Sample records for major polyphenolic component

  1. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  2. Phenolic-enriched foods: sources and processing for enhanced health benefits.

    PubMed

    McDougall, Gordon J

    2017-05-01

    Polyphenols are ubiquitous secondary products present in many plant foods. Their intake has been associated with health benefits ranging from reduced incidence of CVD, diabetes and cancers to improved neurodegenerative outcomes. Major dietary sources include beverages such as coffee, teas and foods such as chocolate. Fruits are also major sources and berries in particular are a palatable source of a diverse range of polyphenol components. There are a number of ways that polyphenol uptake could be increased and healthier polyphenol-rich foods could be produced with specific compositions to target-specific health effects. Firstly, we could exploit the genetic diversity of plants (with a focus on berries) to select varieties that have enhanced levels of specific polyphenols implicated in disease mitigation (e.g. anthocyanins, tannins or flavonols). Working with variation induced by environmental and agronomic factors, modern molecular breeding techniques could exploit natural variation and beneficially alter polyphenol content and composition, although this could be relatively long term. Alternatively, we could employ a synthetic biology approach and design new plants that overexpress certain genes or re-deploy more metabolic effort into specific polyphenols. However, such 'polyphenol-plus' fruit could prove unpalatable as polyphenols contribute to sensorial properties (e.g. astringency of tannins). However, if the aim was to produce a polyphenol as a pharmaceutical then 'lifting' biosynthetic pathways from plants and expressing them in microbial vectors may be a feasible option. Secondly, we could design processing methods to enhance the polyphenolic composition or content of foods. Fermentation of teas, cocoa beans and grapes, or roasting of cocoa and coffee beans has long been used and can massively influence polyphenol composition and potential bioactivity. Simple methods such as milling, heat treatment, pasteurisation or juicing (v. pureeing) can have notable effects on polyphenol profiles and novel extraction methods bring new opportunities. Encapsulation methods can protect specific polyphenols during digestion and increase their delivery in the gastrointestinal tract to target-specific health effects. Lastly we could examine reformulation of products to alter polyphenol content or composition. Enhancing staple apple or citrus juices with berry juices could double polyphenol levels and provide specific polyphenol components. Reformulation of foods with polyphenol-rich factions recovered from 'wastes' could increase polyphenol intake, alter product acceptability, improve shelf life and prevent food spoilage. Finally, co-formulation of foods can influence bioavailability and potential bioactivity of certain polyphenols. Within the constraints that certain polyphenols can interfere with drug effectiveness through altered metabolism, this provides another avenue to enhance polyphenol intake and potential effectiveness. In conclusion, these approaches could be developed separately or in combination to produce foods with enhanced levels of phenolic components that are effective against specific disease conditions.

  3. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.

    PubMed

    Figueira, Inês; Tavares, Lucélia; Jardim, Carolina; Costa, Inês; Terrasso, Ana P; Almeida, Andreia F; Govers, Coen; Mes, Jurriaan J; Gardner, Rui; Becker, Jörg D; McDougall, Gordon J; Stewart, Derek; Filipe, Augusto; Kim, Kwang S; Brites, Dora; Brito, Catarina; Brito, M Alexandra; Santos, Cláudia N

    2017-11-18

    Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MS n . BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.

  4. Mechanisms of Body Weight Reduction by Black Tea Polyphenols.

    PubMed

    Pan, Haibo; Gao, Ying; Tu, Youying

    2016-12-07

    Obesity is one of the most common nutritional diseases worldwide. This disease causes health problems, such as dyslipidemia, hyperglycemia, hypertension and inflammation. There are drugs used to inhibit obesity. However, they have serious side effects outweighing their beneficial effects. Black tea, commonly referred to as "fermented tea", has shown a positive effect on reducing body weight in animal models. Black tea polyphenols are the major components in black tea which reduce body weight. Black tea polyphenols are more effective than green tea polyphenols. Black tea polyphenols exert a positive effect on inhibiting obesity involving in two major mechanisms: (i) inhibiting lipid and saccharide digestion, absorption and intake, thus reducing calorie intake; and (ii) promoting lipid metabolism by activating AMP-activated protein kinase to attenuate lipogenesis and enhance lipolysis, and decreasing lipid accumulation by inhibiting the differentiation and proliferation of preadipocytes; (iii) blocking the pathological processes of obesity and comorbidities of obesity by reducing oxidative stress. Epidemiological studies of the health relevance between anti-obesity and black tea polyphenols consumption remain to be further investigated.

