarter of the total-P exported from this watershed can be attributed directly to sediment inputs, likely due to the low P concentration of most sediment sources. While sediment may supply less than 25% of the total-P exiting the Le Sueur, a high proportion of total-P load ( 66% on average) is in particulate form. This finding indicates that sorption of dissolved-P from upstream sources onto fine sediment plays a major role in determining the form and reactivity of P in the watershed. Sorption processes convert dissolved-P into particulate-P, and may substantially alter the fate and reactivity of P in downstream channels and lakes. In highly erosive rivers, as the Le Sueur, where inputs of sediment from deep soil horizons are dominant, the dynamic relationship between sediment and dissolved-P must be evaluated and incorporated into models to forecast potential for P retention and export from the landscape. By incorporating results of this mass balance and analysis of sediment sorptive properties into existing models, we can develop strategies that most effectively address both of these interwoven pollutants to aquatic ecosystems.

  7. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be augmented further by bioturbation, bioirrigation and episodic sediment resuspension events.

  8. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    PubMed

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  9. Carbon-hydrogen to carbon-phosphorus transformations.

    PubMed

    Montchamp, Jean-Luc

    2015-01-01

    Literature published between 2008 and 2013 concerning the functionalization of carbon-hydrogen into carbon-phosphorus bonds is surveyed. The chapter is organized by reaction mechanism. The majority of methods still proceed via deprotonation of C-H into C-M (M=Li, Na, etc.) followed by reaction with a phosphorus electrophile P-X, where X is usually chlorine. A few examples of electrophilic aromatic substitution and related processes have also been reported, although this approach has not yet been developed significantly. Over the past 5 years a rapidly growing family of reactions includes transition metal "C-H activation" and formally related radical-based processes has been developed. The latter processes offer exciting prospects for the synthesis of organophosphorus compounds.

  10. A bacterium that can grow by using arsenic instead of phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe-Simon, F; Blum, J S; Kulp, T R

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may havemore » profound evolutionary and geochemical significance.« less

  11. A bacterium that can grow by using arsenic instead of phosphorus

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  12. Environmental Assessment for the Use of White Phosphorus Rockets at Melrose Air Force Range, New Mexico

    DTIC Science & Technology

    2003-08-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...Tactical Air Controller GIS Geographic Information System H2S hydrogen sulfide H3PO4 orthophosphoric acid H4P2O7 pyrophosphoric acid H5P3O10... Data .............................................................. 3-24 Final EA for White Phosphorus Rocket Use at Melrose Air Force Range, New

  13. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Treesearch

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  14. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  15. New insights into phosphorus management in agriculture--A crop rotation approach.

    PubMed

    Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F

    2016-01-15

    This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure and chemical fertilizers.

  16. Biogeochemistry of forested watersheds in the Southeastern U.S. prior to conversion to short-rotation pine for bioenergy

    NASA Astrophysics Data System (ADS)

    Griffiths, N. A.; Mulholland, P. J.; Jackson, C. R.; McDonnell, J. J.; Blake, J. I.; Du, E.; Klaus, J.; Langholtz, M.

    2012-12-01

    In the southeastern U.S., intensively-managed pine plantations are projected to be a significant source of feedstocks for bioenergy, and the environmental sustainability (water quality, quantity) of this practice needs to be addressed at the watershed scale. In the Upper Coastal Plain of South Carolina, we are examining water quality in 3 forested watersheds (1 reference [R], 2 treatment watersheds [B, C]) before and after the conversion to loblolly pine for bioenergy. We collected pre-treatment water quality data (nitrogen, phosphorus, dissolved organic carbon [DOC], herbicides) from all watersheds for two years (2009-2011) to determine baseline conditions. In May 2012, 40% of the extant forest in the two treatment watersheds was harvested and planting of loblolly pine will begin in early 2013. We will discuss our pre-treatment water quality results from the 3 study watersheds in context with our watershed-scale experiment. Baseline stream chemistry differed among the three watersheds, with higher mean concentrations of ammonium (59 μg/L) and DOC (8.1 mg/L) in Watershed R than in Watersheds B (ammonium = 17 μg/L, DOC = 6.9 μg/L) and C (ammonium = 17 μg/L, DOC = 6.1 μg/L), suggesting that anaerobic conditions in Watershed R may influence stream chemistry. Stream nitrate concentrations were higher in Watershed B (111 μg/L) than in Watersheds R (29 μg/L) and C (30 μg/L), suggesting that shallower flowpaths may be contributing to stream water chemistry. Dual isotope analysis of nitrate (15N, 18O) suggests that riparian groundwater is the source of nitrate in streams. However, nitrate in precipitation can be an important source to these watersheds during storms, as nitrate in flowing soil water had similar δ18O-NO3 values to precipitation. Nitrate may travel more conservatively in these watersheds than ammonium or phosphorus, as an irrigation experiment which simulated nutrient deposition from rainwater showed that the majority of added ammonium and phosphorus is removed (via uptake and/or sorption) compared to nitrate. Overall, quantifying baseline water chemistry among the three watersheds prior to the establishment of loblolly pine is necessary in order to determine any potential effects that short-rotation pine management may have on water quality.

  17. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    USGS Publications Warehouse

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    Mercer Lake is a relatively shallow drainage lake in north-central Wisconsin. The area near the lake has gone through many changes over the past century, including urbanization and industrial development. To try to improve the water quality of the lake, actions have been taken, such as removal of the lumber mill and diversion of all effluent from the sewage treatment plant away from the lake; however, it is uncertain how these actions have affected water quality. Mercer Lake area residents and authorities would like to continue to try to improve the water quality of the lake; however, they would like to place their efforts in the actions that will have the most beneficial effects. To provide a better understanding of the factors affecting the water quality of Mercer Lake, a detailed study of the lake and its watershed was conducted by the U.S. Geological Survey in collaboration with the Mercer Lake Association. The purposes of the study were to describe the water quality of the lake and the composition of its sediments; quantify the sources of water and phosphorus loading to the lake, including sources associated with wastewater discharges; and evaluate the effects of past and future changes in phosphorus inputs on the water quality of the lake using eutrophication models (models that simulate changes in phosphorus and algae concentrations and water clarity in the lake). Based on analyses of sediment cores and monitoring data collected from the lake, the water quality of Mercer Lake appears to have degraded as a result of the activities in its watershed over the past 100 years. The water quality appears to have improved, however, since a sewage treatment plant was constructed in 1965 and its effluent was routed away from the lake in 1995. Since 2000, when a more consistent monitoring program began, the water quality of the lake appears to have changed very little. During the two monitoring years (MY) 2008-09, the average summer near-surface concentration of total phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater improvements have been identified in the Mercer Infrastructure Improvement Project, and if they are done with the proposed best management practices, then phosphorus inputs to the lake may decrease by about 40 lb. Eutrophication models [Canfield and Bachman model (1981) and Carlson Trophic State Index equations (1977)] were used to predict how the water quality of Mercer Lake should respond to changes in phosphorus loading. A relatively linear response was found between phosphorus loading and phosphorus and chlorophyll a concentrations in the lake, with changes in phosphorus concentrations being slightly less (about 80 percent) and changes in chlorophyll a concentrations being slightly more (about 120 percent) than the changes in phosphorus loadings to the lake. Water clarity, indicated by Secchi depths, responded more to decreases in phosphorus loading than to increases in loading. Results from the eutrophication models indicated that the lake should have been negatively affected by the wastewater discharges. Prior to 1965, when there was no sewage treatment plant effluent and inputs from the septic systems and other untreated systems were thought to be high, the lake should have been eutrophic; near the surface, average phosphorus concentrations were almost 0.035 mg/L, chlorophyll a concentrations were about 7 μg/L, and Secchi depths were about 6 ft, which agreed with the shallower Secchi depths during this time estimated from the sediment-core analysis. The models indicated that between 1965 and 1995, when the lake retained some of the effluent from the new sewage treatment plant, water quality should have been between the conditions estimated prior to 1965 and what was expected during typical hydrologic conditions around MY 2008-09. The models also indicated that if the future Mercer Infrastructure Improvement Project is conducted with the best management practices as proposed, the water quality in the lake could improve slightly from that measured during 2006-10. Because of the small amount of phosphorus that is presently input into Mercer Lake any additional phosphorus added to the lake could degrade water quality; therefore, management actions can usefully focus on minimizing future phosphorus inputs. Phosphorus released from the sediments of a degraded lake often delays its response to decreases in external phosphorus loading, especially in shallow, frequently mixed systems. Mercer Lake, however, remains stratified throughout most of the summer, and phosphorus released from the sediments represents only about 6 percent, or a small fraction, of the total phosphorus load to the lake. Therefore, the phosphorus trapped in the sediments should minimally affect the long-term water quality of the lake and should not delay the response in its productivity to future changes in nutrient loading from its watershed.

