Sample records for major polymeric component

  1. Comparative study on the development of intestinal mucin 2, IgA and polymeric Ig receptor expressions between broiler chickens and Pekin ducks

    USDA-ARS?s Scientific Manuscript database

    Intestinal mucin2 (MUC2), a major gel-forming mucin, represents a primary barrier component of mucus layers and target site for secretory IgA. Polymeric Ig receptor (pIgR) expressed on the basolateral surface of epithelium, is used to transport polymeric IgA from the lamina propria into luminal muci...

  2. 78 FR 46265 - Complex Polymeric Polyhydroxy Acids; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... number of analyses to determine the risks from aggregate exposure to pesticide residues. First, EPA... agricultural soils. Its major components are humic acid, fulvic acid, and tannins, and their relative...

  3. Laminated structures and methods and compositions for producing same

    DOEpatents

    Fumei, Giancarlo J.; Karabedian, James A.

    1977-04-05

    Methods for bonding two substrates, one of which is polymeric, which comprise coating the surface of at least one substrate with an adhesive composition comprising a major component which is an adhesive for the first substrate and a minor disperse phase which is a solution of a polymer in a solvent for the polymeric substrate and contacting the coated surface of the one substrate with the surface of the other substrate, together with adhesive compositions useful for joining such substrates, laminates so formed, and articles comprised of such laminates.

  4. Tentative identification of polyphenols in Sempervivum tectorum and assessment of the antimicrobial activity of Sempervivum L.

    PubMed

    Abram, V; Donko, M

    1999-02-01

    Polyphenols were isolated from sliced fresh leaves of Sempervivum tectorum. After 21 h of extraction by methanol and removal of chlorophyll, ethyl acetate was used to separate oligomeric and polymeric polyphenols: 0.07% of oligomeric and 0.13% of polymeric polyphenols were found. After acidic hydrolysis of the oligomeric polyphenols, it was established by TLC, HPLC, and FAB mass spectra that kaempferol was the unique aglycon of the three main oligomeric constituents of S. tectorum. Paper chromatography suggested delphinidol to be the only anthocyanidin detectable in the material obtained by acidic hydrolysis of the polymeric polyphenol fraction. After Haslam degradation of the same polymeric polyphenol fraction, only 4-thiobenzyl-(-)-epigallocatechin and 4-thiobenzyl-(-)-epigallocatechin-3-gallate were found and tentatively identified. We concluded that procyanidins of B2 type could be the major components of the polymeric polyphenol fraction of this plant. Antimicrobial activity of Sempervivum L. leaves against six of seven selected microorganisms was observed.

  5. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    PubMed

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  7. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K.

    PubMed

    Ali Mohammed, Marwan Mansoor; Nerland, Audun H; Al-Haroni, Mohammed; Bakken, Vidar

    2013-01-01

    Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.

  8. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge

    USDA-ARS?s Scientific Manuscript database

    Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...

  9. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    PubMed

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeability in IL-1β-exposed human intestinal epithelial cells.

    PubMed

    Gentile, C; Perrone, A; Attanzio, A; Tesoriere, L; Livrea, M A

    2015-08-01

    Dietary approaches to control inflammatory bowel diseases (IBD) may include proanthocyanidin-rich foods. Our previous research showed that a hydrophilic extract from Sicilian pistachio nut (HPE) contains substantial amounts of proanthocyanidins and possesses anti-inflammatory activities. We studied the effects of HPE and of its polymeric proanthocyanidin fraction (PPF) in a cell model that simulated some conditions of IBD, consisting of interleukin (IL)-1β-stimulated Caco-2 cells. HPE was prepared by Pistacia vera L. nuts, and PPF was isolated from HPE by adsorbance chromatography. Proanthocyanidins were quantified as anthocyanidins after acidic hydrolysis. Differentiated Caco-2 cells were pre-incubated with HPE or PPF and then were exposed to IL-1β. Cell viability and parameters associated with nuclear factor-κB (NF-κB) activation were assayed. Adsorption of polymeric proanthocyanidins to the cell membrane was investigated by transepithelial electrical resistance (TEER) measurements. HPE decreased prostaglandin (PG)E2 production, IL-6 and IL-8 release, and cyclooxygenase (COX)-2 expression. HPE also inhibited the increase in paracellular permeability and reduced NF-κB activation. Polymeric proanthocyanidins, tested at a concentration comparable with their content in HPE, produced effects comparable to HPE. Finally, cell exposure to PPF increases TEER of the epithelial monolayers. Our results provide evidence that pistachio nut components inhibit inflammatory response of intestinal epithelial cells in vitro and indicate polymeric proanthocyanidins as the major bioactive nut components. The protection implies inhibition of NF-κB activation and occurs in parallel with the adsorption of polymeric proanthocyanidins to cell membrane. Our findings suggest that intake of small amounts of pistachio nut can exert beneficial effects to gastrointestinal pathophysiology.

  11. Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis.

    PubMed

    Gu, Chaochao; Gao, Pin; Yang, Fan; An, Dongxuan; Munir, Mariya; Jia, Hanzhong; Xue, Gang; Ma, Chunyan

    2017-05-01

    The presence of antibiotic residues in the environment has been regarded as an emerging concern due to their potential adverse environmental consequences such as antibiotic resistance. However, the interaction between antibiotics and extracellular polymeric substances (EPSs) of biofilms in wastewater treatment systems is not entirely clear. In this study, the effect of ciprofloxacin (CIP) antibiotic on biofilm EPS matrix was investigated and characterized using fluorescence excitation-emission matrix (EEM) and parallel factor (PARAFAC) analysis. Physicochemical analysis showed that the proteins were the major EPS fraction, and their contents increased gradually with an increase in CIP concentration (0-300 μg/L). Based on the characterization of biofilm tightly bound EPS (TB-EPS) by EEM, three fluorescent components were identified by PARAFAC analysis. Component C1 was associated with protein-like substances, and components C2 and C3 belonged to humic-like substances. Component C1 exhibited an increasing trend as the CIP addition increased. Pearson's correlation results showed that CIP correlated significantly with the protein contents and component C1, while strong correlations were also found among UV 254 , dissolved organic carbon, humic acids, and component C3. A combined use of EEM-PARAFAC analysis and chemical measurements was demonstrated as a favorable approach for the characterization of variations in biofilm EPS in the presence of CIP antibiotic.

  12. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  13. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  14. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less

  15. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates1[OPEN

    PubMed Central

    Delude, Camille; Fouillen, Laetitia; Bhar, Palash; Cardinal, Marie-Josée; Pascal, Stephanie; Kosma, Dylan K.; Joubès, Jérôme

    2016-01-01

    Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots. PMID:27231100

  16. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  17. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  18. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  19. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  20. Module degradation catalyzed by metal-encapsulation reactions

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1983-01-01

    Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials.

  1. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    NASA Astrophysics Data System (ADS)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  2. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  3. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  4. Poly(n-hexyl methacrylate) polymerization in three-component microemulsion stabilized by a cationic surfactant.

    PubMed

    Katime, Issa; Arellano, Jesús; Schulz, Pablo

    2006-04-15

    The polymerization of n-hexyl methacrylate (n-HMA) in three-component microemulsion stabilized with dodecyltrimethylammonium bromide (DTAB) is reported as a function of monomer and initiator concentrations and temperature. The obtained latices were bluish, transparent, and translucent. Particle sizes and molar masses were on the order of 20 nm and 3 x 10(6) g/mol, respectively. In all cases, high reaction rates and final conversions of 98% were obtained. Polymerization temperature has a strong effect on reaction rate and conversion.

  5. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  6. Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    Li, Na; Wei, Dong; Sun, Qunqun; Han, Xiao; Du, Bin; Wei, Qin

    2018-02-01

    In this study, methylene blue (MB) wastewater was biotreated by anaerobic granular sludge (AnGS), and the fluorescent components of extracellular polymeric substances (EPS) and complexation mechanism were evaluated. Based on the experimental data, the sorption of MB by both live and inactivated AnGS followed the pseudo-second-order model, and the adsorption isotherm conformed well to the Langmuir model. It was shown that the difference in the sorption of live and inactivated AnGS was not significant, indicating that the sorption is mainly a physical-chemical process and metabolically mediated diffusion is negligible. The interaction between EPS and MB was proved by three-dimensional excitation-emission matrix (3D-EEM) and synchronous fluorescence spectra. 3D-EEM indicated that protein (PN)-like substances were the main peaks of EPS, and gradually quenched with increase of MB concentrations. According to synchronous fluorescence spectra, the main fluorescence quenching was caused by PN-like and humic-like fractions, and belonged to the static type of quenching. FTIR spectra demonstrated that hydroxyl and amino groups played a major role in MB sorption.

  7. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Schaper, J. G.; Suckert, M. R.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.; Klassen, T.

    2016-04-01

    Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg-Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young's modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.

  8. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  9. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel

    PubMed Central

    Lidell, Martin E.; Moncada, Darcy M.; Chadee, Kris; Hansson, Gunnar C.

    2006-01-01

    In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel. PMID:16754877

  10. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel.

    PubMed

    Lidell, Martin E; Moncada, Darcy M; Chadee, Kris; Hansson, Gunnar C

    2006-06-13

    In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel.

  11. Understanding the chemistry of the development of latent fingerprints by superglue fuming.

    PubMed

    Wargacki, Stephen P; Lewis, Linda A; Dadmun, Mark D

    2007-09-01

    Cyanoacrylate fuming is a widely used forensic tool for the development of latent fingerprints, however the mechanistic details of the reaction between the fingerprint residue and the cyanoacrylate vapor are not well understood. Here the polymerization of ethyl-cyanoacrylate vapor by sodium lactate or alanine solutions, two of the major components in fingerprint residue, has been examined by monitoring the time dependence of the mass uptake and resultant polymer molecular weight characteristics. This data provides insight into the molecular level actions in the efficient development of latent fingerprints by superglue fuming. The results show that the carboxylate moiety is the primary initiator of the polymerization process and that a basic environment inhibits chain termination while an acidic environment promotes it. The results also indicate that water cannot be the primary initiator in this forensic technique.

  12. Human Plasma Enhances the Expression of Staphylococcal Microbial Surface Components Recognizing Adhesive Matrix Molecules Promoting Biofilm Formation and Increases Antimicrobial Tolerance In Vitro

    DTIC Science & Technology

    2014-07-17

    infection and invasion in Staphylococcus aureus experimental endocarditis . J Exp Med 2005, 201:1627 1635. 23. Atshan SS, Shamsudin MN, Karunanidhi A, van... infections . The ability of S. aureus to colonize and establish biofilms, a surface- attached microbial community surrounded by a self- produced polymeric...human infections [2-4], and represent a major challenge to modern medicine given their recalcitrance to antimicrobials and host mechanisms of clearance

  13. A simple method for determining polymeric IgA-containing immune complexes.

    PubMed

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  14. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  15. Evidence for the in vivo polymerization of ependymin: a brain extracellular glycoprotein.

    PubMed

    Shashoua, V E; Hesse, G W; Milinazzo, B

    1990-07-09

    Ependymin, a glycoprotein of the brain extracellular fluid, has been implicated in synaptic changes associated with the consolidation process of long-term memory formation and the activity-dependent sharpening of connections of regenerating optic nerve. In vitro experiments have demonstrated that ependymin has the capacity to form fibrous insoluble polymers (FIP) when the solvent Ca2+ concentration is reduced by the addition of EGTA. Such products, once formed, do not dissolve in 2% sodium dodecyl sulfate (SDS) in 5 M urea. This property was used to develop a method for isolating brain FIP. A reproducible quantity of FIP was found in goldfish and mouse brain. This was highly concentrated in the synaptosomal fraction and had identical immunoreactivity properties to FIP obtained by the polymerization of pure ependymin in vitro as well as a cross-reactivity to other protein components of the extracellular matrix such as fibronectin and laminin. Labeling studies with [35S]methionine showed that labeled FIP aggregates are synthesized in vivo and become associated with the synaptosomal fraction. A comparison of the amino acid sequence of ependymin with those for proteins of the extracellular matrix indicated that common sequences 5-6 amino acids long exist in the molecules. These homologies may explain why antibodies to fibronectin, laminin and tubulin can recognize the FIP prepared from pure ependymin. These results suggest that ependymin can polymerize in vivo to form FIP aggregates which have similar immunoreactivity properties to major components of the brain extracellular matrix.

  16. Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities.

    PubMed

    Qiu, Zijie; Han, Ting; Lam, Jacky W Y; Tang, Ben Zhong

    2017-08-01

    Polymers synthesized from acetylenic monomers often possess electronically unsaturated fused rings and thus show versatile optoelectronic properties and advanced functionalities. To expand the family of acetylenic polymers, development of new catalyst systems and synthetic routes is critically important. We summarize herein recent research progress on development of new methodologies towards functional polymers using alkyne building blocks since 2014. The polymerizations are categorized by the number of monomer components, namely homopolymerizations, two-component polymerizations, and multicomponent polymerizations. The properties and applications of acetylenic polymers, such as aggregation-induced emission, fluorescent photopatterning, light refraction, chemosensing, mechanochromism, chain helicity, etc., are also discussed.

  17. Design considerations for multi component molecular-polymeric nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.

    1990-08-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.

  18. Mechanical Properties of Organized Microcomposites Fabricated by Interference Lithography

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Chang, Sehoon; Jang, Ji-Hyun; Davis, Whitney; Thomas, Edwin; Tsukruk, Vladimir

    2009-03-01

    We demonstrate that organized, porous, polymer microstructures with continuous open nanoscale pores and sub-micron spacings obtained via interference lithography can be successfully utilized in a highly non-traditional field of ordered microcomposites. Organized microcomposite structures are fabricated by employing two independent strategies, namely, capillary infiltration and in situ polymerization of the rubbery component into the porous glassy microframes. The mechanical properties and ultimate fracture behavior of the single and bicomponent microframes are investigated at different length scales. The ordered single and bi-component microstructures with high degree of control over the microscopic organization of the polymeric phases result in excellent mechanical properties. Combining hard and soft polymer components provides multifunctional materials and coatings with synergetic properties and is frequently utilized for design of advanced polymeric composites.

  19. Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration.

    PubMed

    Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali

    2010-08-19

    Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0)

  20. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  1. Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration.

    PubMed

    Casassa, L Federico; Harbertson, James F

    2014-01-01

    We review the extraction into wine and evolution of major phenolic classes of sensory relevance. We present a historical background to highlight that previously established aspects of phenolic extraction and retention into red wine are still subjects of much research. We argue that management of the maceration length is one of the most determining factors in defining the proportion and chemical fate of phenolic compounds in wine. The extraction of anthocyanins, flavonols, flavan-3-ols, and oligomeric and polymeric proanthocyanidins (PAs) is discussed in the context of their individual extraction patterns but also with regard to their interaction with other wine components. The same approach is followed to present the sensory implications of phenolic and phenolic-derived compounds in wine. Overall, we conclude that the chemical diversity of phenolic compounds in grapes is further enhanced as soon as vacuolar and pulp components are released upon crushing, adding a variety of new sensory dimensions to the already present chemical diversity. Polymeric pigments formed by the covalent reaction of anthocyanin and PAs are good candidates to explain some of the observed sensory changes in the color, taste, and mouthfeel attributes of red wines during maceration and aging.

  2. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  3. Technique for the polymerization of monomers for PPQ/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Impregnation of fiber prior to appreciable polymerization completely eliminates impregnation problems encountered with use of high viscosity high molecular weight polyphenylquinoxalines (PPQ) solutions. Major part of polymerization of reactant mixture is conducted on fiber during solvent removal and final curing stages.

  4. Responsive polymer-based colloids for drug delivery and bioconversion

    NASA Astrophysics Data System (ADS)

    Kudina, Olena

    Responsive polymer-based colloids (RPBC) are the colloidal structures containing responsive polymeric component which is able to adapt its physico-chemical properties to the environment by undergoing chemical and/or conformational changes. The goal of the dissertation is to develop and characterize several groups of RPBC with different morphological complexity and explore their potential in drug delivery and bioconversion. The role of RPBC morphology for these specific applications is discussed in details. Three groups of RPBC were fabricated: i. polymeric micelles; ii. mixed polymeric micelles; iii. hybrid polymer-inorganic particles. All fabricated RPBCs contain polymeric component in their structure. The dissertation investigates how the changes of the responsive polymeric component properties are reflected in morphologies of RPBC. The first group of RPBC, polymeric micelles, was formed by the self-assembly of amphiphilic invertible polymers (AIPs) synthesized in our group. AIPs self-assemble into invertible micellar assemblies (IMAs) in solvents of different polarity. In this work, IMAs ability to invert the structure as a response to the change in solvent polarity was demonstrated using 1H NMR spectroscopy and SANS. It was shown that the IMAs incorporate hydrophobic cargo either in the core or in the shell, depending on the chemical structure of cargo molecules. Following in vitro study demonstrates that loaded with drug (curcumin) IMAs are cytotoxic to osteosarcoma cells. Mixed polymeric micelles represent another, more complex, RPBC morphologies studied in the dissertation. Mixed micelles were fabricated from AIPs and amphiphilic oligomers synthesized from pyromellitic dianhydride, polyethylene glycol methyl ethers, and alkanols/cholesterol. The combination of selected AIP and oligomers based on cholesterol results in mixed micelles with an increased drug-loading capacity (from 10% w/w loaded curcumin in single component IMAs to 26%w/w in mixed micelles). Even more complex colloids are hybrid polymer-inorganic particles, the third RPBC group studied in dissertation. Material was designed as core--shell particles with superparamagnetic core engulfed by grafted polymer brushes. These particles were loaded with enzymes (cellulases), thus, are turned into enzymogels for cellulose bioconversion. The study demonstrates that such RPBCs can be used multiple times during hydrolysis and provide an about four-fold increase in glucose production in comparison to free enzymes.

  5. An overview of polymer ageing studies in the nuclear power industry

    NASA Astrophysics Data System (ADS)

    Burnay, S. G.

    2001-12-01

    Polymeric components are widely used in nuclear power plants (NPPs) in equipment which is important to the safety of the plant. The degradation of such components is therefore of considerable interest to the industry and its regulatory bodies, generating a large number of studies worldwide. Some of these components need to remain functional over the full operational life of the plant, which may span up to 60 years. Predictive modelling of their behaviour is therefore of key importance. This paper outlines the main areas of research, particularly relating to the use of elastomeric seals and polymeric cable insulation in NPP.

  6. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    PubMed

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p < 0.05). The elastic modulus showed a significant increase in the major base resin, while a significant decrease was seen for Vertex Implacryl in all groups (p < 0.05); however, there was no significant difference in surface roughness between autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  7. Application de la technologie des materiaux sol-gel et polymere a l'optique integree

    NASA Astrophysics Data System (ADS)

    Saddiki, Zakaria

    2002-01-01

    With the advancement of optical telecommunication systems, "integrated optics" and "optical interconnect" technology are becoming more and more important. The major components of these two technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules ( OE-MCMs). Optical signals are transmitted through optical waveguides that interconnect such components. The principle of optical transmission in waveguides is the same as that in optical fibres. To implement these technologies, both passive and active optical devices are needed. A wide variety of optical materials has been studied, e.g., glasses, lithium niobate, III-V semiconductors, sol-gel and polymers. In particular, passive optical components have been fabricated using glass optical waveguides by ion-exchange, or by flame hydrolysis deposition and reactive ion etching (FHD and RIE ). When using FHD and RIE, a very high temperatures (up to 1300°C) are needed to consolidate silica. This work reports on the fabrication and characterization of a new photo-patternable hybrid organic-inorganic glass sol-gel and polymer materials for the realisation of integrated optic and opto-electronic devices. They exhibit low losses in the NIR range, especially at the most important wavelengths windows for optical communications (1320 nm and 1550 nm). The sol-gel and polymer process is based on photo polymerization and thermo polymerization effects to create the wave-guide. The single-layer film is at low temperature and deep UV-light is employed to make the wave-guide by means of the well-known photolithography process. Like any photo-imaging process, the UV energy should exceed the threshold energy of chemical bonds in the photoactive component of hybrid glass material to form the expected integrated optic pattern with excellent line width control and vertical sidewalls. To achieve optical wave-guide, a refractive index difference Delta n occurred between the isolated (guiding layer) and the surrounding region (buffer and cladding). Accordingly, the refractive index emerges as a fundamental device performance material parameter and it is investigated using slab wave-guide. (Abstract shortened by UMI.)

  8. Durability of a continuous strand mat polymeric composite for automotive structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failuremore » behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.« less

  9. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  11. Nanocomposites Derived From a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization (Preprint)

    DTIC Science & Technology

    2007-01-01

    small metal catalyst (e.g., ferrocene, Fe (CO)5, etc.). They have an outer diameter of 60-200 nm, a hollow core of 30-90 nm, and length on the order...diffractions (WAXS) of compression-molded samples were recorded with a Rigaku RU-200 diffractometer using Ni-filtered Cu KR radiation (40 kV, 100 mA, λ...attributable to the sp3 C-H and sp2 C-H defects as methane is used as the major component in the feedstock for its production . Based on hydrogen

  12. Elaboration of nano-structured grafted polymeric surface.

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2011-10-15

    The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    DOEpatents

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.

    2017-01-17

    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  14. Fixation of virgin lunar surface soil

    NASA Technical Reports Server (NTRS)

    Conley, J. M.; Frazer, R.; Cannon, W. A.

    1972-01-01

    Two systems are shown to be suitable for fixing loose particulate soils with a polymer film, without visually detectable disturbance of the soil particle spatial relationships. A two-component system is described, which uses a gas monomer condensible at the soil temperature and a gas phase catalyst acting to polymerize the monomer. A one-component system using a monomer which polymerizes spontaneously on and within the top few millimeters of the soil is also considered. The two-component system employs a simpler apparatus, but it operates over a narrower temperature range (approximately -40 to -10 C). Other two-component systems were identified which may operate at soil temperatures as high as +100 C, at relatively narrow temperature ranges of approximately 30 C. The one-component system was demonstrated to operate successfully with initial soil temperatures from -70 C or lower to +150 C.

  15. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis.

    PubMed

    Chan, Eric W C; Soh, Eu Ying; Tie, Pei Pei; Law, Yon Peng

    2011-10-01

    The role of non-polymeric phenolic (NP) and polymeric tannin (PT) constituents in the antioxidant and antibacterial properties of six brands of green, black, and herbal teas of Camellia sinensis were investigated. Total phenolic content (TPC) and ascorbic acid equivalent antioxidant capacity (AEAC) were assessed using the Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Minimum inhibitory dose (MID) against Gram-positive Micrococcus luteus, Staphylococcus aureus, and Bacillus cereus, and Gram-negative. Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa was assessed using the disc-diffusion method. Teas were extracted with hot water successively three times for one hour each time. The extracts were fractionated using Sephadex LH-20 column chromatography to obtain the NP and PT constituents. Extraction yields ranged from 12 to 23%. Yields of NP fractions (70-81%) were much higher than those of PT fractions (1-11%), suggesting that the former are the major tea components. Ranking of antioxidant properties of extracts was green tea>black tea>herbal tea. For all six teas, antioxidant properties of PT fractions were significantly higher than extracts and NP fractions. Extracts and fractions of all six teas showed no activity against the three Gram-negative bacteria. Green teas inhibited all three Gram-positive bacteria with S. aureus being the least susceptible. Black and herbal teas inhibited the growth of M. luteus and B. cereus, but not S. aureus. The most potent were the PT fractions of Boh Cameron Highlands and Ho Yan Hor with MID of 0.01 and 0.03 mg/disc against M. luteus. Results suggested that NP constituents are major contributors to the antioxidant and antibacterial properties of teas of C. sinensis. Although PT constituents have stronger antioxidant and antibacterial properties, they constitute only a minor component of the teas.

  16. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    PubMed

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Induction of HoxB Transcription by Retinoic Acid Requires Actin Polymerization

    PubMed Central

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M.; Crippa, Massimo P.; Scita, Giorgio

    2009-01-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of “elongating” RNAPII, Prep1, β-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes. PMID:19477923

  18. Induction of HoxB transcription by retinoic acid requires actin polymerization.

    PubMed

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M; Crippa, Massimo P; Scita, Giorgio; Blasi, Francesco

    2009-08-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of "elongating" RNAPII, Prep1, beta-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes.

  19. Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2008-01-01

    Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.

  20. Evaluation of extractables in processed and unprocessed polymer materials used for pharmaceutical applications.

    PubMed

    Stults, Cheryl L M; Ansell, Jennifer M; Shaw, Arthur J; Nagao, Lee M

    2015-02-01

    Polymeric materials are often used in pharmaceutical packaging, delivery systems, and manufacturing components. There is continued concern that chemical entities from polymeric components may leach into various dosage forms, particularly those that are comprised of liquids such as parenterals, injectables, ophthalmics, and inhalation products. In some cases, polymeric components are subjected to routine extractables testing as a control measure. To reduce the risk of discovering leachables during stability studies late in the development process, or components that may fail extractables release criteria, it is proposed that extractables testing on polymer resins may be useful as a screening tool. Two studies have been performed to evaluate whether the extractables profile generated from a polymer resin is representative of the extractables profile of components made from that same resin. The ELSIE Consortium pilot program examined polyvinyl chloride and polyethylene, and another study evaluated polypropylene and a copolymer of polycarbonate and acrylonitrile butadiene styrene. The test materials were comprised of polymer resin and processed resin or molded components. Volatile, semi-volatile, and nonvolatile chemical profiles were evaluated after headspace sampling and extraction with solvents of varying polarity and pH. The findings from these studies indicate that there may or may not be differences between extractables profiles obtained from resins and processed forms of the resin depending on the type of material, the compounds of interest, and extraction conditions used. Extractables testing of polymer resins is useful for material screening and in certain situations may replace routine component testing.

  1. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization.

    PubMed

    Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo

    2015-02-06

    Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.

  2. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide).

    PubMed

    Akiyama, Yoshikatsu; Kikuchi, Akihiko; Yamato, Masayuki; Okano, Teruo

    2014-08-01

    A double polymeric nanolayer consisting of poly(N-isopropylacrylamide) (PIPAAm) and hydrophilic polyacrylamide (PAAm) was deposited on tissue culture polystyrene (TCPS) surfaces using electron beam irradiation to form a new temperature-responsive cell culture surface in which the basal hydrophilic PAAm component in the double polymeric layer promotes the hydration of the upper PIPAAm layer and induces rapid cell detachment compared to a conventional temperature-responsive cell culture surface, PIPAAm-grafted TCPS (PIPAAm-TCPS). Take-off angle-dependent X-ray photoelectron spectroscopy spectral analysis demonstrated that the grafted PIPAAm and PAAm components were located in the upper and basal regions of the double polymeric layer, respectively, suggesting that the double polymeric layer forms an inter-penetrating-network-like structure with PAAm at the basal portion of the PIPAAm grafted chains. The wettability of the temperature-responsive cell culture surfaces with the double polymeric layer tended to be more hydrophilic, with an increase in the basal PAAm graft density at a constant PIPAAm graft density. However, when the graft densities of the upper PIPAAm and basal PAAm were optimized, the resulting temperature-responsive cell culture surface with the double polymeric layer exhibited rapid cell detachment while maintaining cell adhesive character comparable to that of PIPAAm-TCPS. The cell adhesive character was altered from cell-adhesive to cell-repellent with increasing PAAm or PIPAAm graft density. The cell adhesive character of the temperature-responsive cell culture surfaces was relatively consistent with their contact angles. These results strongly suggest that the basal PAAm surface properties affect the degree of hydration and dehydration of the subsequently grafted PIPAAm. In addition, the roles of the hydrophilic component in accelerating cell detachment are further discussed in terms of the mobility of the grafted PIPAAm chains. Applications of this insight might be useful for designing temperature-responsive cell culture surfaces for achieving efficient cell culture and quick target cell detachment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices

    NASA Astrophysics Data System (ADS)

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed.

  5. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.

    PubMed

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-02-27

    Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.

  6. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  7. Tris(trimethylsilyl)silane as a co-initiator for dental adhesive: Photo-polymerization kinetics and dynamic mechanical property

    PubMed Central

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Spencer, Paulette

    2017-01-01

    Objectives The purpose of this study was to evaluate the polymerization behavior of a model dentin adhesive with tris(trimethylsilyl)silane (TTMSS) as a co-initiator, and to investigate the polymerization kinetics and mechanical properties of copolymers in dry and wet conditions. Methods A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a model dentin adhesive. The photoinitiator system included camphorquinone (CQ) as the photosensitizer and the co-initiator was ethyl-4-(dimethylamino) benzoate (EDMAB) or TTMSS. Iodonium salt, diphenyliodonium hexafluorophosphate (DPIHP) serving as a catalyst, was selectively added into the adhesive formulations. The control and the experimental formulations were characterized with regard to the degree of conversion (DC) and dynamic mechanical properties under dry and wet conditions. Results In two-component photoinitiator system (CQ/TTMSS), with an increase of TTMSS concentration, the polymerization rate and DC of C═C double bond increased, and showed a dependence on the irradiation time and curing light intensity. The copolymers that contained the three-component photoinitiator system (CQ/TTMSS/DPIHP) showed similar dynamic mechanical properties, under both dry and wet conditions, to the EDMAB-containing system. Significance The DC of formulations using TTMSS as co-initiator showed a strong dependence on irradiation time. With the addition of TTMSS, the maximum polymerization rate can be adjusted and the network structure became more homogenous. The results indicated that the TTMSS could be used as a substitute for amine-type co-initiator in visible-light induced free radical polymerization of methacrylate-based dentin adhesives. PMID:26616688

  8. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.

  9. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices.

    PubMed

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed. (c) 1999 American Institute of Physics.

  10. Thermochemical nanolithography components, systems, and methods

    DOEpatents

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  11. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology

    PubMed Central

    Golker, Kerstin; Karlsson, Björn C. G.; Rosengren, Annika M.; Nicholls, Ian A.

    2014-01-01

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design. PMID:25391043

  12. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology.

    PubMed

    Golker, Kerstin; Karlsson, Björn C G; Rosengren, Annika M; Nicholls, Ian A

    2014-11-10

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  13. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  14. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.

    PubMed

    Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C

    2013-12-01

    Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.

  15. Fundamental Characteristics of AAA+ Protein Family Structure and Function.

    PubMed

    Miller, Justin M; Enemark, Eric J

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.

  16. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibaud-Erkey, Catherine; Alahyari, Abbas

    Heat exchangers (HXs) are critical components in a wide range of heat transfer applications, from HVAC (Heating Ventilation and Cooling) to automobiles to manufacturing plants. They require materials capable of transferring heat at high rates while also minimizing thermal expansion over the usage temperature range. Conventionally, metals are used for applications where effective and efficient heat exchange is required, since many metals exhibit thermal conductivity over 100 W/m K. While metal HXs are constantly being improved, they still have some inherent drawbacks due to their metal construction, in particular corrosion. Polymeric material can offer solution to such durability issues andmore » allow designs that cannot be afforded by metal construction either due to complexity or cost. A major drawback of polymeric material is their low thermal conductivity (0.1-0.5? W/mK) that would lead to large system size. Recent improvements in the area of filled polymers have highlighted the possibility to greatly improve the thermal conductivity of polymeric materials while retaining their inherent manufacturing advantage, and have been applied to heat sink applications. Therefore, the objective of this project was to develop a robust review of materials for the manufacturing of industrial and commercial non-metallic heat exchangers. This review consisted of material identification, literature evaluation, as well as empirical and model characterization, resulting in a database of relevant material properties and characteristics to provide guidance for future heat exchanger development.« less

  17. Current Insights into the Modulation of Oral Bacterial Degradation of Dental Polymeric Restorative Materials

    PubMed Central

    Zhang, Ning; Ma, Yansong; Weir, Michael D.; Xu, Hockin H. K.; Bai, Yuxing; Melo, Mary Anne S.