  5. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health.

    PubMed

    Awika, Joseph M; Rose, Devin J; Simsek, Senay

    2018-03-01

    Cereal grains and grain pulses are primary staples often consumed together, and contribute a major portion of daily human calorie and protein intake globally. Protective effects of consuming whole grain cereals and grain pulses against various inflammation-related chronic diseases are well documented. However, potential benefits of combined intake of whole cereals and pulses beyond their complementary amino acid nutrition is rarely considered in literature. There is ample evidence that key bioactive components of whole grain cereals and pulses are structurally different and thus may be optimized to provide synergistic/complementary health benefits. Among the most important whole grain bioactive components are polyphenols and dietary fiber, not only because of their demonstrated biological function, but also their major impact on consumer choice of whole grain/pulse products. This review highlights the distinct structural differences between key cereal grain and pulse polyphenols and non-starch polysaccharides (dietary fiber), and the evidence on specific synergistic/complementary benefits of combining the bioactive components from the two commodities. Interactive effects of the polyphenols and fiber on gut microbiota and associated benefits to colon health, and against systemic inflammation, are discussed. Processing technologies that can be used to further enhance the interactive benefits of combined cereal-pulse bioactive compounds are highlighted.

  6. Tentative identification of polyphenols in Sempervivum tectorum and assessment of the antimicrobial activity of Sempervivum L.

    PubMed

    Abram, V; Donko, M

    1999-02-01

    Polyphenols were isolated from sliced fresh leaves of Sempervivum tectorum. After 21 h of extraction by methanol and removal of chlorophyll, ethyl acetate was used to separate oligomeric and polymeric polyphenols: 0.07% of oligomeric and 0.13% of polymeric polyphenols were found. After acidic hydrolysis of the oligomeric polyphenols, it was established by TLC, HPLC, and FAB mass spectra that kaempferol was the unique aglycon of the three main oligomeric constituents of S. tectorum. Paper chromatography suggested delphinidol to be the only anthocyanidin detectable in the material obtained by acidic hydrolysis of the polymeric polyphenol fraction. After Haslam degradation of the same polymeric polyphenol fraction, only 4-thiobenzyl-(-)-epigallocatechin and 4-thiobenzyl-(-)-epigallocatechin-3-gallate were found and tentatively identified. We concluded that procyanidins of B2 type could be the major components of the polymeric polyphenol fraction of this plant. Antimicrobial activity of Sempervivum L. leaves against six of seven selected microorganisms was observed.

  7. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice.

    PubMed

    Loots, Du Toit; van der Westhuizen, Francois H; Jerling, Johann

    2006-02-22

    The polyphenolic and ascorbate (ASC) components as well as the antioxidant capacity of Kei-apple (Dovyalis caffra) juice were analyzed and compared to three other fruit juices. The Kei-apple juice had significantly the highest total polyphenolic concentrations (1013 mg gallic acid equivalent/L), and solid phase (C(18)) fractionation identified the majority of these polyphenols to be phenolic acids. The Kei-apple juice also had significantly the highest ASC concentrations (658 mg/L), which showed exceptional heat stability with very little conversion to dehydroascorbate (DHA). Antioxidant capacities of both the unfractionated fruit juices and their solid phase-extracted fractions, as determined by oxygen radical absorbance capacity and ferric reducing antioxidant power analyses, correlated well to the polyphenol concentrations. Gas chromatography-mass spectrometry analyses showed caffeic acid as the most abundant polyphenol present (128.7 mg/L) in the Kei-apple juice; it contributed to 63% of the total antioxidant capacity (of all of the individual compounds identified). Other notable polyphenols identified in higher concentrations included p-coumaric acid, p-hydroxyphenylacetic acid, and protocatechuic acid. Our results therefore support the putative high antioxidant value linked to this fruit and better define this potential in terms of the major antioxidants that exist in the Kei-apple.