  18. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    USGS Publications Warehouse

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  19. How phosphorus limitation can control climate-active gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  20. Quantification of the proliferation of arbuscular mycorrhizal fungi in soil

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lilje, Osu; McGee, Peter

    2013-04-01

    Good soil structure is important for sustaining agricultural production and preserving functions of the soil ecosystem. Soil aggregation is a critically important component of soil structure. Stable aggregates enable water infiltration, gas exchange for biological activities of plant roots and microorganisms, living space and surfaces for soil microbes, and contribute to stabilization of organic matter and storage of organic carbon (OC) in soil. Soil aggregation involves fine roots, organic matter and hyphae of arbuscular mycorrhizal (AM) fungi. Hyphal proliferation is essential for soil aggregation and sequestration of OC in soil. We do not yet have a mechanism to directly quantify the density of hyphae in soil. Organic materials and available phosphorus are two of the major factors that influence fungi in soil. Organic materials are a source of energy for saprotrophic microbes. Fungal hyphae increase in the presence of organic matter. Phosphorus is an important element usually found in ecosystems. The low availability of phosphorus limits the biological activity of microbes. AM fungi benefit plants by delivering phosphorus to the root system. However, the density and the length of hyphae of AM fungi do not appear to be influenced by available phosphorus. A number of indirect methods have been used to visualize distribution of fungi in soil. Reliable analyses of soil are limited because of soil characteristics. Soils are fragile, and fragility limits opportunity for non-destructive analysis. The soil ecosystem is complex. Soil particles are dense and the density obscures the visualization of fungal hyphae. Fungal hyphae are relatively fine and information at the small scale (<250µm) is key to understanding how fungi respond to environmental stimuli. This experiment tested whether organic carbon (starch), phosphorus (K2HPO4) and their mixture influences proliferation of hyphae of AM fungi. Hyphae were quantified in an artificial soil matrix using micro-computer aided tomography. Micro-computer aided tomography provides three dimensional images of hyphal ramification through electron lucent materials and enables the visualization and quantification of hyphae. Starch and the mixture of starch plus K2HPO4, stimulated hyphal proliferation, while K2HPO4 alone did not change the density of hyphae. The images also indicate that fungal hyphae attached to the surfaces of the particles rather than grow through the spaces between them. The capacity to quantify hyphae in three-dimensional space allows a wide range of questions to now be addressed. Apart from studying mechanisms of carbon turnover, more complex processes may now be considered. Soil is commonly thought of as a black box. That black box is now a shade of grey.

  1. Mayan urbanism: impact on a tropical karst environment.

    PubMed

    Deevey, E S; Rice, D S; Rice, P M; Vaughan, H H; Brenner, M; Flannery, M S

    1979-10-19

    From the first millennium B.C. through the 9th-century A.D. Classic Maya collapse, nonurban populations grew exponentially, doubling every 408 years, in the twin-lake (Yaxha-Sacnab) basin that contained the Classic urban center of Yaxha. Pollen data show that forests were essentially cleared by Early Classic time. Sharply accelerated slopewash and colluviation, amplified in the Yaxha subbasin by urban construction, transferred nutrients plus calcareous, silty clay to both lakes. Except for the urban silt, colluvium appearing as lake sediments has a mean total phosphorus concentration close to that of basin soils. From this fact, from abundance and distribution of soil phosphorus, and from continuing post-Maya influxes (80 to 86 milligrams of phosphorus per square meter each year), which have no other apparent source, we conclude that riparian soils are anthrosols and that the mechanism of long-term phosphorus loading in lakes is mass transport of soil. Per capita deliveries of phosphorus match physiological outputs, approximately 0.5 kilogram of phosphorus per capita per year. Smaller apparent deliveries reflect the nonphosphatic composition of urban silt; larger societal outputs, expressing excess phosphorus from deforestation and from food waste and mortuary disposal, are probable but cannot be evaluated from our data. Eutrophication is not demonstrable and was probably impeded, even in less-impacted lakes, by suspended Maya silt. Environmental strain, the product of accelerating agroengineering demand and sequestering of nutrients in colluvium, developed too slowly to act as a servomechanism, damping population growth, at least until Late Classic time.

  2. Variation laws and release characteristics of phosphorus on surface sediment of Dongting Lake.

    PubMed

    Zhu, Guangrui; Yang, Ying

    2018-05-01

    The variation trend and growth rate of P were analyzed by the concentration of the phosphorus fraction on surface sediment of Dongting Lake from 2012 to 2016, to reveal the cumulative effect of P in the actual environment. Meanwhile, the adsorption kinetics and adsorption isotherm were employed to examine the P-release possibility of sediment, which predicts the yearly released sediment phosphorus in Dongting Lake. The actual growth rate of TP (Total Phosphorus) is 53 mg·(kg·year) -1 in East Dongting Lake, 39 mg·(kg·year) -1 in South Dongting Lake, and 29 mg·(kg·year) -1 in West Dongting Lake, while the sum of the phosphorus fraction growth rates has little difference from the rate of TP in sediments of the three areas of Dongting Lake. Furthermore, the Elovich model and the Langmuir crossover-type equations are established to present the adsorption characteristic of sediment in Dongting Lake; the result shows that the sediments play a source role for phosphorus in East and South Dongting Lake from zero equilibrium phosphorus concentration (EPC 0 ) in the present situation, but an adsorption effect on TP is shown in West Dongting Lake. When the conditions of environment change are ignored, the maximum P-sorption level in sediments of East Dongting Lake will reach in 2040 according to the actual growth rate of sediments, while that in West Dongting Lake and South Dongting Lake will be in 2046 and 2061, respectively.

  3. 40 CFR 418.76 - Pretreatment standard for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production... the Act for a new source within the mixed and blend fertilizer subcategory which is a user of a... BOD5 No limitations. TSS Do. pH Do. Ammonia (as N) 30 mg/l. Nitrate (as N) Do. Total phosphorus (as P...

  4. 40 CFR 418.76 - Pretreatment standard for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production... the Act for a new source within the mixed and blend fertilizer subcategory which is a user of a... BOD5 No limitations. TSS Do. pH Do. Ammonia (as N) 30 mg/l. Nitrate (as N) Do. Total phosphorus (as P...

  5. 40 CFR 418.76 - Pretreatment standard for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production... the Act for a new source within the mixed and blend fertilizer subcategory which is a user of a... BOD5 No limitations. TSS Do. pH Do. Ammonia (as N) 30 mg/l. Nitrate (as N) Do. Total phosphorus (as P...

  6. 40 CFR 418.76 - Pretreatment standard for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production... the Act for a new source within the mixed and blend fertilizer subcategory which is a user of a... BOD5 No limitations. TSS Do. pH Do. Ammonia (as N) 30 mg/l. Nitrate (as N) Do. Total phosphorus (as P...

  7. 40 CFR 418.76 - Pretreatment standard for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production... the Act for a new source within the mixed and blend fertilizer subcategory which is a user of a... BOD5 No limitations. TSS Do. pH Do. Ammonia (as N) 30 mg/l. Nitrate (as N) Do. Total phosphorus (as P...

  8. Coastal eutrophication thresholds: a matter of sediment microbial processes.

    PubMed

    Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki

    2009-09-01

    In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.

  9. Water quality and hydrology of Silver Lake, Oceana County, Michigan, with emphasis on lake response to nutrient loading

    USGS Publications Warehouse

    Brennan, Angela K.; Hoard, Christopher J.; Duris, Joseph W.; Ogdahl, Mary E.; Steinman, Alan D.

    2016-01-29

    Simulations also were run using the BATHTUB model to evaluate the number of days Silver Lake could experience algal blooms (algal blooms are defined as modeled chlorophyll a in excess of 10 micrograms per liter [µg/L]) as a result of an increase/decrease in phosphorus and nitrogen loading from groundwater, Hunter Creek, and (or) a combination of sources. If the phosphorus and nitrogen loading from Hunter Creek is decreased (and all other sources are not altered), Silver Lake will continue to experience algal blooms, but less frequently than what is currently experienced. The same scenario holds true if the nutrient loading from groundwater is decreased. Another scenario was simulated using a combination of sources, which includes increases and decreases in phosphorus and nitrogen loading from sources that are the most likely to be managed, and includes groundwater (as a result of conversion of household septic to sewers), Hunter Creek (conversion of household septic to sewers), and lawn runoff. Results of the BATHTUB model indicated that a 50-percent reduction of phosphorus and nitrogen from these sources would result in a considerable decrease in algal bloom frequency (from 231 to 132 days) and severity, and a 75-percent reduction would greatly reduce algal bloom occurrence on Silver Lake (from 231 to 57 days). BATHTUB model scenarios based on septic load model: A scenario also was conducted using the BATHTUB model to simulate the conversion of septic to sewer and included a low, high, and medium (likely) scenario of nutrient loading to Silver Lake. Simulations of the BATHTUB model indicated that, under the likely scenario, the conversion of all onsite septic treatment to sewers would result in an overall change in lake trophic status from eutrophic to mesotrophic, thereby reducing the frequency of algal blooms and algal bloom intensity on Silver Lake (chlorophyll a >10 µg/L, from 231 to 184 days per year, or chlorophyll a >20 µg/L, from 80 to 49 days per year).

  10. [Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two- sludge System Under the Condition of Low Carbon Source].

    PubMed

    Yang, Wei-qiang; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Xu, Qiu-xiang; Zhang, Zhi-bei; Li, Zhi-jun; Xiang, Hai-hong; Wang, Ya-li; Sun, Jian

    2016-04-15

    This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.