    2017-01-01

    Dental polymeric composites have become the first choice for cavity restorations due to their esthetics and capacity to be bonded to the tooth. However, the oral cavity is considered to be harsh environment for a polymeric material. Oral biofilms can degrade the polymeric components, thus compromising the marginal integrity and leading to the recurrence of caries. Recurrent caries around restorations has been reported as the main reason for restoration failure. The degradation of materials greatly compromises the clinical longevity. This review focuses on the degradation process of resin composites by oral biofilms, the mechanisms of degradation and its consequences. In addition, potential future developments in the area of resin-based dental biomaterials with an emphasis on anti-biofilm strategies are also reviewed. PMID:28772863

  18. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization.

    PubMed

    Yeh, Po-An; Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation.

  19. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization

    PubMed Central

    Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation. PMID:28977036

  20. Actin polymerization plays a significant role in asbestos-induced inflammasome activation in mesothelial cells in vitro.

    PubMed

    MacPherson, Maximilian; Westbom, Catherine; Kogan, Helen; Shukla, Arti

    2017-05-01

    Asbestos exposure leads to malignant mesothelioma (MM), a deadly neoplasm of mesothelial cells of various locations. Although there is no doubt about the role of asbestos in MM tumorigenesis, mechanisms are still not well explored. Recently, our group demonstrated that asbestos causes inflammasome priming and activation in mesothelial cells, which in part is dependent on oxidative stress. Our current study sheds light on yet another mechanism of inflammasome activation by asbestos. Here we show the role of actin polymerization in asbestos-induced activation of the nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome. Using human mesothelial cells, we first demonstrate that asbestos and carbon nanotubes induced caspase-1 activation and high-mobility group box 1, interleukin 1 beta and interleukin 18 secretion was blocked by Cytochalasin D (Cyto D) an actin polymerization inhibitor. Next, to understand the mechanism, we assessed whether phagocytosis of fibers by mesothelial cells is affected by actin polymerization inhibition. Transmission electron microscopy showed the inhibition of fiber uptake by mesothelial cells in the presence of Cyto D. Furthermore, localization of components of the inflammasome, apoptotic speck-like protein containing a CARD domain (ASC) and NLRP3, to the perinuclear space in mitochondria or endoplasmic reticulum in response to fiber exposure was also interrupted in the presence of Cyto D. Taken together, our studies suggest that actin polymerization plays important roles in inflammasome activation by fibers via regulation of phagocytosis and/or spatial localization of inflammasome components.

  1. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H.

    PubMed

    Gorkovenko, A; Roberts, M F

    1993-07-01

    A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris.

  2. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H.

    PubMed Central

    Gorkovenko, A; Roberts, M F

    1993-01-01

    A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris. Images PMID:8320225

  3. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  4. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  5. Increase of Longevity of High Filled Composite Polymeric Materials Intended for Covering of Highways

    NASA Astrophysics Data System (ADS)

    Negmatov, S. S.; Sobirov, B. B.; Abdullaev, A. X.; Salimsakov, Yu. A.; Raxmonov, B. Sh.; Negmatova, K. S.; Ergashev, E.; Jonuzokov, A. A.

    2008-08-01

    In work the results of researches of influence of various components included in structure of high filled asphalt-concrete coverings and composite polymeric hermetic materials for sealing them deformed seams and cracks are given. The opportunity of increase of long lived operation of highways was shown using as filler the mechano-activated river and dune sands in a combination to secondary polyethylene.

  6. Polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David; Shalloway, David

    2016-10-01

    Hydrogen cyanide (HCN), a key reagent in prebiotic chemistry, is being generated in large amounts in the atmosphere of Titan. Contradictions between Cassini-Huygens measurements of the atmosphere and the surface of Titan, suggest that HCN is undergoing reaction chemistry, despite the frigid temperatures of 90-94 K. We will discuss computational results [1] investigating polyimine as one potential explanation for this observation. Polyimine is a polymer identified as the major component of polymerized HCN in laboratory experiments. It is flexible, which aids low temperature mobility, and it is able to form intermolecular and intramolecular =N-H...N hydrogen bonds, allowing for different polymorphs. Polymorphs have been predicted and explored by density functional theory coupled with a structure-searching algorithm. We have calculated the thermodynamics of polymerization, and show that polyimine is capable of absorbing light in a window of relative transparency in Titan's atmosphere. Light absorption and the possible catalytic functions of polyimine are suggestive of it driving photochemistry on the surface, with potential prebiotic implications.References:[1] M. Rahm, J. I. Lunine, D. Usher, D. Shalloway, "Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan", PNAS, early view. doi: 10.1073/pnas.1606634113

  7. Polyphenolic profiles of Basque cider apple cultivars and their technological properties.

    PubMed

    Alonso-Salces, Rosa M; Barranco, Alejandro; Abad, Beatriz; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2004-05-19

    The polyphenolic compositions of 31 Basque cider apple cultivars were determined in pulp, peel, and juice by high-performance liquid chromatography with diode array detection analysis of crude extracts and after thiolysis. Total polyphenols are distributed in a wide concentration range depending on the cultivar. Procyanidins are the class of polyphenols that present major concentrations in apple. Their average degrees of polymerization range from 4 to 8 depending on the cultivar. Apple cultivars were technologically classified into bitter and nonbitter categories using different classification systems obtained by applying several pattern recognition techniques, such as principal component analysis, K-nearest neighbors, soft independent modeling of class analogy, partial least-squares, and multilayer feed-forward-artificial neural networks, to apple pulp, peel, or juice data (individual polyphenol concentrations, total procyanidin content, and the average degree of polymerization of procyanidins). Bitter apple cultivars present higher contents of flavan-3-ols and/or dihydrochalcones than nonbitter cultivars. Detailed knowledge of the polyphenolic profile of each apple cultivar affords information about their susceptibility to oxidation, their sensory properties (bitterness, astringency), and their possible influence on the characteristics and quality of the final product (juice, cider) when apples are processed.

  8. A novel synthetic 1,3-phenyl bis-thiourea compound targets microtubule polymerization to cause cancer cell death

    PubMed Central

    Shing, Jennifer C; Choi, Jae Won; Chapman, Robert; Schroeder, Mark A; Sarkaria, Jann N; Fauq, Abdul; Bram, Richard J

    2014-01-01

    Microtubules are essential cytoskeletal components with a central role in mitosis and have been particularly useful as a cancer chemotherapy target. We synthesized a small molecule derivative of a symmetrical 1,3-phenyl bis-thiourea, (1,1'-[1,3-phenylene]bis[3-(3,5-dimethylphenyl)thiourea], named “41J”), and identified a potent effect of the compound on cancer cell survival. 41J is cytotoxic to multiple cancer cell lines at nanomolar concentrations. Cell death occurred by apoptosis and was preceded by mitotic arrest in prometaphase. Prometaphase arrest induced by 41J treatment was accompanied by dissociation of cyclin B1 levels from the apparent mitotic stage and by major spindle abnormalities. Polymerization of purified tubulin in vitro was directly inhibited by 41J, suggesting that the compound works by directly interfering with microtubule function. Compound 41J arrested the growth of glioblastoma multiforme xenografts in nude mice at doses that were well-tolerated, demonstrating a relatively specific antitumor effect. Importantly, 41J overcame drug resistance due to β-tubulin mutation and P-glycoprotein overexpression. Compound 41J may serve as a useful new lead compound for anticancer therapy development. PMID:24755487

  9. Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber.

    PubMed

    Kimani, Veronicah Njeri; Chen, Lin; Liu, Yunpeng; Raza, Waseem; Zhang, Nan; Mungai, Lewis Kamau; Shen, Qirong; Zhang, Ruifu

    2016-11-01

    Bacillus amyloliquefaciens SQR9 is a plant growth-promoting rhizobacterium (PGPRs) that forms biofilm on the roots of plants and protects them from a variety of pathogens. In this study, we reported the effect of root exudates produced by cucumber (Cucumis sativus L.) at different developmental stages on the biochemical composition of the biofilm matrix of SQR9. The results showed that the amino acids present in the root exudates of cucumber were responsible for triggering biofilm formation of SQR9. In addition, when root exudates harvested at different growth phases of cucumber were used as carbon sources for biofilm formation, the resulting biofilm matrixes differed both quantitatively and qualitatively. The biofilm matrix was mostly composed of amino groups observed by confocal laser scanning microscope (CLSM) hence the proteins formed the major component of the resulting extracellular polymeric substances (EPS). The potential use of amino acid-based dietary supplements to control biofilm formation in the plants may be a viable option to improve agricultural productivity by recruiting beneficial association with PGPRs in the manufacture of bio fertilizers or bio controls. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2007-01-01

    Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.

  11. UV recording with vinyl acetate and muicle dye film

    NASA Astrophysics Data System (ADS)

    Toxqui-Lopez, S.; Olivares-Pérez, A.; Santacruz-Vazquez, V.; Fuentes-Tapia, I.; Ordoñez-Padilla, J.

    2015-03-01

    Nowadays, there are many types of holographic recording medium some of them are photopolymer systems that generally consist of a polymeric host matrix, photopolymerizable momomer, photosensitizing dye and charge transfer agent but some of them have an undesirable feature, the toxicity of their components. Therefore, the present research study material recording, vinyl acetate is selected as polymeric matrix and natural dye from "muicle plant" is used as the photoinitiation these components are not toxic. The films are fabricated using gravity settling method at room temperature by this method, uniform films is obtained with good optical quality. To characterize the medium, been obtained when the coherent reed light (632.8 nm) was sent normally to the grating.

  12. Super p53 for Treatment of Ovarian Cancer

    DTIC Science & Technology

    2016-07-01

    WSLP ( polymer ) has been successfully synthesized, and a subset of adenoviral constructs have been cloned (p53, p53-CC, EGFP control). Major results...therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer -adenovirus hybrid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer

  13. Polymeric Micelles and Alternative Nanonized Delivery Vehicles for Poorly Soluble Drugs

    PubMed Central

    Lu, Ying; Park, Kinam

    2013-01-01

    Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs. This manuscript examines the fundamentals of polymeric micelles through reviews of representative literature and demonstrates possible applications through recent examples of clinical trial developments. In particular, the potential of polymeric micelles for delivery of poorly water-soluble drugs, especially in the areas of oral delivery and in cancer therapy, is discussed. Key considerations in utilizing polymeric micelles’ advantages and overcoming potential disadvantages have been highlighted. Lastly, other possible strategies related to particle size reduction for enhancing solubilization of poorly water-soluble drugs are introduced. PMID:22944304

  14. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes.

    PubMed

    Demir Oğuz, Öznur; Ege, Duygu

    2018-04-14

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.

  15. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes

    PubMed Central

    2018-01-01

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications. PMID:29662018

  16. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  17. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  18. Disrupting the biofilm matrix improves wound healing outcomes.

    PubMed

    Wolcott, R

    2015-08-01

    The most unyielding molecular component of biofilm communities is the matrix structure that it can create around the individual microbes that constitute the biofilm. The type of polymeric substances (polymeric sugars, bacterial proteins, bacterial DNA and even co-opted host substances) are dependent on the microbial species present within the biofilm. The extracellular polymeric substances that make up the matrix give the wound biofilm incredible colony defences against host immunity, host healing and wound care treatments. This polymeric slime layer, which is secreted by bacteria, encases the population of microbes, creating a physical barrier that limits the ingress of treatment agents to the bacteria. The aim of this study was to determine if degrading the wound biofilm matrix would improve wound healing outcomes and if so, if there was a synergy between treating agents that disrupted biofilm defenses with Next Science Wound Gel (wound gel) and cidal agents (topical antibiotics). A three-armed randomised controlled trial was designed to determine if standard of care (SOC) was superior to SOC plus wound gel (SOC + gel) and wound gel alone. The wound gel used in this study contains components that directly attack the biofilm extracellular polymeric substance. The gel was applied directly to the wound bed on a Monday-Wednesday-Friday interval, either alone or with SOC topical antibiotics. Using a surrogate endpoint of 50% reduction in wound volume, the results showed that SOC healed at 53%, wound gel healed at 80%, while SOC plus wound gel showed 93% of wounds being successfully treated. By directly targeting the wound biofilm matrix, wound healing outcomes are improved.

  19. Determination of main components in the extracellular polymeric substances extracted from activated sludge using a spectral probing method.

    PubMed

    Shen, Rong; Sheng, Guo-Ping; Yu, Han-Qing

    2012-06-01

    In this study, a spectral probing method was applied to determine the content of the main components, i.e., proteins, polysaccharides and humic substances, in the extracellular polymeric substances (EPS) extracted from activated sludge. The measurement results were consistent with those obtained from the conventional methods, such as the anthrone for polysaccharide determination, the modified Lowry method for protein and humic substance determination. The recoveries for the determination of proteins, humic substances and polysaccharides in the EPS extracted from six sludge samples using standard additional method were between 92.4 and 108.9%, 84.8 and 108.9%, 75.1 and 117.2%, respectively. These results indicate that the propose method has a good accuracy and precision, and can be used as an effective approach to determine the main components in sludge EPS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  1. Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization.

    PubMed

    Deshmukh, Rohitas; Trivedi, Vishal

    2013-02-01

    Inflammation or vascular occlusion by parasitized red blood cell contributes to the pathogenesis of cerebral malaria. The current study aimed to characterize the role of major pro-oxidant factor methemoglobin present in the malaria culture supernatant contributing in inflammation during malaria. Heme and heme polymer stimulate macrophage to secrete large amount of reactive oxygen species into the external micro-environment. The addition of methemoglobin along with heme or heme polymer amplifies production of ROS from macrophages several folds. Methemoglobin mediated stimulatory effect is not due to release of iron, enhanced production of H2O2 or mutual interaction of reaction components. Spectroscopic studies show that methemoglobin accepts heme as a substrate and oxidizes it through a single electron transfer mechanism. Heme oxidation product is a heme polymer with similar chemical and structural properties to synthetic β-hematin. Phenyl N-t-butylnitrone inhibits heme polymerization (IC50=30 nM) and indicates the absolute necessity of heme oxidation and heme free radical generation for heme polymerization. Methemoglobin produced heme polymer is a potent pro-inflammatory factor to release ROS into external microenvironment. Interestingly, methemoglobin not only produces pro-inflammatory heme polymer, but it also amplifies the potential of heme or preformed heme polymer (haemozoin or β-hematin) to produce several folds high ROS production from macrophages. This study illustrates the pro-inflammatory effect of methemoglobin, the underlying novel mechanism by which this occurs and a possible clinical intervention. Based on the results, we recommend methemoglobin directed peroxidase inhibitors as an adjuvant therapy during malaria.

  2. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol-acrylate systems. However, nonreactive clays do not reduce the stress substantially and even decreases the polymerization rate in air. Additionally, the clay morphology and polymerization behavior are closely related with evolution of ultimate nanocomposite performance. Use of polymerizable organoclay significantly improves overall toughness of nanocomposites by increasing either modulus or elongation at break based on the type of polymerizable organoclay, which demonstrates the promise of this technology as a modulation and/or optimization tool for nanocomposite properties.

  3. [Computer aided design and rapid manufacturing of removable partial denture frameworks].

    PubMed

    Han, Jing; Lü, Pei-jun; Wang, Yong

    2010-08-01

    To introduce a method of digital modeling and fabricating removable partial denture (RPD) frameworks using self-developed software for RPD design and rapid manufacturing system. The three-dimensional data of two partially dentate dental casts were obtained using a three-dimensional crossing section scanner. Self-developed software package for RPD design was used to decide the path of insertion and to design different components of RPD frameworks. The components included occlusal rest, clasp, lingual bar, polymeric retention framework and maxillary major connector. The design procedure for the components was as following: first, determine the outline of the component. Second, build the tissue surface of the component using the scanned data within the outline. Third, preset cross section was used to produce the polished surface. Finally, different RPD components were modeled respectively and connected by minor connectors to form an integrated RPD framework. The finished data were imported into a self-developed selective laser melting (SLM) machine and metal frameworks were fabricated directly. RPD frameworks for the two scanned dental casts were modeled with this self-developed program and metal RPD frameworks were successfully fabricated using SLM method. The finished metal frameworks fit well on the plaster models. The self-developed computer aided design and computer aided manufacture (CAD-CAM) system for RPD design and fabrication has completely independent intellectual property rights. It provides a new method of manufacturing metal RPD frameworks.

  4. THE PRESENCE OF A GROUP A VARIANT-LIKE ANTIGEN IN STREPTOCOCCI OF OTHER GROUPS WITH SPECIAL REFERENCE TO GROUP N

    PubMed Central

    Elliott, S. D.; Hayward, John; Liu, T. Y.

    1971-01-01

    A Group A variant-like antigen has been detected in streptococci belonging to Groups D, E, G, M, and N. In Groups D and N the variant-like antigen was located in the streptococcal cell walls. In two strains of Group N streptococci (C559 and B209) the cell walls were chemically different and serologically distinct. In strain C559 N-acetylgalactosamine, and in strain B209, N-acetylglucosamine were the major determinants of serological specificity. The cell walls of strain C559 contained at least three serologically reactive components: a rhamnose-containing fraction that precipitated with an antiserum to Group A-variant carbohydrate; a strain-specific polysaccharide composed of galactosamine and glucosamine, both in the N-acetylated form and probably polymerized with an unidentified phosphorylated substance; and a component of unknown composition serologically related to a Group D streptococcus strain C3 (S. durans). An analogy is drawn between the cell wall structure in streptococcus and Salmonella. PMID:5111438

  5. Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing.

    PubMed

    Hoteling, Andrew J; Nichols, William F; Harmon, Patricia S; Conlon, Shawn M; Nuñez, Ivan M; Hoff, Joseph W; Cabarcos, Orlando M; Steffen, Robert B; Hook, Daniel J

    2018-04-01

    Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, 1 H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018. © 2017 Wiley Periodicals, Inc.

  6. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.

    PubMed

    Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S

    2016-09-28

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.

  7. Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin

    NASA Technical Reports Server (NTRS)

    Bernards, M. A.; Lopez, M. L.; Zajicek, J.; Lewis, N. G.

    1995-01-01

    Suberin is an abundant, complex, intractable, plant cell wall polymeric network that forms both protective and wound-healing layers. Its function is, therefore, critical to the survival of all vascular plants. Its chemical structure and biosynthesis are poorly defined, although it is known to consist of both aromatic and aliphatic domains. While the composition of the aliphatic component has been fairly well characterized, that of the phenolic component has not. Using a combination of specific carbon-13 labeling techniques, and in situ solid state 13C NMR spectroscopic analysis, we now provide the first direct evidence for the nature of the phenolic domain of suberin and report here that it is almost exclusively comprised of a covalently linked, hydroxycinnamic acid-derived polymeric matrix.

  8. Nanomechanical characterization of heterogeneous and hierarchical biomaterials and tissues using nanoindentation: the role of finite mixture models.

    PubMed

    Zadpoor, Amir A

    2015-03-01

    Mechanical characterization of biological tissues and biomaterials at the nano-scale is often performed using nanoindentation experiments. The different constituents of the characterized materials will then appear in the histogram that shows the probability of measuring a certain range of mechanical properties. An objective technique is needed to separate the probability distributions that are mixed together in such a histogram. In this paper, finite mixture models (FMMs) are proposed as a tool capable of performing such types of analysis. Finite Gaussian mixture models assume that the measured probability distribution is a weighted combination of a finite number of Gaussian distributions with separate mean and standard deviation values. Dedicated optimization algorithms are available for fitting such a weighted mixture model to experimental data. Moreover, certain objective criteria are available to determine the optimum number of Gaussian distributions. In this paper, FMMs are used for interpreting the probability distribution functions representing the distributions of the elastic moduli of osteoarthritic human cartilage and co-polymeric microspheres. As for cartilage experiments, FMMs indicate that at least three mixture components are needed for describing the measured histogram. While the mechanical properties of the softer mixture components, often assumed to be associated with Glycosaminoglycans, were found to be more or less constant regardless of whether two or three mixture components were used, those of the second mixture component (i.e. collagen network) considerably changed depending on the number of mixture components. Regarding the co-polymeric microspheres, the optimum number of mixture components estimated by the FMM theory, i.e. 3, nicely matches the number of co-polymeric components used in the structure of the polymer. The computer programs used for the presented analyses are made freely available online for other researchers to use. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  10. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  11. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    PubMed

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation.

    PubMed

    Sosnik, Alejandro; Menaker Raskin, Maya

    2015-11-01

    Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines).

    PubMed

    Lee, In-Hwan; Kim, Hyunseok; Choi, Tae-Lim

    2013-03-13

    We report a versatile Cu-catalyzed multicomponent polymerization (MCP) technique that enables the synthesis of high-molecular-weight, defect-free poly(N-sulfonylamidines) from monomers of diynes, sulfonyl azides, and diamines. Through a series of optimizations, we discovered that the addition of excess triethylamine and the use of N,N'-dimethylformamide as a solvent are key factors to ensure efficient MCP. Formation of cyclic polyamidines was a side reaction during polymerization, but it was readily controlled by using diynes or diamines with long or rigid moieties. In addition, this polymerization is highly selective for three-component reactions over click reactions. The combination of the above factors enables the synthesis of high-molecular-weight polymers, which was challenging in previous MCPs. All three kinds of monomers (diynes, sulfonyl azides, and diamines) are readily accessible and stable under the reaction conditions, with various monomers undergoing successful polymerization regardless of their steric and electronic properties. Thus, we synthesized various high-molecular-weight, defect-free polyamidines from a broad range of monomers while overcoming the limitations of previous MCPs, such as low conversion and defects in the polymer structures.

  14. The molecular composition of ambers

    USGS Publications Warehouse

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  15. A role for anthocyanin in determining wine tannin concentration in Shiraz.

    PubMed

    Kilmister, Rachel L; Mazza, Marica; Baker, Nardia K; Faulkner, Peta; Downey, Mark O

    2014-01-01

    Four wines were made to investigate the effect of different anthocyanin and tannin fruit concentrations on wine phenolics and colour. Wines that were made from fruit with high anthocyanin concentration had high tannin concentrations regardless of the concentration of tannin in fruit, while wines made from fruit with low anthocyanin also had low tannin concentration. It was found that fruit anthocyanin concentration correlated with wine tannin concentration, wine colour and polymeric pigment formation. Anthocyanin concentration might be a key component for increasing tannin solubility and extraction into wine and the formation of polymeric pigments. Industry implications include managing tannin and anthocyanin fruit concentration for targeting tannin extraction and polymeric pigment formation in wine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  17. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  18. Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9

    PubMed Central

    Gallop, Jennifer L.; Walrant, Astrid; Cantley, Lewis C.; Kirschner, Marc W.

    2013-01-01

    The membrane–cytosol interface is the major locus of control of actin polymerization. At this interface, phosphoinositides act as second messengers to recruit membrane-binding proteins. We show that curved membranes, but not flat ones, can use phosphatidylinositol 3-phosphate [PI(3)P] along with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to stimulate actin polymerization. In this case, actin polymerization requires the small GTPase cell cycle division 42 (Cdc42), the nucleation-promoting factor neural Wiskott–Aldrich syndrome protein (N-WASP) and the actin nucleator the actin-related protein (Arp) 2/3 complex. In liposomes containing PI(4,5)P2 as the sole phosphoinositide, actin polymerization requires transducer of Cdc42 activation-1 (toca-1). In the presence of phosphatidylinositol 3-phosphate, polymerization is both more efficient and independent of toca-1. Under these conditions, sorting nexin 9 (Snx9) can be implicated as a specific adaptor that replaces toca-1 to mobilize neural Wiskott–Aldrich syndrome protein and the Arp2/3 complex. This switch in phosphoinositide and adaptor specificity for actin polymerization from membranes has implications for how different types of actin structures are generated at precise times and locations in the cell. PMID:23589871

  19. Oxidative Reactions with Nonaqueous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan S. Dordick; Douglas Clark; Brian H Davison

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less

  20. Improved Fiber Optics Final Report CRADA No. TSB-957-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Glenn; Wilford, Sandy

    The existing chemistry of Lumenyte® (an illumination fiber optic developed by LIC) was such that the component monomers inherently polymerized to a very hard mass if exposed to environmental IR, UV, or a combination of these frequencies. Lumenyte optic also would cure to a hard mass by exposure to the UV & IR generated by the illuminating lamps-although this could occur at a much slower rate, and the hardening could occur even when the adverse frequencies were filtered. The resultant product did not have the flexibility for the required applications. LIC's objective was to include other monomeric components in themore » formulation to impart permanent flexibility. LIC sought the expertise and the use of the facilities in the Polymeric Materials Section at LLNL to achieve this objective.« less

  1. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles.

    PubMed

    Yuan, Xue; Xie, Qian; Su, Keyu; Li, Zhijie; Dong, Dong; Wu, Baojian

    2017-01-01

    Arenobufagin (ABG) is a major active component of toad venom, a traditional Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its pharmacological studies in vivo due to administration difficulties. In this study, we aimed to develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene glycol)-block-poly (d,l-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The nanomicelles showed increased drug concentrations in the liver and lung. In contrast, drug concentrations in both heart and brain were decreased. Moreover, the nanomicelles enhanced the anticancer effect of the pure drug probably via increased cellular uptake of drug molecules. In conclusion, the mPEG-PLGA-based nanomicelle system is a satisfactory carrier for the systemic delivery of ABG.

  2. The in vitro and in vivo influence of 4-META/MMA-TBB resin components on dental pulp tissues.

    PubMed

    Inoue, T; Miyakoshi, S; Shimono, M

    2001-08-01

    The purpose of this study was to qualitate the penetration of the major components of 4-META/MMA-TBB adhesive resin (4-META resin) and to characterize their influence on the in vitro and in vivo wound healing of dental pulp tissues. Fresh 4-META resin was applied to rabbit mesentery; its components penetrated the mesentery to form three of layers, depending on the amounts of monomer components in the tissue. The superficial layer was a soft-tissue hybrid layer (STHL), the intermediate layer contained small particles of polymerized 4-META resin, while the deepest layer contained unpolymerized monomer components including MMA and butanol, which were detected by gas chromatography (GC). To characterize the in vivo effects of the deepest layer, we immersed the pulp tissue in MMA or in 5% 4-META/MMA and autotransplanted it to placement beneath a rabbit kidney capsule. The MMA-immersed pulp was positive for osteocalcin and presented osteodentin formation at 7 days, as did the untreated control pulp tissue. In contrast, the 5% 4-META/MMA-immersed pulp collapsed into the cell-deficient fibrous connective tissue, with slight calcification by 7 days and less osteodentin formation at 14 days. Analysis of these data suggests that MMA does not inhibit osteogenic activity of pulp tissue, while 5% 4-META/MMA does inhibit osteogenic activity to some extent.

  3. Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs.

    PubMed

    Xu, Pengfei; Wu, Lei; Dong, Liqiu; Xu, Xin

    2018-02-08

    This work reports the chemoselective polymerization of polar divinyl monomers, including allyl methacrylate (AMA), vinyl methacrylate (VMA), and 4-vinylbenzyl methacrylate (VBMA), by using simple Lewis pairs comprised of homoleptic rare-earth (RE) aryloxide complexes RE(OAr)₃ (RE = Sc ( 1 ), Y ( 2 ), Sm ( 3 ), La ( 4 ), Ar = 2,6- t Bu₂C₆H₃) and phosphines PR₃ (R = Ph, Cy, Et, Me). Catalytic activities of polymerizations relied heavily upon the cooperation of Lewis acid and Lewis base components. The produced polymers were soluble in common organic solvents and often had a narrow molecular weight distribution. A highly syndiotactic poly(allyl methacrylate) (PAMA) with rr ~88% could be obtained by the scandium complex 1 /PEt₃ pair at -30 °C. In the case of poly(4-vinylbenzyl methacrylate) (PVBMA), it could be post-functionalized with PhCH₂SH. Mechanistic study, including the isolation of the zwitterionic active species and the end-group analysis, revealed that the frustrated Lewis pair (FLP)-type addition was the initiating step in the polymerization.

  4. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization.

    PubMed

    Robertson, Ian D; Yourdkhani, Mostafa; Centellas, Polette J; Aw, Jia En; Ivanoff, Douglas G; Goli, Elyas; Lloyd, Evan M; Dean, Leon M; Sottos, Nancy R; Geubelle, Philippe H; Moore, Jeffrey S; White, Scott R

    2018-05-01

    Thermoset polymers and composite materials are integral to today's aerospace, automotive, marine and energy industries and will be vital to the next generation of lightweight, energy-efficient structures in these enterprises, owing to their excellent specific stiffness and strength, thermal stability and chemical resistance 1-5 . The manufacture of high-performance thermoset components requires the monomer to be cured at high temperatures (around 180 °C) for several hours, under a combined external pressure and internal vacuum 6 . Curing is generally accomplished using large autoclaves or ovens that scale in size with the component. Hence this traditional curing approach is slow, requires a large amount of energy and involves substantial capital investment 6,7 . Frontal polymerization is a promising alternative curing strategy, in which a self-propagating exothermic reaction wave transforms liquid monomers to fully cured polymers. We report here the frontal polymerization of a high-performance thermoset polymer that allows the rapid fabrication of parts with microscale features, three-dimensional printed structures and carbon-fibre-reinforced polymer composites. Precise control of the polymerization kinetics at both ambient and elevated temperatures allows stable monomer solutions to transform into fully cured polymers within seconds, reducing energy requirements and cure times by several orders of magnitude compared with conventional oven or autoclave curing approaches. The resulting polymer and composite parts possess similar mechanical properties to those cured conventionally. This curing strategy greatly improves the efficiency of manufacturing of high-performance polymers and composites, and is widely applicable to many industries.

  5. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    PubMed

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  6. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase.

    PubMed

    Cho, Sung Hyun; Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Díaz-Moreno, Sara M; Bulone, Vincent; Zimmer, Jochen; Kumar, Manish; Nixon, B Tracy

    2017-09-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase1[OPEN

    PubMed Central

    Purushotham, Pallinti; Fang, Chao; Maranas, Cassandra; Bulone, Vincent

    2017-01-01

    Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual β-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens. Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize β-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins. PMID:28768815

  8. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    PubMed

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  9. Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome.

    PubMed

    Funk, Steven D; Bayer, Raymond H; Malone, Andrew F; McKee, Karen K; Yurchenco, Peter D; Miner, Jeffrey H

    2018-03-01

    Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β 2 ( LAMB2 ), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3 -/- mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5 +/- females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α 3 α 4 α 5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans. Copyright © 2018 by the American Society of Nephrology.

  10. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-10-15

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purifiedmore » bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.« less

  11. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon; implications for neurotoxicity

    PubMed Central

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-01-01

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents. PMID:19631231

  12. Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells.

    PubMed

    Gentile, C; Allegra, M; Angileri, F; Pintaudi, A M; Livrea, M A; Tesoriere, L

    2012-04-01

    Positive effects of pistachio nut consumption on plasma inflammatory biomarkers have been described; however, little is known about molecular events associated with these effects. We studied the anti-inflammatory activity of a hydrophilic extract from Sicilian Pistacia L. (HPE) in a macrophage model and investigated bioactive components relevant to the observed effects. HPE oligomer/polymer proanthocyanidin fractions were isolated by adsorbance chromatography, and components quantified as anthocyanidins after acidic hydrolysis. Isoflavones were measured by gradient elution HPLC analysis. RAW 264.7 murine macrophages were pre-incubated with either HPE (1- to 20-mg fresh nut equivalents) or its isolated components for 1 h, then washed before stimulating with lipopolysaccharide (LPS) for 24 h. Cell viability and parameters associated with Nuclear Factor-κB (NF-κB) activation were assayed according to established methods including ELISA, Western blot, or cytofluorimetric analysis. HPE suppressed nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production and inducible NO-synthase levels dose dependently, whereas inhibited prostaglandin E2 (PGE2) release and decreased cyclo-oxygenase-2 content, the lower the HPE amount the higher the effect. Cytotoxic effects were not observed. HPE also caused a dose-dependent decrease in intracellular reactive oxygen species and interfered with the NF-κB activation. Polymeric proanthocyanidins, but not isoflavones, at a concentration comparable with their content in HPE, inhibited NO, PGE2, and TNF-α formation, as well as activation of IκB-α. Oligomeric proanthocyanidins showed only minor effects. Our results provide molecular evidence of anti-inflammatory activity of pistachio nut and indicate polymeric proanthocyanidins as the bioactive components. The mechanism may involve the redox-sensitive transcription factor NF-κB. Potential effects associated with pistachio nut consumption are discussed in terms of the proanthocyanidin bioavailability.