  8. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet.

    PubMed

    Xu, Yan; Zhang, Min; Wu, Tao; Dai, ShengDong; Xu, Jinling; Zhou, Zhongkai

    2015-01-01

    Beneficial effects of green tea (Camellia sinensis, Theaceae) extracts against obesity have been reported; however, the anti-obesity ability of the major components of green tea, polysaccharides, polyphenols and caffeine is not clear. Therefore, experiments with total green tea extracts, polyphenols, polysaccharides, caffeine, and a complex of polysaccharide and polyphenol at a dose of 400 or 800 mg kg⁻¹ were conducted on high-fat diet fed rats for 6 weeks to investigate their anti-obesity effects. The results indicated that polyphenols and polysaccharides were responsible for the suppressive effect of green tea extracts on body weight increase and fat accumulation. Moreover, polyphenols, polysaccharides, or caffeine can improve blood lipid and antioxidant levels, and effectively reduce rat serum leptin levels, inhibit the absorption of fatty acids, and markedly reduce the expression levels of the IL-6 and TNF-α gene. Furthermore, it was shown that polysaccharides and polyphenols were synergistic in reduction of serum leptin levels and in anti-inflammatory activity. These results suggest that the polysaccharide combination with polyphenols might be a potential therapy against obesity.

  9. Tea and human health: biomedical functions of tea active components and current issues*

    PubMed Central

    Chen, Zong-mao; Lin, Zhi

    2015-01-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea’s medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  10. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary.

    PubMed

    Molnár, Szabolcs; Mikuska, Kata; Patonay, Katalin; Sisa, Krisztina; Daood, Hussein G; Némedi, Erzsébet; Kiss, Attila

    2017-06-01

    The present paper reports about a comparative survey on the chemical composition, antioxidant activity and in vitro antimicrobial activity of selected propolis samples collected in Hungary. The total levels of polyphenolic compounds including flavonoids in ethanolic extracts of propolis were assessed. The major constituents of ethanolic extracts of propolis were analysed by gas chromatography/mass spectrometry analysis. Total phenolic content was determined spectrophotometrically using a Folin-Ciocalteu reagent. Free radical scavenging activities were evaluated by means of 2,2-diphenyl-1-picrylhydrazyl assay. In vitro inhibitory activity was investigated against eight different bacterial strains by agar well diffusion assay. An extensive comparison was carried out regarding general parameters and specific polyphenolic components. The experimental data led to the observation that there is considerable variability in terms of the quality and the biological value of the distinctive propolis samples. These findings confirm the hypothesis of the study; versatile experimental results are required for proper, well-reasoned, balanced and standardised industrial applications. The major flavonoid components were found to be chrysin and pinocembrin; however, versatile minor components were also detected. The total polyphenol content of ethanolic extracts of propolis ranged between 104.6 mg/g and 286.9 mg/g (gallic acid equivalent). The radical scavenging activity of ethanolic extracts of propolis varied between 101.7 mg/g and 286.9 mg/g (ascorbic acid equivalent). As the quality of propolis depends on the season, vegetation and the area of collection, marked differences were found among the different products examined in terms of both composition and general characteristics. The studied samples exhibited significant differences in term of antimicrobial activities.