  11. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  12. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system.

    PubMed

    Peng, Yongzhen; Hou, Hongxun; Wang, Shuying; Cui, Youwei; Zhiguo, Yuan

    2008-01-01

    To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobic-anoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NO(x) to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.

  13. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.

    PubMed

    Smol, Marzena; Kulczycka, Joanna; Kowalski, Zygmunt

    2016-12-15

    The aim of this research is to present the possibility of using the sewage sludge ash (SSA) generated in incineration plants as a secondary source of phosphorus (P). The importance of issues related to P recovery from waste materials results from European Union (UE) legislation, which indicated phosphorus as a critical raw material (CRM). Due to the risks of a shortage of supply and its impact on the economy, which is greater than other raw materials, the proper management of phosphorus resources is required in order to achieve global P security. Based on available databases and literature, an analysis of the potential use of SSA for P-recovery in Poland was conducted. Currently, approx. 43,000 Mg/year of SSA is produced in large and small incineration plants and according to in the Polish National Waste Management Plan 2014 (NWMP) further steady growth is predicted. This indicates a great potential to recycle phosphorus from SSA and to reintroduce it again into the value chain as a component of fertilisers which can be applied directly on fields. The amount of SSA generated in installations, both large and small, varies and this contributes to the fact that new and different P recovery technology solutions must be developed and put into use in the years to come (e.g. mobile/stationary P recovery installations). The creation of a database focused on the collection and sharing of data about the amount of P recovered in EU and Polish installations is identified as a helpful tool in the development of an efficient P management model for Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    USGS Publications Warehouse

    Benoy, Glenn A.; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  15. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  16. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    USGS Publications Warehouse

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  17. Phosphorus as indicator of magmatic olivine residence time, morphology and growth rate

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander; Batanova, Valentina

    2015-04-01

    Phosphorus is among of slowest elements by diffusion rate in silicate melts and crystals (e.g. Spandler et al, 2007). In the same time it is moderately incompatible to compatible with olivine (Brunet & Chazot, 2001; Grant & Kohn, 2013). This makes phosphorus valuable tracer of olivine crystallization in natural conditions. Indeed, it is shown that natural magmatic olivine crystals commonly posses strong and complicated zoning in phosphorus (Milman-Barris et al, 2008; Welsch et al, 2014). In this paper we intend to review phosphorus behavior in olivine in published experimental and natural olivine studies and present large set of new EPMA data on phosphorus zoning in olivine phenocrysts from MORBs, OIBs, komatiites and kimberlites. We will show that sharp olivine zones enriched in phosphorus by a factor of 10-20 over prediction by equilibrium partition may be due to formation of P-rich boundary layer on the interface of fast growing olivine. This is proved by finding of small-size (normally 10 mkm or less) exceptionally P-rich melt inclusions in olivine, which are otherwise similar in composition to typical melt. These observations could provide potential olivine growth speedometer. We will also demonstrate, that sharp zoning in phosphorus may provide valuable information on the residence time of olivine crystals in different environments: magma chambers and conduits as well as mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491. References: Spandler, et al, 2007, Nature, v. 447, p. 303-306; Brunet & Chazot, 2001, Chemical Geology, v. 176, p. 51-72; Grant & Kohn, 2013, American Mineralogist, v. 98, p. 1860-1869; Milman-Barris et al, 2008, Contr. Min. Petrol. v. 155, p.739-765; Welsch et al, 2014, Geology, v. 42, p.867-870.

  18. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.

    PubMed

    Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru

    2014-11-01

    Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.

  19. Optimization of enhanced biological phosphorus removal after periods of low loading.

    PubMed

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  20. Nutrient concentrations in surface water and groundwater, and nitrate source identification using stable isotope analysis, in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 2010–11

    USGS Publications Warehouse

    Wieben, Christine M.; Baker, Ronald J.; Nicholson, Robert S.

    2013-01-01

    Five streams in the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed in southern New Jersey were sampled for nutrient concentrations and stable isotope composition under base-flow and stormflow conditions, and during the growing and nongrowing seasons, to help quantify and identify sources of nutrient loading. Samples were analyzed for concentrations of total nitrogen, ammonia, nitrate plus nitrite, organic nitrogen, total phosphorus, and orthophosphate, and for nitrogen and oxygen stable isotope ratios. Concentrations of total nitrogen in the five streams appear to be related to land use, such that streams in subbasins characterized by extensive urban development (and historical agricultural land use)—North Branch Metedeconk and Toms Rivers—exhibited the highest total nitrogen concentrations (0.84–1.36 milligrams per liter (mg/L) in base flow). Base-flow total nitrogen concentrations in these two streams were dominated by nitrate; nitrate concentrations decreased during storm events as a result of dilution by storm runoff. The two streams in subbasins with the least development—Cedar Creek and Westecunk Creek—exhibited the lowest total nitrogen concentrations (0.16–0.26 mg/L in base flow), with organic nitrogen as the dominant species in both base flow and stormflow. A large proportion of these subbasins lies within forested parts of the Pinelands Area, indicating the likelihood of natural inputs of organic nitrogen to the streams that increase during periods of storm runoff. Base-flow total nitrogen concentrations in Mill Creek, in a moderately developed basin, were 0.43 to 0.62 mg/L and were dominated by ammonia, likely associated with leachate from a landfill located upstream. Total phosphorus and orthophosphate were not found at detectable concentrations in most of the surface-water samples, with the exception of samples collected from the North Branch Metedeconk River, where concentrations ranged from 0.02 to 0.09 mg/L for total phosphorus and 0.008 to 0.011 mg/L for orthophosphate. Measurements of nitrogen and oxygen stable isotope ratios of nitrate in surface-water samples revealed that a mixture of multiple subsurface sources, which may include some combination of animal and septic waste, soil nitrogen, and commercial fertilizers, likely contribute to the base-flow nitrogen load. The results also indicate that atmospheric deposition is not a predominant source of nitrogen transported to the BB-LEH estuary from the watershed, although the contribution of nitrate from the atmosphere increases during stormflow. Atmospheric deposition of nitrate has a greater influence in the less developed subbasins within the BB-LEH watershed, likely because few other major sources of nitrogen (animal and septic waste, fertilizers) are present in the less developed subbasins. Atmospheric sources appear to contribute proportionally less of the overall nitrate as development increases within the BB-LEH watershed. Groundwater samples collected from five wells located within the BB-LEH watershed and screened in the unconfined Kirkwood-Cohansey aquifer system were analyzed for nutrient and stable isotope composition. Concentrations of nitrate ranged from not detected to 3.63 mg/L, with the higher concentrations occurring in the highly developed northern portion of the watershed, indicating the likelihood of anthropogenic sources of nitrogen. Isotope data for the two wells with the highest nitrate concentrations are more consistent with fertilizer sources than with animal or septic waste. Total phosphorus was not detected in any of the wells sampled, and orthophosphate was either not detected or measured at very low concentrations (0.005–0.009 mg/L) in each of the wells sampled.

  1. Complex Forms of Soil Organic Phosphorus-A Major Component of Soil Phosphorus.

    PubMed

    McLaren, Timothy I; Smernik, Ronald J; McLaughlin, Mike J; McBeath, Therese M; Kirby, Jason K; Simpson, Richard J; Guppy, Christopher N; Doolette, Ashlea L; Richardson, Alan E

    2015-11-17

    Phosphorus (P) is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. The supply of P to living organisms is strongly dependent on the dynamics of soil organic P. However, fluxes of P through soil organic matter remain unclear because only a minority (typically <30%) of soil organic P has been identified as recognizable biomolecules of low molecular weight (e.g., inositol hexakisphosphates). Here, we use (31)P nuclear magnetic resonance spectroscopy to determine the speciation of organic P in soil extracts fractionated into two molecular weight ranges. Speciation of organic P in the high molecular weight fraction (>10 kDa) was markedly different to that of the low molecular weight fraction (<10 kDa). The former was dominated by a broad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular structures, whereas the latter contained all of the sharp peaks that were present in unfractionated extracts, along with some broad signal. Overall, phosphomonoesters in supra-/macro-molecular structures were found to account for the majority (61% to 73%) of soil organic P across the five diverse soils. These soil phosphomonoesters will need to be integrated within current models of the inorganic-organic P cycle of soil-plant terrestrial ecosystems.

  2. Laboratory Studies Of Astrophysically-interesting Phosphorus-bearing Molecules

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Halfen, D. T.; Sun, M.; Clouthier, D. J.

    2009-05-01

    Over the past year, there has been a renewed interest in the presence of phosphorus-containing molecules in the interstellar medium. Recent observations have increased the number of known interstellar phosphorus-bearing species from two (PN, CP) to six with the identification of HCP, CCP, and PH3 in the carbon-rich circumstellar shell of IRC+10216 and PO in the oxygen-rich envelope of VY Canis Majoris. More species of this type may be present in the ISM, but laboratory rest frequencies, necessary for such detections, are not generally known for many potential molecules. To fill in this gap, we have been conducting measurements of the pure rotational spectra of phosphorus-containing molecules of astrophysical interest, using both millimeter/submm direct absorption and Fourier transform microwave (FTMW) spectroscopy. We have developed a new phosphorus source for this purpose. These methods cover the frequency ranges 65-850 GHz and 4-40 GHz, respectively. Our recent study of the CCP radical (X2Πr) using both of these techniques has resulted in its identification in IRC+10216. Rotational spectra of other molecules such as PCN, HPS, and CH3PH2 have been recorded. We will report on these species and additional new laboratory developments

  3. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.