  13. High Temperature Polymeric Materials for Space Transportation Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom

    2003-01-01

    High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.

  14. Interaction of microtubules with active principles of Xanthium strumarium.

    PubMed

    Menon, G S; Kuchroo, K; Dasgupta, D

    2001-01-01

    Indigenous variety of Xanthium strumarium (X. strumarium) was screened for its antimitotic activity using the microtubule-tubulin system isolated from mammalian tissue. A preliminary phytochemical screening of the whole extracts of the plant was carried out followed by partial purification of the whole extract of X.strumarium. The separated fractions obtained were identified and used for in vitro polymerization studies. The whole as well as partially separated chemical constituents of X. strumarium showed effective inhibition of tubulin polymerization. The results thus suggest that X. strumarium may possess antimitotic components.

  15. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    PubMed

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  16. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    PubMed

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m -2  h -1  bar -1 , and 4.5 × 10 12  m -1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L -1 ) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L -1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics, operational conditions, and feed characteristics.

  17. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1984-04-03

    Gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  18. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1981-01-20

    Gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  19. 21 CFR 176.180 - Components of paper and paperboard in contact with dry food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Tetraethylenepentamine Polymerization cross-linking agent. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl]-omega hydroxypoly... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Components of paper and paperboard in contact with... preservative in coatings and sizings. 1,2-Benzisothiazolin-3-one (CAS Registry No. 2634-33-5) For use only as a...

  20. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers

    PubMed Central

    Zhang, Kaka; Yeung, Margaret Ching-Lam; Leung, Sammual Yu-Lut; Yam, Vivian Wing-Wah

    2017-01-01

    An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal–metal and π–π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%. PMID:29078381

  1. Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method.

    PubMed

    Xie, Yunchang; Yi, Yueneng; Hu, Xiongwei; Shangguan, Mingzhu; Wang, Lijuan; Lu, Yi; Qi, Jianping; Wu, Wei

    2016-09-01

    The development of polymeric carriers loaded with extracts suffers from the drawback not to be able to incorporate simultaneously various pharmacological compounds into the formulation. The aim of this study was therefore to achieve synchronous microencapsulation of multiple components of silymarin into poly (lactic-co-glycolic acid) nanoparticle, the most commonly used polymeric carrier with biodegradability and safety. The main strategy taken was to improve the overall entrapment efficiency and to reduce the escaping ratio of the components of different physicochemical properties. The optimized nanoparticles were spherical in morphology with a mean particle size of 150 ± 5 nm. Under common preparative conditions, silybin and isosilybin were entrapped in high efficiency, whereas taxifolin, silychristin and silydianin, especially taxifolin, showed less entrapment because they were more hydrophilic. By changing the pH of the outer aqueous phase and saturating it with silymarin, the entrapment efficiency of taxifolin, silychristin and silydianin could be significantly improved to over 90%, the level similar to silybin and isosilybin, thereby achieving synchronous encapsulation. It could be concluded that synchronous encapsulation of multiple components of silymarin was achieved by optimizing the preparative variables.

  2. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role thatmore » nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.« less

  3. Fabrication and Optimal Design of Biodegradable Polymeric Stents for Aneurysms Treatments

    PubMed Central

    Han, Xue; Wu, Xia; Kelly, Michael; Chen, Xiongbiao

    2017-01-01

    An aneurysm is a balloon-like bulge in the wall of blood vessels, occurring in major arteries of the heart and brain. Biodegradable polymeric stent-assisted coiling is expected to be the ideal treatment of wide-neck complex aneurysms. This paper presents the development of methods to fabricate and optimally design biodegradable polymeric stents for aneurysms treatment. Firstly, a dispensing-based rapid prototyping (DBRP) system was developed to fabricate coil and zigzag structures of biodegradable polymeric stents. Then, compression testing was carried out to characterize the radial deformation of the stents fabricated with the coil or zigzag structure. The results illustrated the stent with a zigzag structure has a stronger radial stiffness than the one with a coil structure. On this basis, the stent with a zigzag structure was chosen for the development of a finite element model for simulating the real compression tests. The result showed the finite element model of biodegradable polymeric stents is acceptable within a range of radial deformation around 20%. Furthermore, the optimization of the zigzag structure was performed with ANSYS DesignXplorer, and the results indicated that the total deformation could be decreased by 35.7% by optimizing the structure parameters, which would represent a significant advance of the radial stiffness of biodegradable polymeric stents. PMID:28264515

  4. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    NASA Astrophysics Data System (ADS)

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D.

    2009-02-01

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  5. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.

    PubMed

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  6. Self-folding micropatterned polymeric containers.

    PubMed

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  7. Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.

    PubMed

    Gov, Nir S; Bernheim-Groswasser, Anne

    2012-01-01

    Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.

  8. Chemical characterization of detrital sugar chains with peptides in oceanic surface particulate organic matter

    NASA Astrophysics Data System (ADS)

    Tsukasaki, A.; Nishida, T.; Tanoue, E.

    2016-02-01

    For better understanding of the dynamics of organic matter in the ocean interior, particulate organic matter (POM) in oceanic surface water is a key material as a starting material in food chain and biological carbon pump, and the source of dissolved organic matter. POM consists of a mixture of non-living POM (detritus) and small amount of living POM (organisms). Particulate combined amino acids (PCAAs) are one of the major components of POM and the most important source of nitrogen and carbon for heterotrophic organisms in marine environments. In our previous studies of molecular-level characterization of PCAAs using electrophoretic separation (SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with specific detection of protein/peptide and sugar chains, we reported that most of PCAAs existed as small-sized peptide chains with carbohydrate-rich remnants. Although carbohydrates are one of the major carbon components of POM, the details of molecular-level structures including sugar chains are unknown. In this study, we applied electrophoretic separation for sugar chains (FACE: fluorophore-assisted carbohydrate electrophoresis) to the POM samples collected from the surface water of the Pacific Ocean. The results showed that sugar chains with various degree of polymerization were detected in POM. The possible roles of such sugar chains in marine biogeochemical cycle of organic matter are discussed in the presentation.

  9. Type VI secretion is a major virulence determinant in Burkholderia mallei.

    PubMed

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H Stanley; Mrázek, Jan; Nierman, William C; Deshazer, David

    2007-06-01

    Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown. Here we show with expression profiling that overexpression of virAG resulted in transcriptional activation of approximately 60 genes, including some involved in capsule production, actin-based intracellular motility, and type VI secretion (T6S). The 15 genes encoding the major sugar component of the homopolymeric capsule were up-expressed > 2.5-fold, but capsule was still produced in the absence of virAG. Actin tail formation required virAG as well as bimB, bimC and bimE, three previously uncharacterized genes that were activated four- to 15-fold when VirAG was overproduced. Surprisingly, actin polymerization was found to be dispensable for virulence in hamsters. In contrast, genes encoding a T6S system were up-expressed as much as 30-fold and mutations in this T6S gene cluster resulted in strains that were avirulent in hamsters. SDS-PAGE and mass spectrometry demonstrated that BMAA0742 was secreted by the T6S system when virAG was overexpressed. Purified His-tagged BMAA0742 was recognized by glanders antiserum from a horse, a human and mice, indicating that this Hcp-family protein is produced in vivo during infection.

  10. Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration.

    PubMed

    Kremlitzka, Mariann; Geerlings, Maartje J; de Jong, Sarah; Bakker, Bjorn; Nilsson, Sara C; Fauser, Sascha; Hoyng, Carel B; de Jong, Eiko K; den Hollander, Anneke I; Blom, Anna M

    2018-05-14

    Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD, however its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118W and p.P167S) C9 variants.Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared to non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and ARPE-19 cells by carriers' sera. Our data suggest that the analysed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.

  11. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and

  12. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  13. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.

    PubMed

    Hamblin, Graham D; Hariri, Amani A; Carneiro, Karina M M; Lau, Kai L; Cosa, Gonzalo; Sleiman, Hanadi F

    2013-04-23

    DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.

  14. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less

  15. UV-cured polymer optics

    NASA Astrophysics Data System (ADS)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  16. Gelled compositions and well treating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1982-04-06

    Gelled compositions are disclosed suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  17. Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator

    DTIC Science & Technology

    2016-07-01

    14. ABSTRACT The Warrior Injury Assessment Manikin was developed to provide an instrumented anthropomorphic test device (ATD) specifically...underbody blasts . To achieve that goal, the ATD used numerous polymeric materials for component parts that simulate human tissue and enable compliance in...strain rate, underbody blast , mechanical testing, tension, compression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  18. Targeted Soft Biodegradable Glycine/PEG/RGD-Modified Poly(methacrylic acid) Nanobubbles as Intelligent Theranostic Vehicles for Drug Delivery.

    PubMed

    Li, Yongjing; Wan, Jiaxun; Zhang, Zihao; Guo, Jia; Wang, Changchun

    2017-10-18

    The development of multifunctional ultrasound contrast agents has inspired considerable interest in the application of biomedical imaging and anticancer therapeutics. However, combining multiple components that can preferentially accumulate in tumors in a nanometer scale poses one of the major challenges in targeting drug delivery for theranostic application. Herein, reflux-precipitation polymerization, and N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide-meditated amidation reaction were introduced to effectively generate a new type of soft glycine/poly(ethylene glycol) (PEG)/RGD-modified poly(methacrylic acid) nanobubbles with a uniform morphology and desired particle size (less than 100 nm). Because of the enhanced biocompatibility resulting from the glycine modification, over 80% of the cells survived, even though the dosage of glycine-modified polymeric nanobubbles was up to 5 mg/mL. By loading doxorubicin as an anticancer drug and perfluorohexane as an ultrasound probe, the resulting glycine/PEG/RGD-modified nanobubbles showed remarkable cancer therapeutic efficacy and a high quality of ultrasonic imaging; thus, the ultrasonic signal exhibited a 1.47-fold enhancement at the tumor site after intravenous injection. By integrating diagnostic and therapeutic functions into a single nanobubble, the new type of theranostic nanobubbles offers a promising strategy to monitor the therapeutic effects, giving important insights into the ultrasound-traced and enhanced targeting drug delivery in biomedical applications.

  19. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells

    PubMed Central

    Nassif, Ali; Berbar, Tsouria; Le Goff, Stéphane; Berdal, Ariane; Sadoun, Michael; Fournier, Benjamin P. J.

    2016-01-01

    Objectives The development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model. Methods Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro. Results Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells. Clinical Significance The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks. PMID:27196425

  20. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy.

    PubMed

    Yoo, Wooyoung; Yoo, Donghyuck; Hong, Eunmi; Jung, Eunkyeong; Go, Yebin; Singh, S V Berwin; Khang, Gilson; Lee, Dongwon

    2018-01-10

    Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction. Cinnamaldehyde, a major component of cinnamon is known to induce anticancer activity by generating ROS (reactive oxygen species). We developed cinnamaldehyde-conjugated maltodextrin (CMD) as a polymeric prodrug of cinnamaldehyde and a drug carrier. Cinnamaldehyde was conjugated to the hydroxyl groups of maltodextrin via acid-cleavable acetal linkages, allowing facile formulation of nanoparticles and drug encapsulation. CMD nanoparticles induced acid-triggered ROS generation to induce apoptotic cell death. Camptothecin (CPT) was used as a model drug to investigate the potential of CMD nanoparticles as a drug carrier and also evaluate the synergistic anticancer effects with CMD nanoparticles. CPT-loaded CMD nanoparticles exhibited significantly higher anticancer activity than empty CMD nanoparticles and CPT alone in the study of mouse xenograft models, demonstrating the synergistic therapeutic effects of CMD with CPT. Taken together, we believe that CMD nanoparticles hold tremendous potential as a polymeric prodrug of cinnamaldehyde and a drug carrier in anticancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly*

    PubMed Central

    Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-ichi; Hasegawa, Masato

    2016-01-01

    α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637

  2. Tomato Cutin Deficient 1 (CD1) and Putative Orthologs Comprise an Ancient Family of Cutin Synthase-like (CUS) Proteins that are Conserved among Land Plants

    PubMed Central

    Yeats, Trevor H.; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F.; Clausen, Mads H.; Stark, Ruth E.; Rose, Jocelyn K.C.

    2014-01-01

    Summary The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids. However, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL super-family. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. PMID:24372802

  3. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  4. The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity

    NASA Astrophysics Data System (ADS)

    Lee, Yichao; Chang, Shuiping

    2017-05-01

    Spirogyra is a genus of widely distributed, large green fresh water algae. This study discovered that changes in salinity can induce Spirogyra fluviatilis to produce amounts of extracellular polymeric substance (EPS) when controlling other environmental conditions. If culturing S. fluviatilis with salinity greater than a 3.0‰ medium for 4 hours, the secretion EPS will be changed. And the level of polysaccharides and proteins, the primary components of EPS, is slightly increased in accordance with the increase in the salinity. But the proteins to polysaccharides ratio changes are not significantly

  5. Polyazidoesters as Energetic Polymers and Copolymer Components with Fluoro Derivatives.

    DTIC Science & Technology

    1988-04-13

    i. 0, ’C b" U’. I’. ’- Unclasifie 4)1II FILE COP~Y 4 S’ 9 2 . 1E 0_ UMENTATION PAGE Unclassified _____________________ AD-A 194 236 ER’ESQRDtX. 8S - 0...TASK WORK jNir Bolling AFB, D.C. 2033 2 -6448 a LEMINT NO NO. No NO is riri E’ /,elun~de Sircu..I Clomllti~oI Pol azidon ters as 2303 B2 Emrgf Pol mr...which undergoes polymerization. Specifically 4,4’- diazidodiphenylkelene (1) was ozonized at -780 C to yield 2 , which spontaneously polymerized to yield

  6. Effect of Interfacial characteristics of metal clad polymeric substrates on electrical high frequency interconnection performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.

    1984-01-01

    Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.

  7. Gelcasting polymeric precursors for producing net-shaped graphites

    DOEpatents

    Klett, James W.; Janney, Mark A.

    2002-01-01

    The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.

  8. Texturing Blood-Glucose-Monitoring Optics Using Oxygen Beams

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2005-01-01

    A method has been invented for utilizing directed, hyperthermal oxygen atoms and ions for texturing tips of polymeric optical fibers or other polymeric optical components for use in optical measurement of concentration of glucose in blood. The required texture of the sensory surface of such a component amounts to a landscape of microscopic hills having high aspect ratios (hills taller than they are wide), with an average distance between hills of no more than about 5 m. This limit on the average distance between hills is chosen so that blood cells (which are wider) cannot enter the valleys between the hills, where they could obstruct optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and a high aspect ratio is intended to maximize the hillside and valley surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose- measurement sensitivity with a relatively small volume of blood. The present method of texturing by use of directed, hyperthermal (particle energy >1 eV) oxygen atoms and ions stands in contrast to a prior method of texturing by use of thermal monatomic oxygen characterized by a temperature of the order of 0.5 eV. The prior method yields low-aspect- ratio (approximately hemispherical) craters that are tens of microns wide . too wide to exclude blood cells. The figure schematically depicts parts of a typical apparatus for texturing according to the present method. One or more polymeric optical components to be textured (e.g., multiple optical fibers bundled together for simultaneous processing) are mounted in a vacuum chamber facing a suitable ion- or atom-accelerating device capable of generating a beam of oxygen atoms and/or ions having kinetic energies >1 eV. Typically, such a device includes a heated cathode, in which case it is desirable to interpose a water-cooled thermal-radiation shield to prevent melting of the polymeric component(s) to be textured. In operation, the chamber is evacuated to a pressure .10.5 torr (less than or equal to approximately 1.3 mPa), then the beam is turned on. The resulting texture is characterized by approximately conical hills having aspect ratios greater than 1. In experiments, it was demonstrated that separations between adjacent hills can be made .1 m and that the separations and heights of the hills can be varied by varying the fluence of monatomic oxygen and/or oxygen ions.

  9. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion

    DOE PAGES

    Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...

    2017-08-08

    Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less

  10. Proposed uses of laser light scattering instruments for polymerization studies

    NASA Technical Reports Server (NTRS)

    Mathias, Lon J.; Hoyle, Charles E.; Mclaughlin, Kevin; Mcmanus, Samuel P.; Caruthers, James M.; Runge, Michael L.

    1989-01-01

    Microgravity offers a unique environment for studying polymer diffusion and polymer polymerization reactions. The absence of convection currents, which are the major mode of mixing at the molecular level on Earth, are eliminated or reduced in the microgravity environment. More importantly, the prediction of unique copolymer composition development in microgravity allows controlled formation of new compositions of matter. The absence of mixing at the molecular level should produce unique short block copolymers available for the first time for comonomer compositions which normally lead to random or long block copolymer under good mixing. The investigation of fundamental polymer diffusion and polymer polymerization processes in microgravity is proposed. This effort will involve fundamental studies of monomer and polymer diffusion; their effects on initiation, propagation, and especially termination kinetics rate constant; and the accurate evaluation of copolymerization reactivity ratios in microgravity. The experimental design is presented for these studies along with an evaluation technique for in situ monitoring of polymer diffusion and polymerization kinetics.

  11. CVD Polymers for Devices and Device Fabrication.

    PubMed

    Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K

    2017-03-01

    Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biosynthesis of Plant and Animal Foods.

    ERIC Educational Resources Information Center

    Dunne, C. Patrick

    1984-01-01

    Presents a biochemical overview of the synthesis of food biopolymers that constitute macronutrients in the plant or animal cell. Emphasizes involvement of enzymes in steps characterized by accumulation of materials, activation, polymerization, postpolymerization conversion, and formation of structural components. (JN)

  13. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    PubMed Central

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  14. Visible-Light Initiated Free-Radical/Cationic Ring-Opening Hybrid Photopolymerization of Methacrylate/Epoxy: Polymerization Kinetics, Crosslinking Structure, and Dynamic Mechanical Properties.

    PubMed

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2015-04-01

    The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.

  15. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

    PubMed

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2008-08-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

  16. The characterization of high-density polyethylene/organoclay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tathiane Cordeiro; Tavares, Maria Inês Bruno; Soares, Igor Lopes; Moreira, Ana M.

    2009-01-01

    Polymeric nanocomposites, which are hybrids of polymers and modified inorganic clay with organic surfactants, are extremely attractive in both science and industry. These materials present improvements in such polymer properties as modulus, heat capacity, thermal stability, flame resistance, and so on. Research has been conducted in recent decades to obtain high-quality materials that can be used in applications like food packing, car components, and combustible cells. Polymeric nanocomposites present many advantages in relation to composites due to the quantity of filler added to the polymer and also to the improved properties. In a composite, the quantity of filler must be as high as possible (i.e., over 30%). In the polymeric nanocomposite the quantity of filler varies from 1% to 5% because of the nanosize of the particles. These nanoparticles often have a large surface area that results in improved polymer-matrix properties.

  17. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform

    PubMed Central

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2014-01-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374

  18. Evaporative purification to produce highly monodisperse polymers: Application to polystyrene for n =3 -13 and quantification of Tg from oligomer to polymer

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Chai, Y.; Forrest, J. A.

    2017-07-01

    We demonstrate the use of selective thermal evaporation to separate and purify small molecular weight polymers into highly monodisperse polymers over an extended range of polymerization index. By exploiting the calculated dependence of polymer vapor pressure on polymerization index N and temperature T , we can isolate individual components (N -mers) of an initially polydisperse mixture. To demonstrate this ability, we consider polystyrene samples of Mw=600 g/mol and Mw=890 g/mol with narrow molecular weight distributions, as well as a Mw=1200 g/mol sample with a broader distribution. In each case we are able to separate the sample into milligram quantities of many different components. Using this technique, we have been able to isolate N -mers from 3 to 13. We use differential scanning calorimetry to measure the Tg values of these components, and find that the components have the same Tg values independent of the Mw or polydispersity of the sample they originate from. We find that even initially narrow molecular weight distributions have many different components whose Tg values can differ by more than 50 K. Calculations suggest the isolated components have Mw/Mn values less than 1.001 and through a second iteration of the process could become as low as 1.000 003. The measured Tg values for the N -mers as well as large N polymers are well described by a simple relation derived from the Fox equation for the Tg of mixtures.

  19. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  20. Transition metal-free olefin polymerization catalyst

    DOEpatents

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  1. Influence of disintegrants in different substrate physical form on dimensional recovery of multi-component tablet.

    PubMed

    Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Tan, Bing Xun; Heng, Paul Wan Sia

    2014-11-20

    This study investigated the influence of different disintegrants, present in different substrate physical forms, on dimensional recovery of multi-component tablets prepared at different compression pressures. Formulations containing model drug, metformin, (10%, w/w), different disintegrants (10%, w/w), and lactose (80%, w/w) were compressed directly or after granulation using polyvinyl pyrrolidone (1%, w/w) as binder, into tablets (350 mg, 10mm diameter) at 150, 200, and 250 N/mm(2) compression pressures. Tablets were characterized for immediate dimensional recovery (IR) after ejection from the die, latent dimensional recovery (LR) over 24 h, tensile strength, and disintegration. The IR was predominantly contributed by crystalline components whereas LR was brought about by polymeric materials. With increased compression pressure, higher degree of plastic deformation of the polymeric disintegrants resulted in tablet with lower LR and higher tensile strength. Presence of polyvinyl pyrrolidone in the granules contributed considerably to plastic deformation, and the tablets produced had lower LR, higher tensile strength, and longer disintegration time. This study indicated that use of granules as the feed substrate physical form and a prudent selection of components may enable the coating of resultant tablets immediately after compression without the risk of coat damage due to LR. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biomaterials-Based Electronics: Polymers and Interfaces for Biology and Medicine

    PubMed Central

    Muskovich, Meredith; Bettinger, Christopher J.

    2012-01-01

    Advanced polymeric biomaterials continue to serve as a cornerstone of new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter without direct electronic communication. However, biological systems have evolved to synthesize and employ naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be interpreted as potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to the use of natural and synthetic biological materials as integral components in technologies such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. PMID:23184740

  3. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    PubMed

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  4. On the Contributions to the Materials Science Aspects of Phosphazene Chemistry by Professor Christopher W. Allen: The One-Pot Synthesis of Linear Polyphosphazenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Peterson; Thomas A. Luther; Mason K. Harrup

    2007-06-01

    The wide range of applications for the phosphazene compounds has stimulated a major research effort involving several industrial, academic, and national laboratories over the past 40 years. One of Professor Allen’s research areas was to establish fundamental synthetic methods for the commercial preparation of phosphazene polymers, investigate their properties, and develop useful products. In this paper we review some of the materials science aspects of Professor Allen’s research including recent advances on the preparation and polymerization of Cl3PNP(O)Cl2. This work, in particular, has led to a route for the “one-pot” synthesis of stable linear poly(organophosphazenes) as demonstrated through the formationmore » of poly[bis-(2-methoxyethoxyethoxy)phosphazene] (MEEP) and a phosphazene heteropolymer (HPP) containing a balance of hydrophilic and hydrophobic components that allow for control and molecular affinities.« less

  5. Simultaneous AuIII Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    PubMed

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-04-10

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au III salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au III extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L -1 4-nitrophenol aqueous solution with 10 mmol L -1 NaBH 4 solution within 25 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation and characterization of (St-DVB-MAA) ion exchange resins

    NASA Astrophysics Data System (ADS)

    Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan

    2017-08-01

    In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.

  7. 'One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes.

    PubMed

    Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria

    2015-11-01

    Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The competing effects of microbially derived polymeric and low molecular-weight substances on the dispersibility of CeO2 nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Yuriko; Ochiai, Asumi; Kawamoto, Keisuke

    To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls themore » zeta potentials. The sizes of the CeNP aggregates, 100–1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5–10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.« less

  9. Correlation between ECM guidance and actin polymerization on osteogenic differentiation of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Vivian; Deiwick, Andrea; Pflaum, Michael

    The correlation between extracellular matrix (ECM) components, cell shape, and stem cell guidance can shed light in understanding and mimicking the functionality of stem cell niches for various applications. This interplay on osteogenic guidance of human adipose-derived stem cells (hASCs) was focus of this study. Proliferation and osteogenic markers like alkaline phosphatase activity and calcium mineralization were slightly increased by the ECM components laminin (LA), collagen I (COL), and fibronectin (FIB); with control medium no differentiation occurred. ECM guided differentiation was rather dependent on osterix than on Runx2 pathway. FIB significantly enhanced cell elongation even in presence of actin polymerizationmore » blockers cytochalasin D (CytoD) and ROCK inhibitor Y-27632, which generally caused more rounded cells. Except for the COL surface, both inhibitors increased the extent of osterix, while the Runx2 pathway was more sensitive to the culture condition. Both inhibitors did not affect hASC proliferation. CytoD enabled osteogenic differentiation independently from the ECM, while it was rather blocked via Y-27632 treatment; on FIB the general highest extent of differentiation occurred. Taken together, the ECM effect on hASCs occurs indirectly and selectively via a dominant role of FIB: it sustains osteogenic differentiation in case of a tension-dependent control of actin polymerization. - Highlights: • Interplay of ECM and cell shape guides osteogenic differentiation of hASCs. • ECM components only present a promotive but not stimulative effect. • No direct correlation between ECM-enhanced cell elongation and differentiation. • Suppression of differentiation depends on a specific actin polymerization blocking. • Fibronectin sustains cell elongation and differentiation in case of blocking actin.« less

  10. D-Optimal mixture experimental design for stealth biodegradable crosslinked docetaxel-loaded poly-ε-caprolactone nanoparticles manufactured by dispersion polymerization.

    PubMed

    Ogunwuyi, O; Adesina, S; Akala, E O

    2015-03-01

    We report here our efforts on the development of stealth biodegradable crosslinked poly-ε-caprolactone nanoparticles by free radical dispersion polymerization suitable for the delivery of bioactive agents. The uniqueness of the dispersion polymerization technique is that it is surfactant free, thereby obviating the problems known to be associated with the use of surfactants in the fabrication of nanoparticles for biomedical applications. Aided by a statistical software for experimental design and analysis, we used D-optimal mixture statistical experimental design to generate thirty batches of nanoparticles prepared by varying the proportion of the components (poly-ε-caprolactone macromonomer, crosslinker, initiators and stabilizer) in acetone/water system. Morphology of the nanoparticles was examined using scanning electron microscopy (SEM). Particle size and zeta potential were measured by dynamic light scattering (DLS). Scheffe polynomial models were generated to predict particle size (nm) and particle surface zeta potential (mV) as functions of the proportion of the components. Solutions were returned from simultaneous optimization of the response variables for component combinations to (a) minimize nanoparticle size (small nanoparticles are internalized into disease organs easily, avoid reticuloendothelial clearance and lung filtration) and (b) maximization of the negative zeta potential values, as it is known that, following injection into the blood stream, nanoparticles with a positive zeta potential pose a threat of causing transient embolism and rapid clearance compared to negatively charged particles. In vitro availability isotherms show that the nanoparticles sustained the release of docetaxel for 72 to 120 hours depending on the formulation. The data show that nanotechnology platforms for controlled delivery of bioactive agents can be developed based on the nanoparticles.

  11. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density at the material and structural levels, while at the same time maintaining or increasing mechanical and other properties.

  12. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.

    PubMed

    Mandal, Abhirup; Bisht, Rohit; Rupenthal, Ilva D; Mitra, Ashim K

    2017-02-28

    Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Studies on the Dissociation and Urea-Induced Unfolding of FtsZ Support the Dimer Nucleus Polymerization Mechanism

    PubMed Central

    Montecinos-Franjola, Felipe; Ross, Justin A.; Sánchez, Susana A.; Brunet, Juan E.; Lagos, Rosalba; Jameson, David M.; Monasterio, Octavio

    2012-01-01

    FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (Kd = 9 μM) indicates a significant fraction (∼10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization. PMID:22824282

  14. Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.

    PubMed

    Guiné, V; Spadini, L; Sarret, G; Muris, M; Delolme, C; Gaudet, J P; Martins, J M F

    2006-03-15

    The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5alpha, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm(-2)) was much lower than the total site density of the investigated strains (16-56 Zn nm(-2)). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded.

  15. RAFT polymerization and some of its applications.

    PubMed

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a lithium secondary battery separator

    NASA Technical Reports Server (NTRS)

    Moore, J. A.; Willie, R.

    1985-01-01

    A nonporous membrane based on the polymerization of 2,3-dihydrofuran followed by crosslinking in situ was prepared. The material is compatible with rechargeable Li battery components and, when swollen with an appropriate solvent such as tetrahydrofuran, exhibits separator resistance and Li transport equivalent to Celgard.

  17. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Generic Electronics Module (GEM) components include the control housing, circulating fans, hard disk, tape drives, computer boards, and heat exchanger. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The GEM provides all carousel and sample cell control (SCC). The first flight of P

  18. Polymer materials and component evaluation in acidic-radiation environments

    NASA Astrophysics Data System (ADS)

    Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.

    2001-07-01

    Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.

  19. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A widespread class of reverse transcriptase-related cellular genes.

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2011-12-20

    Reverse transcriptases (RTs) polymerize DNA on RNA templates. They fall into several structurally related but distinct classes and form an assemblage of RT-like enzymes that, in addition to RTs, also includes certain viral RNA-dependent RNA polymerases (RdRP) synthesizing RNA on RNA templates. It is generally believed that most RT-like enzymes originate from retrotransposons or viruses and have no specific function in the host cell, with telomerases being the only notable exception. Here we report on the discovery and properties of a unique class of RT-related cellular genes collectively named rvt. We present evidence that rvts are not components of retrotransposons or viruses, but single-copy genes with a characteristic domain structure that may contain introns in evolutionarily conserved positions, occur in syntenic regions, and evolve under purifying selection. These genes can be found in all major taxonomic groups including protists, fungi, animals, plants, and even bacteria, although they exhibit patchy phylogenetic distribution in each kingdom. We also show that the RVT protein purified from one of its natural hosts, Neurospora crassa, exists in a multimeric form and has the ability to polymerize NTPs as well as dNTPs in vitro, with a strong preference for NTPs, using Mn(2+) as a cofactor. The existence of a previously unknown class of single-copy RT-related genes calls for reevaluation of the current views on evolution and functional roles of RNA-dependent polymerases in living cells.

  1. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss.

    PubMed

    Isaacson, Tal; Kosma, Dylan K; Matas, Antonio J; Buda, Gregory J; He, Yonghua; Yu, Bingwu; Pravitasari, Arika; Batteas, James D; Stark, Ruth E; Jenks, Matthew A; Rose, Jocelyn K C

    2009-10-01

    Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato (Solanum lycopersicum) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 (cd1), cd2 and cd3, the fruit cuticles of which have a dramatic (95-98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.

  2. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants.