  11. Polyphenolic profiles of Basque cider apple cultivars and their technological properties.

    PubMed

    Alonso-Salces, Rosa M; Barranco, Alejandro; Abad, Beatriz; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2004-05-19

    The polyphenolic compositions of 31 Basque cider apple cultivars were determined in pulp, peel, and juice by high-performance liquid chromatography with diode array detection analysis of crude extracts and after thiolysis. Total polyphenols are distributed in a wide concentration range depending on the cultivar. Procyanidins are the class of polyphenols that present major concentrations in apple. Their average degrees of polymerization range from 4 to 8 depending on the cultivar. Apple cultivars were technologically classified into bitter and nonbitter categories using different classification systems obtained by applying several pattern recognition techniques, such as principal component analysis, K-nearest neighbors, soft independent modeling of class analogy, partial least-squares, and multilayer feed-forward-artificial neural networks, to apple pulp, peel, or juice data (individual polyphenol concentrations, total procyanidin content, and the average degree of polymerization of procyanidins). Bitter apple cultivars present higher contents of flavan-3-ols and/or dihydrochalcones than nonbitter cultivars. Detailed knowledge of the polyphenolic profile of each apple cultivar affords information about their susceptibility to oxidation, their sensory properties (bitterness, astringency), and their possible influence on the characteristics and quality of the final product (juice, cider) when apples are processed.

  12. Determination of Polyphenols, Capsaicinoids, and Vitamin C in New Hybrids of Chili Peppers

    PubMed Central

    Daood, Hussein; Ambrózy, Zsuzsanna; Helyes, Lajos

    2015-01-01

    Six hybrids were subjected to chromatographic analyses by HPLC for the determination of phytochemicals such as capsaicinoid, polyphenol, and vitamin C. The dynamics of ripening of 4 of the hybrids were also characterised. Seven capsaicinoids could be separated and determined; the major compounds were nordihydrocapsaicin, capsaicin, and dihydrocapsaicin, while homocapsaicin and homodihydrocapsaicin derivatives were detected as minor constituents. Capsaicin content ranged between 95.5 ± 4.15 and 1610.2 ± 91.46 μg/g FW, and the highest value was found in Bandai (C. frutescens) at the green ripening stage. The major capsaicinoids had a decreasing tendency in Bandai and Chili 3735 hybrids, while no change was observed in Beibeihong and Lolo during ripening. Nine polyphenol compounds were detected including 8 flavonoids and a nonflavonoid compound in the pods of all hybrids. The major components were naringenin-diglucoside, catechin, and vanillic acid-derivative and luteolin-glucoside. Naringenin-diglucoside ranged from 93.5 ± 4.26 to 368.8 ± 30.77 μg/g FW. Except vanillic acid-derivative, dominant polyphenols increased or remained unchanged during ripening. As for vitamin C, its content tended to increase with the advance in ripening in all hybrids included in this study. The highest value of 3689.4 ± 39.50 μg/g FW was recorded in Fire Flame hybrid. PMID:26495153

  13. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese.

    PubMed

    Taguchi, Chie; Fukushima, Yoichi; Kishimoto, Yoshimi; Suzuki-Sugihara, Norie; Saita, Emi; Takahashi, Yoshinari; Kondo, Kazuo

    2015-12-09

    Estimating polyphenol intake contributes to the understanding of polyphenols' health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years) completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%). The daily polyphenol intake differed largely among individuals (183-4854 mg/day), also attributable mostly to beverage consumption. Coffee (43.2%) and green tea (26.6%) were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake.

  14. Polyphenol estimated intake and dietary sources among older adults from Mallorca Island

    PubMed Central

    Karam, Joanne; Bibiloni, Maria del Mar

    2018-01-01

    The aim was the assessment of the polyphenol estimated intake and dietary sources among older adults from Mallorca Island. The study was carried out (2013–2014) in 211 participants dwelling women (n = 112) and men (n = 99). Polyphenol intake was calculated from two non-consecutive 24-h recall diets using the Polyphenol Explorer. The mean daily intake of polyphenol was 332.7 mg/d (SD: 237.9; median: 299 mg/d). Highest polyphenol intake was observed among females, 64–67 y.o. people, higher income and educational level, alcohol consumers, and physically active people. Most polyphenols consumed were flavonoids, and among them the major subclass was flavanols. Alcoholic beverages were the major contributors to the total polyphenol intake (118.3 mg/d, SD: 127.5), and red wine contributed 17.7% of total polyphenols consumed. Polyphenol intake was highest among alcohol drinkers, high educational level, high income, and physical active people. Flavonoids were the highest ingested polyphenols. Alcoholic beverages were the major contributors to the total polyphenol intake, mainly red wine. PMID:29381732

  15. Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats.