    PubMed

    Li, Huanwen; Ye, Zhiping; Lin, Ying; Wang, Fengying

    2012-01-01

    Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.

  4. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski Rivers that largely were offset by increases in the Missisquoi and Saranac Rivers in the second decade (between 2000 and 2010). The number of tributaries that had increases in dissolved phosphorus concentrations stayed constant at 13 or 14 during the period of analysis. Total nitrogen concentration and flux for most of the monitored tributaries in the Lake Champlain Basin have decreased since 1990. Between 1990 and 2010, flow-normalized total nitrogen flux decreased by 386 t/yr, which reflects an increase of 440 t/yr between 1990 and 2000 and a decrease of 826 t/yr between 2000 and 2010. All individual tributaries except the Winooski River had decreases in total nitrogen concentration and flux between 2000 and 2010. The decrease in total nitrogen flux over the period of record could be related to the decrease in nitrogen from atmospheric deposition observed in Vermont or to concurrent benefits realized from the implementation of agricultural best-management practices in the Lake Champlain Basin that were designed primarily to reduce phosphorus runoff. For chloride, large increases in flow-normalized concentrations and flux between 1990 and 2000 for 17 of the 18 tributaries diminished to small increases or decreases between 2000 and 2010. Between 1990 and 2010, flow-normalized flux increased by 32,225 t/yr, 78 percent of which (25,163 t) was realized during the first decade, from 1990 through 2000. The five tributaries that had decreasing concentration and flux of chloride between 2000 and 2010 were all on the eastern side of Lake Champlain, possibly related to reductions since 1999 in winter road salt application in Vermont. Positive correlations of phosphorus flux and changes in phosphorus concentration and flux in tributaries with phosphorus inputs to basins from point sources, suggest that point sources have an effect on stream phosphorus chemistry. Several measures of changes in agricultural statistics, such as agricultural land use, acres of land in farms, acres of cropland, and acres of corn for grain or seed, are positively correlated with changes in phosphorus concentration or flux in the tributaries. Negative correlations of the amount of money spent on agricultural best-management practices with changes in phosphorus concentration or flux in the tributaries, suggest that best-management practices may be an effective tool, along with point-source reductions, in making progress towards management goals for phosphorus reductions in Lake Champlain.

  5. Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge.

    PubMed

    Pokhrel, S P; Milke, M W; Bello-Mendoza, R; Buitrón, G; Thiele, J

    2018-06-01

    Waste activated sludge (WAS) can become an important source of phosphorus (P). P speciation was examined under anaerobic conditions, with different pH (4, 6 and 8) and temperatures (10, 20 and 35 °C). Aqueous P was measured and an extraction protocol was used to find three solid phosphorus fractions. A pH of 4 and a temperature of 35 °C gave a maximum of 51% of total P solubilized in 22 days with 50% of total P solubilized in 7 days. Batch tests indicate that little pH depression is needed to release non-apatite inorganic P (including microbial polyphosphate), while a pH of 4 rather than 6 will release more apatite inorganic P, and that organic P is relatively more difficult to release from WAS. Fractionation analysis of P in WAS can aid in design of more efficient methods for P recovery from WAS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Regional nutrient trends in streams and rivers of the United States, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Lorenz, David L.

    2009-01-01

    Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.

  7. The Impact of Additives on the Phosphorus, Potassium, and Sodium Content of Commonly Consumed Meat, Poultry, and Fish Products Among Patients With Chronic Kidney Disease.

    PubMed

    Parpia, Arti Sharma; L'Abbé, Mary; Goldstein, Marc; Arcand, Joanne; Magnuson, Bernadene; Darling, Pauline B

    2018-03-01

    Patients with chronic kidney disease (CKD) are advised to limit their dietary intake of phosphorus and potassium as hyperphosphatemia and hyperkalemia are both associated with an increased risk of mortality. There is uncertainty concerning the actual content of these minerals in the Canadian food supply, as phosphorus and potassium are increasingly being used as food additives. This study aimed to determine the impact of food additives on the chemically analyzed content of phosphorus, potassium, sodium, and protein in commonly consumed meat, poultry, and fish products (MPFs). Foods representing commonly consumed MPF identified by a food frequency questionnaire in dialysis patients were purchased from three major grocery store chains in Canada. MPF with and without phosphorus and potassium additives listed on their ingredient list (n = 76) as well as reference MPF that was additive free (n = 15) were chemically analyzed for phosphorus, potassium, sodium, and protein content according to Association of Analytical Community official methods. Phosphorus, potassium, and sodium additives were present on the ingredient list in 37%, 9%, and 72% of MPF, respectively. Among MPF categories that contained a phosphorus additive, phosphorus content was significantly (P < .05) higher in MPF with phosphorus additives versus MPF without phosphorus additives and MPF reference foods (median [min, max]): (270 [140, 500] mg/100 g) versus (200 [130, 510] mg/100 g) versus (210 [100, 260] mg/100 g), respectively. Among MPF categories containing a potassium additive, foods listing a potassium additive had significantly more (P < .05) potassium than foods that did not list potassium additives and reference foods (900 [750, 1100] mg/100 g) versus (325 [260, 470] mg/100 g) versus (420 [270, 450] mg/100 g). The use of additives in packaged MPF products as indicated by the ingredient list can significantly contribute to the dietary phosphorus and potassium loads in patients with CKD. Patients with CKD should be educated to avoid MPF foods listing phosphorus and/or potassium additives on the ingredient list, which may lead to improved dietary adherence. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  9. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    PubMed

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  10. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.

    PubMed

    Gentry, L E; David, M B; Royer, T V; Mitchell, C A; Starks, K M

    2007-01-01

    Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.

  11. Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †

    PubMed Central

    Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.

    2011-01-01

    The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528

  12. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    NASA Astrophysics Data System (ADS)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  13. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.

    PubMed

    Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu

    2017-06-27

    Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.

  14. Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, Walnut Creek, Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Streambank erosion may represent a significant source of sediment and P to overall watershed loads, however, watershed-scale quantification of contributions are rare. In addition, streambanks are often comprised of highly-variable stratigraphic source materials (e.g., alluvial deposits), which may d...

  15. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  16. Concentrations, fluxes, and yields of nitrogen, phosphorus, and suspended sediment in the Illinois River basin, 1996-2000

    USGS Publications Warehouse

    Terrio, Paul J.

    2006-01-01

    Concentrations, spatial and temporal variations, and fluxes of nitrogen, phosphorus, and suspended sediment were determined for 16 streams in the Illinois River Basin, Illinois from October 1996 through September 2000. Water samples were collected through the National Water-Quality Assessment's Lower Illinois River Basin (LIRB) and Upper Illinois River Basin (UIRB) Study Units on a monthly to weekly frequency from watersheds representing predominantly agricultural and urban land, as well as areas of mixed land-use. Streams in agricultural watersheds had high concentrations and fluxes of nitrate nitrogen, whereas streams in predominantly urban watersheds had high concentrations (above background levels) of ammonia nitrogen, organic nitrogen, and phosphorus. Median concentrations of nitrate nitrogen and total phosphorus were similar at the two Illinois River sampling stations (Illinois River at Ottawa, Ill. and Illinois River at Valley City, Ill.) that represented the downstream points of the UIRB and LIRB Study Units, respectively, and integrated multiple land-use areas. Concentrations of nitrogen were typically highest in the spring and lowest in the fall in agricultural watersheds, but highest in the winter in urban watersheds. Phosphorus concentrations in urban watersheds were highest in the fall and winter, but there was minimal seasonal variation in phosphorus concentrations in agricultural watersheds. Concentrations of nitrate and total nitrogen were affected primarily by non-point sources and hydrologic factors such as streamflow, storm intensity, watershed configuration, and soil permeability, whereas concentrations of phosphorus were affected largely by point-source contributions that typically have little seasonal variation. Seasonal variation in hydrologic conditions was an important factor for seasonal variation in nutrient concentration. Fluxes and yields of nitrogen and phosphorus forms varied substantially throughout the Illinois River Basin, and yields of specific nutrient forms were determined primarily by upstream land uses. Yields of nitrate nitrogen were highest in predominantly agricultural watersheds, whereas yields of phosphorus and ammonia nitrogen were highest in urban watersheds with wastewater effluent contributions. Yields of both total nitrogen and total phosphorus were similar at the two Illinois River stations representing the integrated UIRB and LIRB Study Units. Concentrations of suspended sediment ranged from 1 to 3,110 milligrams per liter (mg/L), with median concentrations generally higher in the UIRB. Suspended-sediment concentrations were highest and most variable in the LaMoine River Basin. The median concentration of suspended sediment in the Illinois River at Valley City, Ill. (155 mg/L) was twice as high as that at Ottawa, Ill. (80 mg/L). Fluxes of suspended sediment generally corresponded to watershed size and yields from agricultural watersheds were larger than yields from urban watersheds. The flux in the Illinois River at Valley City, Ill. (4,880,000 tons per year) was approximately four times the flux in the Illinois River at Ottawa, Ill. (1,060,000 tons per year).