    PubMed

    Yeats, Trevor H; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F; Clausen, Mads H; Stark, Ruth E; Rose, Jocelyn K C

    2014-03-01

    The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Effect of shape on bone cement polymerization time in knee joint replacement surgery

    PubMed Central

    Yoon, Jung-Ro; Ko, Young-Rok; Shin, Young-Soo

    2018-01-01

    Abstract Background: Although many factors are known to influence the polymerization time of bone cement, it remains unclear which bone cement shape predicts the precise polymerization time. The purpose of this study was to investigate whether different cement shapes influenced polymerization time and to identify the relationship between cement shape and ambient operating theater temperature, relative humidity, and equilibration time. Methods: Samples were gathered prospectively from 237 patients undergoing primary total knee arthroplasty. The cement components were made into 2 different shapes: lump and pan. The time at which no macroscopic indentation of both cement models was possible was recorded as the polymerization time. Results: There was no significant difference between hand mixing (lump shape: 789.3 ± 128.4 seconds, P = .591; pan shape: 899.3 ± 152.2 seconds, P = .584) and vacuum mixing (lump shape: 780.2 ± 131.1 seconds, P = .591; pan shape: 909.9 ± 143.3 seconds, P = .584) in terms of polymerization time. Conversely, the polymerization time was significantly shorter for Antibiotic Simplex (lump shape: 757.4 ± 114.9 seconds, P = .001; pan shape: 879.5 ± 125.0 seconds, P < .001) when compared with Palacos R+G (lump shape: 829.0 ± 139.3 seconds, P = .001; pan shape: 942.9 ± 172.0 seconds, P < .001). Polymerization time was also significantly longer (P < .001) for the pan shape model (904 ± 148.0 seconds) when compared with the lump shape model (785.2 ± 129.4 seconds). In addition, the polymerization time decreased with increasing temperature (lump shape: R2 = 0.334, P < .001; pan shape: R2 = 0.375, P < .001), humidity (lump shape: R2 = 0.091, P < .001; pan shape: R2 = 0.106, P < .001), and equilibration time (lump shape: R2 = 0.073, P < .001; pan shape: R2 = 0.044, P < .001). Conclusions: The polymerization time was equally affected by temperature, relative humidity, and equilibration time regardless of bone cement shape. Furthermore, the pan shape model better reflected the cement polymerization time between implant and bone compared with the lump shape model. The current findings suggest that, clinically, constant pressure with the knee in <45° of flexion needs to be applied until remaining pan shaped cement is completely polymerized. PMID:29703041

  4. Evaluation of polymerization-dependent changes in color and translucency of resin composites using two formulae.

    PubMed

    Paravina, Rade D; Kimura, Mikio; Powers, John M

    2005-09-01

    The aim of this study was to evaluate polymerization-dependent changes in the color and translucency parameter (TP) of resin composites and to compare results obtained using two color-difference metric formulae, CIELAB and CIEDE 2000. Twenty-eight shades of commercial resin composites were analyzed. Specimens (n = 5) were made as discs, 11 mm in diameter and 2-mm thick, using cylindrical molds. Data were collected before and after composite polymerization, using a spectrophotometer. In regard to in vitro color changes of composites (DeltaE*) a DeltaE76 of 3.7 or greater was considered to be an unacceptable color change. Data were analyzed by analysis of variance, and Fisher's protected least significant difference (PLSD) intervals for comparison of means were calculated at the 0.05 level of significance. Mean polymerization-dependent differences in color were DeltaE00 = 4.48 (2.11) and DeltaE76 = 5.51 (2.68). The DeltaTP00 range was 2.57, while the DeltaTP76 range was 2.89. Mean polymerization-dependent differences in translucency were DeltaTP00 = 0.84 (0.77) and DeltaTP76 = 0.87 (0.76). Analysis of variance showed significant differences among composites, shades, and their interactions (P < 0.0001; power = 1.0). Regression equations and r values for the two color-difference formulae and all evaluated TP values showed very strong correlation. In conclusion, within the limitations of this study, polymerization-dependent changes in color and translucency were highly varied. The majority of shades showed polymerization-dependent differences in color higher than the DeltaE76 = 3.7. The TP generally increased after light polymerization by light activation. The very strong correlation (r > 0.97) between the two color-difference formulae indicates that the limitations of the CIELAB system do not appear to be a problem when evaluating composites; however, recorded differences between DeltaE76 and DeltaE00 values stress the importance of data conversion.

  5. Effect of various light curing times on the elution of composite components.

    PubMed

    Högg, Christof; Maier, Moritz; Dettinger-Maier, Katherina; He, Xiuli; Rothmund, Lena; Kehe, Kai; Hickel, Reinhard; Reichl, Franz-Xaver

    2016-11-01

    Polymerization of resin-based composites (RBCs) is incomplete. The aim of the present study was to determine whether a longer curing time than recommended by the manufacturer influences the amount of released composite components of RBCs. The composites Clearfil AP-X and els extra low shrinkage were polymerized for six different curing times: 4, 10, 20, 40, 100, and 200 s. Light curing time recommended by the manufacturer for both composites is 20 s. Subsequently, samples were eluted in methanol and water for 1, 3, and 7 days and analyzed by gas chromatography/mass spectrometry (GC/MS). For Clearfil AP-X ethylene glycol dimethacrylate (EGDMA), diethylene glycol dimethacrylate (DEGDMA), triethylene glycol dimethacrylate (TEGDMA), 2-hydroxy-4-methoxybenzophenone (HMBP), camphorquinone (CQ) and 2,6-di-tert-butyl-4-methylphenol (BHT) were detected in methanol. In the aqueous eluate, only TEGDMA was detected. In els extra low shrinkage, HMBP, BHT, and CQ were detected in methanol. Increasing the curing time compared to recommendation of the manufacturer reduces the release of most composite components. This could result in less exposure to human due to these substances. Methacrylates are classified as potential allergens. An increasing number of dentists and patients show allergic reaction to methacrylates. Therefore, a reduced elution of composite components is an advantage.

  6. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    EPA Science Inventory

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  7. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone.

    PubMed

    Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang

    2015-02-01

    It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.

  8. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the activemore » and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.« less

  9. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir

    PubMed Central

    Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-01-01

    To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257

  10. Improving the Thermoelectric Properties of Polyaniline by Introducing Poly(3,4-ethylenedioxythiophene)

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Yang; Liu, Cheng Yan; Miao, Lei; Gao, Jie; Chen, Yu

    2016-03-01

    By using the parent monomers, 3,4-ethylenedioxythiophene and aniline, a series of nanocomposites consisting of different mass ratios of polyaniline (PANI) to poly(3,4-ethylenedioxythiophene) (PEDOT) have been successfully prepared in hydrochloric acid solution through oxidative polymerization, then redoped with p-toluenesulfonic acid ( p-TSA). Firstly, PEDOT nanoparticles were fabricated via chemical oxidation polymerization in reverse (water-in-oil) microemulsions. Then, PANI-doped PEDOT nanoparticles were formed by oxidative polymerization of aniline to form PANI/PEDOT nanofibers. The resulting nanostructured components were characterized by scanning electron microscopy (SEM) and a series of spectroscopic methods. The presence of PEDOT increased the room-temperature electrical conductivity of the PANI/PEDOT nanocomposites by more than two orders of magnitude in comparison with the parent PANI. Moreover, the PANI/PEDOT nanocomposites showed better thermoelectric properties than PANI. Different concentrations of p-TSA also affected the electrical conductivity and Seebeck coefficient of the nanocomposites. With increasing temperature, both the electrical conductivity and Seebeck coefficient increased.

  11. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials.

    PubMed

    Holmberg, Angela L; Reno, Kaleigh H; Nguyen, Ngoc A; Wool, Richard P; Epps, Thomas H

    2016-05-17

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o -methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.

  12. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hsieh, Jung-Feng

    2016-12-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins.

  13. Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature

    PubMed Central

    2016-01-01

    Full control over the ceiling temperature (Tc) enables a selective transition between the monomeric and polymeric state. This is exemplified by the conversion of the monomer 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC) to poly(AOMEC) and back to AOMEC within 10 h by controlling the reaction from conditions that favor ring-opening polymerization (Tc > T0) (where T0 is the reaction temperature) to conditions that favor ring-closing depolymerization (Tc < T0). The ring-closing depolymerization (RCDP) mirrors the polymerization behavior with a clear relation between the monomer concentration and the molecular weight of the polymer, indicating that RCDP occurs at the chain end. The Tc of the polymerization system is highly dependent on the nature of the solvent, for example, in toluene, the Tc of AOMEC is 234 °C and in acetonitrile Tc = 142 °C at the same initial monomer concentration of 2 M. The control over the monomer to polymer equilibrium sets new standards for the selective degradation of polymers, the controlled release of active components, monomer synthesis and material recycling. In particular, the knowledge of the monomer to polymer equilibrium of polymers in solution under selected environmental conditions is of paramount importance for in vivo applications, where the polymer chain is subjected to both high dilution and a high polarity medium in the presence of catalysts, that is, very different conditions from which the polymer was formed. PMID:27783494

  14. Polymerization Behavior of Hydrophilic-Rich Phase of Dentin Adhesive

    PubMed Central

    Abedin, F.; Parthasarathy, R.; Misra, A.; Spencer, P.

    2015-01-01

    The 2-fold objectives of this study were 1) to understand whether model hydrophobic- and hydrophilic-rich phase mimics of dentin adhesive polymerize similarly and 2) to determine which factor, the dimethacrylate component, bisphenol A glycerolate dimethacrylate (BisGMA) or photoinitiator concentration, has greater influence on the polymerization of the hydrophilic-rich phase mimic. Current dentin adhesives are sensitive to moisture, as evidenced by nanoleakage in the hybrid layer and phase separation into hydrophobic- and hydrophilic-rich phases. Phase separation leads to limited availability of the cross-linkable dimethacrylate monomer and hydrophobic photoinitiators within the hydrophilic-rich phase. Model hydrophobic-rich phase was prepared as a single-phase solution by adding maximum wt% deuterium oxide (D2O) to HEMA/BisGMA neat resins containing 45 wt% 2-hydroxyethyl methacrylate (HEMA). Mimics of the hydrophilic-rich phase were prepared similarly but using HEMA/BisGMA neat resins containing 95, 99, 99.5, and 100 wt% HEMA. The hydrophilic-rich mimics were prepared with standard or reduced photoinitiator content. The photoinitiator systems were camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDMAB) with or without [3-(3, 4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-2-hydroxypropyl]trimethylammonium chloride (QTX). The polymerization kinetics was monitored using a Fourier transform infrared spectrophotometer with a time-resolved collection mode. The hydrophobic-rich phase exhibited a significantly higher polymerization rate compared with the hydrophilic-rich phase. Postpolymerization resulting in the secondary rate maxima was observed for the hydrophilic-rich mimic. The hydrophilic-rich mimics with standard photoinitiator concentration but varying cross-linker (BisGMA) content showed postpolymerization and a substantial degree of conversion. In contrast, the corresponding formulations with reduced photoinitiator concentrations exhibited lower polymerization and inhibition/delay of postpolymerization within 2 h. Under conditions relevant to the wet, oral environment, photoinitiator content plays an important role in the polymerization of the hydrophilic-rich phase mimic. Since the hydrophilic-rich phase is primarily water and monomethacrylate monomer (e.g., HEMA as determined previously), substantial polymerization is important to limit the potential toxic response from HEMA leaching into the surrounding tissues. PMID:25576471

  15. Probing actin polymerization by intermolecular cross-linking.

    PubMed

    Millonig, R; Salvo, H; Aebi, U

    1988-03-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.

  16. LACTB is a filament-forming protein localized in mitochondria

    PubMed Central

    Polianskyte, Zydrune; Peitsaro, Nina; Dapkunas, Arvydas; Liobikas, Julius; Soliymani, Rabah; Lalowski, Maciej; Speer, Oliver; Seitsonen, Jani; Butcher, Sarah; Cereghetti, Grazia M.; Linder, Matts D.; Merckel, Michael; Thompson, James; Eriksson, Ove

    2009-01-01

    LACTB is a mammalian active-site serine protein that has evolved from a bacterial penicillin-binding protein. Penicillin-binding proteins are involved in the metabolism of peptidoglycan, the major bacterial cell wall constituent, implying that LACTB has been endowed with novel biochemical properties during eukaryote evolution. Here we demonstrate that LACTB is localized in the mitochondrial intermembrane space, where it is polymerized into stable filaments with a length extending more than a hundred nanometers. We infer that LACTB, through polymerization, promotes intramitochondrial membrane organization and micro-compartmentalization. These findings have implications for our understanding of mitochondrial evolution and function. PMID:19858488

  17. α- and β-Santalols Directly Interact with Tubulin and Cause Mitotic Arrest and Cytotoxicity in Oral Cancer Cells.

    PubMed

    Lee, Brigette; Bohmann, Jonathan; Reeves, Tony; Levenson, Corey; Risinger, April L

    2015-06-26

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with no major advancements in treatment over the past 40 years. The current study explores the biological effects of East Indian sandalwood oil (EISO) and its two major constituents, α- and β-santalol, against a variety of HNSCC lines. All three agents exhibited cytotoxic effects and caused accumulation of cells in the G2/M phases of the cell cycle. Additionally, treatment with these agents caused formation of multipolar mitotic spindles similar to those observed upon treatment of cells with compounds that affect microtubule polymerization. Indeed, the santalols, as well as EISO, inhibited the polymerization of purified tubulin, indicating for the first time that these compounds have the ability to directly bind to tubulin and affect microtubule formation. Modeling studies suggest that the santalols can weakly bind to the colchicine site on tubulin, and topical administration of EISO to a HNSCC xenograft inhibited tumor growth with no observed toxicities. Therefore, santalols can directly interact with tubulin to inhibit the polymerization of microtubules, similarly to established classes of chemotherapeutic agents, albeit with greatly reduced potency that is not associated with the classic toxicity associated with most other compounds that interact directly with tubulin.

  18. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    PubMed

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  19. Nanocomposite polymeric materials for high density optical storage

    NASA Astrophysics Data System (ADS)

    Criante, L.; Castagna, R.; Vita, F.; Lucchetta, D. E.; Simoni, F.

    2009-02-01

    We report the results of an extended investigation performed on composite polymeric materials with the aim of obtaining compounds suitable for holographic recording. In order to investigate the material properties a characterization of holographic reflection gratings at different writing wavelength (514.5, 457 and 405 nm) has been performed. The volume grating presents high diffraction efficiency (>60%), high sensitivity (>103 cm J-1) and refractive index modulation Δn≈0.01 even for writing wavelength in the blue range. We show that following a strategy of two basic components leading to phase separation during the photopolymerization process, most of the requirements for holographic data storage are achieved. The one that needs further improvement concerns long term mechanical stability.

  20. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  1. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information on the oligomers formed by gas-phase polymerization can be obtained using the mass-selected ion mobility technique where the measured collision cross-sections of the selected oligomer ions and collision-induced dissociation can provide fairly accurate structural identifications. The identification of the structures of the dimers and trimers formed in the gas-phase thermal polymerization of styrene confirms that the polymerization proceeds according to the Mayo mechanism. Similarly, the ion mobility technique has been utilized to confirm the formation of benzene cations by intracluster polymerization following the ionization of acetylene clusters. Finally, it has been shown that polymerization of styrene vapor on the surface of activated nanoparticles can lead to the incorporation of a variety of metal and metal oxide nanoparticles within polystyrene films. The ability to probe the reactivity and structure of the small growing oligomers in the gas phase can provide fundamental insight into mechanisms of polymerization that are difficult to obtain from condensed-phase studies. These experiments are also important for understanding the growth mechanisms of complex organics in flames, combustion processes, interstellar clouds, and solar nebula where gas-phase reactions, cluster polymerization, and surface catalysis on dust nanoparticles represent the major synthetic pathways. This research can lead to the discovery of novel initiation mechanisms and reaction pathways with applications in the synthesis of oligomers and nanocomposites with unique and improved properties.

  2. Development of Micro and Nanostructured Materials for Interfacial Self-Healing

    ERIC Educational Resources Information Center

    Blaiszik, Benjamin James

    2009-01-01

    Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…

  3. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...

  4. Electrochemical Cell with Improved Water or Gas Management

    NASA Technical Reports Server (NTRS)

    LaGrange, Jay W. (Inventor); Smith, William F. (Inventor); McElroy, James F. (Inventor)

    2015-01-01

    An electrochemical cell having a water/gas porous separator prepared from a polymeric material and one or more conductive cell components that pass through, or are located in close proximity to, the water/gas porous separator, is provided. The inventive cell provides a high level of in-cell electrical conductivity.

  5. REMOVAL OF MTBE FROM WATER BY MEMBRANE-BASED PERVAPORATION TECHNOLOGY

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water has been evaluated at both bench- and pilot-scales. In pervaporation, a liquid stream containing two or more components is placed in contact with one side of a non-porous polymeric membrane while a vac...

  6. 33 CFR 154.2150 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system contains pressure-sensing, relieving, or alarming components in addition to those required by 33... precautions must be taken to prevent and detect polymerization of the cargo vapors. (p) Mixing of incompatible... vapor to a level at which reaction with the subsequent vapor cannot occur; and (3) The required duration...

  7. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer.

    PubMed

    Desai, Kashappa Goud H

    2018-04-01

    Oral cancer is among the most prevalent cancers in the world. Moreover, it is one of the major health problems and causes of death in many regions of the world. The traditional treatment modalities include surgical removal, radiation therapy, systemic chemotherapy, or a combination of these methods. In recent decades, there has been significant interest in intraoral site-specific chemoprevention via local drug delivery using polymeric systems. Because of its easy accessibility and clear visibility, the oral mucosa is amenable for local drug delivery. A variety of polymeric systems-such as gels, tablets, films, patches, injectable systems (e.g., millicylindrical implants, microparticles, and in situ-forming depots), and nanosized carriers (e.g., polymeric nanoparticles, nanofibers, polymer-drug conjugates, polymeric micelles, nanoliposomes, nanoemulsions, and polymersomes)-have been developed and evaluated for the local delivery of natural and synthetic chemopreventive agents. The findings of in vitro, ex vivo, and in vivo studies and the positive outcome of clinical trials demonstrate that intraoral site-specific drug delivery is an attractive, highly effective and patient-friendly strategy for the management of oral cancer. Intraoral site-specific drug delivery provides unique therapeutic advantages when compared to systemic chemotherapy. Moreover, intraoral drug delivery systems are self-administrable and can be removed when needed, increasing patient compliance. This article covers important aspects and advances related to the design, development, and efficacy of polymeric systems for intraoral site-specific drug delivery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1383-1413, 2018. © 2017 Wiley Periodicals, Inc.

  8. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-02-26

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.

  9. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  10. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  11. An exactly solvable model of polymerization

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.

    2017-08-01

    This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.

  12. Peptide nucleic acids rather than RNA may have been the first genetic molecule

    NASA Technical Reports Server (NTRS)

    Nelson, K. E.; Levy, M.; Miller, S. L.

    2000-01-01

    Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.

  13. Identification of Transglutaminase Reactive Residues in Human Osteopontin and Their Role in Polymerization

    PubMed Central

    Christensen, Brian; Zachariae, Elias D.; Scavenius, Carsten; Thybo, Morten; Callesen, Morten M.; Kløverpris, Søren; Oxvig, Claus; Enghild, Jan J.; Sørensen, Esben S.

    2014-01-01

    Osteopontin (OPN) is a highly posttranslationally modified protein present in several tissues where it is implicated in numerous physiological processes. OPN primarily exerts its functions through interaction with integrins via the Arg-Gly-Asp and Ser-Val-Val-Tyr-Gly-Leu-Arg sequences located in the N-terminal part of the protein. OPN can be polymerized by the cross-linking enzyme transglutaminase 2 (TG2), and polymerization has been shown to enhance the biological activity of OPN. However, little is known about the reactivity and location of the glutamine and lysine residues involved in the TG2-mediated modification of OPN. Here we show that TG2 catalyses the incorporation of 5-(Biotinamido)pentylamine at glutamines in both the N- and C-terminal parts of OPN, whereas TG2 primarily incorporated the glutamine-donor peptide biotinyl-TVQQEL-OH into the C-terminal part of OPN. By mass spectrometric analyses we identified Gln34, Gln42, Gln193 and Gln248 as the major TG2 reactive glutamines in OPN. The distribution of reactive Gln and Lys residues in OPN proved to be important, as the full-length protein but not the physiologically highly active integrin-binding N-terminal part of OPN were able to polymerize in a TG2-mediated reaction. Collectively, these data provide important new molecular knowledge about the mechanism of OPN polymerization. PMID:25419572

  14. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.

    PubMed

    Shah, Viral; Choudhury, Bijaya Krushna

    2017-11-01

    A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.

  15. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gel electrolytes and electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least onemore » polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.« less

  17. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar.

    PubMed

    Li, Mi; Cao, Shilin; Meng, Xianzhi; Studer, Michael; Wyman, Charles E; Ragauskas, Arthur J; Pu, Yunqiao

    2017-01-01

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. We investigated the effects of LHW pretreatment with different severity factors (log R 0 ) on the structural changes of fast-grown poplar ( Populus trichocarpa ). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% ( w/w , dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization ( R 2  = 0.98, r  = + 0.99), hemicellulose molecular weight reduction ( R 2  = 0.97, r  = - 0.96 and R 2  = 0.93, r  = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase ( R 2  = 0.98, r  = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β- O -4' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.

  18. Foamable compositions and formations treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clampitt, R.L.

    1981-11-17

    Thermally stable foamable gelled compositions are disclosed suitable for postprimary oil recovery e.g., steam- or gas-foamed systems comprising water, a surfactant, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gel compositions can additionally contain gel stabilizers such as sulfomethylated quebracho (Smq) and chemical buffering agents such as sodium bicarbonate.

  19. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  20. The structure of a β-(1→6)-d-glucan from yeast cell walls

    PubMed Central

    Manners, David J.; Masson, Alan J.; Patterson, James C.; Björndal, Håkan; Lindberg, Bengt

    1973-01-01

    By selective enzymolysis, or chemical fractionation, a minor polysaccharide component has been isolated from yeast (Saccharomyces cerevisiae) glucan. This minor component has a degree of polymerization of about 130–140, a highly branched structure, and a high proportion of β-(1→6)-glucosidic linkages. The molecules also contain a smaller proportion of β-(1→3)-glucosidic linkages that serve mainly as interchain linkages, but some may also be inter-residue linkages. PMID:4590991

  1. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    PubMed

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  2. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block

    PubMed Central

    Yang, Ming; Cao, Keqin; Sui, Lang; Qi, Ying; Zhu, Jian; Waas, Anthony; Arruda, Ellen M.; Kieffer, John; Thouless, M. D.; Kotov, Nicholas A.

    2011-01-01

    Stable dispersions of nanofibers are virtually unknown for synthetic polymers. They can complement analogous dispersions of inorganic components, such as nanoparticles, nanowires, nanosheets, etc as a fundamental component of a toolset for design of nanostructures and metamaterials via numerous solvent-based processing methods. As such, strong flexible polymeric nanofibers are very desirable for the effective utilization within composites of nanoscale inorganic components such as nanowires, carbon nanotubes, graphene, and others. Here stable dispersions of uniform high-aspect-ratio aramid nanofibers (ANFs) with diameters between 3 and 30 nm and up to 10 μm in length were successfully obtained. Unlike the traditional approaches based on polymerization of monomers, they are made by controlled dissolution of standard macroscale form of the aramid polymer, i.e. well known Kevlar threads, and revealed distinct morphological features similar to carbon nanotubes. ANFs are successfully processed into films using layer-by-layer (LBL) assembly as one of the potential methods of preparation of composites from ANFs. The resultant films are transparent and highly temperature resilient. They also display enhanced mechanical characteristics making ANF films highly desirable as protective coatings, ultrastrong membranes, as well as building blocks of other high performance materials in place of or in combination with carbon nanotubes. PMID:21800822

  3. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    NASA Astrophysics Data System (ADS)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  4. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China.

    PubMed

    Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui

    2016-07-01

    Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.

  5. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization.

    PubMed

    Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun

    2017-01-01

    The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pötzschner, B.; Mohamed, F.; Lichtinger, A.

    2015-10-21

    We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCPmore » molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems.« less

  7. A Three-Step Synthesis of Benzoyl Peroxide

    ERIC Educational Resources Information Center

    Her, Brenda; Jones, Alexandra; Wollack, James W.

    2014-01-01

    Benzoyl peroxide is used as a bleaching agent for flour and whey processing, a polymerization initiator in the synthesis of plastics, and the active component of acne medication. Because of its simplicity and wide application, benzoyl peroxide is a target molecule of interest. It can be affordably synthesized in three steps from bromobenzene using…

  8. Connector and electronic circuit assembly for improved wet insulation resistance

    DOEpatents

    Reese, Jason A.; Teli, Samar R.; Keenihan, James R.; Langmaid, Joseph A.; Maak, Kevin D.; Mills, Michael E.; Plum, Timothy C.; Ramesh, Narayan

    2016-07-19

    The present invention is premised upon a connector and electronic circuit assembly (130) at least partially encased in a polymeric frame (200). The assembly including at least: a connector housing (230); at least one electrical connector (330); at least one electronic circuit component (430); and at least one barrier element (530).

  9. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C.J.; Keefer, K.D.; Lenahan, P.M.

    1985-02-25

    A method is disclosed for coating a substrate with a thin film of a predetermined porosity. The method comprises: depositing the thin film on the substrate from a non-gelled solution comprising at least one metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base; prior to said depositing step, controlling the porosity and structure of said coating for a given composition of said solution exclusive of the acid or base component and the water component, by adjusting each of the water content, the pH, the temperature and the time of standing of said solution, increasing/descreasing the water content or the pH to increase/decrease the pore size of said coating, and increasing/decreasing the temperature or time of standing of said solution to increase/decrease the pore size of said coating; and curing said deposited film at a temperature effective for curing whereby there is obtained a thin film coating of a predetermined porosity on the substrate.

  10. Elasticity dominated surface segregation of small molecules in polymer mixtures

    NASA Astrophysics Data System (ADS)

    Croce, Salvatore; Krawczyk, Jaroslaw; McLeish, Tom; Chakrabarti, Buddhapriya

    When a binary polymer mixture with mobile components is left to equilibrate, the low molecular weight component migrates to the free surface. A balance between loss of translational entropy and gain in surface energy dictates the equilibrium partitioning ratio and the migrant fraction. Despite its ubiquity and several theoretical and experimental investigations, the phenomenon is not fully understood. Further, methods by which migration can be controlled are in its nascent stage of development. We propose a new phenomenological free energy functional that incorporates the elasticity of bulk polymer mixtures (reticulated networks and gels) and show (using mean field and self-consistent field theories) that the migrant fraction decreases with increasing the bulk modulus of the system. Further, a wetting transition observed otherwise for large values of miscibility parameter and polymerization index can be avoided by increasing the elastic modulus of the system. Estimated values of moduli (for the effect to be observable) are akin to those of rubbery polymers. Our work paves the way for controlling surface migration in complex industrial formulations with polymeric ingredients where this effect leads to decreased product stability and performance.

  11. Formulation development of smart gel periodontal drug delivery system for local delivery of chemotherapeutic agents with application of experimental design.

    PubMed

    Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R

    2010-01-01

    Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.

  12. Characterization of Extracellular Polymeric Substances Produced by Pseudomonas fragi Under Air and Modified Atmosphere Packaging.

    PubMed

    Wang, Guang-Yu; Ma, Fang; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-09-01

    Extracellular polymeric substances (EPS) play an important role in bacterial biochemical properties. The characteristics of EPS from 2 strains of Pseudomonas fragi cultured in meat aerobically (control) and in modified atmosphere packaging (MAP) were studied. The amount and components of EPS, the surface properties, and the effect on biofilm formation of several spoilage organisms were evaluated. The results showed that MAP inhibited the growth of the P. fragi strains. Compared with the control, more loose and less bound EPS (containing protein and carbohydrate) were produced by P. fragi in MAP samples. MAP also caused increased cell autoaggregation and surface hydrophobicity. After the removal of the EPS, the surface property changes were strain-dependent, suggesting that membrane compositions were also changed. In addition, the EPS displayed significant antibiofilm activity on Pseudomonas fluorescens and Serratia liquefaciens. In conclusion, P. fragi strains not only modified the amount, components, and surface properties of EPS but also changed the cell membrane compositions to adapt to MAP stress. Moreover, EPS may play an important role in microbial community competitions. © 2017 Institute of Food Technologists®.

  13. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  14. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1.

    PubMed

    Yang, Jixian; Wei, Wei; Pi, Shanshan; Ma, Fang; Li, Ang; Wu, Dan; Xing, Jie

    2015-11-01

    The adsorption of Cu(2+) and Zn(2+) by extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 and competitive adsorption mechanism were investigated. Equilibrium adsorption capacities of Cu(2+) (1.77mMg(-1)) on Klebsiella sp. J1 EPS were higher than those of Zn(2+) (1.36mMg(-1)) in single systems. The competitive Langmuir and Langmuir-Freundlich isotherm models were proven to be effective in describing the experimental data of binary component system. The three dimensional sorption surfaces of binary component system demonstrated that the presence of Cu(2+) more significantly decreased the sorption of Zn(2+), but the sorption of Cu(2+) was not disturbed by the presence of Zn(2+). FTIR and EEM results revealed the adsorption sites of Cu(2+) entirely overlapped with those of Zn(2+). Cu(2+) and Zn(2+) showed competitive adsorption in binary systems, and Cu(2+) was preferentially adsorbed because of the stronger complexation ability of the protein-like substances in Klebsiella sp. J1 EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components.

    PubMed

    Neilson, Andrew P; O'Keefe, Sean F; Bolling, Bradley W

    2016-01-01

    Proanthocyanidins (PACs) are an abundant but complex class of polyphenols found in foods and botanicals. PACs are polymeric flavanols with a variety of linkages and subunits. Connectivity and degree of polymerization (DP) determine PAC bioavailability and bioactivity. Current quantitative and qualitative methods may ignore a large percentage of dietary PACs. Subsequent correlations between intake and activity are hindered by a lack of understanding of the true PAC complexity in many foods. Additionally, estimates of dietary intakes are likely inaccurate, as nutrient databank values are largely based on standards from cocoa (monomers to decamers) and blueberries (mean DP of 36). Improved analytical methodologies are needed to increase our understanding of the biological roles of these complex compounds.

  18. Multi-physics optimization of three-dimensional microvascular polymeric components

    NASA Astrophysics Data System (ADS)

    Aragón, Alejandro M.; Saksena, Rajat; Kozola, Brian D.; Geubelle, Philippe H.; Christensen, Kenneth T.; White, Scott R.

    2013-01-01

    This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.

  19. Organocatalyzed atom transfer radical polymerization driven by visible light.

    PubMed

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M

    2016-05-27

    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. Copyright © 2016, American Association for the Advancement of Science.

  20. Malignant Ureteral Obstruction: Functional Duration of Metallic versus Polymeric Ureteral Stents

    PubMed Central

    Chow, Po-Ming; Chiang, I-Ni; Chen, Chia-Yen; Huang, Kuo-How; Hsu, Jui-Shan; Wang, Shuo-Meng; Lee, Yuan-Ju; Yu, Hong-Jeng; Pu, Yeong-Shiau; Huang, Chao-Yuan

    2015-01-01

    Background Ureteral obstruction caused by extrinsic compression is often associated with intra-abdominal cancers. Internal drainage with ureteral stents is typically the first-line therapy to relieve such obstructions. Novel designs of ureteral stents made of different materials have been invented to achieve better drainage. In this study, we described the functional outcomes of a Resonance metallic ureteral stent (Cook Medical, Bloomington, Indiana, USA) in patients with malignant ureteral obstruction and compare the functional duration of Resonance stents with regular polymeric stents in the same cohort. Methods Cancer patients who received polymeric stents and subsequent Resonance stents for ureteral obstruction between July 2009 and November 2012 were included in a chart review. Stent failure was detected by clinical symptoms, imaging studies, and renal function tests. The functional durations of each stent were calculated, and possible factors affecting stent patency were investigated. Results A total of 50 stents were successfully inserted into 50 ureteral units in 42 patients with malignant ureteral obstruction. There were 7 antegrade stents and 43 retrograde stents. There were no major complications. Stent-related symptoms were similar in both kinds of stents. After polymeric stents were replaced with Resonance metallic stents, hydronephrosis subsided or remained stable in 90% (45/50) of the ureteral units. Serum creatinine decreased or remained stable in 90% (38/42) of these patients. The Resonance stent exhibited a mean increase in functional duration of 4 months compared with the polymeric stents (p<0.0001), and 50% (25/50) of the Resonance stents exhibited a significant increase in functional duration (more than 3 months). Pre-operative serum creatinine < 2 was associated with a substantial increase in stent duration. Conclusions Resonance stents are effective and safe in relieving malignant ureteral obstructions after polymeric stents failure. Resonance stents can provide a longer functional duration than polymeric stents and should be offered as an option for internal drainage. PMID:26267140

  1. Mesoporous carbons and polymers

    DOEpatents

    Bell, William; Dietz, Steven

    2004-05-18

    A polymer is prepared by polymerizing a polymerizable component from a mixture containing the polymerizable component and a surfactant, the surfactant and the polymerizable component being present in the mixture in a molar ratio of at least 0.2:1, having an average pore size greater than 4 nm and a density greater than 0.1 g/cc. The polymerizable component can comprise a resorcinol/formaldehyde system and the mixture can comprise an aqueous solution or the polymerizable component can comprise a divinylbenzene/styrene system and the mixture can comprise an organic solution. Alternatively, the polymerizable component can comprise vinylidene chloride or a vinylidene chloride/divinylbenzene system. The polymer may be monolithic, have a BET surface area of at least about 50 m.sup.2 /g., include a quantity of at least one metal powder, or have an electrical conductivity greater than 10 Scm.sup.-1.