    PubMed

    Tiwari, Ashok K; Reddy, K Srikanth; Radhakrishnan, Janani; Kumar, D Anand; Zehra, Amtul; Agawane, Sachin B; Madhusudana, K

    2011-09-01

    This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations. Vegetable juice from brinjal ranked first in displaying total antioxidant capacity. Pretreatment of rats with vegetable juices moderated starch induced postprandial glycemia. The fresh juice from the vegetables ridge gourd, bottle gourd, ash gourd and chayote significantly mitigated postprandial hyperglycemic excursion. Total polyphenol concentrations present in vegetable juices positively influenced ABTS˙(+) scavenging activity and total antioxidant capacity. However, NBT reducing activity of juices was positively affected by total protein concentration. Contrarily, however, high polyphenol content in vegetable juice was observed to adversely affect the postprandial antihyperglycemic activity of vegetable juices. This is the first report exploring antihyperglycemic activity in these vegetable juices and highlights the possible adverse influence of high polyphenol content on the antihyperglycemic activity of the vegetable juices. This journal is © The Royal Society of Chemistry 2011

  16. Ellipsometry analysis of the in vitro adsorption of tea polyphenols onto salivary pellicles.

    PubMed

    Joiner, Andrew; Muller, Dries; Elofsson, Ulla M; Arnebrant, Thomas

    2004-12-01

    The adsorption of components from black tea and of purified tea polyphenols onto a whole unstimulated salivary pellicle-like protein layer, formed in vitro on hydroxyapatite discs, was studied by in situ ellipsometry. It was found that components from black tea and the purified polyphenols epicatechin-3-gallate (ECG), epigallocatechin-3-gallate (EGCG) and theaflavin readily adsorbed onto the pellicle. Further investigations showed that under the experimental conditions of this study, no black tea- or purified polyphenol-modified pellicles were eluted by either phosphate buffer or sodium dodecyl sulphate rinses. Therefore, black tea and its polyphenol components are indicated to have a profound effect on in vitro pellicle modification. Similar effects were observed for tannic acid. Copyright Eur J Oral Sci, 2004.

  17. Metabolic fate of polyphenols in the human superorganism

    PubMed Central

    van Duynhoven, John; Vaughan, Elaine E.; Jacobs, Doris M.; Kemperman, Robèr A.; van Velzen, Ewoud J. J.; Gross, Gabriele; Roger, Laure C.; Possemiers, Sam; Smilde, Age K.; Doré, Joël; Westerhuis, Johan A.; Van de Wiele, Tom

    2011-01-01

    Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations. PMID:20615997

  18. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese

    PubMed Central

    Taguchi, Chie; Fukushima, Yoichi; Kishimoto, Yoshimi; Suzuki-Sugihara, Norie; Saita, Emi; Takahashi, Yoshinari; Kondo, Kazuo

    2015-01-01

    Estimating polyphenol intake contributes to the understanding of polyphenols’ health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years) completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%). The daily polyphenol intake differed largely among individuals (183–4854 mg/day), also attributable mostly to beverage consumption. Coffee (43.2%) and green tea (26.6%) were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake. PMID:26690212

  19. Olives and Bone: A Green Osteoporosis Prevention Option

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2016-01-01

    Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly. PMID:27472350

  20. The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds.

    PubMed

    Kontoudakis, Nikolaos; Smith, Mark; Guo, Anque; Smith, Paul A; Scollary, Geoffrey R; Wilkes, Eric N; Clark, Andrew C