  17. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.

    PubMed

    Kronvang, Brian; Audet, Joachim; Baattrup-Pedersen, Annette; Jensen, Henning S; Larsen, Søren E

    2012-01-01

    Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Development of a phosphorus index for pastures fertilized with poultry litter--factors affecting phosphorus runoff.

    PubMed

    DeLaune, Paul B; Moore, Philip A; Carman, Dennis K; Sharpley, Andrew N; Haggard, Brian E; Daniel, Tommy C

    2004-01-01

    Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.

  19. Bioimpacts of dialyzer variety on phosphorus level in Iranian hemodialysis patients

    PubMed Central

    Pezeshgi, Aiyoub; Moharrami, Bahareh; Kolifarhood, Goodarz; Sadeghi, Alireza; Asadi-Khiavi, Masoud

    2016-01-01

    Introduction: Cardiovascular events are the major cause of death in patients with chronic renal failure. About half of dialysis patients because of reduced phosphorus clearance have hyperphosphatemia. Hyperphosphatemia and following secondary hyperparathyroidism lead to some cardiovascular changes. Hemodialysis (HD) partly removes phosphorus during each dialysis session. Objectives: Presented study was designed to evaluate dialyzer variation effect on phosphorus level as a prognostic factor after dialysis using. Materials and Methods: Six kinds of dialyzer were used for dialysis; low flux (LF) dialyzer (F7 and F8), high flux (HF) dialyzer (F70 and F80) and finally hollow-fiber dialyzers including polyethersulfone (PES) 130 HF and polysulfone (PS) 13 LF. Fifty-seven patients were divided into 6 matched groups included three groups of 10 people and 3 groups of 9 persons in groups: A (F70), B (F80), C (F7), D (F8), E (PES 130 HF) and F (PS 13 LF). Patients were treated for one month with these dialyzers. At the end of the month, blood samples were taken again for phosphorus level before dialysis handling. Results: The mean pre-dialysis serum phosphorus was 5.03, 5.4, 5.2, 4.6, 4.95 and 5.1 mg/dl and the mean phosphorus was 5.43, 5.01, 4.9, 4.18, 4.17 and 5.3 mg/dl after one month of dialysis, respectively in groups A to F without any statistically differences between pre- and after one month dialysis values respectively. Discussion: The findings indicate dialyzer type in the control of serum phosphorus has not been effective in the short-term HD. We suggest a study with more duration time. PMID:27471742

  20. Bioimpacts of dialyzer variety on phosphorus level in Iranian hemodialysis patients.

    PubMed

    Pezeshgi, Aiyoub; Moharrami, Bahareh; Kolifarhood, Goodarz; Sadeghi, Alireza; Asadi-Khiavi, Masoud

    2016-01-01

    Cardiovascular events are the major cause of death in patients with chronic renal failure. About half of dialysis patients because of reduced phosphorus clearance have hyperphosphatemia. Hyperphosphatemia and following secondary hyperparathyroidism lead to some cardiovascular changes. Hemodialysis (HD) partly removes phosphorus during each dialysis session. Presented study was designed to evaluate dialyzer variation effect on phosphorus level as a prognostic factor after dialysis using. Six kinds of dialyzer were used for dialysis; low flux (LF) dialyzer (F7 and F8), high flux (HF) dialyzer (F70 and F80) and finally hollow-fiber dialyzers including polyethersulfone (PES) 130 HF and polysulfone (PS) 13 LF. Fifty-seven patients were divided into 6 matched groups included three groups of 10 people and 3 groups of 9 persons in groups: A (F70), B (F80), C (F7), D (F8), E (PES 130 HF) and F (PS 13 LF). Patients were treated for one month with these dialyzers. At the end of the month, blood samples were taken again for phosphorus level before dialysis handling. The mean pre-dialysis serum phosphorus was 5.03, 5.4, 5.2, 4.6, 4.95 and 5.1 mg/dl and the mean phosphorus was 5.43, 5.01, 4.9, 4.18, 4.17 and 5.3 mg/dl after one month of dialysis, respectively in groups A to F without any statistically differences between pre- and after one month dialysis values respectively. The findings indicate dialyzer type in the control of serum phosphorus has not been effective in the short-term HD. We suggest a study with more duration time.

  1. Catabolism and Detoxification of 1-Aminoalkylphosphonic Acids: N-Acetylation by the phnO Gene Product

    PubMed Central

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn+ strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn+ nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5′-phospho-α-d-ribosyl 1′-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  2. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  3. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Promotion Effect of Asian Dust on Phytoplankton Growth and Potential Dissolved Organic Phosphorus Utilization in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chu, Qiang; Liu, Ying; Shi, Jie; Zhang, Chao; Gong, Xiang; Yao, Xiaohong; Guo, Xinyu; Gao, Huiwang

    2018-03-01

    Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.

  5. Vertical distribution of sediment phosphorus in Lake Hachirogata related to the effect of land reclamation on phosphorus accumulation.

    PubMed

    Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D

    2016-01-13

    The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl - profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl - profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.

  6. Evaluation of a Leaf Collection and Street Cleaning Program as a Way to Reduce Nutrients and Organic Carbon in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Selbig, W.

    2016-12-01

    Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.

  7. Occurrence of phosphorus, other nutrients, and triazine herbicides in water from the Hillsdale Lake basin, Northeast Kansas, May 1994 through May 1995

    USGS Publications Warehouse

    Putnam, J.E.

    1997-01-01

    An investigation of the occurrence of phosporus, other nutrients, and triazine herbicides in water samples from the Hillsdale Lake Basin in northeast Kansas was conducted from May 1994 through May 1995. Point-source and nonpoint-source contributions of these water-quality constituents were estimated by conducting synoptic sampling at 48 sites in the basin during five periods of low- flow conditions. Samples were collected for the determination of nutrients, including total phosphorus as phosphorus, dissolved orthophosphate as phosphorus, total nitrite plus nitrate as nitrogen, and total ammonia plus organic nitrogen as nitrogen, and for selected triazine herbicides. On the basis of criteria developed by the Kansas Department of Health and Environment, the Hillsdale Water-Quality Protection Project established a goal to maintain water quality in the tributaries of the Hillsdale Lake Basin at a mean annual low-flow total phosphorus concentration of 0.05 mg/L (milligrams per liter). The mean low- flow total phosphorus concentration of water samples collected in the Big Bull Creek (which includes drainage from Martin Creek), Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins during low-flow conditions ranged from 0.05 to 4.9 mg/L during this study. Of the 44 sites sampled during low flow, 95 percent had low-flow total phosphorus concentrations larger than the 0.05-mg/L criterion. Discharges from wastewater- treatment plants located in Big Bull Creek and Martin Creek subbasins and the Little Bull Creek subbasin affected nutrient concentrations. Nutrient concentrations in water samples collected from the subbasins not affected by point-source discharges generally were smaller than those in the Big Bull Creek and Little Bull Creek subbasins. Estimated annual low-flow phosphorus loads computed at sampling sites located at the outlet of the subbasins show that the Big Bull Creeksubbasin, which includes drainage from the Martin Creek subbasin, had the largest estimate annual low-flow load, 2,740 kg/yr (kilograms per year).Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins contributed less annual low-flow phosphorus load, 175, 161, 234, and 22kg/yr, respectively. With the exception of the Smith Branch subbasin, the largest triazine herbicide concentrations occurred in water samples collectedduring May 1994 and May 1995. During May 1994, 10 of 17 sampling sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in theRock Creek subbasin, and 4 of 10 sites in the Little Bull Creek subbasin had triazine herbicide concentrations in water larger than the U.S.Environmental Protection Agency's Maximum Contaminant Level (MCL), which is an annual mean 3.0 ug/L (micrograms per liter) for atrazine indrinking water. During May 1995, 7 of 19 sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in the Rock Creek subbasin, 1 of 12 sites in the Little Bull Creek subbasin, and 2 of 4 sites in the Wade Branch subbasin had samples with trazine herbicide concentrations larger than the MCL.Water samples collected in the Rock Creek subbasins had the largest mean triazine herbicide concentrations during May 1994 and May 1995, 6.4 and 4.5 ug/L, respectively.

  8. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    PubMed

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Some Dust/Ocean Connections - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Duce, R. A.

    2015-12-01

    Atmospheric dust has been the subject of communications for more than 3000 years, since the ancient Chinese book Chronicles Reported on Bamboo Shoots in 1150 BC. Similar reports of hwangsa and woo-tou in ancient Korean and kosa in ancient Japanese literature also indicated major Asian dust events in those areas. Western observers noted dust storms in India and Afghanistan in the early 1800s, while in the 1840s Darwin surmised that Sahara dust could be an important component of marine sedimentation in the North Atlantic. More recent interest has focused on the importance of dust as a source of the nutrients iron and phosphorus in the global ocean and the role of iron as a limiting nutrient in many areas of the surface ocean. While significant progress has been made in the past 25 years in identifying important dust/ocean connections, many issues remain. Included are the relative dearth of long-term measurements of atmospheric dust (and iron and phosphorus) over and deposition to the ocean, especially in the southern hemisphere; comparisons between modeled and measured deposition of dust to the ocean; and the solubility of iron and phosphorus (and thus their availability as nutrients) after the mineral matter enters the ocean. Addressing these problems will certainly help to provide more accurate estimates of the input of dust to the ocean and its impacts. However, future changes in dust emissions in a warmer world as well as changes in the acid/base environment that mineral dust experiences during its transport and deposition as a result of emission controls on atmospheric NOx and SO2 are two facors that may change the input of these nutrients to the ocean and their impacts in the coming years. These and other issues will be reviewed in this paper.