  2. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization.

    PubMed

    Haq, Imran; Irving, James A; Saleh, Aarash D; Dron, Louis; Regan-Mochrie, Gemma L; Motamedi-Shad, Neda; Hurst, John R; Gooptu, Bibek; Lomas, David A

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.

  3. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution.

    PubMed

    Thongrakard, Ticha; Wiwatwarrapan, Chairat

    2016-08-01

    This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth.

  4. Polymer recycling: potential application of radiation technology

    NASA Astrophysics Data System (ADS)

    Burillo, Guillermina; Clough, Roger L.; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu, Weiwei; Singh, Ajit; Yang, Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  5. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    PubMed

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  7. Wine phenolics.

    PubMed

    Waterhouse, Andrew L

    2002-05-01

    Wine contains many phenolic substances, most of which originate in the grape berry. The phenolics have a number of important functions in wine, affecting the tastes of bitterness and astringency, especially in red wine. Second, the color of red wine is caused by phenolics. Third, the phenolics are the key wine preservative and the basis of long aging. Lastly, since phenolics oxidize readily, they are the component that suffers owing to oxidation and the substance that turns brown in wine (and other foods) when exposed to air. Wine phenolics include the non-flavonoids: hydroxycinnamates, hydroxybenzoates and the stilbenes; plus the flavonoids: flavan-3-ols, the flavonols, and the anthocyanins. While polymeric condensed tannins and pigmented tannins constitute the majority of wine phenolics, their large size precludes absorption and thus they are not likely to have many health effects (except, perhaps, in the gut). The total amount of phenols found in a glass of red wine is on the order of 200 mg versus about 40 mg in a glass of white wine.

  8. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.

    PubMed

    Carosio, F; Kochumalayil, J; Cuttica, F; Camino, G; Berglund, L

    2015-03-18

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formation.

  9. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization

    PubMed Central

    Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M.; Robinson, Robert C.

    2014-01-01

    Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation. PMID:25313062

  10. Materials for Diabetes Therapeutics

    PubMed Central

    Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.; Langer, Robert

    2013-01-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). PMID:23184741

  11. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases

    PubMed Central

    Lambertz, Camilla; Ece, Selin; Fischer, Rainer; Commandeur, Ulrich

    2016-01-01

    ABSTRACT Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin. PMID:27295524

  12. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications

    PubMed Central

    Kaplan, Jonah; Grinstaff, Mark

    2015-01-01

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018

  13. Degradation mechanisms of materials for large space systems in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gordon, William L.; Hoffman, R. W.

    1987-01-01

    Degradation was explored of various materials used in aerospace vehicles after severe loss of polymeric material coatings (Kapton) was observed on an early shuttle flight in low Earth orbit. Since atomic oxygen is the major component of the atmosphere at 300 km, and the shuttle's orbital velocity produced relative motion corresponding to approx. 5 eV of oxygen energy, it was natural to attribute much of this degradation to oxygen interaction. This assumption was tested using large volume vacuum systems and ion beam sources, in an exploratory effort to produce atomic oxygen of the appropriate energy, and to observe mass loss from various samples as well as optical radiation. Several investigations were initiated and the results of these investigations are presented in four papers. These papers are summarized. They are entitled: (1) The Space Shuttle Glow; (2) Laboratory Degradation of Kapton in a Low Energy Oxygen Ion Beam; (3) The Energy Dependence and Surface Morphology of Kapton Degradation Under Atomic Oxygen Bombardment; and (4) Surface Analysis of STS 8 Samples.

  14. Characterizing membrane foulants in MBR with addition of polyferric chloride to enhance phosphorus removal.

    PubMed

    Yang, Xiao-Li; Song, Hai-Liang; Chen, Ming; Cheng, Bing

    2011-10-01

    The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Quantitative analysis for the determination of aluminum percentage and detonation performance of aluminized plastic bonded explosives by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rezaei, A. H.; Keshavarz, M. H.; Kavosh Tehrani, M.; Darbani, S. M. R.

    2018-06-01

    The aluminized plastic-bonded explosive (PBX) is a composite material in which solid explosive particles are dispersed in a polymer matrix, which includes three major components, i.e. polymeric binder, metal fuel (aluminum) and nitramine explosive. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy (LIBS) technique in air and argon atmospheres to investigate the determination of aluminum content and detonation performance of aluminized PBXs. Plasma emissions of aluminized PBXs are recorded where atomic lines of Al, C and H as well as molecular bands of AlO and CN are identified. The experimental results demonstrate that a good discrimination and separation between the aluminized PBXs is possible using LIBS and principle component analysis, although they have similar atomic composition. Relative intensity of the AlO/Al is used to determine aluminum percentage of the aluminized PBXs. The obtained quantitative calibration curve using the relative intensity of the AlO/Al is better than the resulting calibration curve using only the intensity of Al. By using the LIBS method and the measured intensity ratio of CN/C, an Al content of 15% is found to be the optimum value in terms of velocity of detonation of the RDX/Al/HTPB standard samples.

  16. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions.

    PubMed

    Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo

    2016-12-01

    Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β) 8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBD Vh ChiA . The recombinant ChBD Vh ChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBD Vh ChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBD Vh ChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro

    PubMed Central

    Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M.; Kumar, Manish; Nixon, B. Tracy; Bulone, Vincent; Zimmer, Jochen

    2016-01-01

    Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme’s N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils. PMID:27647898

  18. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.

    PubMed

    Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M; Kumar, Manish; Nixon, B Tracy; Bulone, Vincent; Zimmer, Jochen

    2016-10-04

    Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.

  19. Conformational states of mutant M13 coat proteins are regulated by transmembrane residues.

    PubMed

    Li, Z; Glibowicka, M; Joensson, C; Deber, C M

    1993-03-05

    Mutational and structural analysis of the 28 viable bacteriophage M13 mutants obtained by randomized mutagenesis of the effective transmembrane (TM) segment of the 50-residue major coat (gene VIII) protein (residues 21-39) demonstrated that M13 coat protein functionality, as reflected by phage viability, is incompatible with an increase in Gly + beta-branched residue content in its TM core. SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy performed in membrane environments on purified mutant coat proteins revealed that these proteins exist in a range of state(s), identified as helical monomers and dimers and polymeric (alpha-helical and/or beta-sheet) species, of which relative populations, and thermally induced conformational transitions, were dependent uniquely upon mutation type and locus. Mutations to relatively polar residues (e.g. G23D, Y24D, Y24H, A27E, I32T, and T36S) stabilized principally monomeric species, while mutants with decreased beta-branched content in the protein TM hydrophobic core (e.g. V29A, V30A, V31A, V31L, and V33A) displayed mainly dimeric species. Mutation of Ile37-->Thr within a "Sternberg-Gullick" consensus sequence of the coat protein TM segment led to a highly oligomerized/polymerized protein. The overall results suggest that TM residues in M13 coat protein are not universal components of a hydrophobic anchor segment per se, but are further selected (i) to impart conformational flexibility to the TM segment through helix destabilization and (ii) to retain the capacity to regulate protein-protein association and packing motifs within membranes.

  20. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.

    PubMed

    McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C

    2016-08-02

    The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization

    NASA Astrophysics Data System (ADS)

    Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.

    2018-05-01

    Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.

  2. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity.

    PubMed

    Turula, Holly; Wobus, Christiane E

    2018-05-03

    The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.

  3. Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization.

    PubMed

    Michaels, Thomas C T; Knowles, Tuomas P J

    2014-06-07

    The formation of nanoscale protein filaments from soluble precursor molecules through nucleated polymerization is a common form of supra-molecular assembly phenomenon. This process underlies the generation of a range of both functional and pathological structures in nature. Filament breakage has emerged as a key process controlling the kinetics of the growth reaction since it increases the number of filament ends in the system that can act as growth sites. In order to ensure microscopic reversibility, however, the inverse process of fragmentation, end-to-end annealing of filaments, is a necessary component of a consistent description of such systems. Here, we combine Smoluchowski kinetics with nucleated polymerization models to generate a master equation description of protein fibrillization, where filamentous structures can undergo end-to-end association, in addition to elongation, fragmentation, and nucleation processes. We obtain self-consistent closed-form expressions for the growth kinetics and discuss the key physics that emerges from considering filament fusion relative to current fragmentation only models. Furthermore, we study the key time scales that describe relaxation to equilibrium.

  4. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  5. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  6. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    PubMed Central

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  7. Formation of Novel Polydiacetylenes: Synthesis of Poly(iodoethynyliododiacetylene) and Towards the Formation of Conjugated Ladder Polydiacetylenes

    NASA Astrophysics Data System (ADS)

    Freitag, Matthew

    Polydiacetylenes (PDAs) are 1-dimensional polymers with a carbon-rich ene-yne backbone. Materials scientists are interested in PDAs because they are semiconductors, they have large multiphoton absorptions, and they can be prepared as ordered assemblies in the solid-state. Polydiacetylenes are formed from the topochemical 1,4-polymerization of a monomer unit made up of at least two sequential alkynes. This work describes attempts to form novel polydiacetylenes from several higher order polyyne monomers, as well as efforts to alter the morphology of known polydiacetylenes into thin films. The first project described here examined the formation of cocrystals of diiodohexatriyne with a bis(alkylnitrile) oxalamide host. Diiodohexatriyne undergoes 1,4-topochemical polymerization, with mild heating, to form poly(iodoethynyliododiacetylene), PIEDA. Polymerization was followed by extensive characterization through Raman spectroscopy, solid-state 13C MAS-NMR, and X-ray crystallography. This work represents the first ordered single-crystal to single-crystal 1,4-topochemical polymerization of a triyne, demonstrated through X-ray diffraction. The second project described efforts towards post-polymerization modification on PIEDA. Despite some success in model studies, isolated PIEDA was found to be too unstable to undergo controlled post-polymerization modification. The third project of this work described the demonstration of the formation of thin films of another PDA, polydiiododiacetylene (PIDA). Thin films of PIDA cocrystals could serve as components in solar cells or photovoltaic devices. Using lower concentration and allowing evaporation to occur in a fume hood, nanometer thick films were formed. However, thin films of PIDA cocrystals were too heterogeneous to be used within devices. The fourth project described here examined the preparation of cocrystals of bis(iodobutadiynyl)benzene monomer with several oxalamide hosts. The goal of this project is formation of conjugated ladder polydiacetylenes which have been theorized to have a lower band-gap than analogous linear polydiacetylenes. Cocrystals of monomer bis(iodobutadiynyl)benzene were formed with a variety of oxalamide hosts. Monomer cocrystals were heated at high temperatures and gave Raman signal consistent with polydiacetylene formation. Attempts to analyze heated cocrystals through single crystal X-ray diffraction have failed due to increased mosaicity. Other methods of inducing polymerization have been investigated but no ordered polymerization could be demonstrated. Halogen bonding has been demonstrated to be a reliable interaction for aligning these monomers. However, the polymerization and characterization of resultant polymer remains challenging due to the multiple reaction pathways of these materials.

  8. Macrophage Internalization of Fungal β-Glucans Is Not Necessary for Initiation of Related Inflammatory Responses

    PubMed Central

    McCann, Frances; Carmona, Eva; Puri, Vishwajeet; Pagano, Richard E.; Limper, Andrew H.

    2005-01-01

    Cell wall β-glucans are highly conserved structural components of fungi that potently trigger inflammatory responses in an infected host. Identification of molecular mechanisms responsible for internalization and signaling of fungal β-glucans should enhance our understanding of innate immune responses to fungi. In this study, we demonstrated that internalization of fungal β-glucan particles requires actin polymerization but not participation of components of caveolar uptake mechanisms. Using fluorescence microscopy, we observed that uptake of 5-([4,6-dichlorotriazin-2-yl] amino)-fluorescein hydrochloride-Celite complex-labeled Saccharomyces cerevisiae β-glucan by RAW macrophages was substantially reduced in the presence of cytochalasin D, which antagonizes actin-mediated internalization pathways, but not by treatment with nystatin, which blocks caveolar uptake. Interestingly, β-glucan-induced NF-κB translocation, which is necessary for inflammatory activation, and tumor necrosis factor alpha production were both normal in the presence of cytochalasin D, despite defective internalization of β-glucan particles following actin disruption. Dectin-1, a major β-glucan receptor on macrophages, colocalized to phagocytic cups on macrophages and exhibited tyrosine phosphorylation after challenge with β-glucan particles. Dectin-1 localization and other membrane markers were not affected by treatment with cytochalasin D. Furthermore, dectin-1 receptors rather than Toll-like receptor 2 receptors were shown to be necessary for both efficient internalization of β-glucan particles and cytokine release in response to the fungal cell wall component. PMID:16177305

  9. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    PubMed Central

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  10. I. Direct observation of zirconocene-catalyzed alkene polymerization via NMR and the role of an aluminum alkyl during polymerization. II. Design and evaluation of an online nanoscience course for teachers

    NASA Astrophysics Data System (ADS)

    Tomasik, Janice Hall

    The plastics industry has been revolutionalized by development of group 4 metallocene polymerization catalysts. These catalysts have higher activities and stereoselectivities than traditional heterogeneous Ziegler-Natta polymerization catalysts, and produce polymers with narrower molecular weight distributions and with better control of the polymer stereochemistry. The reaction kinetics of catalytic alkene polymerizations are complicated and difficult to resolve macroscopically. To overcome these difficulties, research has used NMR spectroscopy to directly observe catalytic reaction intermediates; many advances in our understanding of the complex mechanisms behind these polymerization reactions have resulted. In this work, the direct observation of alkene insertion into zirconocene-polymeryls via NMR spectroscopy is presented. Alkenes studied are 3-methylpentene, styrene, and 1,4-pentadiene. Kinetic measurements are reported for the polymerization of 3-methylpentene by rac-(EBI)Zr(Me)(MeB(C6F 5)3) (EBI = C2H4(1-indenyl)2) and rac-(EBI)Zr(polyhexenyl)(MeB(C6F5) 3). Also presented are NMR spectroscopic characterizations of rac-(EBI)Zr(styrenyl)(MeB(C6F5)3) and rac-(EBI)Zr(1,4-pentadienyl)(MeB(C6F 5)3). In addition, NMR spectroscopy is used to directly monitor the behavior of an aluminum alkyl during the polymerization of 1-hexene by rac -(EBI)2Zr(Me)(MeB(C6F5)3). The rates of polymerization are not inhibited by Al(iBu) 2(BHT), Al(Me)(BHT)2, or Al(iBu)3 (BHT = 2,6-di- tert-butyl-4-methylphenyl). Detailed measurement of polymerization rate and catalyst speciation demonstrate that BHT modified aluminum alkyls protect active sites from decomposition in the presence of protic impurities such as methanol. Also presented in this work is the design and evaluation of an online course for teachers about nanoscience. Nanotechnology is an important emerging field that is estimated to need about 2 million workers worldwide by 2015. Therefore the educational system is being encouraged to incorporate major nanoscience concepts into curricula. In order to facilitate the integration of nanoscience, an online professional development course for teachers has been developed and offered at the University of Wisconsin-Madison. Evaluation results from the first three versions of the course indicate the online learning environment was very close to ideal. Comparisons of pre-instruction to post-instruction quiz responses indicate significant learning gains by participants. Importantly, survey results show the online course helped teachers to successfully incorporate nanoscience into their curricula.

  11. Recruitment of β-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Wang, Ruping; Cleary, Rachel A.; Gannon, Olivia J.; Tang, Dale D.

    2015-01-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

  12. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    PubMed

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells.

    PubMed

    Tunduguru, Ragadeepthi; Zhang, Jing; Aslamy, Arianne; Salunkhe, Vishal A; Brozinick, Joseph T; Elmendorf, Jeffrey S; Thurmond, Debbie C

    2017-11-17

    Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants

    PubMed Central

    Ali, Omar A.; Verbeke, Catia; Johnson, Chris; Sands, Warren; Lewin, Sarah A.; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J.

    2014-01-01

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study we utilized polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, in order to identify dendritic cell subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of GM-CSF and various TLR agonists effected 70–90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40mm2) resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs and plasmacytoid DCs, along with local IL-12, and G-CSF concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Further, vaccine studies in Batf3−/− mice revealed that CD8(+) DCs are required to effect tumor protection, as vaccines in these mice were deficient in cytotoxic T cell priming, and IL-12 induction in comparison to wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, plasmacytoid DCs, IL-12, and G-CSF play important roles in priming effective anti-tumor responses with these vaccines. PMID:24480625

  15. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  16. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination.

  17. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  18. Solid freeform fabrication using chemically reactive suspensions

    DOEpatents

    Morisette, Sherry L.; Cesarano, III, Joseph; Lewis, Jennifer A.; Dimos, Duane B.

    2002-01-01

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  19. Antithrombogenic and antibiotic composition and methods of preparation thereof

    DOEpatents

    Hermes, R.E.

    1990-04-17

    Antithrombogenic and antibiotic composition of matter and method of preparation are disclosed. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone. 4 figs.

  20. Morphology of LDPE-poly(3-hydroxybutyrate) films

    NASA Astrophysics Data System (ADS)

    Ol'khov, A. A.; Vlasov, S. V.; Shibryaeva, L. S.; Kosenko, R. Yu.; Iordanskii, A. L.

    2012-07-01

    The structure and morphology of biodegradable extruded polymeric films based on LDPE and (PHB) were studied by a combination of methods including polarization IR spectroscopy, DSC, and scanning electron microscopy (SEM). The components of LDPE-PHB blends containing 1-32% PHB are immiscible and form morphological structures (phases) with well distinguishable phase boundaries between dispersed phase and dispersion matrix.

  1. Antithrombogenic and antibiotic composition and methods of preparation thereof

    DOEpatents

    Hermes, Robert E.

    1990-01-01

    Antithrombogenic and antibiotic composition of matter and method of preparation thereof. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone.

  2. Aerospace applications of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1985-01-01

    The current status of the novel class of processable, addition-type polyimides known as PMR (for in situ polymerization of monomer reactants) polyimides, developed by NASA at the Lewis Research Center, is reviewed. Highlights of PMR technology studies conducted at NASA Lewis are presented. Several examples of industrial applications of PMR-15 polyimide composites to aerospace structural components are examined.

  3. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery.

    PubMed

    ter Boo, Gert-Jan A; Grijpma, Dirk W; Moriarty, Thomas F; Richards, Robert G; Eglin, David

    2015-06-01

    Infectious complications occur in a minor but significant portion of the patients undergoing joint replacement surgery or fracture fixation, particularly those with severe open fractures, those undergoing revision arthroplasty or those at elevated risk because of poor health status. Once established, infections are difficult to eradicate, especially in the case of bacterial biofilm formation on implanted hardware. Local antibiotic carriers offer the prospect of controlled delivery of antibiotics directly in target tissues and implant, without inducing toxicity in non-target organs. Polymeric carriers have been developed to optimize the release and targeting of antibiotics. Passive polymeric carriers release antibiotics by diffusion and/or upon degradation, while active polymeric carriers release their antibiotics upon stimuli provided by bacterial pathogens. Additionally, some polymeric carriers gelate in-situ in response to physiological stimuli to form a depot for antibiotic release. As antibiotic resistance has become a major issue, also other anti-infectives such as silver and antimicrobial peptides have been incorporated in research. Currently, several antibiotic loaded biomaterials for local infection prophylaxis are available for use in the clinic. Here we review their advantages and limitations and provide an overview of new materials emerging that may overcome these limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Interactions between G-actin and myosin subfragment 1: immunochemical probing of the NH2-terminal segment on actin.

    PubMed

    DasGupta, G; White, J; Cheung, P; Reisler, E

    1990-09-11

    The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.

  6. Visualization and identification of the structures formed during early stages of fibrin polymerization

    PubMed Central

    Chernysh, Irina N.; Nagaswami, Chandrasekaran

    2011-01-01

    We determined the sequence of events and identified and quantitatively characterized the mobility of moving structures present during the early stages of fibrin-clot formation from the beginning of polymerization to the gel point. Three complementary techniques were used in parallel: spinning-disk confocal microscopy, transmission electron microscopy, and turbidity measurements. At the beginning of polymerization the major structures were monomers, whereas at the middle of the lag period there were monomers, oligomers, protofibrils (defined as structures that consisted of more than 8 monomers), and fibers. At the end of the lag period, there were primarily monomers and fibers, giving way to mainly fibers at the gel point. Diffusion rates were calculated from 2 different results, one based on sizes and another on the velocity of the observed structures, with similar results in the range of 3.8-0.1 μm2/s. At the gel point, the diffusion coefficients corresponded to very large, slow-moving structures and individual protofibrils. The smallest moving structures visible by confocal microscopy during fibrin polymerization were identified as protofibrils with a length of approximately 0.5 μm. The sequence of early events of clotting and the structures present are important for understanding hemostasis and thrombosis. PMID:21248064

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  8. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.

    PubMed

    Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng

    2014-12-10

    In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating, endothelial cell viability was also promoted, which indicated that the heparin-mimicking multilayer coating might extend the application fields of polymeric membranes in biomedical fields.

  9. A Second Las17 Monomeric Actin-Binding Motif Functions in Arp2/3-Dependent Actin Polymerization During Endocytosis

    PubMed Central

    Feliciano, Daniel; Tolsma, Thomas O.; Farrell, Kristen B.; Aradi, Al; Di Pietro, Santiago M.

    2018-01-01

    During clathrin-mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G-actin) and a central-acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3-dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G-actin-binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G-actin-binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two-hybrid system, GST-pulldown, fluorescence polarization and pyrene-actin polymerization assays, we show that LGM binds G-actin and is necessary for normal Arp2/3-mediated actin polymerization in vitro. Live-cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G-actin-binding motif, WH2. These results establish a second G-actin-binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME. PMID:25615019

  10. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

    PubMed

    Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus

    2014-01-01

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.

  11. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances.

    PubMed

    Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong

    2012-09-15

    Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1999-01-01

    This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.

  13. Flame resistant nontoxic polymer development

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1975-01-01

    A number of homopolymers, copolymers, and terpolymers were synthesized employing styrene and four derivatives of diphenyl-p-styrylphosphine. The various polymeric compositions were prepared by two processes, (1) monomer bulk polymerizations and (2) substitution of preformed polydiphenyl-p-styrylphosphine. Results indicate that the majority of the compositions exhibit superior melting and flame retardant characteristics as compared to polystyrene, but are inferior in molding and film forming capability. Terpolymerization appears to result in the materials with the best overall combination of properties. Toxicological evaluation of three representative basic compositions in the form of molded washers showed that no mortalities occurred among the test animals exposed to the products of the oxidative thermal decomposition of the three materials.

  14. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents.

    PubMed

    Grace, Mary H; Esposito, Debora; Timmers, Michael A; Xiong, Jia; Yousef, Gad; Komarnytsky, Slavko; Lila, Mary Ann

    2016-10-12

    A comprehensive phytochemical analysis was conducted on pistachios to identify the differential contributions of skin and kernel phytochemicals to in vitro bioactivity. Qualitative and quantitative analyses of skin and kernel non-polar extracts (SNP and KNP, respectively) indicated that the major components are fatty acids (696.36 and 879.70 mg g -1 ), phytosterols (16.08 and 4.28 mg g -1 ), and γ-tocopherol (304.17 and 397.10 μg g -1 ). Analysis of the skin and kernel polar extracts (SP and KP, respectively) showed that skin accumulated higher levels of phenolic compounds, especially flavan-3-ols, compared to the kernel. An (epi)catechin hexoside was the major component in SP and KP (9.8 mg g -1 and 3.3 mg g -1 , respectively). Flavan-3-ols with different degrees of polymerization were detected in SP, but only the monomers were identified in the KP. Quercetin glycosides were the major flavonols present in both SP and KP. Bioassays with 3T3L1 mouse adipocytes demonstrated that all extracts decreased lipid accumulation, with SNP demonstrating the highest activity (17% inhibition). Bioassay guided fractionation of SNP indicated that the lipolytic activity was highest in the fraction consisting of linoleic acid (20%), linolenic acid (10%), and β-sitosterol (50%). Radical scavenging assays indicated that all pistachio extracts significantly inhibited ROS, while SP was the most inhibiting to NO production in LPS-stimulated RAW 264.7 macrophages. Gene expression profiles associated with inflammation (IL6, iNOS, and COX2) were characterized in the LPS-stimulated RAW264.7 macrophages after treatment with pistachio extracts. SP and KP were the most potent to inhibit the expression of COX2. The SNP had the strongest effect in decreasing non-mitochondrial oxidative burst associated with inflammatory response in macrophages.

  15. Fabrication of micromechanical and microoptical systems by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.

    2007-01-01

    The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.

  16. Martian Methane Cycle and Organic Compounds from Martian Regolith Breccia NWA7533 by Orbitrap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Orthous-Daunay, F.-R.; Thissen, R.; Flandinet, L.; Bonal, L.; Vuitton, V.; Beck, P.; Hashiguchi, M.; Naraoka, H.

    2018-04-01

    We compare the organic mixture of a carbon rich martian meteorite and carbonaceous chondrites. The major difference lies in the absence of polymeric patterns in NWA7533. We interpret this as a destruction of exogenous polymers under Mars conditions.

  17. Methyleneation of peptides by N,N,N,N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study.

    PubMed

    Shirangi, Mehrnoosh; Sastre Toraño, Javier; Sellergren, Börje; Hennink, Wim E; Somsen, Govert W; van Nostrum, Cornelus F

    2015-01-21

    Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst. However, exposure to these free radical polymerization reagents may lead to modification of the protein and peptide. In this work, we show the modification of lysine residues by ammonium peroxodisulfate (APS)/TEMED of the immunostimulant thymopentin (TP5). Parallel studies on a decapeptide and a library of 15 dipeptides were performed to reveal the mechanism of modification. LC-MS of APS/TEMED-exposed TP5 revealed a major reaction product with an increased mass (+12 Da) with respect to TP5. LC-MS(2) and LC-MS(3) were performed to obtain structural information on the modified peptide and localize the actual modification site. Interpretation of the obtained data demonstrates the formation of a methylene bridge between the lysine and arginine residue in the presence of TEMED, while replacing TEMED with a sodium bisulfite catalyst did not show this modification. Studies with the other peptides showed that the TEMED radical can induce methyleneation on peptides when lysine is next to arginine, proline, cysteine, aspargine, glutamine, histidine, tyrosine, tryptophan, and aspartic acid residues. Stability of peptides and protein needs to be considered when using APS/TEMED in in situ polymerization systems. The use of an alternative catalyst such as sodium bisulfite may preserve the chemical integrity of peptides during in situ polymerization.

  18. The micro-element dynamic in hortic antrosoils conditioned with polymeric materials

    NASA Astrophysics Data System (ADS)

    Filipov, F.; Bulgariu, D.; Jitareanu, G.; Bulgariu, L.

    2009-04-01

    The studies regarding the dynamic of microelements in hortic anthrosols (soils from glasshouses and solariums) are important both from scientific point of view and in special, for the implementation of durable ecological technologies of amelioration, conservation and superior capitalization of soil resources from protected areas (glasshouses and solariums). In case of hortic anthrosols, the application of intensive technologies for plants cultivation determined brusque and intense perturbations of equilibriums between microelements and mineral and organic components of anthrosols, which is reflected by a fast degradation of morphological and physic-chemical properties. But, in case of hortic anthrosols, the exploitation conditions determined a particular evolution of microelements, and of distributions and interactions way with soil components, respectively. The conditioning and the amelioration of hortic antrosols with ecologic polymeric materials is one of the method approved in this moment and according with the opinion of most of specialists, represent one of method with large applications in modern agriculture. The utilization of polymeric materials to the conditioning of soils have been studied over 50 years, their effects on morphological, physical and chemical properties of soils being know, in special for agricultural and polluted soils. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of some micro-elements (Zn, Cu, Ni, Mn, Cr, P), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. For the experimental study have been used three types of water-soluble polymers, with different hydrophobicities: polyethylene glycol (molecular mass 2000, 4000 and 8000), vinyl acetate - ammonia maleate salt copolymer (AM-VA) and methylacrylate - ammonia maleate salt copolymer (AM-MMA). The separation, differentiation and determination of micro-elements speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the micro-elements and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of micro-elements with organic-mineral components of soils have been estimated on the basis of Raman and FT-IR spectra, recorded for fractions obtained after each extraction step. These data were correlated with those obtained by chemical analysis and UV-VIS spectrometry, and were used for to establish the type and weight of micro-elements speciation forms in studied antrosol. The conditioning with polymeric materials determined a limitation of formation and extension rate of frangipane horizon, and of salinity in superior horizons respectively, which are mainly responsible by the geochemical segregation and degradation of soils from glass houses. Under these conditions, increase the weight of mobile speciation forms of micro-elements and will be facilitated their accessibility for cultivated vegetables. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  19. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    PubMed

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  1. Hybrid Metamaterials for Solar Biofuel Generation

    DTIC Science & Technology

    2014-10-30

    challenging, and their production is environmentally damaging .7 For these reasons, they are unlikely to find commercial application. Artificial proteins...transfer in natural systems has led to an empirical expression known as the Moser-Dutton ruler, further modified by Crofts and Rose37 which describes...photolithography (the deep UV photolithography system at the CNF). Reactive ion etching will be used with a polymerization component Project

  2. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  3. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  4. Antithrombogenic and antibiotic compositions and methods of preparation thereof

    DOEpatents

    Hermes, R.E.

    1988-04-19

    Antithrombogenic and antibiotic composition of matter and method of preparation thereof. A random copolymer of a component of garlic and a biocompatible polymer has been prepared and found to exhibit antithrombogenic and antibiotic properties. Polymerization occurs selectively at the vinyl moiety in 2-vinyl-4H-1,3-dithiin when copolymerized with N-vinyl pyrrolidone. 4 figs., 2 tabs.

  5. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C. Jeffrey; Keefer, Keith D.; Lenahan, Patrick M.

    1987-01-01

    A method of coating a substrate with a thin film of a polymer of predetermined porosity comprises depositing the thin film on the substrate from a non-gelled solution comprising at least one hydrolyzable metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base, prior to depositing the film, controlling the structure of the polymer for a given composition of the solution exclusive of the acid or base component and the water component, (a) by adjusting each of the water content, the pH, and the temperature to obtain the desired concentration of alkoxide, and then adjusting the time of standing of the solution prior to lowering the temperature of the solution, and (b) lowering the temperature of the solution after the time of standing to about 15 degrees C. or lower to trap the solution in a state in which, after the depositing step, a coating of the desired porosity will be obtained, and curing the deposited film at a temperature effective for curing whereby there is obtained a thin film of a polymer of a predetermined porosity and corresponding pore size on the substrate.

  6. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.

    PubMed

    Brouwer, Marieke T; Thoden van Velzen, Eggo U; Augustinus, Antje; Soethoudt, Han; De Meester, Steven; Ragaert, Kim

    2018-01-01

    The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap -1 .a -1 ). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes of Lily[W][OA

    PubMed Central

    Lovy-Wheeler, Alenka; Kunkel, Joseph G.; Allwood, Ellen G.; Hussey, Patrick J.; Hepler, Peter K.

    2006-01-01

    Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events. PMID:16920777

  8. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers.

    PubMed

    Ahmad, Iqbal; Sabah, Arif; Anwar, Zubair; Arif, Aysha; Arsalan, Adeel; Qadeer, Kiran

    2017-01-01

    A study of the extraction of polymeric material and dyes from the pharmaceutical plastic containers using various organic solvents was conducted to evaluate the effect of polarity on the extraction process. The plastic containers used included semi-opaque, opaque, transparent and amber colored and the solvent used were acetonitrile, methanol, ethanol, acetone, dichloroethane, chloroform and water. The determination of extractable material was carried out by gravimetric and spectrometric methods. The yield of extractable materials from containers in 60 h was 0.10-1.29% (w/w) and the first-order rate constant (kobs) for the extraction of polymeric material ranged from 0.52-1.50 × 10-3 min -1 and for the dyes 6.43- 6.74 x10-3min-1. The values of (k obs ) were found to be an inverse function of solvent dielectric constant and decreased linearly with the solvent acceptor number. The extractable polymeric materials exhibited absorption in the 200-400 nm region and the dyes in the 300-500nm region. The rates of extraction of polymeric material and dyes from plastic containers were dependent on the solvent dielectric constant. The solvents of low polarity were more effective in the extraction of material indicating that the extracted material were of low polarity or have non-polar character. The dyes were soluble in acetone and chloroform. No plastic material was found to be extracted from the containers in aqueous solution.

  9. Microwave-assisted cationic polymerization of palm olein and their urea inclusion products

    NASA Astrophysics Data System (ADS)

    Soegijono, Bambang; Farid, Muhamad; Alim Mas'ud, Zainal

    2018-01-01

    Cationic polymerization is affected by the relative amount of unsaturated bond (C=C) in the compound. The enrichment of an unsaturated triglyceride fraction from oils may be performed using urea inclusion techniques. In this study, palm olein was enriched-unsaturated fraction using urea-methanol system. The palm olein and its urea-inclusion products were cationic polymerized with ethereal boron trifluoride catalyst and followed by irradiation using a commercial microwave (microwave-assisted). The microwave irradiated products were cured at 110 °C for 24 hours. Fatty acid composition of the palm olein and its urea-inclusion products were analyzed by gas chromatography. Iodine numbers, functional groups, and ultraviolet absorption spectra of all palm olein origin, urea inclusion products and polymerization products were analyzed using titrimetric, ultraviolet spectrophotometric, and Fourier Transform infrared spectrophotometric methods. Differential scanning calorimetric (DSC) was used to observe the thermal characteristics of the polymer. Urea-inclusion process increased the unsaturated fatty acid components as indicated by the increased iodine number, intensity of alkene band absorptions in the infrared spectra, and the absorbance of the ultraviolet spectra. The polymer formation is converting the C=C group to C-C, which is indicated by the opposite of the urea inclusion process. The curing process results in reformation of new C=C bonds that were similar to that of the urea inclusion process. The DSC thermogram curve shows that the enrichment process improves the thermal stability of the polymer formed.

  10. Molecular architecture requirements for polymer-grafted lignin superplasticizers.

    PubMed

    Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R

    2015-04-07

    Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.

  11. Anionic polymerization of oxadiazole-containing 2-vinylpyridine by precisely tuning nucleophilicity and the polyelectrolyte characteristics of the resulting polymers

    DOE PAGES

    Goodwin, Andrew; Goodwin, Kimberly M.; Wang, Weiyu; ...

    2016-09-01

    Anionic polymerization is one of the most powerful techniques for preparation of well-defined polymers. However, this well-known and widely employed polymerization technique encounters major limitations for the polymerization of functional monomers containing heteroatoms. This work presents the anionic polymerization of 2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole (VPyOzP), a heteroatom monomer that contains both oxadiazole and pyridine substituents within the same pendant group, using various initiating systems based on diphenylmethyl potassium (DPM-K) and triphenylmethyl potassium (TPM-K). Remarkably, well-defined poly(2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole) (PVPyOzP) polymers having predicted molecular weights (MW) ranging from 2200 to 21 100 g/mol and polydispersity indices (PDI) ranging from 1.11 to 1.15 were prepared with TPM-K,more » without any additional additives, at –78 °C. The effect of temperature on the polymerization of PVPyOzP was also studied at –78, –45, 0, and 25 °C, and it was observed that increasing the polymerization temperature produced materials with unpredictable MW’s and broader molecular weight distributions. Furthermore, the nucleophilicity of PVPyOzP was investigated through copolymerization with methyl methacrylate and acrylonitrile, where only living poly(methyl methacrylate) (PMMA) prepared by DPM-K/VPPy and in the absence of additives such as lithium chloride (LiCl) and diethyl zinc (ZnEt 2) could be used to produce the well-defined block copolymer of PMMA-b-PVPyOzP. It was also demonstrated by sequential monomer addition that the nucleophilicity of living PVPyOzP is located between that of living PMMA and polyacrylonitrile (PAN). Here, the pyridine moiety of the pendant group also allowed for quaternization and produced PQVPyOzP homopolymer using methyl iodide (CH 3I) and bis(trifluoromethylsulfonyl)amide [Tf 2N –]. The resulting charged polymer and counterion complexes were manipulated and investigated for potential use as membranes for carbon dioxide (CO 2) capture.« less

  12. Anionic polymerization of oxadiazole-containing 2-vinylpyridine by precisely tuning nucleophilicity and the polyelectrolyte characteristics of the resulting polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Andrew; Goodwin, Kimberly M.; Wang, Weiyu

    Anionic polymerization is one of the most powerful techniques for preparation of well-defined polymers. However, this well-known and widely employed polymerization technique encounters major limitations for the polymerization of functional monomers containing heteroatoms. This work presents the anionic polymerization of 2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole (VPyOzP), a heteroatom monomer that contains both oxadiazole and pyridine substituents within the same pendant group, using various initiating systems based on diphenylmethyl potassium (DPM-K) and triphenylmethyl potassium (TPM-K). Remarkably, well-defined poly(2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole) (PVPyOzP) polymers having predicted molecular weights (MW) ranging from 2200 to 21 100 g/mol and polydispersity indices (PDI) ranging from 1.11 to 1.15 were prepared with TPM-K,more » without any additional additives, at –78 °C. The effect of temperature on the polymerization of PVPyOzP was also studied at –78, –45, 0, and 25 °C, and it was observed that increasing the polymerization temperature produced materials with unpredictable MW’s and broader molecular weight distributions. Furthermore, the nucleophilicity of PVPyOzP was investigated through copolymerization with methyl methacrylate and acrylonitrile, where only living poly(methyl methacrylate) (PMMA) prepared by DPM-K/VPPy and in the absence of additives such as lithium chloride (LiCl) and diethyl zinc (ZnEt 2) could be used to produce the well-defined block copolymer of PMMA-b-PVPyOzP. It was also demonstrated by sequential monomer addition that the nucleophilicity of living PVPyOzP is located between that of living PMMA and polyacrylonitrile (PAN). Here, the pyridine moiety of the pendant group also allowed for quaternization and produced PQVPyOzP homopolymer using methyl iodide (CH 3I) and bis(trifluoromethylsulfonyl)amide [Tf 2N –]. The resulting charged polymer and counterion complexes were manipulated and investigated for potential use as membranes for carbon dioxide (CO 2) capture.« less

  13. Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.

    2008-01-01

    Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.

  14. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants.

    PubMed

    Ali, Omar A; Verbeke, Catia; Johnson, Chris; Sands, R Warren; Lewin, Sarah A; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J

    2014-03-15

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study, we used polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, to identify dendritic cell (DC) subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of granulocyte macrophage colony-stimulating factor (GM-CSF) and various Toll-like receptor (TLR) agonists affected 70% to 90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40 mm(2)), resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs, plasmacytoid DCs (pDC), along with local interleukin (IL)-12, and granulocyte colony-stimulating factor (G-CSF) concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Furthermore, vaccine studies in Batf3(-/-) mice revealed that CD8(+) DCs are required to affect tumor protection, as vaccines in these mice were deficient in cytotoxic T lymphocytes priming and IL-12 induction in comparison with wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, pDCs, IL-12, and G-CSF play important roles in priming effective antitumor responses with these vaccines. ©2014 AACR.

  15. Biophysical Properties and Oxygenation Potential of High-Molecular-Weight Glutaraldehyde-Polymerized Human Hemoglobins Maintained in the Tense and Relaxed Quaternary States

    PubMed Central

    Zhang, Ning; Jia, Yiping; Chen, Guo; Cabrales, Pedro

    2011-01-01

    Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O2 and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O2 to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O2 affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O2 affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O2 to cultured cells/tissues. PMID:20979534

  16. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches

    PubMed Central

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-01-01

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions. PMID:28793746

  17. Antimicrobial Peptide Mimicking Primary Amine and Guanidine Containing Methacrylamide Copolymers Prepared by Raft Polymerization

    PubMed Central

    Exley, Sarah E.; Paslay, Lea C.; Sahukhal, Gyan S.; Abel, Brooks A.; Brown, Tyler D.; McCormick, Charles L.; Heinhorst, Sabine; Koul, Veena; Choudhary, Veena; Elasri, Mohamed O.; Morgan, Sarah E.

    2016-01-01

    Naturally occurring antimicrobial peptides (AMPs) display the ability to eliminate a wide variety of bacteria, without toxicity to the host eukaryotic cells. Synthetic polymers containing moieties mimicking lysine and arginine components found in AMPs have been reported to show effectiveness against specific bacteria, with the mechanism of activity purported to depend on the nature of the amino acid mimic. In an attempt to incorporate the antimicrobial activity of both amino acids into a single water-soluble copolymer, a series of copolymers containing lysine mimicking aminopropyl methacrylamide (APMA) and arginine mimicking guanadinopropyl methacrylamide (GPMA) were prepared via aqueous RAFT polymerization. Copolymers were prepared with varying ratios of the comonomers, with degree of polymerization of 35–40 and narrow molecular weight distribution to simulate naturally occurring AMPs. Antimicrobial activity was determined against Gram-negative and Gram-positive bacteria under conditions with varying salt concentration. Toxicity to mammalian cells was assessed by hemolysis of red blood cells and MTT assays of MCF-7 cells. Antimicrobial activity was observed for APMA homopolymer and copolymers with low concentrations of GPMA against all bacteria tested, with low toxicity toward mammalian cells. PMID:26558609

  18. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers.

    PubMed

    Wang, Jun; Bonnesen, Peter V; Rangel, E; Vallejo, E; Sanchez-Castillo, Ariadna; James Cleaves Ii, H; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-04

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N(9)-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.

  19. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sorption of small molecules in polymeric media

    NASA Astrophysics Data System (ADS)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  1. Improved Structural Design and CO 2 Capture of Porous Hydroxy-Rich Polymeric Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidder, Michelle K.; Earl, Lyndsey D.; de Almeida, Valmor F.

    2016-04-16

    Polymeric organic frameworks (POFs) are tunable and robust porous materials with potential applications for gas capture, catalysis, and separations technologies. A series of new porous POFs have been synthesized from the reaction of phloroglucinol or resorcinol derivatives with aryl aldehyde precursors. The monomers have various molecular shapes including linear, bent, trigonal, and tetrahedral geometries. Depending on the size and geometric matching of the monomers, the polymers are dominantly microporous with some mesoporous character or they are non-porous. In addition to standard spectroscopic and surface characterization, the materials were screened as adsorbents for carbon dioxide capture at low pressure (0-1 bar).more » The best performing material (POF 1D) has a CO 2 capture capacity of 9.0 wt. % (2.04 mmol g -1) at 298 K and 1 bar which is comparable to other polymeric organic frameworks. Isosteric heats of adsorption for POF 1A, POF 2A, and POF 2B were found to be dependent on the weight percent of CO 2 adsorbed: this suggests there are both chemisorptive and physisorptive components of CO 2 capture by the POFs.« less

  2. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches.

    PubMed

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-12-15

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  3. Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar

    Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).

  4. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  5. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  6. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  7. Incineration, pyrolysis and gasification of electronic waste

    NASA Astrophysics Data System (ADS)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  8. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation.

    PubMed

    Smink, Alexandra M; de Vos, Paul

    2018-05-19

    Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival. Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current therapeutic strategies to modulate ECM components to improve islet engraftment. Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival. However, the same experiments show that caution should be taken as some ECM components may negatively impact islet function and engraftment. ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components and strategies is warranted.

  9. Development of materials from copolyacrylates via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Jones, Melody Mersadez

    Homopolymerization of 2-(trimethylsilyl)ethyl acrylate, 3,3-dimethylbutyl acrylate, methyl acrylate, and methyl methacrylate using atom transfer radical polymerization (ATRP) is reported. In addition, polymethyl acrylate and polymethyl methacrylate were used as macroinitiators for diblock copolymerizations (via ATRP) with various monomers to yield pMA-b-TMSEA, pMMA-b-TMSEA, and pMMA-b-GMA copolymers; these results are also reported. Controlled polymerizations were performed using the CuBr/hexamethyltriethylenetetramine catalyst system in combination with methyl bromopropionate as the initiator. The protected acid block copolymers pMA-b-TMSEA and pMMA-b-TMSEA were deprotected to afford acrylic and meth acrylic acid block copolymers pMA-b-AA and pMMA-b-AA. Methylene chloride was used to micellize the amphiphilic copolymers in order to obtain the critical micelle concentration of the polymers (CMCpMA-b-AA = 10 mg/mL, CMCpMMA-b-AA = 0.4 mg/mL). The majority of polymerization were done in bulk; however, since poly(trimethylsilyl)ethyl acrylate displayed polydispersity (Mn = 11459, PDI = 1.437) on the high end of the acceptable range, various solvents were utilized to decrease the polymerization rate and afford low polydispersity materials. This differs from the ATRP of polymethyl acrylate or polymethyl methacrylate using this catalytic system, which do not require the addition of a solvent to obtain well-defined polymers. Also, for this polymerization system three different temperatures (60°C, 90°C, and 120°C) were used, in order to reduce the concentration of radicals and the contribution of termination. The homopolymers and protected acid block copolymers were characterized by gel permeation chromatography to determine the relative molecular weights. Differential scanning calorimetry was used to obtain the glass transition temperature of all polymers. Characterization using NMR (1H and 13C) and FTIR confirmed homopolymerization of 3,3-dimethylbutyl acrylate, 2-(trimethylsilyl)ethyl acrylate and complete cleavage of the (trimethylsilyl)ethyl group from the protected acid copolymers.

  10. Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems.

    PubMed

    Silva, Ana F; Carvalho, Gilda; Soares, Renata; Coelho, Ana V; Barreto Crespo, M Teresa

    2012-08-01

    Extracellular polymeric substances (EPS) are keys in biomass aggregation and settleability in wastewater treatment systems. In membrane bioreactors (MBR), EPS are an important factor as they are considered to be largely responsible for membrane fouling. Proteins were shown to be the major component of EPS produced by activated sludge and to be correlated with the properties of the sludge, like settling, hydrophobicity and cell aggregation. Previous EPS proteomic studies of activated sludge revealed several problems, like the interference of other EPS molecules in protein analysis. In this study, a successful strategy was outlined to identify the proteins from soluble and bound EPS extracted from activated sludge of a lab-scale MBR. EPS samples were first subjected to pre-concentration through lyophilisation, centrifugal ultrafiltration or concentration with a dialysis membrane coated by a highly absorbent powder of polyacrylate-polyalcohol, preceded or not by a dialysis step. The highest protein concentration factors were achieved with the highly absorbent powder method without previous dialysis step. Four protein precipitation methods were then tested: acetone, trichloroacetic acid (TCA), perchloric acid and a commercial kit. Protein profiles were compared in 4-12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis gels. Both acetone and TCA should be applied for the highest coverage for soluble EPS proteins, whereas TCA was the best method for bound EPS proteins. All visible bands of selected profiles were subjected to mass spectrometry analysis. A high number of proteins (25-32 for soluble EPS and 17 for bound EPS) were identified. As a conclusion of this study, a workflow is proposed for the successful proteome characterisation of soluble and bound EPS from activated sludge samples.

  11. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip.

    PubMed

    Jeong, Sangdo; Lim, Juhun; Kim, Mi-Young; Yeom, JiHye; Cho, Hyunmin; Lee, Hyunjung; Shin, Yong-Beom; Lee, Jong-Hyun

    2018-01-29

    Polymerase chain reaction (PCR) has been widely used for major definite diagnostic tool, but very limited its place used only indoor such as hospital or diagnosis lab. For the rapid on-site detection of pathogen in an outdoor environment, a low-power cordless polymerase chain reaction (PCR) thermal cycler is crucial module. At this point of view, we proposed a low-power PCR thermal cycler that could be operated in an outdoor anywhere. The disposable PCR chip was made of a polymeric (PI/PET) film to reduce the thermal mass. A dual arrangement of the Pt heaters, which were positioned on the top and bottom of the PCR chip, improved the temperature uniformity. The temperature sensor, which was made of the same material as the heater, utilized the temperature dependence of the Pt resistor to ensure simple fabrication of the temperature sensor. Cooling the PCR chip using dual blower fans enabled thermal cycling to operate with a lower power than that of a Peltier element with a high power consumption. The PCR components were electrically connected to a control module that could be operated with a Li-ion battery (12 V), and the PCR conditions (temperature, time, cycle, etc.) were inputted on a touch screen. For 30 PCR cycles, the accumulated power consumption of heating and cooling was 7.3 Wh, which is easily available from a compact battery. Escherichia coli genomic DNA (510 bp) was amplified using the proposed PCR thermal cycler and the disposable PCR chip. A similar DNA amplification capability was confirmed using the proposed portable and low-power thermal cycler compared with a conventional thermal cycler.

  12. Incineration and pyrolysis vs. steam gasification of electronic waste.

    PubMed

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  14. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level

    PubMed Central

    Brown, Ashley C.; Barker, Thomas H.

    2013-01-01

    Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097

  15. Dynamic contact guidance of migrating cells

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John

    2014-03-01

    We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.

  16. Rotor vibration reduction with polymeric sectors

    NASA Astrophysics Data System (ADS)

    Dutt, J. K.; Toi, T.

    2003-05-01

    This work has been undertaken principally with an idea to improving the dynamic performance of rotor-shaft systems, which often suffer from two major problems (a) resonance and (b) loss of stability, resulting in excessive vibration of such systems. Polymeric material in the form of sectors has been considered in this work as bearing supports. Polymeric material has been considered in this work as both stiffness and loss factor of such materials varies with the frequency of excitation. Stiffness and loss factor have been found out for the proposed support system comprising of polymeric sectors. Depending upon the frequency of excitation the system matrix, in this case, changes and dynamic performance of the rotor-shaft system also changes accordingly. Here in this work avoidance of resonance and application of optimum damping in the support have been investigated by finding out the optimum dimension, i.e., the optimum thickness and optimum length of the sectors. It has been theoretically found that use of such sectors reduces the rotor unbalanced response, increases the stability limit speed for simple rotor-shaft systems and thus improves the dynamic characteristics. Parameters of the system have been presented in terms of non-dimensional quantities. Many examples have been presented in support of the conclusion. The life of such supports, particularly in the presence of chemicals and other reagents has not been investigated.

  17. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  18. LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis[C][W

    PubMed Central

    Zhao, Qiao; Nakashima, Jin; Chen, Fang; Yin, Yanbin; Fu, Chunxiang; Yun, Jianfei; Shao, Hui; Wang, Xiaoqiang; Wang, Zeng-Yu; Dixon, Richard A.

    2013-01-01

    The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants. PMID:24143805

  19. Chemical oxidative and solid state synthesis of low molecular weight polymers for organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar

    2018-03-01

    Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.

  20. Heterogeneous Initiators for Sustainable Polymerization Processes

    NASA Astrophysics Data System (ADS)

    Jones, Matthew D.

    One of the main challenges facing the twenty-first century is the need to produce chemicals from renewable resources. The dwindling supplies of fossil fuels coupled with instability in supply mean that technologies that were once deemed too expensive are now becoming more economically viable options. The majority of man-made polymers are derived from crude oil based monomers. However, in recent years a tremendous effort has been channeled into the preparation of polymers from sustainable chemicals. Two classic examples are polylactide (derived from corn starch) and polycarbonates (prepared directly from CO2). This chapter serves as an introduction into these two polymers and reviews the literature associated with heterogeneous catalyst for the polymerizations, concentrating on approaches describing the heterogenization of homogeneous catalysts.

  1. Laser polymerization-based novel lift-off technique

    NASA Astrophysics Data System (ADS)

    Bhuian, B.; Winfield, R. J.; Crean, G. M.

    2009-03-01

    The fabrication of microstructures by two-photon polymerization has been widely reported as a means of directly writing three-dimensional nanoscale structures. In the majority of cases a single point serial writing technique is used to form a polymer model. Single layer writing can also be used to fabricate two-dimensional patterns and we report an extension of this capability by using two-photon polymerization to form a template that can be used as a sacrificial layer for a novel lift-off process. A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to write 2D grid patterns with pitches of 0.8 and 1.0 μm in a urethane acrylate resin that was spun on to a lift-off base layer. This was overcoated with gold and the grid lifted away to leave an array of gold islands. The optical transmission properties of the gold arrays were measured and found to be in agreement with a rigorous coupled-wave analysis simulation.

  2. The effect of phase change materials on the frontal polymerization of a triacrylate

    NASA Astrophysics Data System (ADS)

    Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry

    2010-06-01

    The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.

  3. Myelin basic protein is a glial microtubule-associated protein -- characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment.

    PubMed

    Zienowicz, Agata; Bamm, Vladimir V; Vassall, Kenrick A; Harauz, George

    2015-05-22

    The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBP's role as a microtubule-assembly protein (MAP). Using light scattering and sedimentation assays we found that pseudo-phosphorylation of Ser54 (murine 18.5-kDa sequence) significantly enhanced the rate but not the final degree of polymerization. This residue lies within a short KPGSG motif identical to one in tau, a ubiquitous MAP important in neuronal microtubule assembly. Using polypeptide constructs, each comprising one of three major amphipathic α-helical molecular recognition fragments of 18.5-kDa MBP, we identified the N-terminal α1-peptide as sufficient to cause microtubule polymerization, the rate of which was significantly enhanced in the presence of dodecylphosphocholine (DPC) micelles to mimic a lipidic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Zinc Chloride Influence on The Resins Furan Polymerization to Foundry Moulds

    NASA Astrophysics Data System (ADS)

    de Miranda, Leila Figueiredo; Vale, Marcus; Júnior, Antonio Hortêncio Munhoz; Masson, Terezinha Jocelen; de Andrade e Silva, Leonardo Gondin

    The resins used in foundry molds developed for the automotive market has led to major changes in the manufacturing method of foundry molds. The polymerization of these resins and a subsequent curing are used to connect to the foundry sand in a rigid structure capable of receiving and holding liquid metal. It is essential to know the process of polymerization of these resins and their impact on the final properties of the obtained molds, especially in the mechanical characteristics. In this work it was studied the influence of the addition of zinc chloride (in solution) in the sand-furan resin mixture, with the aim of reducing the relation between the extraction time intervals and time bench life. The results showed that addition of percentages of the order of 5.0wt% to 7.5wt% zinc chloride solution reduces this ratio between 10% and 17%; this means that the casting model may be extracted from the sand mass in a smaller time interval increasing the productivity of manufacturing molds. It was also observed that there was also an increase of 9% to 18% in bench life intervals.

  5. Investigation of the dynamic stress–strain response of compressible polymeric foam using a non-parametric analysis

    DOE PAGES

    Koohbor, Behrad; Kidane, Addis; Lu, Wei -Yang; ...

    2016-01-25

    Dynamic stress–strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions,more » the inertia stresses at each point in the specimen are determined through a non-parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. Furthermore, the process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified.« less

  6. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate

    PubMed Central

    Bobadilla Fazzini, Roberto A.; Levican, Gloria

    2010-01-01

    The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-3063-8) contains supplementary material, which is available to authorized users. PMID:21191788

  7. Nanonization strategies for poorly water-soluble drugs.

    PubMed

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  8. Printed Biopolymer-Based Electro-Optic Device Components

    DTIC Science & Technology

    2013-07-01

    devices and fabricated e-beam lithography-based master molds. Printed micro and nanostructures using a newly developed spin-on nanoprinting (SNAP...polymeric materials. Among the natural biopolymers , deoxyribonucleic acid (DNA) is an attractive material which can be used to make electronic and...photonic devices [2, 3]. If patterned on the micro and nanoscale using a soft lithography technique, high quality biodegradable optical devices can be

  9. Electrical and Environmental Studies of Conduction Polymers.

    DTIC Science & Technology

    1986-01-17

    Carbonate), 0.25M Tetrabutylammonium hexafluorophosphate (Bu4 NPF 6 )/THF, and 0.25M Lithium Trifluoromethyl sulfonate (LiCF3 SO 3)frHF. Lithium ...processible polymeric component Other anions commonly used in synthesizing polypyrrole, namely, tetrafluoroborate, hexafluorophosphate rifluoromethyl...are perchlorate (CI0 4 "), tetrafluoroborate (BF 4 "), trifluoromethyl sulfonate (CF3 SO"), hexafluorophosphate (PF6 ") and p-toluene sulfonate (PTS

  10. Method for Making High Molecular Weight, Extended pi-Conjugated Polymers

    DTIC Science & Technology

    2001-05-04

    derivatized poly(terephthalates)s as coatings for electronics components, and as construction materials for field- effect transistors, both applications...mannose, dulose, idose, galactose and talose; ketoses such as erythrulose, ribulose, xylulose, psicose, fructose, sorbose, tagatose ; di-, tri-, 12...show that Sc(OTr)3 alone was not effective as a 15 polymerization catalyst. When the organic salt was introduced, Sc(OTr)3 became marginally

  11. Resolution of molecular weight distributions in slightly pyrolyzed cellulose using the weibull function

    Treesearch

    A. Broido; Hsiukang Yow

    1977-01-01

    Even before weight loss in the low-temperature pyrolysis of cellulose becomes significant, the average degree of polymerization of the partially pyrolyzed samples drops sharply. The gel permeation chromatograms of nitrated derivatives of the samples can be described in terms of a small number of mixed size populations—each component fitted within reasonable limits by a...

  12. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  13. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    DTIC Science & Technology

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  14. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization

    PubMed Central

    Haq, Imran; Saleh, Aarash D.; Dron, Louis; Regan-Mochrie, Gemma L.; Motamedi-Shad, Neda; Hurst, John R.; Gooptu, Bibek

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate—and therefore polymerize—more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the “breach” region and “shutter” region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care. PMID:26091018

  15. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization1

    PubMed Central

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2016-01-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. PMID:26676255

  16. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    PubMed

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Identifying the dynamics of actin and tubulin polymerization in iPSCs and in iPSC-derived neurons

    PubMed Central

    Magliocca, Valentina; Petrini, Stefania; Franchin, Tiziana; Borghi, Rossella; Niceforo, Alessia; Abbaszadeh, Zeinab; Bertini, Enrico; Compagnucci, Claudia

    2017-01-01

    The development of the nervous system requires cytoskeleton-mediated processes coordinating self-renewal, migration, and differentiation of neurons. It is not surprising that many neurodevelopmental problems and neurodegenerative disorders are caused by deficiencies in cytoskeleton-related genes. For this reason, we focus on the cytoskeletal dynamics in proliferating iPSCs and in iPSC-derived neurons to better characterize the underpinnings of cytoskeletal organization looking at actin and tubulin repolymerization studies using the cell permeable probes SiR-Actin and SiR-Tubulin. During neurogenesis, each neuron extends an axon in a complex and changing environment to reach its final target. The dynamic behavior of the growth cone and its capacity to respond to multiple spatial information allows it to find its correct target. We decided to characterize various parameters of the actin filaments and microtubules. Our results suggest that a rapid re-organization of the cytoskeleton occurs 45 minutes after treatments with de-polymerizing agents in iPSCs and 60 minutes in iPSC-derived neurons in both actin filaments and microtubules. The quantitative data confirm that the actin filaments have a primary role in the re-organization of the cytoskeleton soon after de-polymerization, while microtubules have a major function following cytoskeletal stabilization. In conclusion, we investigate the possibility that de-polymerization of the actin filaments may have an impact on microtubules organization and that de-polymerization of the microtubules may affect the stability of the actin filaments. Our results suggest that a reciprocal influence of the actin filaments occurs over the microtubules and vice versa in both in iPSCs and iPSC-derived neurons. PMID:29340040

  18. The Use of Polymerized Genipin for the Stabilization of the Collagen Structure of Animal Hides

    USDA-ARS?s Scientific Manuscript database

    Animal hides are the major byproduct of meat industry and the collagen fibers is the main constituent. Crosslinkers play a key role in stabilizing the collagen structure for useful applications. Genipin is widely used as an ideal biological protein crosslinking agent due to its low toxicity compare...

  19. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.

    PubMed

    Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2017-06-01

    The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.

  20. Physiological and toxicological aspects of smoke produced during the combustion of polymeric materials.

    PubMed Central

    Einhorn, I N

    1975-01-01

    Normally one expects that flame contact is the major cause of injury and death during fires. Analysis of the factors involved in numerous fires has revealed that most deaths were not due to flame contact, but were a consequence of the production of carbon monoxide, nitrogen oxides, and other combustion products, such as aldehydes, low molecular weight alcohols, hydrogen cyanide, and other noxious species. The major emphasis within the scope of this paper relates to the physiological and toxicological aspects of smoke produced during the combustion of materials. Special emphasis is directed toward laboratory procedures which have been developed to determine the qualitative and quantitative analysis of smoke, factors pertaining to smoke development, and to measure the response of laboratory animals exposed to smoke. The effects that fire retardants, incorporated into polymeric materials as a means of improving flammability characteristics, may have on smoke development, the mechanism of polymer degradation, and on the survival response of laboratory animals are also considered. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. PMID:170077

  1. In Vitro Cytocompatibility of One- and Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites

    PubMed Central

    Farshid, Behzad; Lalwani, Gaurav; Sitharaman, Balaji

    2015-01-01

    This study investigates the in vitro cytocompatibility of one- and two-dimensional (1-D and 2-D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single- and multi- walled carbon nanotubes, single- and multi- walled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02–0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products between 1X-100X dilutions were examined for effects on viability and attachment employing two cell lines: NIH3T3 fibroblasts and MC3T3 pre-osteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78–100%), high cellular attachment (40–55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to the unreacted components, crosslinked nanocomposites and their degradation products. The initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. PMID:25367032

  2. Materials for diabetes therapeutics.

    PubMed

    Bratlie, Kaitlin M; York, Roger L; Invernale, Michael A; Langer, Robert; Anderson, Daniel G

    2012-05-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies-(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells

    PubMed Central

    Nández, Ramiro; Balkin, Daniel M; Messa, Mirko; Liang, Liang; Paradise, Summer; Czapla, Heather; Hein, Marco Y; Duncan, James S; Mann, Matthias; De Camilli, Pietro

    2014-01-01

    Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI: http://dx.doi.org/10.7554/eLife.02975.001 PMID:25107275

  4. Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications

    PubMed Central

    Kielak, Anna M.; Castellane, Tereza C. L.; Campanharo, Joao C.; Colnago, Luiz A.; Costa, Ohana Y. A.; Corradi da Silva, Maria L.; van Veen, Johannes A.; Lemos, Eliana G. M.; Kuramae, Eiko E.

    2017-01-01

    Acidobacteria have been described as one of the most abundant and ubiquitous bacterial phyla in soil. However, factors contributing to this ecological success are not well elucidated mainly due to difficulties in bacterial isolation. Acidobacteria may be able to survive for long periods in soil due to protection provided by secreted extracellular polymeric substances that include exopolysaccharides (EPSs). Here we present the first study to characterize EPSs derived from two strains of Acidobacteria from subdivision 1 belonging to Granulicella sp. EPS are unique heteropolysaccharides containing mannose, glucose, galactose and xylose as major components, and are modified with carboxyl and methoxyl functional groups that we characterized by Fourier transform infrared (FTIR) spectroscopy. Both EPS compounds we identified can efficiently emulsify various oils (sunflower seed, diesel, and liquid paraffin) and hydrocarbons (toluene and hexane). Moreover, the emulsions are more thermostable over time than those of commercialized xanthan. Acidobacterial EPS can now be explored as a source of biopolymers that may be attractive and valuable for industrial applications due to their natural origin, sustainability, biodegradability and low toxicity. PMID:28117455

  5. Progress in dimethacrylate-based dental composite technology and curing efficiency.

    PubMed

    Leprince, Julian G; Palin, William M; Hadis, Mohammed A; Devaux, Jacques; Leloup, Gaetane

    2013-02-01

    This work aims to review the key factors affecting the polymerization efficiency of light-activated resin-based composites. The different properties and methods used to evaluate polymerization efficiency will also be critically appraised with focus on the developments in dental photopolymer technology and how recent advances have attempted to improve the shortcomings of contemporary resin composites. Apart from the classical literature on the subject, the review focused in particular on papers published since 2009. The literature research was performed in Scopus with the terms "dental resin OR dimethacrylate". The list was screened and all papers relevant to the objectives of this work were included. Though new monomer technologies have been developed and some of them already introduced to the dental market, dimethacrylate-based composites still currently represent the vast majority of commercially available materials for direct restoration. The photopolymerization of resin-based composites has been the subject of numerous publications, which have highlighted the major impact of the setting process on material properties and quality of the final restoration. Many factors affect the polymerization efficiency, be they intrinsic; photoinitiator type and concentration, viscosity (co-monomer composition and ratio, filler content) and optical properties, or extrinsic; light type and spectrum, irradiation parameters (radiant energy, time and irradiance), curing modes, temperature and light guide tip positioning. : This review further highlights the apparent need for a more informative approach by manufacturers to relay appropriate information in order for dentists to optimize material properties of resin composites used in daily practice. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. QTL analysis and candidate gene mapping for the polyphenol content in cider apple.