  10. Early fruiting in Synsepalum dulcificum (Schumach. & Thonn.) Daniell juveniles induced by water and inorganic nutrient management

    PubMed Central

    Tchokponhoué, Dèdéou Apocalypse; N'Danikou, Sognigbé; Hale, Iago; Van Deynze, Allen; Achigan-Dako, Enoch Gbènato

    2017-01-01

    Background. The miracle plant, Synsepalum dulcificum (Schumach. & Thonn.) Daniell is a native African orphan crop species that has recently received increased attention due to its promise as a sweetener and source of antioxidants in both the food and pharmaceutical industries. However, a major obstacle to the species’ widespread utilization is its relatively slow growth rate and prolonged juvenile period. Method. In this study, we tested twelve treatments made up of various watering regimes and exogenous nutrient application (nitrogen, phosphorus and potassium, at varying dosages) on the relative survival, growth, and reproductive development of 15-months-old S. dulcificum juveniles. Results. While the plants survived under most tested growing conditions, nitrogen application at doses higher than 1.5 g [seedling] -1 was found to be highly detrimental, reducing survival to 0%. The treatment was found to affect all growth traits, and juveniles that received a combination of nitrogen, phosphorus, and potassium (each at a rate of 1.5 g [seedling] -1), in addition to daily watering, exhibited the most vegetative growth. The simple daily provision of adequate water was found to greatly accelerate the transition to reproductive maturity in the species (from >36 months to an average of 23 months), whereas nutrient application affected the length of the reproductive phase within a season, as well as the fruiting intensity. Conclusions. This study highlights the beneficial effect of water supply and fertilization on both vegetative and reproductive growth in S. dulcificum. Water supply appeared to be the most important factor unlocking flowering in the species, while the combination of nitrogen, phosphorus and potassium at the dose of 1.5 g (for all) consistently exhibited the highest performance for all growth and yield traits. These findings will help intensify S. dulcificum’s breeding and horticultural development. PMID:28620457

  11. Phosphorus dynamics in and below the redoxcline in the Black Sea and implications for phosphorus burial

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Kraal, P.; Séguret, M. J. M.; Flores, M. R.; Gonzalez, S.; Rijkenberg, M. J. A.; Slomp, C. P.

    2018-02-01

    Marine basins with oxygen-depleted deep waters provide a natural laboratory to investigate the consequences of anoxic and sulfidic (i.e. euxinic) conditions for biogeochemical processes in seawater and sediments. In this study, we investigate the dynamics of the key nutrient phosphorus (P) and associated elements such as manganese (Mn), iron (Fe) and calcium (Ca) in the euxinic deep basin of the Black Sea. By examining water column particles with scanning electron microscope - energy dispersive spectroscopy and synchrotron-based X-ray absorption spectroscopy, we show that Mn(III/IV)-P is the key form of particulate P in the redoxcline. Other forms of particulate P include organic P, Fe(III)-P, and inorganic polyphosphates. Most inorganic P particles that are formed in the redoxcline subsequently dissolve in the underlying sulfidic waters, with the exception of some particulate Fe(III)-P that accounts for <1% of all P settling onto the seafloor. Organic P is the dominant source of P to the sediment. Most of this organic P is degraded in the upper 2 cm of the sediment. Results of sequential extractions and a 33P radiotracer experiment point towards the formation of labile Ca-P and P adsorbed onto calcium-carbonate and clays and a role of these phases as a major sink of P in the sediment. The total P burial efficiency in the sediments is ∼27%, which is relatively high when compared to estimates for sediments in other euxinic basins such as the Baltic Sea (<12%). We suggest that the abundant presence of calcium carbonate may contribute to the more efficient sequestration of P in Black Sea sediments.

  12. Mechanisms for Variation of Cellular P Stoichiometry: Diverse Cellular Phosphorus Allocation Strategies Across Microbial Groups from the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Popendorf, K.; Duhamel, S.

    2016-02-01

    Phosphorus is the least abundant of the three major macronutrients that define the canonical Redfield ratio, but its place in the backbone of nucleic acids and as an energy trafficking molecule lays a lower bound of cellular phosphorus content that is essential for all life. In addition to forming DNA, RNA, and adenosine triphosphate (ATP), significant amounts of cellular phosphorus may also be allocated to the production of phospholipids and polyphosphate. These latter two biochemicals in particular may occur in significant but highly variable amounts across different microbial groups, and the variation in cellular allocation to these biochemicals may be a contributing factor in defining the elemental stoichiometry of microbes. We investigated this variation in cellular phosphorus allocation across the most abundant microbial groups in the P-depleted Sargasso Sea: Prochlorococcus, Synechococcus, and heterotrophic bacteria. By coupling radioisotope tracing of phosphate and ATP with cell sorting flow cytometry and subsequent biochemical extractions, we made novel measurements of the P allocation to DNA, phospholipids, and polyphosphate in individual microbial groups from environmental populations. These results provide new insights into the cellular mechanisms of variation in stoichiometry and different microbial strategies for adaptation to low-P environments.

  13. Characterization and source identification of pollutants in runoff from a mixed land use watershed using ordination analyses.

    PubMed

    Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang Hee; Kang, Joo-Hyon

    2016-05-01

    While identification of critical pollutant sources is the key initial step for cost-effective runoff management, it is challenging due to the highly uncertain nature of runoff pollution, especially during a storm event. To identify critical sources and their quantitative contributions to runoff pollution (especially focusing on phosphorous), two ordination methods were used in this study: principal component analysis (PCA) and positive matrix factorization (PMF). For the ordination analyses, we used runoff quality data for 14 storm events, including data for phosphorus, 11 heavy metal species, and eight ionic species measured at the outlets of subcatchments with different land use compositions in a mixed land use watershed. Five factors as sources of runoff pollutants were identified by PCA: agrochemicals, groundwater, native soils, domestic sewage, and urban sources (building materials and automotive activities). PMF identified similar factors to those identified by PCA, with more detailed source mechanisms for groundwater (i.e., nitrate leaching and cation exchange) and urban sources (vehicle components/motor oils/building materials and vehicle exhausts), confirming the sources identified by PCA. PMF was further used to quantify contributions of the identified sources to the water quality. Based on the results, agrochemicals and automotive activities were the two dominant and ubiquitous phosphorus sources (39-61 and 16-47 %, respectively) in the study area, regardless of land use types.

  14. Biodegradation of the Organophosphate Trichlorfon and Its Major Degradation Products by a Novel Aspergillus sydowii PA F-2.

    PubMed

    Tian, Jiang; Dong, Qiaofeng; Yu, Chenlei; Zhao, Ruixue; Wang, Jing; Chen, Lanzhou

    2016-06-01

    Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon-phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography-mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P-C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments.

  15. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  16. Water resources of the Red Lake Indian Reservation, northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1991-01-01

    The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.

  17. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    PubMed Central

    Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian

    2017-01-01

    Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437

  18. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    PubMed

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  19. Distribution and variability of nitrogen and phosphorus in the alluvial, High Plains, Rush Springs, and Blaine aquifers in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.

    1994-01-01

    Aquifers are the primary source of water for drinking and agricultural purposes in western Oklahoma. Health concerns about consuming nitrogen and an increased reliance on ground water for drinking necessitate a better understanding of the cause and effect of contamination from nutrients. The purpose of this project was to compile nutrients data from the National Water Information System data base for the alluvial aquifers west of longitude 98 degrees W. and from three bedrock aquifers, High Plains, Rush Springs, and Blaine, and provide this information in a report for future projects and for the facilitation of nutrient source management. The scope of the work consisted of (1) compiling ground-water quality data concerning nitrogen and phosphorus ions, (2) constructing boxplots illustrating data variability, (3) maps for each aquifer showing locations of wells when nitrogen and phosphorus ions were measured in ground water and where concentrations of nitrate and nitrite, reported as nitrogen, exceed the maximum contaminant level, and (4) calculating summary statistics. Nutrient data were obtained from the U.S. Geological Survey data base called the National Water Information System. Data were restricted to ground-water samples, but no restrictions were placed on well and water use or date and time of sampling. Compiled nutrient data consist of dissolved and total concentrations of the common nitrogen and phosphorus ions measured in ground water. For nitrogen these ions include nitrate, nitrite, ammonium, and nitrite plus nitrate. All concentrations are reported in milligrams per liter as nitrogen. Phosphorus in ground water is measured as the orthophosphate ion, and is reported in milligrams per liter as phosphorus. Nutrient variability is illustrated by a standard boxplot. The data are presented by aquifer or hydrologic subregion for alluvial aquifers, with one boxplot constructed for each nutrient compound if more than four analyses are present. Maps for each aquifer show where nitrogen and phosphorus have been measured in ground water and where the concentrations of nitrate and nitrite exceed the maximum contaminant level. A statistical summary for each aquifer and subregion show if censored data were present, number of samples in each data set, largest minimum reporting level for each nutrient compound, percentiles used to construct boxplots, and minimum and maximum values. Also given are the number of wells sampled in each aquifer and the number of wells exceeding the maximum contaminant level.

  20. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  2. Defect chemistry and characterization of Hg sub 1x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1982-01-01

    Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.

  3. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Daily modeled fields of phosphate deposition to the Mediterranean from natural dust, anthropogenic combustion and wildfires were used to assess the effect of this external nutrient on marine biogeochemistry. The ocean model used is a high-resolution (1/12°) regional coupled dynamical-biogeochemical model of the Mediterranean Sea (NEMO-MED12/PISCES). The input fields of phosphorus are for 2005, which are the only available daily resolved deposition fields from the global atmospheric chemical transport model LMDz-INCA. Traditionally, dust has been suggested to be the main atmospheric source of phosphorus, but the LMDz-INCA model suggests that combustion is dominant over natural dust as an atmospheric source of phosphate (PO4, the bioavailable form of phosphorus in seawater) for the Mediterranean Sea. According to the atmospheric transport model, phosphate deposition from combustion (Pcomb) brings on average 40.5×10-6 mol PO4 m-2 yr-1 over the entire Mediterranean Sea for the year 2005 and is the primary source over the northern part (e.g., 101×10-6 mol PO4 m-2 yr-1 from combustion deposited in 2005 over the north Adriatic against 12.4×10-6 from dust). Lithogenic dust brings 17.2×10-6 mol PO4 m-2 yr-1 on average over the Mediterranean Sea in 2005 and is the primary source of atmospheric phosphate to the southern Mediterranean Basin in our simulations (e.g., 31.8×10-6 mol PO4 m-2 yr-1 from dust deposited in 2005 on average over the south Ionian basin against 12.4×10-6 from combustion). The evaluation of monthly averaged deposition flux variability of Pdust and Pcomb for the 1997-2012 period indicates that these conclusions may hold true for different years. We examine separately the two atmospheric phosphate sources and their respective flux variability and evaluate their impacts on marine surface biogeochemistry (phosphate concentration, chlorophyll a, primary production). The impacts of the different phosphate deposition sources on the biogeochemistry of the Mediterranean are found localized, seasonally varying and small, but yet statistically significant. Differences in the geographical deposition patterns between phosphate from dust and from combustion will cause contrasted and significant changes in the biogeochemistry of the basin. We contrast the effects of combustion in the northern basin (Pcomb deposition effects are found to be 10 times more important in the northern Adriatic, close to the main source region) to the effects of dust in the southern basin. These different phosphorus sources should therefore be accounted for in modeling studies.

  4. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state-of-the-art methods and models that are most applicable to Irish conditions and management challenges. All styles of modelling considered useful for water resources management are relevant to this project and a balance of technical sophistication, data availability and operational practicalities is the ultimate goal. Achievement of this objective will be measured by comparing the performance of the new models developed in the project with models used in other countries. The models and tools developed in the course of the project will be evaluated by comparison with Irish catchment data and with other state-of-the-art models in a model-inter-comparison workshop which will be open to other models and the wider research community.

  5. The need for an improved risk index for phosphorus losses to water from tile-drained agricultural land

    NASA Astrophysics Data System (ADS)

    Ulén, Barbro; Djodjic, Faruk; Etana, Araso; Johansson, Göran; Lindström, Jan

    2011-03-01

    SummaryA refined version of a conditional phosphorus risk index (PRI) for P losses to waters was developed based on monitoring and analyses of PRI factors from an agricultural catchment in Sweden. The catchment has a hummocky landscape of heavy glacial till overlying moraine and an overall balanced soil P level. Single P source factors and combinations of factors were tested and discussed together with water movement and water management factors important for catchments dominated by drained clay soils. An empirical relationship was established (Pearson correlation coefficient 0.861, p < 0.001) between phosphorus sorption index (PSI-CaCl 2), measured in a weak calcium chloride solution, and iron (Fe-AL) aluminium (Al-AL) and phosphorus (P-AL) in soil extract with acid ammonium lactate. Differing relationships were found for a field that had not received any manure in the last 15 years and a field that had received chicken litter very recently. In addition, a general relationship (Pearson correlation coefficient 0.839, p < 0.001) was found between the ratio of phosphorus extracted from fresh soil in water (Pw) to PSI-CaCl 2 and the degree of phosphorus saturation in lactate extract (DPS-AL). One exception was a single field, representing 7% of agricultural land in the catchment, that had been treated with glyphosate shortly before soil sampling. Saturated hydraulic conductivity (SHC) in heavy clay in contact with the moraine base (at 1 m depth) was on average 0.06 m day -1. In clay not in contact with moraine, SHC was significantly lower (mean 0.007 m day -1). A reduction in the present tile drain spacing (from 14-16 m to 11 m) is theoretically required to maintain satisfactory water discharge and groundwater level. Up to 10% of the arable land was estimated to be a potential source area for P, based on different indices. Parts of a few fields close to farm buildings (1% of total arable land) were identified as essential P source areas, with high DPS-AL values and low PSI-CaCl 2 values throughout the soil profile. A further 2% of arable land was identified as potential important transport areas, based on visible surface water rills or frequent water-ponded conditions. Fields comprising 10% of the total arable land in the catchment should be re-drained in the near future to improve water infiltration and avoid unnecessary channelised water flow. The need for an improved PRI for erosion and water transport is discussed.

  6. Flat-plate solar array project process development area, process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.

  7. Insights into Seasonal Variations in Phosphorus Concentrations and Cycling in Monterey Bay

    NASA Astrophysics Data System (ADS)

    Kong, M.; Defforey, D.; Paytan, A.; Roberts, K.

    2014-12-01

    Phosphorus (P) is an essential nutrient for life as it is a structural constituent in many cell components and a key player in cellular energy metabolism. Therefore, P availability can impact primary productivity. Here we quantify dissolved and particulate P compounds and trace P sources and cycling in Monterey Bay over the course of a year. This time series gives insights into monthly and seasonal variations in the surface water chemistry of this region. Preliminary characterization of seawater samples involves measuring total P and soluble reactive P (SRP) concentrations. 31P nuclear magnetic resonance spectroscopy (31P NMR) is used to determine the chemical structure of organic phosphorus compounds present in surface seawater. The isotopic signature of phosphatic oxygen (δ18Op) is used as a proxy for studying P cycling and sources. Oxygen isotope ratios in phosphate are determined by continuous-flow isotope mass ratio spectrometry (CF-IRMS) following purification of dissolved P from seawater samples and precipitation as silver phosphate. We expect to observe seasonal changes in P concentrations, as well as differences in organic P composition and P sources. The chemical structure of organic P compounds will affect their bioavailability and thus the extent to which they can fuel primary productivity in Monterey Bay. δ18Op will reflect source signatures and provide information on turnover rates of P in surface waters. Results from this work will provide valuable insights into seasonal changes in P cycling in surface waters and have important implications for understanding primary productivity in the Monterey Bay ecosystem.

  8. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  9. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    NASA Astrophysics Data System (ADS)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.

  10. Spatial and temporal distribution of specific conductance, boron, and phosphorus in a sewage-contaminated aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Bussey, K.W.; Walter, D.A.

    1996-01-01

    Spatial and temporal distributions of specific conductance, boron, and phosphorus were determined in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts. The source of contamination is secondarily treated sewage that has been discharged onto rapid- infiltration sand beds at the Massachusetts Military Reservation since 1936. Contaminated ground water containing as much as 2 milligrams per liter of dissolved phosphorus is discharging into Ashumet Pond, and there is concern that the continued discharge of phosphorus into the pond will accelerate eutrophication of the pond. Water-quality data collected from observation wells and multilevel samplers from June through July 1995 were used to delineate the spatial distributions of specific conductance, boron, and phosphorus. Temporal distributions were determined using sample-interval-weighted average concen- trations calculated from data collected in 1993, 1994, and 1995. Specific conductances were greater than 400 microsiemens per centimeter at 25C as far as 1,200 feet downgradient from the infiltration beds. Boron concentrations were greater than 400 micrograms per liter as far as 1,800 feet down- gradient from the beds and phosphorus concen- trations were greater than 3.0 milligrams per liter as far as 1,200 feet from the beds. Variability in distributions of specific conductance and boron concentrations is attributed to the history and distribution of sewage disposal onto the infiltration beds. The distribution of phosphorus concentrations also is related to the history and distribution of sewage disposal onto the beds but additional variability is caused by chemical interactions with the aquifer materials. Temporal changes in specific conductance and boron from 1993 to 1995 were negligible, except in the lower part of the plume (below an altitude of about 5 feet above sea level), where changes in weighted-average specific conductance were greater than 100 microsiemens per centimeter at 25C. Temporal changes in phosphorus generally were small except in the lower part of the plume, where weighted-average phosphorus concentrations decreased more than 1.3 milligrams per liter from 1993 to 1994. This decrease was accompanied by an increase in specific conductance. High concen- trations of phosphorus associated with low and moderate specific conductances possibly are the result of rapid phosphorus desorption in response to an influx of uncontaminated ground water. As a result of the cessation of sewage disposal in December 1995, clean, oxygenated water moving into contaminated parts of the aquifer may cause rapid desorption of sorbed phosphorus and temporarily result in high dissolved phosphorus concentrations in the aquifer.