    PubMed

    Verdu, Cindy F; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, François

    2014-01-01

    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed.

  7. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  8. Evaluations of candidate encapsulation designs and materials for low-cost silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.

    1978-01-01

    Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.

  9. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls.

    PubMed

    Bindon, Keren A; Kennedy, James A

    2011-03-23

    Proanthocyanidins were isolated from the skins of Cabernet Sauvignon grapes at different stages of grape development in order to study the effect of proanthocyanidin modification on the interaction with grape cell wall material. After veraison, the degree of proanthocyanidin polymerization increased, and thereafter was variable between 24 and 33 subunits as ripening progressed. Affinity of skin cell wall material for proanthocyanidin decreased with proanthocyanidin ripeness following veraison. A significant negative relationship (R2=0.93) was found for average proanthocyanidin molecular mass and the proportion of high molecular mass proanthocyanidin adsorbed by skin cell wall material. This indicated that as proanthocyanidin polymerization increased, the affinity of a component of high molecular mass proanthocyanidins for skin cell wall material declined. This phenomenon was only associated with skin proanthocyanidins from colored grapes, as high molecular mass proanthocyanidins of equivalent subunit composition from colorless mutant Cabernet Sauvignon grapes had a higher affinity for skin cell wall material.

  10. Polymeric nanoparticles: A study on the preparation variables and characterization methods.

    PubMed

    Crucho, Carina I C; Barros, Maria Teresa

    2017-11-01

    Since the emergence of Nanotechnology in the past decades, the development and design of nanomaterials has become an important field of research. An emerging component in this field is nanomedicine, wherein nanoscale materials are being developed for use as imaging agents or for drug delivery applications. Much work is currently focused in the preparation of well-defined nanomaterials in terms of size and shape. These factors play a significantly role in the nanomaterial behavior in vivo. In this context, this review focuses on the toolbox of available methods for the preparation of polymeric nanoparticles. We highlight some recent examples from the literature that demonstrate the influence of the preparation method on the physicochemical characteristics of the nanoparticles. Additionally, in the second part, the characterization methods for this type of nanoparticles are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of aging conditions on the quality of red Sangiovese wine.

    PubMed

    Castellari, M; Piermattei, B; Arfelli, G; Amati, A

    2001-08-01

    A red Sangiovese wine was stored in barrels of different woods (oak and chestnut) and types (225-L "barriques" and 1000-L barrels) at 12 and 22 degrees C for 320 days to evaluate the effects of different aging conditions on wine quality. Chestnut barrels led to wines richer in phenolics, and which were more tannic, colored, and fruity. Oak barrels gave wines with more monomeric phenolics, but less astringent, with higher vanilla smell, and more harmonious. The type of barrel could be used as a parameter to regulate the extraction of wood components and the polymerization of monomeric phenolics. Storage at 22 degrees C favored the formation of polymerized phenolics and the increase of color density and color hue. The temperature produced less pronounced effects on aroma and taste, even if wines stored at 12 degrees C showed more harmony.

  12. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on theirmore » molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.« less

  13. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight.

    PubMed

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng

    2003-11-15

    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.

  14. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  15. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators

    PubMed Central

    Telitel, Sofia; Dumur, Frédéric; Faury, Thomas; Graff, Bernadette; Tehfe, Mohamad-Ali; Fouassier, Jean-Pierre

    2013-01-01

    Summary Eleven di- and trifunctional compounds based on a core-pyrene π structure (Co_Py) were synthesized and investigated for the formation of free radicals. The application of two- and three-component photoinitiating systems (different Co_Pys with the addition of iodonium or sulfonium salts, alkyl halide or amine) was investigated in detail for cationic and radical photopolymerization reactions under near-UV–vis light. The proposed compounds can behave as new photocatalysts. Successful results in terms of rates of polymerization and final conversions were obtained. The strong MO coupling between the six different cores and the pyrene moiety was studied by DFT calculations. The different chemical intermediates are characterized by ESR and laser flash photolysis experiments. The mechanisms involved in the initiation step are discussed, and relationships between the core structure, the Co_Py absorption property, and the polymerization ability are tentatively proposed. PMID:23766803

  16. Ambient cure polyimide foams. [thermal resistant foams

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R.; Hamermesh, C. L. (Inventor)

    1978-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, (pyromellitic dianhydride) with an aromatic polyisocyanate, (polymethylene polyphenylisocyanate), in the presence of an inorganic acid and furfuryl alcohol. Usable acids include dilute sulfuric acid, dilute nitric acid, hydrochloric acid, polyphosphoric acid, and phosphoric acid, with the latter being preferred. The dianhydride and the isocyanate in about equimolar proportions constitute about 50% of the reaction mixture, the rest being made up with the acid and the alcohol in a ratio of about 1:10. An exothermic reaction between the acid and the alcohol provides the heat necessary for the other components to polymerize without recourse to external heat sources. The mixture can be sprayed on any surface to form polymeric foam in locations where the application of heat is not practical or possible, for instance, between walls or on mine tunnel surfaces.

  17. INTERRELATION BETWEEN ACTIVATION AND POLYMERIZATION IN GRAMICIDIN S BIOSYNTHESIS*

    PubMed Central

    Kleinkauf, Horst; Gevers, Wieland; Lipmann, Fritz

    1969-01-01

    The nucleic acid-independent biosynthesis of the peptide antibiotic gramicidin S results from the interaction of an enzyme bearing phenylalanine in activated form with a polyenzyme system charged with the other four component amino acids. After reaction with ATP, magnesium, and any or all of its amino acid substrates, the polyenzyme system (mol wt 280,000) yields complexes containing AMP and the respective amino acids in the proportion of 1 to 2. Similar complexes are formed by another enzyme (mol wt 100,000) on incubation with ATP, magnesium, and L- or D-phenylalanine. The amino acids are probably bound as aminoacyl adenylates and then transferred to another function on the enzyme. Initiation of polymerization is achieved by combination of the two complexes. No ATP is needed for completion of synthesis, and free intermediates are not released. Enzyme organization and specificity are responsible for the ordering of the amino acid sequence. PMID:5253659

  18. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview.

    PubMed

    Lofrano, Giusy; Carotenuto, Maurizio; Libralato, Giovanni; Domingos, Rute F; Markus, Arjen; Dini, Luciana; Gautam, Ravindra Kumar; Baldantoni, Daniela; Rossi, Marco; Sharma, Sanjay K; Chattopadhyaya, Mahesh Chandra; Giugni, Maurizio; Meric, Sureyya

    2016-04-01

    Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mechanical instabilities in periodic porous elasto-plastic solids.

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Bertoldi, Katia; Chang, Sehoon; Jang, Ji-Hyun; Young, Seth; Thomas, Edwin; Boyce, Mary; Tsukruk, Vladimir

    2009-03-01

    We describe the transformation of the periodic microporous structures fabricated by interference lithography followed by their freezing below glass transition. Periodic porous microstructures subjected to internal compressive stresses can undergo sudden structural transformation at a critical strain. The pattern transformation of collapsed pores is caused by the stresses originated during the polymerization of acrylic acid (rubbery component) inside of cylindrical pores and the subsequent solvent evaporation in the organized microporous structure. The results of a non-linear numerical investigation confirm the critical role of the bifurcation of the periodic solid under compressive stresses. In striking contrast to the earlier observations of elastic instabilities in porous elastomeric solids, the elastic-plastic nature of the crosslinked periodic microstructure studied here provides for the ability to lock in the transformed pattern with complete relaxation of the internal stresses. By confining the polymerization of acrylic acid to localized porous areas complex microscopic periodic structures are obtained.

  20. Optical assembly of microsnap-fits fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Köhler, Jannis; Kutlu, Yunus; Zyla, Gordon; Ksouri, Sarah I.; Esen, Cemal; Gurevich, Evgeny L.; Ostendorf, Andreas

    2017-10-01

    To respond to current demands of nano- and microtechnologies, e.g., miniaturization and integration, different bottom-up strategies have been developed. These strategies are based on picking, placing, and assembly of multiple components to produce microsystems with desired features. This paper covers the fabrication of arbitrary-shaped microcomponents by two-photon polymerization and the trapping, moving, and aligning of these structures by the use of a holographic optical tweezer. The main focus is on the assembly technique based on a cantilever microsnap-fit. More precisely, mechanical properties are characterized by optical forces and a suitable geometry of the snap-fit is designed. As a result of these investigations, a fast and simple assembly technique is developed. Furthermore, disassembly is provided by an optimized design. These findings suggest that the microsnap-fit is suitable for the assembly of miniaturized systems and could broaden the application opportunities of bottom-up strategies.

  1. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  2. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  3. Method of making thermally removable polymeric encapsulants

    DOEpatents

    Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.

    2001-01-01

    A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

  4. Studies with Laser Cooled Atoms and Single Molecules

    DTIC Science & Technology

    2007-09-01

    between soda lime glass slides. The bond-setting time can be tailored to allow time for precision optical alignment. We also extended our previous single...This method achieves 100% successful bonding rates between soda lime glass slides. The bond-setting time and be can tailored to allow time for...simple method to bond optical components using silica nanoparticle sol-gel chemistry. The silica nanoparticles polymerize into highly branched

  5. Absorbable Gels for Modulated Bioavailability of Vaccines. Phase I

    DTIC Science & Technology

    1996-11-01

    most of these devices were designed for repairing soft tissues , interest in using such transient devices, with or without biologically active components...potential applications of the in-situ-forming implants, and the more recent gel-formers, have been described to entail their use for tissue regeneration and...In Situ-Forming Biodegradable Polymeric Implants for Tissue Regeneration . Polym. Prepr., 35(2), 437 (1994). Edelman, R. et al, Immunization of

  6. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  7. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  8. Stimuli-Responsive Polymeric Nanoparticles.

    PubMed

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system.

    PubMed

    Isogai, Tadamoto; Danuser, Gaudenz

    2018-05-26

    Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  10. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.

    PubMed

    Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-12-22

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.

  11. Components of released liquid from ultrasonic waste activated sludge disintegration.

    PubMed

    Wang, Fen; Lu, Shan; Ji, Min

    2006-05-01

    Ultrasound can be applied as a pretreatment to disintegrate sludge. In this paper, by observing the solution concentration of polysaccharide, protein, DNA, Ca and Mg before and after disintegration, the main components in the released liquid are analyzed. It has been found that the predominant component of the released liquid in this research is protein. Ultrasound can destroy the extracellular polymeric substances (EPS), which is important to the sludge flocs structure. Ca2+ and Mg2+, which play a key role in binding the EPS are released into the aqueous phase. As a result, the sludge flocs are loosened. Under the effect of the hydraulic shear force, the sludge is disintegrated. Then the hydraulic shear forces destroy the cell walls, the substances inside the cells are released into the aqueous phase.

  12. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE PAGES

    Wang, Jun; Bonnesen, Peter V; Rangel, E.; ...

    2016-01-04

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  13. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Bonnesen, Peter V; Rangel, E.

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  14. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.

    PubMed

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-06-15

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and its descendants lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of α-smooth muscle actin (αSMA) but not of collagen I α1 ( col1a1 ). Whereas loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3-dependent actin polymerization nor cofilin-dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction, and TGFβ-induced actin polymerization correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Influence of CuO and ZnO addition on the multicomponent phosphate glasses: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena; Wacławska, Irena; Sułowska, Justyna

    2016-06-01

    The spectra of phosphate-silicate glasses from the P2O5-SiO2-K2O-MgO-CaO system modified with the addition of CuO or ZnO have been studied by means of FTIR, Raman and 31P MAS NMR spectroscopy. All glasses were synthesized by the conventional melt-quenching technique and their homogeneous chemical composition was controlled and confirmed. By using the aforementioned research techniques, the presence of structural units with various degrees of polymerization was shown in the structure of analyzed phosphate-silicate glasses: Q3, Q2, Q1 and Q0. It was found that an increase in the content of CuO or ZnO in the composition of analyzed glasses, which are introduced at the expense of decreasing amounts of CaO and MgO, has a different influence on the phospho-oxygen network. It was shown that copper ions cause its gradual polymerization, while zinc ions cause its depolymerization. At the same time, polymerization of the silico-oxygen subnetwork was found. Additionally, in the case of glasses containing increasing amounts of ZnO, a change of the role of zinc ions in the vitreous matrix was confirmed (from the modifier to a structure-forming component).

  16. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus.

    PubMed

    Tartaglia, Lawrence J; Shain, Daniel H

    2008-11-01

    Glacier ice worms, Mesenchytraeus solifugus and related species, are the only known annelids that survive obligately in glacier ice and snow. One fundamental component of cold temperature adaptation is the ability to polymerize tubulin, which typically depolymerizes at low physiological temperatures (e.g., <10 degrees C) in most temperate species. In this study, we isolated two alpha-tubulin (Msalpha1, Msalpha2) and two beta-tubulin (Msbeta1, Msbeta2) subunits from an ice worm cDNA library, and compared their predicted amino acid sequences with homologues from other cold-adapted organisms (e.g., Antarctic fish, ciliate) in an effort to identify species-specific amino acid substitutions that contribute to cold temperature-dependent tubulin polymerization. Our comparisons and predicted protein structures suggest that ice worm-specific amino acid substitutions stabilize lateral contact associations, particularly between beta-tubulin protofilaments, but these substitutions occur at different positions in comparison with other cold-adapted tubulins. The ice worm tubulin gene family appears relatively small, comprising one primary alpha- and one primary beta-tubulin monomers, though minor isoforms and pseudogenes were identified. Our analyses suggest that variation occurs in the strategies (i.e., species-specific amino acid substitutions, gene number) by which cold-adapted taxa have evolved the ability to polymerize tubulin at low physiological temperatures.

  17. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis.

    PubMed

    Cardozo, Viviane F; Lancheros, Cesar A C; Narciso, Adélia M; Valereto, Elaine C S; Kobayashi, Renata K T; Seabra, Amedea B; Nakazato, Gerson

    2014-10-01

    Bovine mastitis is a serious veterinary disease that causes great loss to the dairy industry worldwide. It is a major infectious disease and is difficult to manage and control. Furthermore, emerging multidrug resistant bacteria that cause mastitis have complicated such management. The free radical nitric oxide (NO) is a potent antimicrobial agent. Thus, the aims of this study were to prepare and evaluate the antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus (MBSA) and Escherichia coli (MBEC), which were isolated from bovine mastitis. Fifteen MBSA isolates and fifteen MBEC were collected from subclinical and clinical bovine mastitis. Biocompatible polymeric particles composed of alginate/chitosan or chitosan/sodium tripolyphosphate (TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of thiol groups of MSA-containing particles formed S-nitroso-MSA particles, which are NO donors. The NO release kinetics from the S-nitroso-MSA particles showed sustained and controlled NO release over several hours. The antibacterial activity of NO-releasing particles was evaluated by incubating the particles with an MBSA multi-resistant strain, which is responsible for bovine mastitis. The minimum inhibitory concentration for S-nitroso-MSA-alginate/chitosan particles against MBSA ranged from 125 μg/mL to 250 μg/mL. The results indicate that NO-releasing polymeric particles are an interesting approach to combating bacteria resistance in bovine mastitis treatment and prevention. Copyright © 2014. Published by Elsevier B.V.

  18. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  19. The polymeric stability of the Escherichia coli F4 (K88) fimbriae enhances its mucosal immunogenicity following oral immunization.

    PubMed

    Verdonck, Frank; Joensuu, Jussi Joonas; Stuyven, Edith; De Meyer, Julie; Muilu, Mikko; Pirhonen, Minna; Goddeeris, Bruno Maria; Mast, Jan; Niklander-Teeri, Viola; Cox, Eric

    2008-10-23

    Only a few vaccines are commercially available against intestinal infections since the induction of a protective intestinal immune response is difficult to achieve. For instance, oral administration of most proteins results in oral tolerance instead of an antigen-specific immune response. We have shown before that as a result of oral immunization of piglets with F4 fimbriae purified from pathogenic enterotoxigenic Escherichia coli (ETEC), the fimbriae bind to the F4 receptor (F4R) in the intestine and induce a protective F4-specific immune response. F4 fimbriae are very stable polymeric structures composed of some minor subunits and a major subunit FaeG that is also the fimbrial adhesin. In the present study, the mutagenesis experiments identified FaeG amino acids 97 (N to K) and 201 (I to V) as determinants for F4 polymeric stability. The interaction between the FaeG subunits in mutant F4 fimbriae is reduced but both mutant and wild type fimbriae behaved identically in F4R binding and showed equal stability in the gastro-intestinal lumen. Oral immunization experiments indicated that a higher degree of polymerisation of the fimbriae in the intestine was correlated with a better F4-specific mucosal immunogenicity. These data suggest that the mucosal immunogenicity of soluble virulence factors can be increased by the construction of stable polymeric structures and therefore help in the development of effective mucosal vaccines.

  20. Soft x ray window encapsulant for HgI2 detectors

    NASA Technical Reports Server (NTRS)

    Entine, G.; Shah, K.; Squillante, M.

    1987-01-01

    HgI2 is an excellent semiconductor material for a low energy, room temperature x-ray spectrometer. The high values of the atomic numbers for its constituent elements gives high x-ray and gamma ray stopping power. The band gap of HgI2 is significantly higher than other commonly used semiconductors. Owing to the large value band gap, the leakage current for HgI2 devices is smaller, thus allowing low noise performance. Devices fabricated from HgI2 crystals have demonstrated energy resolution sufficient to distinguish the x-ray emission from the neighboring elements on the periodic table. Also the power requirements of HgI2 are very low. These characteristics make a HgI2 spectrometer an ideal component in a satellite based detection system. Unfortunately, HgI2 crystals tend to deteriorate with time, even if protected by standard semiconductor encapsulants. This degradation ruins the performance of the device in terms of its energy resolution and pulse amplitude. The degrading mechanism is believed to be material loss occurring from below the electrodes, due to high vapor pressure of HgI2 at room temperature. To address this major obstacle to rapid expansion of HgI2 technology, a research program aimed at improving device stability by encapsulation with inert polymeric materials was carried out. The program focused specifically on optimizing the encapsulant materials and their deposition techniques. The principal objectives for this program were device encapsulation, device testing, and accelerated testing to ensure very long term stability of these high resolution sensors. A variety of encapsulants were investigated with the selection criteria based on their chemical diffusion barrier properties, mechanical stability, reactivity, and morphology of encapsulant films. The investigation covered different classes of encapsulants including solvent based encapsulants, vapor deposited encapsulants, and plasma polymerized encapsulants. A variety of characterization techniques were employed to examine their effectiveness in stabilizing HgI2 devices; these included permeability evaluation, vacuum and heat testing, scanning electron microscopy (SEM) as well as studying the detector performance of coated detectors. The plasma polymerized films appear to have entirely solved the HgI2 degradation problem. Another achievement of this program was the development of an accelerated testing technique which correlates extremely well with long term tesing.

  1. An experimental study of the PTC properties of polymers with carbon black fillers

    NASA Astrophysics Data System (ADS)

    Lin, Jianlian

    The Positive Temperature Coefficient (PTC) phenomenon, first discovered by Harman in 1957, is defined as the sharp increase of the electrical resistivity of the material with temperature, especially at the Curie transition temperature. Polymeric PTC materials have been widely used since 1975 as self-regulating components, over current or over heat protectors, sensors, etc. In this project a detailed study of polymeric PTC materials has been carried out. Polymeric PTC materials consist of a non-conducting polymeric phase in which conductive particles, such as CB's, are added. Previously most of the studies of the polymer matrices of PTC materials were limited to single component semi-crystalline polymers, such as HDPE, LDPE, EVA etc. In this work, the PTC effects of carbon black filled binary polymer blends, such as LDPE/EPDM, HDPD/EPDM, HDPE/EVA, etc. are mainly studied. For the LDPE/EPDM/CB system, it is found that the PTC intensity of the blends after gamma-ray irradiation increases by almost 5 orders of magnitude compared with that of irradiated LDPE/CB compound. This increase in PTC intensity is due to the greater thermal expansion coefficient of the rubber (EPDM) phase. In addition, a comparison of E-beam and gamma-ray irradiation is made and the resulting effect on the PTC properties of LDPE/EPDM/CB blends is studied in detail. It is found that with higher dose of gamma-ray, the material undergoes significant radiation damage, while irradiation with E-beam prevents radiation damage due to shorter exposure time. The influence of using treated carbon blacks on the PTC/NTC effects of the composites is also studied. The polymer blends filled with oxidized carbon black display higher PTC intensity followed by a weaker NTC effect, which is due to stronger interactions between oxidized CB's & polymer. It is concluded that strong interactions between polymers and fillers suppress the NTC effect. Finally ESR analysis is used to study the interactions between the polymer blends and fillers. It is found that relatively high structure CB's (CSF-III) have a strong interaction with the polymer blend. Based on all the work done, it is concluded that a blend of high polymer with a crystalline rubber filled with relatively high structure carbon blacks that is irradiated by E-beam will be a good polymer PTC material.

  2. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  3. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  4. The study on the application of low polymerization degree PODE2

    NASA Astrophysics Data System (ADS)

    Xue, Zhenzhen; Shang, Hongyan; Zhang, Zailong; Cui, Chuntao; Zhao, Shidong

    2017-05-01

    Polyoxymethylene dimethyl ethers (PODEn) are a kind of excellent diesel blending components. Due to the low flash point of PODE2, it is not appropriate to be used as diesel blending component, so in this paper, the application of PODE2 have been studied. It seems that PODE2 is a kind of excellent green rubber solvent oil without sulfur and aromatic. Moreover, the application of PODE2 as gasoline blending component is investigated and it is found that the Research Octane Number(RON) of gasoline product and the RON of four different gasoline components(including hydrofining gasoline, hydrocracking light naphtha, catalytic reforming gasoline and mixed gasoline with 80vol% hydrofining gasoline and 20vol% catalytic reforming gasoline) is all slightly decreased to some extent respectively, which indicates that there is no apparently synergistic effect between PODE2 and the gasoline components, but PODE2 can effectively reduce the sulfur content, olefin content, aromatic content and can suppress the vapor pressure of gasoline.

  5. Reorganisation of the Salivary Mucin Network by Dietary Components: Insights from Green Tea Polyphenols

    PubMed Central

    Davies, Heather S.; Pudney, Paul D. A.; Georgiades, Pantelis; Waigh, Thomas A.; Hodson, Nigel W.; Ridley, Caroline E.; Blanch, Ewan W.; Thornton, David J.

    2014-01-01

    The salivary mucins that include MUC5B (gel-forming) and MUC7 (non-gel-forming) are major contributors to the protective mucus barrier in the oral cavity, and it is possible that dietary components may influence barrier properties. We show how one dietary compound, the green tea polyphenol epigallocatechin gallate (EGCG), can substantially alter the properties of both the polymeric MUC5B network and monomeric MUC7. Using rate-zonal centrifugation, MUC5B in human whole saliva and MUC5B purified from saliva sedimented faster in the presence of EGCG. The faster sedimentation by EGCG was shown to be greater with increasing MUC5B concentration. Particle tracking microrheology was employed to determine the viscosity of purified MUC5B solutions and showed that for MUC5B solutions of 200–1600 µg/mL, EGCG caused a significant increase in mucin viscosity, which was greater at higher MUC5B concentrations. Visualisation of the changes to the MUC5B network by EGCG was performed using atomic force microscopy, which demonstrated increased aggregation of MUC5B in a heterogeneous manner by EGCG. Using trypsin-resistant, high-molecular weight oligosaccharide-rich regions of MUC5B and recombinant N-terminal and C-terminal MUC5B proteins, we showed that EGCG causes aggregation at the protein domains of MUC5B, but not at the oligosaccharide-rich regions of the mucin. We also demonstrated that EGCG caused the majority of MUC7 in human whole saliva to aggregate. Furthermore, purified MUC7 also underwent a large increase in sedimentation rate in the presence of EGCG. In contrast, the green tea polyphenol epicatechin caused no change in the sedimentation rate of either MUC5B or MUC7 in human whole saliva. These findings have demonstrated how the properties of the mucin barrier can be influenced by dietary components. In the case of EGCG, these interactions may alter the function of MUC5B as a lubricant, contributing to the astringency (dry puckering sensation) of green tea. PMID:25264771

  6. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  7. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  8. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices.

    PubMed

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-08-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli-responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom-up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies.

  9. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices

    PubMed Central

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-01-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584

  10. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  11. Sickle cell dehydration: Pathophysiology and therapeutic applications.

    PubMed

    Brugnara, Carlo

    2018-01-01

    Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.

  12. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one finds indications that the β2-process starts to disintegrate. More and more TPP molecules get immobilized upon decreasing cTPP. We conclude that the β-process is a cooperative process.

  13. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  14. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  15. China’s Rare Earth Elements Industry: What Can the West Learn?

    DTIC Science & Technology

    2010-03-01

    critical in petroleum refining. By one estimate, lanthanum " cracking -agents" increase refinery yield by as much as 10%, while reducing overall...where it is used as a signal amplifier. Praseodymium salts give color to glasses and enamels . It is also a component of didymium glass, used to make...thermal neutron activation. Therefore, it can be used as catalysts in cracking , alkylation, hydrogenation, and polymerization. Cerium-doped

  16. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C. Jeffrey; Reed, Scott T.

    1984-01-01

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  17. Low temperature process for obtaining thin glass films

    DOEpatents

    Brinker, C.J.; Reed, S.T.

    A method for coating a substrate with a glass-like film comprises, applying to the substrate an aqueous alcoholic solution containing a polymeric network of partially hydrolyzed metal alkoxide into which network there is incorporated finely powdered glass, whereby there is achieved on the substrate a coherent and adherent initial film; and heating said film to a temperature sufficient to melt said powdered glass component, thereby converting said initial film to a final densified film.

  18. Polymer-based composites for aerospace: An overview of IMAST results

    NASA Astrophysics Data System (ADS)

    Milella, Eva; Cammarano, Aniello

    2016-05-01

    This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).

  19. Control and reduction of peak temperature in self-curing resins.

    PubMed

    Schiavetti, R; DE Vico, G; Casucci, A; Covello, F; Ottria, L; Sannino, G; Barlattani, A

    2009-07-01

    INTRODUCTION.: The aim of this experimental study was to reduce the exothermic reaction during curing of the resins to cold. The significant exotherm generated by the reaction of polymerization of the resin curing involves many clinical complications including the high risk of necrosis against tooth. MATERIAL AND METHODS.: They were used four different types of self curing resins all based on methyl methacrylate, Jet Kit, Major Dentin, Dura Lay, Temporary Cold. The reaction of polymerization of the resins was done in Teflon pans and was monitored by a thermocouple which recorded the highest level reached by each temperature resin with and without additive. The polymerization reaction took place for each resin in the presence of an essential oil, the terpinolene, which acted as a "chain transfer" and different temperatures were recorded. RESULTS.: Resins Dura Lay and Jet kit showed a reduction of very high temperature in the presence of terpinolene, with a statistically significant difference compared to the same reaction without terpinolene Major resin dentin in the presence of the additive has reduced by 8.4°C peak temperature. Resin Temporary Cold has showed benefits with respect to peak temperature, but the reaction was much more 'consistent presence of the additive. DISCUSSION.: The system through which the chain transfer acts to lower the temperature of the reaction is that of chain transfer. Namely that interfere with the reaction of the polymer chains, by transferring these acrylic radicals are no longer active, ie, no longer able to bind to other monomer units, thus avoiding the excessive growth of macromolecules which are those that determine the temperature rise. This leads to the formation of more polymer chains with lower molecular weight.

  20. Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions.

    PubMed

    Bean, Greg J; Amann, Kurt J

    2008-01-15

    MreB is a bacterial orthologue of actin that affects cell shape, polarity, and chromosome segregation. Although a significant body of work has explored its cellular functions, we know very little about the biochemical behavior of MreB. We have cloned, overexpressed in Escherichia coli, and purified untagged MreB1 from Thermotoga maritima. We have characterized the conditions that regulate its monomer-to-polymer assembly reaction, the critical concentrations of that reaction, the manner in which MreB uses nucleotides, its stability, and the structure of the assembled polymer. MreB requires a bound purine nucleotide for polymerization and rapidly hydrolyzes it following assembly. MreB assembly contains two distinct components, one that does not require divalent cations and one that does, which may comprise the nucleation and elongation phases of assembly, respectively. MreB assembly is strongly favored by increasing temperature or protein concentration but inhibited differentially by high concentrations of monovalent salts. The polymerization rate increases and the bulk critical concentration decreases with increasing temperature, but in contrast to previous reports, MreB is capable of polymerizing across a broad range of temperatures. MreB polymers are shorter and stiffer and scatter more light than eukaryotic actin filaments. Due to rapid ATP hydrolysis and phosphate release, we suggest that most assembled MreB in cells is in the ADP-bound state. Because of only moderate differences between the ATP and ADP critical concentrations, treadmilling may occur, but we do not predict dynamic instability in cells. Because of the relatively low cellular concentration of MreB and the observed structural properties of the polymer, a single MreB assembly may exist in cells.

  1. Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    PubMed Central

    Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate

    2011-01-01

    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae. PMID:22022378

  2. Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae.

    PubMed

    Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate

    2011-01-01

    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.

  3. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  4. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  5. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  6. Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties.

    PubMed

    Solar, Paula; González, Guillermo; Vilos, Cristian; Herrera, Natalia; Juica, Natalia; Moreno, Mabel; Simon, Felipe; Velásquez, Luis

    2015-02-13

    Advances in nanostructure materials are leading to novel strategies for drug delivery and targeting, contrast media for magnetic resonance imaging (MRI), agents for hyperthermia and nanocarriers. Superparamagnetic iron oxide nanoparticles (SPIONs) are useful for all of these applications, and in drug-release systems, SPIONs allow for the localization, direction and concentration of drugs, providing a broad range of therapeutic applications. In this work, we developed and characterized polymeric nanoparticles based on poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) functionalized with SPIONs and/or the antibiotic ceftiofur. These nanoparticles can be used in multiple biomedical applications, and the hybrid SPION-ceftiofur nanoparticles (PHBV/SPION/CEF) can serve as a multifunctional platform for the diagnosis and treatment of cancer and its associated bacterial infections. Morphological examination using transmission electron microscopy (TEM) showed nanoparticles with a spherical shape and a core-shell structure. The particle size was evaluated using dynamic light scattering (DLS), which revealed a diameter of 243.0 ± 17 nm. The efficiency of encapsulation (45.5 ± 0.6% w/v) of these polymeric nanoparticles was high, and their components were evaluated using spectroscopy. UV-VIS, FTIR and DSC showed that all of the nanoparticles contained the desired components, and these compounds interacted to form a nanocomposite. Using the agar diffusion method and live/dead bacterial viability assays, we demonstrated that these nanoparticles have antimicrobial properties against Escherichia coli, and they retain their magnetic properties as measured using a vibrating sample magnetometer (VSM). Cytotoxicity was assessed in HepG2 cells using live/dead viability assays and MTS, and these assays showed low cytotoxicity with IC50 > 10 mg/mL nanoparticles. Our results indicate that hybrid and multifunctional PHBV/SPION/CEF nanoparticles are suitable as a superparamagnetic drug delivery system that can guide, concentrate and site-specifically release drugs with antibacterial activity.