  11. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila.

    PubMed

    Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2018-03-01

    In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.

  12. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.

  13. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  14. Bonding properties and bond activation of ylides: recent findings and outlook.

    PubMed

    Urriolabeitia, Esteban P

    2008-11-14

    The interaction of phosphorus and nitrogen ylides with metallic precursors has been examined from different points of view. The first one is related to the bonding properties of the ylides. Ylides with a unique stabilizing group bond through different atoms (the Calpha or the heteroatoms); while ylides with two stabilizing groups never coordinate through the Calpha atom. In the second section we examine the cause of the stereoselective coordination of bisylides of phosphorus, nitrogen and arsenic, and of mixed bisylides. We describe here the very interesting conformational preferences found in these systems, which have been determined and characterized. The DFT study of these bisylides has allowed for the characterization of strong intramolecular PO and AsO interactions, as well as moderate CHO[double bond, length as m-dash]C hydrogen bonds as the source of these conformational preferences. The third topic is related to the amazing reactivity of phosphorus ylides in bond activation processes. Depending on the nature of the metallic precursors, ylides can behave as sources of carbenes, of phosphine derivatives, of other ylides or of orthometallated complexes through P[double bond, length as m-dash]C, P-C or C-H bond activation reactions.

  15. Widespread sewage pollution of the Indian River Lagoon system, Florida (USA) resolved by spatial analyses of macroalgal biogeochemistry.

    PubMed

    Barile, Peter J

    2018-03-01

    The Indian River Lagoon (IRL) system, a poorly flushed 240 km long estuary in east-central Florida (USA), previously received 200 MLD of point source municipal wastewater that was largely mitigated by the mid-1990's. Since then, non-point source loads, including septic tank effluent, have become more important. Seventy sites were sampled for bloom-forming macroalgae and analyzed for δ 15 N, % nitrogen, % phosphorus, carbon:nitrogen, carbon:phosphorus, and nitrogen:phosphorus ratios. Data were fitted to geospatial models showing elevated δ 15 N values (>+5‰), matching human wastewater in most of the IRL system, with elevated enrichment (δ 15 N ≥ +7‰ to +10‰) in urbanized portions of the central IRL and Banana River Lagoon. Results suggest increased mobilization of OSDS NH 4 + during the wetter 2014 season. Resource managers must improve municipal wastewater treatment infrastructure and commence significant septic-to-sewer conversion to mitigate nitrogen over-enrichment, water quality decline and habitat loss as mandated in the Tampa and Sarasota Bays and the Florida Keys. Copyright © 2018 Marine Research & Consulting, Inc. Published by Elsevier Ltd.. All rights reserved.

  16. Water and Streambed-Sediment Quality in the Upper Elk River Basin, Missouri and Arkansas, 2004-06

    USGS Publications Warehouse

    Smith, Brenda J.; Richards, Joseph M.; Schumacher, John G.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collected water and streambedsediment samples in the Upper Elk River Basin in southwestern Missouri and northwestern Arkansas from October 2004 through December 2006. The samples were collected to determine the stream-water quality and streambed-sediment quality. In 1998, the Missouri Department of Natural Resources included a 21.5-mile river reach of the Elk River on the 303(d) list of impaired waters in Missouri as required by Section 303(d) of the Federal Clean Water Act. The Elk River is on the 303(d) list for excess nutrient loading. The total phosphorus distribution by decade indicates that the concentrations since 2000 have increased significantly from those in the 1960s, 1980s, and 1990s. The nitrate as nitrogen (nitrate) concentrations also have increased significantly in post-1985 from pre-1985 samples collected at the Elk River near Tiff City. Concentrations have increased significantly since the 1960s. Concentrations in the 1970s and 1980s, though similar, have increased from those in the 1960s, and the concentrations from the 1990s and 2000s increased still more. Nitrate concentrations significantly increased in samples that were collected during large discharges (greater than 355 cubic feet per second) from the Elk River near Tiff City. Nitrate concentrations were largest in Indian Creek. Several sources of nitrate are present in the basin, including poultry facilities in the upper part of the basin, effluent inflow from communities of Anderson and Lanagan, land-applied animal waste, chemical fertilizer, and possible leaking septic systems. Total phosphorus concentrations were largest in Little Sugar Creek. The median concentration of total phosphorus from samples from Little Sugar Creek near Pineville was almost four times the median concentration in samples from the Elk River near Tiff City. Median concentrations of nutrient species were greater in the stormwater samples than the median concentrations in the ambient samples. Nitrate concentrations in stormwater samples ranged from 133 to 179 percent of the concentration in the ambient samples. The total phosphorus concentrations in the stormwater samples ranged from about 200 to more than 600 percent of the concentration in the ambient samples. Base-flow conditions as reflected by the seepage run of the summer of 2006 indicate that 52 percent of the discharge at the Elk River near Tiff City is contributed by Indian Creek. Little Sugar Creek contributes 32 percent and Big Sugar Creek 9 percent of the discharge in the Elk River near Tiff City. Only about 7 percent of the discharge at Tiff City comes from the mainstem of the Elk River. Concentrations of dissolved ammonia plus organic nitrogen as nitrogen, dissolved ammonia as nitrogen, dissolved phosphorus, and dissolved orthophosphorus were detected in all streambed-sediment leachate samples. Concentrations of leachable nutrients in streambed-sediment samples generally tended to be slightly larger along the major forks of the Elk River as compared to tributary sites, with sites in the upper reaches of the major forks having among the largest concentrations. Concentrations of leachable nutrients in the major forks generally decreased with increasing distance downstream.

  17. Evaluation of the TBET model for improving P-indices in southern states

    USDA-ARS?s Scientific Manuscript database

    Management of agricultural nonpoint source phosphorus (P) requires identification of fields susceptible to P loss. P-Indices are the most common tools used to identify critical source areas of P loss. However, the success of the P-index approach is impeded by insufficient measured P loss data. Simul...

  18. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    USDA-ARS?s Scientific Manuscript database

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  19. Nutrient concentrations and loads and Escherichia coli densities in tributaries of the Niantic River estuary, southeastern Connecticut, 2005 and 2008–2011

    USGS Publications Warehouse

    Mullaney, John R.

    2013-01-01

    Nutrient concentrations and loads and Escherichia coli (E. coli) densities were studied in 2005 and from 2008 through 2011 in water-quality samples from tributaries of the Niantic River Estuary in southeastern Connecticut. Data from a water-quality survey of the base flow of subbasins in the watershed in June 2005 were used to determine the range of total nitrogen concentrations (0.09 to 2.4 milligrams per liter), instantaneous loads (less than 1 to 62 pounds per day) and the yields of total nitrogen ranging from 0.02 to 11.2 pounds per square mile per day (less than 1 to 7.2 kilograms per hectare per year) from basin segments. Nitrogen yields were positively correlated with the amount of developed land in each subbasin. Stable isotope measurements of nitrate (δ15N) and oxygen (δ18O) ranged from 3.9 to 9.4 per mil and 0.7 to 4.1 per mil, respectively, indicating that likely sources of nitrate in base flow are soil nitrate and ammonium fertilizers, sewage or animal waste, or a mixture of these sources. Continuous streamflow and monthly water-quality sampling, with additional storm event sampling, were conducted at the three major tributaries (Latimer Brook, Oil Mill Brook, and Stony Brook) of the Niantic River from October 2008 through September 2011. Samples were analyzed for nitrogen and phosphorus constituents and E. coli densities. Total freshwater discharge from these tributaries, which is reduced by upstream withdrawals, ranged from 25.9 to 37.8 million gallons per day. Total nitrogen and phosphorus concentrations generally were low, with the mean values below the U.S. Environmental Protection Agency recommended nutrient concentration values of 0.71 milligram per liter and 0.031 milligram per liter, respectively. Total nitrogen was predominantly in the form of total ammonia plus organic nitrogen at the Oil Mill Brook and Stony Brook sites and in the form of nitrate at Latimer Brook. Annual total nitrogen loads that flowed into the Niantic River estuary from the three major tributaries, calculated with the Load Estimator computer program, ranged from 41,400 to 60,700 pounds, with about 52 to 59 percent of the load as total ammonia plus organic nitrogen. Total phosphorus loads ranged from 1,770 to 3,540 pounds per year. Yields of total nitrogen were highest from Latimer Brook, with the range from the three tributaries between 1,100 and 2,720 pounds per square mile per year. Total phosphorus yields ranged from 52 to 185 pounds per square mile per year. The geometric means of E. coli densities in samples from the three Niantic River tributaries were less than the State of Connecticut water-quality standard of 126 colony-forming units per 100 milliliters; however, individual samples from all three tributaries had densities as high as 2,400 to 2,900 colony-forming units per 100 milliliters. High densities of E. coli were more likely to be present in samples collected during wet weather events.

  20. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible.

Top