  7. Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.

    2016-04-21

    We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly (2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but withoutmore » evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix.« less

  8. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  9. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  10. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Filters, microporous polymeric. 177.2250 Section... Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in... liquid food. (a) Microporous polymeric filters consist of a suitably permeable, continuous, polymeric...

  11. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends.

    PubMed

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-05-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

  12. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    PubMed

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  13. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskoković, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Discovery of an Inhibitor of Z-Alpha1 Antitrypsin Polymerization

    DOE PAGES

    Berthelier, Valerie; Harris, Jason Brett; Estenson, Kasey Noel; ...

    2015-05-11

    Polymerization of the Z variant alpha-1-antitrypsin (Z-α1AT) results in the most common and severe form of α1AT deficiency (α1ATD), a debilitating genetic disorder whose clinical manifestations range from asymptomatic to fatal liver and/or lung disease. As the altered conformation of Z-α1AT and its attendant aggregation are responsible for pathogenesis, the polymerization process per se has become a major target for the development of therapeutics. Based on the ability of Z-alpha 1AT to aggregate by recruiting the reactive center loop (RCL) of another Z-α1AT into its s4A cavity, we developed a high-throughput screening assay that uses a modified 6-mer peptide mimickingmore » the RCL to screen for inhibitors of Z-α1AT polymer growth. We used a subset of compounds from the Library of Pharmacologically Active Compounds (LOPAC) with molecular weights ranging from 300 to 700 Da, to evaluate the assay's capabilities. The inhibitor S-(4-nitrobenzyl)-6-thioguanosine was identified as a lead compound and its ability to prevent Z-α1AT polymerization confirmed by secondary assays. In order to further investigate the binding location of S-(4-nitrobenzyl)-6-thioguanosine, an in silico strategy was pursued and the intermediate alpha 1AT M* state modeled to allow molecular docking simulations and explore various potential binding sites. Docking results predict that S-(4-nitrobenzyl)-6-thioguanosine can bind at the s4A cavity and at the edge of beta-sheet A. The former binding site would directly block RCL insertion whereas the latter site would prevent beta-sheet A from expanding between s3A/s5A, and thus indirectly impede RCL insertion. Our investigations have revealed a novel compound that inhibits the formation of Z-α1AT polymers, as well as in vitro and in silico strategies for identifying and characterizing additional blocking molecules of Z-α1AT polymerization.« less

  15. Effect of cooling (4°C) and cryopreservation on cytoskeleton actin and protein tyrosine phosphorylation in buffalo spermatozoa.

    PubMed

    Naresh, Sai

    2016-02-01

    Semen cryopreservation is broadly utilized as a part of the bovine reproducing industry, a large portion of the spermatozoa does not survive and the majority of those that do survive experience various molecular and physiological changes that influence their fertilizing capacity. The main aim of this study is to determine the effect of cooling (4 °C) and cryopreservation on cytoskeleton actin, tyrosine phosphorylation and quality of buffalo spermatozoa, and to determine the similarity between in vitro capacitation and cryopreservation induced capacitation like changes. To achieve this, Western blot was used to examine the changes in actin expression and protein tyrosine phosphorylation, whereas changes in actin polymerization, localization of actin and protein tyrosine phosphorylation during capacitation and cryopreservation were evaluated by indirect immunofluorescence technique. Localization studies revealed that the actin localized to flagella and acrosome membrane regions and following, capacitation it migrated towards the acrosome region of sperm. Time dependent increase in actin polymerization and protein tyrosine phosphorylation was observed during in vitro capacitation. The cooling phase (4 °C) and cryopreservation processes resulted in the loss/damage of cytoskeleton actin. In addition, we performed the actin polymerization and protein tyrosine phosphorylation in cooled and cryopreserved buffalo spermatozoa. Interestingly, cooling and cryopreservation induces actin polymerization and protein tyrosine phosphorylation, which were similar to in vitro capacitation (cryo-capacitation). These changes showed 1.3 folds reduction in the sperm quality parameters which includes motility, viability and plasma membrane integrity. Furthermore, our findings indicate that cooling and cryopreservation damages the cytoskeleton actin and also induces capacitation like changes such as protein tyrosine phosphorylation and actin polymerization. This could be one of the main reasons for reduced sperm quality and fertility failure of cryopreserved spermatozoa. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Surface modified carbon nanoparticle papers and applications on polymer composites

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach a tensile strength of 360 MPa and an electrical conductivity of 4.45x104 S/m, much better than any similar materials reported in the literature. However, they didn't show good gas barrier properties. Since the GO paper presented zero gas permeability for both CO2 and H2, a hybrid paper fabrication approach was proposed to combine the advantages of individual GP and GO papers. This was done by filtering GP and GO layer by layer with GO sandwiched in between two layers of GP. The resulting hybrid papers showed high mechanical tensile strength and EMI shielding effectiveness that are close to GP nanopapers, and excellent gas barrier properties that comparable to GO nanopapers. The GP, GO and GP-Go-GP hybrid nanopapers have been successfully coated onto the thermoplastic surface by thermal lamination and injection molding. In the third part, the effect of PANI-CNF nanopapers and a chelating agent, 2, 4- Pentanedione (2, 4-P) on kinetics of an in-mold coating (IMC) resin was investigated. The results showed that the presence of amine functionalized carbon nanoparticles tended to retard the resin reaction, while 2, 4-P was capable of promoting the redox based free radical polymerization by forming a complex with the cobalt promoter in the initiation step. In order to understand the chemical and physical changes during the resin curing process, kinetics study on two major resin components, i.e. hexanediol diacrylate (HDDA) and styrene (St), were carried out using an integrated analysis design: differential scanning calorimetry (DSC) for overall reaction, Fourier transform infrared spectroscopy (FTIR) for individual component reactions, and rheometry for liquid-solid transition during the reaction. The gel point of this radical polymerization resin system was found to be <2% which implied that most curing was conducted in the solid phase. The results showed that the double bonds in acrylates and St followed an azeotropic polymerization pattern.

  17. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W/sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.

  18. Browning Index of Anthocyanin-Rich Fruit Juice Depends on pH and Anthocyanin Loss More Than the Gain of Soluble Polymeric Pigments.

    PubMed

    Dorris, Matthew R; Voss, Danielle M; Bollom, Mark A; Krawiec-Thayer, Mitchell P; Bolling, Bradley W

    2018-04-01

    Browning index (BI, ABS 520 nm /ABS 420 nm ) is a measure of anthocyanin-rich fruit juice pigmentation quality. This study sought to determine the extent to which BI describes anthocyanin quality and degradation in fruit juices. Commercial fruit juices were assayed for monomeric anthocyanin (MA) content, percent polymeric color (%PC), pH, and BI. BI varied, 0.29 to 1.72, among cranberry, cherry, grape, aronia, and pomegranate juices. Principal component analysis (PCA) revealed that BI was strongly inversely associated with %PC, and positively correlated with MAs to a lesser extent. The BI of grape and cherry juices varied linearly with pH from 2.0 to 4.0 in pH-adjusted juices. Cherry and grape juices at pH approximately 2.0 to 4.0 were incubated at 50 °C to induce juice browning. BI and MA decreased, and %PC increased, but the amount of MA degradation was not explained by %PC. In the aged juices, BI and MA were strongly correlated using PCA. In aged grape juice, chromatographic analysis was used characterize anthocyanins, proanthocyanidins, and anthocyanin scission products. Anthocyanin loss and a gain of unresolved components absorbing at 420 nm decreased BI. Proanthocyanidins and co-eluting pigments with varying BI decreased during aging. Scission products did not account for anthocyanin loss. Thus, MA loss more so than the gain in pigments associated with juice proanthocyanidins contribute to the increase in %PC and decline of the BI during accelerated aging of grape juice. Thus, BI is a useful marker of fruit juice quality within juices of the same pH and anthocyanin composition. Fruit juice pigmentation depends on anthocyanins, pH, and other matrix components. Spectrophotometric methods to determine pigmentation include the browning index (ABS 520 nm /ABS 420 nm ), pH differential method for monomeric anthocyanin (MA) content, and bisulfite bleaching to determine percent polymeric color (%PC). In this study, anthocyanin-rich fruit juice browning index was strongly dependent on pH and MA content. MA loss, and to a lesser extent, a gain in newly-formed pigments at 420 nm contributed to the browning index change during aging. Therefore, browning index is strongly associated with MA content and is useful for assessing fruit juice quality. © 2018 Institute of Food Technologists®.

  19. Influence of the collection tube on metabolomic changes in serum and plasma.

    PubMed

    López-Bascón, M A; Priego-Capote, F; Peralbo-Molina, A; Calderón-Santiago, M; Luque de Castro, M D

    2016-04-01

    Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  1. Conference on Fire Resistant Materials (FIREMEN): A compilation of presentations and papers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A. (Editor)

    1978-01-01

    The proceedings of the NASA Fire Resistant Materials Engineering (FIREMEN) Program held at Ames Research Center on April, 13, 14, 1978 are reported. The purpose of the conference was to discuss the results of NASA in the field of aircraft fire safety and fire resistant materials. The program components include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) bibliography related and/or generated from the program.

  2. Environmentally stable polymers and coatings for space application: CH-5, supplement 10

    NASA Technical Reports Server (NTRS)

    Sykes, G.

    1986-01-01

    High molecular weight, randomly coupled poly(imide siloxane) soluble block copolymers were synthesized from bis(amino propyl) polydimethylsiloxane equilibrates of various molecular weights, aromatic metalinked diamines, and 3,3'-4,4'-benzophenone tetracarboxylic dianhydride (BTDA). Two synthetic procedures were successfully used to synthesize the poly(amic acid siloxane) intermediates. For both synthetic procedures, a cosolvent system was employed to achieve complete solvation of all components throughout the polymerization. Physical property characterization is continuing.

  3. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  4. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms

    PubMed Central

    Swearingen, Matthew C.; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J.; Falzarano, Anthony R.; Wozniak, Daniel J.; Hall-Stoodley, Luanne; Stoodley, Paul

    2015-01-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  5. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3

    PubMed Central

    Cenik, Bercin K.; Garg, Ankit; McAnally, John R.; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; Liu, Ning

    2015-01-01

    Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy. PMID:25774500

  6. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  7. Copper, gold, and silver decorated magnetic core-polymeric shell nanostructures for destruction of pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza

    2017-05-01

    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  8. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, John

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or othermore » material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.« less

  9. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  10. Synthesis and characterization of inorganic materials precipitated into polymeric and novel liquid crystalline systems

    NASA Astrophysics Data System (ADS)

    Lubeck, Christopher Ryan

    The use of nanostructured, hybrid materials possesses great future potential. Many examples of nanostructured materials exist within nature, such as animal bone, animal teeth, and seashells. This research, inspired by nature, strove to mimic salient properties of natural materials, utilizing methods observed within nature to produce materials. Further, this research increased the functionality of the templates from "mere" template to functional participant. Different chemical methods to produce hybrid materials were employed within this research to achieve these goals. First, electro-osmosis was utilized to drive ions into a polymeric matrix to form hybrid inorganic polymer material, creating a material inspired by naturally occurring bone or seashell in which the inorganic component provides strength and the polymeric material decreases the brittleness of the combined hybrid material. Second, self-assembled amphiphiles, forming higher ordered structures, acted as a template for inorganic cadmium sulfide. Electronically active molecules based on ethylene oxide and aniline segments were synthesized to create interaction between the templating material and the resulting inorganic cadmium sulfide. The templating process utilized self-assembly to create the inorganic structure through the interaction of the amphiphiles with water. The use of self-assembly is itself inspired by nature. Self-assembled structures are observed within living cells as cell walls and cell membranes are created through hydrophilic and hydrophobic interactions. Finally, the mesostructured inorganic cadmium sulfide was itself utilized as a template to form mesostructured copper sulfide.

  11. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.

    PubMed

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O

    2010-12-22

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.

  12. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization.

    PubMed

    Wang, Wei; Lester, John M; Amorosa, Anthony E; Chance, Deborah L; Mossine, Valeri V; Mawhinney, Thomas P

    2015-06-19

    Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.

  13. Early reaction kinetics of contemporary glass-ionomer restorative materials.

    PubMed

    Roberts, Howard W; Berzins, David W

    2015-02-01

    To investigate polyalkenoate reaction rates in conventional glass-ionomer cement (GIC) and resin-modified glass ionomer (RMGI) restorative materials using infrared spectroscopy. Nine conventional GIC and six RMGI restorative materials were prepared according to manufacturer's directions and placed on a FTIR (Fourier transform infrared spectroscopy) diamond ATR (attenuated total reflectance) surface. FTIR spectra (700 to 1800 cm-1) were obtained each minute for 3 h. VLC specimens were light polymerized after 1 min; at 5 min, all samples were covered with gauze saturated with deionized water. Polyalkenoate reaction was determined by measuring area growth (Å/cm-1) between 1375 and 1500 cm-1. Mean peak areas were determined at 5, 15, 30, 90, and 180 min and compared using ANOVA (p = 0.05) RESULTS: For all RMGI materials, VLC polymerization inhibited the polyalkenoate reaction rate. Compared to conventional GIC, RMGI materials demonstrated less polyalkenoate reaction. Compared to dark curing, RMGI light polymerization significantly inhibited the polyalkenoate reaction rate. The addition of resin components to glass-ionomer products significantly retards and impedes the polyalkenoate reaction. The polyalkenoate reaction rate of RMGI products was significantly lower than that of self-curing GIC restorative materials. Furthermore, light activation of RMGI products further retards the polyalkenoate rate. When clinicians require the therapeutic benefit of a polyalkenoate product, perhaps a conventional GIC restorative product should be the first material of choice.

  14. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  15. Comparison of Aquitaine and Rioja Red Wines: Characterization of Their Phenolic Composition and Evolution from 2000 to 2013.

    PubMed

    Quaglieri, Cindy; Prieto-Perea, Noelia; Berrueta, Luis Angel; Gallo, Blanca; Rasines-Perea, Zurine; Jourdes, Michael; Teissedre, Pierre-Louis

    2017-01-24

    Wine chemical analysis was carried out on 194 commercial blended red wines produced by two major wine-growing areas-the Aquitaine (France) and Rioja (Spain) regions-in order to compare the wines of both regions. Anthocyanins and derived pigments, tannins and derivatives were identified and quantified by HPLC-DAD-ESI-MS/MS (high pressure liquid chromatography coupled to diode array detector and mass spectrometry using the electrospray ionization interface). Mean degree of polymerization (mDP) was determined. The influence of the wine-growing region and the predominance of the properties of some grape varieties used are confirmed by the significant differences observed between both regions. Rioja and Bordeaux "generic" (Bordeaux and Bordeaux-Supérieur appellations) red wines showed the highest anthocyanic content and the highest mDP, as these wines are in a majority made from Merlot (Bordeaux "generic") and Tempranillo (Rioja). On the contrary, Bordeaux "specific" regions (Blayais, Médoc, Graves, and Libournais) showed the red wines with the highest total phenolic content and tannin concentration, as the predominant grape variety used is Cabernet Sauvignon. A principal component analysis (PCA) and a hierarchical ascendant classification (HAC) suggesting patterns between the chemical parameters and the distribution of the red wines in three groups were proposed. The comparison of the two wine-growing areas also reveals some similarities between the various grape varieties used. A general effect of a progressive decrease in anthocyanins, anthocyanin-derived pigment and tannins is observed for older wines.

  16. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    NASA Astrophysics Data System (ADS)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  17. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation.

    PubMed

    Seidlits, Stephanie K; Khaing, Zin Z; Petersen, Rebecca R; Nickels, Jonathan D; Vanscoy, Jennifer E; Shear, Jason B; Schmidt, Christine E

    2010-05-01

    We report the ability to direct the differentiation pathway of neural progenitor cells (NPCs) within hydrogels having tunable mechanical properties. By modifying the polymeric sugar hyaluronic acid (HA), a major extracellular matrix component in the fetal mammalian brain, with varying numbers of photocrosslinkable methacrylate groups, hydrogels could be prepared with bulk compressive moduli spanning the threefold range measured for neonatal brain and adult spinal cord. Ventral midbrain-derived NPCs were photoencapsulated into HA hydrogels and remained viable after encapsulation. After three weeks, the majority of NPCs cultured in hydrogels with mechanical properties comparable to those of neonatal brain had differentiated into neurons (ss-III tubulin-positive), many of which had extended long, branched processes, indicative of a relatively mature phenotype. In contrast, NPCs within stiffer hydrogels, with mechanical properties comparable to those of adult brain, had differentiated into mostly astrocytes (glial fibrillary acidic protein (GFAP)-positive). Primary spinal astrocytes cultured in the hydrogel variants for two weeks acquired a spread and elongated morphology only in the stiffest hydrogels evaluated, with mechanical properties similar to adult tissue. Results demonstrate that the mechanical properties of these scaffolds can assert a defining influence on the differentiation of ventral midbrain-derived NPCs, which have strong clinical relevance because of their ability to mature into dopaminergic neurons of the substantia nigra, cells that idiopathically degenerate in individuals suffering from Parkinson's disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Investigation of tribological properties of biobased polymers and polymeric composites

    NASA Astrophysics Data System (ADS)

    Bhuyan, Satyam Kumar

    Worldwide potential demands for replacing petroleum derived raw materials with renewable plant-based ones in the production of valuable polymeric materials and composites are quite significant from the social and environmental standpoints. Therefore, using low-cost renewable resources has deeply drawn the attention of many researchers. Among them, natural oils are expected to be ideal alternative feedstock since oils, derived from plant and animal sources, are found in profusion in the world. The important feature of these types of materials is that they can be designed and tailored to meet different requirements. The real challenge lies in finding applications which would use sufficiently large quantities of these materials allowing biodegradable polymers to compete economically in the market. Lack of material and tribological characterizations have created an awareness to fulfill this essential objective. In order to understand the viability of biobased polymers in structural applications, this thesis work elucidates the study of friction and wear characteristics of polymers and polymeric composites made out of natural oil available profusely in plants and animals. The natural oils used in this study were soybean and tung oil. Various monomeric components like styrene, divinely benzene etc. were used in the synthesis of biobased polymers through Rh-catalyzed isomerization techniques. For the different polymeric composites, spent germ, a byproduct of ethanol production, is used as the filler and an organoclay called montmorillonite is used as the reinforcing agent in the polymer matrix. The effect of crosslinker concentration, filler composition and reinforcement agent concentration was studied under dry sliding. A ball-on-flat tribometer with a probe made out of steel, silicon nitride or diamond was used for most of the experimental work to measure friction and generate wear. The wear tracks were quantified with an atomic force microscope and a contact profilometer. The wear morphologies were studied with a scanning electron microscope. Thermosetting epoxy resin was used as a benchmark material to compare the tribological characteristics of the biobased polymers. Synthetic polymeric materials made out of norbornene monomers were also subjected to friction and wear tests. An empirical relationship between wear behavior and crosslinking was established.

  19. Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome.

    PubMed

    Walkley, Steven U

    2007-04-01

    The view that lysosomes simply represent end organelles in the serial degradation of polymeric molecules derived from the cell surface and its interior has led to major misconceptions about the nature of lysosomal storage diseases and the pathogenic cascades that characterize them. Accordingly, lysosomal storage bodies are often considered 'inert', inducing cell dysfunction and death primarily through mechanical overcrowding of normal organelles or by other non-specific means leading to generalized cytotoxicity. However, modern studies of lysosomes and their component proteins provide evidence to support a far greater role for these organelles in cell metabolism. In intimate association with endosomal, autophagosomal and related vesicular systems, the greater lysosomal system can be conceptualized as a vital recycling centre that serves as a central metabolic coordinator, influencing literally every aspect of the cell, from signal transduction to regulation of gene expression. This broader view of the role of lysosomes in cells not only provides insight into how single gene defects impacting on lysosomal function can result in the plethora of complex cellular transformations characteristic of these diseases, but also suggests new and innovative therapies that may hold considerable promise for ameliorating disease progression.

  20. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering.

    PubMed

    Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique; Bencherif, Sidi Ahmed; Egles, Christophe

    2017-12-10

    Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  1. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    PubMed Central

    Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique

    2017-01-01

    Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering. PMID:29232876

  2. Aerospace materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornheim, M.A.

    1991-04-01

    A comprehensive evaluation is made of the development trends in high performance advanced aerospace structural materials applications. It is noted that the anticipated predominance of thermoplastic composite-matrix polymers in the F-22/F-23 ATF propotypes has not materialized, due both to their high materials and processing costs and the emergence of a more tractable high operating temperature thermoset, BMI, whose toughness characteristics are of the order of those associated with thermoplastics. No more than 15 percent of F-22 weight is thermoplastics; the F-23 use of such resins is nill. Throughout the advanced nonmetallics industry, reduced DOD procurements have come to represent slowmore » growth and the prospect of consolidation. Also, such lightweight Al-based metallics as the Al-Li alloys have posed a major market-share challenge to polymeric composites, as in the case of the C-17 airlifter's 6,269 lbs of such Al-Li alloys as 2090, largely in cargo floor and ramp bulkhead structures. The EFA fighter makes frequent use of SPF-DB Ti alloys in combat damage-critical components. Metal-matrix composites employing titanium aluminide matrices will be extensively used in the X-30 hypersonic aircraft program.« less

  3. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.

    PubMed

    Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R

    2016-04-01

    A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of Tunable Surface Potential on the Structure of Spin-Cast Polymeric Blend Films

    NASA Astrophysics Data System (ADS)

    Hawker, C.; Huang, E.; Russell, T. P.

    1998-03-01

    The demixing of binary polymeric mixtures has been studied with various surface potentials. This was performed by spin casting polystyrene/poly(methyl methacrylate) mixtures on to silicon substrates that had been modified with an end-grafted random copolymer brush layer. The composition of the random copolymer brush, containing the same monomeric components as the homopolymers can be varied in a precise manner over the entire concentration range. Atomic force and optical microscopy were used to study the morphology formed during spin casting and after annealing. Further insight into the structure was gained by rinsing these films with preferential solvents to remove one of the constituents and by performing the microscopy measurements. Finally, x-ray photoelectron spectroscopy, XPS, was used to elucidate the composition of the film near the air/polymer interface. Our data show that the resulting thin film structure depends strongly on the composition of the end grafted random copolymer film. Furthermore, the effect of thickness, solvent used in casting, and annealing conditions will be addressed.

  5. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.

  6. SCAR/WAVE and Arp2/3 are critical for cytoskeletal remodeling at the site of myoblast fusion

    PubMed Central

    Richardson, Brian E.; Beckett, Karen; Nowak, Scott J.; Baylies, Mary K.

    2010-01-01

    Summary Myoblast fusion is critical for formation and repair of skeletal muscle. Here we show that active remodeling of the actin cytoskeleton is essential for fusion in Drosophila. Using live imaging, we have identified a dynamic F-actin accumulation (actin focus) at the site of fusion. Dissolution of the actin focus directly precedes a fusion event. Whereas several known fusion components regulate these actin foci, others target additional behaviors required for fusion. Mutations in kette/Nap1, an actin polymerization regulator, lead to enlarged foci that do not dissolve, consistent with the observed block in fusion. Kette is required to positively regulate SCAR/WAVE, which in turn activates the Arp2/3 complex. Mutants in SCAR and Arp2/3 have a fusion block and foci phenotype, suggesting that Kette-SCAR-Arp2/3 participate in an actin polymerization event required for focus dissolution. Our data identify a new paradigm for understanding the mechanisms underlying fusion in myoblasts and other tissues. PMID:18003739

  7. Thermomechanical Formation–Structure–Property Relationships in Photopolymerized Copper-Catalyzed Azide–Alkyne (CuAAC) Networks

    PubMed Central

    Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.

    2016-01-01

    Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223

  8. Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

    PubMed

    Lopez, Aitziber; Degrandi-Contraires, Elise; Canetta, Elisabetta; Creton, Costantino; Keddie, Joseph L; Asua, José M

    2011-04-05

    Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.

  9. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    PubMed

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.

    PubMed

    Chhabra, Resham; Grabrucker, Andreas M; Veratti, Patrizia; Belletti, Daniela; Boeckers, Tobias M; Vandelli, Maria Angela; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara

    2014-08-25

    Polymeric nanoparticles (NPs) offer a promising approach for therapeutic intracellular delivery of proteins, conventionally hampered by short half-lives, instability and immunogenicity. Remarkably, NPs uptake occurs via endocytic internalization leading to NPs content's release within lysosomes. To overcome lysosomal degradation and achieve NPs and/or loaded proteins release into cytosol, we propose the formulation of hybrid NPs by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as pH sensitive component in the formulation of poly-lactide-co-glycolide (PLGA) NPs. Hybrid NPs, featured by different DOPE/PLGA ratios, were characterized in terms of structure, stability and lipid organization within the polymeric matrix. Experiments on NIH cells and rat primary neuronal cultures highlighted the safety profile of hybrid NPs. Moreover, after internalization, NPs are able to transiently destabilize the integrity of lysosomes in which they are taken up, speeding their escape and favoring cytoplasmatic localization. Thus, these DOPE/PLGA-NPs configure themselves as promising carriers for intracellular protein delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2013-02-01

    Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. 3D printing of optical materials: an investigation of the microscopic properties

    NASA Astrophysics Data System (ADS)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  13. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  14. Control of Fibrinogen Assembly by Changing a Polarity of Surfaces

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung; Liu, Ying; Snow, Sara; Rambhia, Pooja; Koga, Tadanori; Rafailovich, Miriam; Galanakis, Dennis

    2009-03-01

    Thrombogenesis causes various problems associated with an interruption in the blood flow (e.g., myocardial and cerebral infarction), and a hindrance to use of blood-contact vascular biomaterials (e.g., hemodialysis and cardiopulmonary bypass) with long-term patency since undesired adsorption of blood components occurs on vessels or biomaterials, such as surface-induced thrombosis. we showed that this clotting procedure can be occurred on hydrophobic polymeric surfaces without thrombin cleavage. However, the fibrinogen fibers were not formed on the polar surface such as spun-cast polymer film with pyridine and phenol groups. We also found that αC domains play an important role in initiation of polymerization on surface. Therefore, molecular association was inhibited on the polar surfaces due to confinement of αC chains on the surfaces. These findings were directly applied to stent surface modification. The commercial stent consist of Co-Cr alloy forms undesired fiber formation. However, PS-r-PVPh (13% phenol) coated stent surfaces completely prevent fiber formation.

  15. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  16. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  17. Enhanced control of end-group composition in poly(3-hexylthiophene)s prepared by GRIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochemba, William Michael; Kilbey, II, S Michael; Pickel, Deanna L

    The ability to prepare well-defined semiconducting polymers is essential for understanding the link between structure and function in organic photovoltaic devices. A general method for enhanced control of the degree of functionality of end-functionalized poly(3-hexylthiophene)s (P3HT) prepared by Grignard Metathesis (GRIM) polymerization has been developed. In the absence of additives, the degree of functionality of end-functional P3HTs prepared by quenching of the GRIM polymerization with a Grignard reagent is dependent on the Grignard reagent utilized. In this study, additives such as styrene and 1-pentene are shown to alter the end-group composition of tolyl-functionalized P3HTs as determined by MALDI-TOF MS. Inmore » particular, when quenching the GRIM polymerization with tolylmagnesium bromide a modest decrease in the difunctional product is observed, and the yield of the monofunctional product increases significantly. Temperature and lithium chloride (LiCl) addition also play impactful roles. Monofunctional P3HT is found to be the major product (65%) when the functionalization is done in the presence of LiCl and styrene at 0oC, whereas in the absence of additives the monofunctional product is present at only 20%.« less

  18. Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass.

    PubMed

    Sandhya, Soolamkandath Variem; Kiran, Kumar; Kuttiraja, Mathiyazhakan; Preeti, Varghese Elizabeth; Sindhu, Raveendran; Vani, Sankar; Kumar, Sukumaran Rajeev; Pandey, Ashok; Binod, Parameswaran

    2013-11-01

    Production of fuel ethanol from lignocellulosic biomass conventionally includes biomass pretreatment, hydrolysis, and fermentation. The liquor generated during dilute acid pretreatment of biomass contains considerable quantities of pentose sugars as well as various degradation products of sugars and lignin, like furfural, hydroxymethyl furfural (HMF), organic acids, aldehydes and others, which are known to be inhibitory for microbial growth. This pentose rich liquor is a potent resource which can be used to produce alcohol or other value added metabolites by microbial fermentation. However, the presence of these inhibitory compounds is a major hindrance and their removal is essential for efficient utilization of this byproduct stream. In the present work, the polymeric adsorbent resins, XAD-4, XAD-7 and XAD-16 were evaluated for their ability to adsorb fermentation inhibitors like furfural and HMF from the acid pretreated liquor. These resins could remove 55-75% of furfural and 100% of HMF and more than 90% sugar remained un-adsorbed in the pretreated liquor. Desorption of furfural from stationary phase was evaluated by using ethanol and hot water. The results suggest that these polymeric resins may be used for detoxification of acid pretreatment liquor with selective removal of sugar degradation products without affecting the sugar content in the solution.

  19. Microtubule Binding and Disruption and Induction of Premature Senescence by Disorazole C1S⃞

    PubMed Central

    Tierno, Marni Brisson; Kitchens, Carolyn A.; Petrik, Bethany; Graham, Thomas H.; Wipf, Peter; Xu, Fengfeng L.; Saunders, William S.; Raccor, Brianne S.; Balachandran, Raghavan; Day, Billy W.; Stout, Jane R.; Walczak, Claire E.; Ducruet, Alexander P.; Reese, Celeste E.; Lazo, John S.

    2009-01-01

    Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. The major fermentation product, disorazole A1, was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells, possibly because of its highly electrophilic epoxide moiety. To test this hypothesis, we synthesized the epoxide-free disorazole C1 and found it retained potent antiproliferative activity against tumor cells, causing prominent G2/M phase arrest and inhibition of in vitro tubulin polymerization. Furthermore, disorazole C1 produced disorganized microtubules at interphase, misaligned chromosomes during mitosis, apoptosis, and premature senescence in the surviving cell populations. Using a tubulin polymerization assay, we found disorazole C1 inhibited purified bovine tubulin polymerization, with an IC50 of 11.8 ± 0.4 μM, and inhibited [3H]vinblastine binding noncompetitively, with a Ki of 4.5 ± 0.6 μM. We also found noncompetitive inhibition of [3H]dolastatin 10 binding by disorazole C1, with a Ki of 10.6 ± 1.5 μM, indicating that disorazole C1 bound tubulin uniquely among known antimitotic agents. Disorazole C1 could be a valuable chemical probe for studying the process of mitotic spindle disruption and its relationship to premature senescence. PMID:19066338

  20. Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes.

    PubMed

    Gasparri, Julieta; Speroni, Lucía; Chiaramoni, Nadia Silvia; del Valle Alonso, Silvia

    2011-06-01

    Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S. Food and Drug Administration. Liposomes represent an alternative approach to vaccine adjuvants. In this article, we describe the inflammatory response and biological effect of polymerization and the addition of positive charges in liposome formulations. Nonpolymerized cationic (NP(+)) liposomes significantly reduce metabolism in Vero cells after 24 hours. Correspondingly, both NP(+) and polymerized cationic (P(+)) liposomes reduce cell viability following a 48-hour incubation. Similar results were obtained with cells from the peritoneal cavities of mice. Paradoxically, those liposomes that presented clearly cytostatic or cytotoxic effects in vitro stimulated metabolism and had a mitogenic effect in vivo. Finally, the adjuvant effect was tested by immunization in BALB/c mice. The major effect was obtained with NP(+) liposomes. Accordingly, we also demonstrated that NP(+) liposomes injected into the dermis produced an outstanding inflammatory reaction, showing the histopathological characteristics of an inoculation granuloma. Thus, positive charge would play an important role in the immunoadjuvant effect of liposomes by conferring them cytotoxic capacity.

Top