    2017-08-01

    A variety of techniques have been developed with the ability to measure different forms of metals in wine with the ultimate aim of providing a more accurate indicator of metal induced spoilage of wine. This study was conducted in order to identify which wine components influence the measurement of Cu and Fe in their fractionated and/or electrochemically active forms. The measurement techniques involved detection of labile Cu by stripping potentiometry and fractionation of Cu and Fe by sequential solid phase extraction, with detection by inductively coupled plasma-optical emission spectroscopy. The wine components assessed included those extracted from wine (red wine tannin, white wine protein, white wine polysaccharide, red wine polyphenol, white wine polyphenol), and commercially available monomeric compounds, including phenolic compounds and sulfur-containing compounds. For Cu, only hydrogen sulfide, which is known to induce the formation of Cu(I) sulfide, showed any appreciable influence on the fractionation and electrochemical detection of Cu. This form of Cu was also identified as the major component of red and white wines. For Fe, the fractionation was different for red versus white wine, and influenced significantly by extracted red wine polyphenol, (-)-epicatechin, gallic acid and tartaric acid. The wine components showed more influence on Fe at pH4.00 compared to pH3.25. These results enable a targeted use of these techniques in the assessment of metal-induced spoilage of wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Forging a modern generation of polyphenol-based therapeutics.

    PubMed

    Wright, Bernice

    2013-06-01

    The long-standing debate that polyphenol secondary metabolites from dietary plants are important nutritional components continues due to compelling evidence for their abilities to ameliorate degenerative conditions including, cancer, neurological disorders and cardiovascular disease. The clinical use of polyphenols is not, however, mainstream as issues regarding poor selectivity, dosage, toxicity and delivery methods are unresolved. The paper by Rieder et al. suggests that the lack of selectivity, at least for the stilbene, resveratrol, may not be a major limiting factor. The present commentary is a critique of this significant finding that is focused on deciding how the use of resveratrol as clinical medicine could be advanced, and how this new information integrates with current knowledge of polyphenol physiological effects. This commentary suggests that the multi-target nature of polyphenols may be translated into reliable therapy using the current systems/network pharmacology approach concerned with developing viable therapeutic agents that achieve specific effects through interactions with a wide array of targets. This article is a commentary on Rieder et al., pp. 1244-1258 of BJP 167:6. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.02063.x. © 2013 The Author. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  2. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract.

    PubMed

    Si, Weiduo; Gong, Joshua; Tsao, Rong; Kalab, Milosh; Yang, Raymond; Yin, Yulong

    2006-09-01

    The Chinese green tea extract was found to strongly inhibit the growth of major food-borne pathogens, Escherichia coli O157:H7, Salmonella Typhimurium DT104, Listeria monocytogenes, Staphylococcus aureus, and a diarrhoea food-poisoning pathogen Bacillus cereus, by 44-100% with the highest activity found against S. aureus and lowest against E. coli O157:H7. A bioassay-guided fractionation technique was used for identifying the principal active component. A simple and efficient reversed-phase high-speed counter-current chromatography (HSCCC) method was developed for the separation and purification of four bioactive polyphenol compounds, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epicatechin (EC), and caffeine (CN). The structures of these polyphenols were confirmed with mass spectrometry. Among the four compounds, ECG and EGCG were the most active, particularly EGCG against S. aureus. EGCG had the lowest MIC90 values against S. aureus (MSSA) (58 mg/L) and its methicilin-resistant S. aureus (MRSA) (37 mg/L). Scanning electron microscopy (SEM) studies showed that these two compounds altered bacterial cell morphology, which might have resulted from disturbed cell division. This study demonstrated a direct link between the antimicrobial activity of tea and its specific polyphenolic compositions. The activity of tea polyphenols, particularly EGCG on antibiotics-resistant strains of S. aureus, suggests that these compounds are potential natural alternatives for the control of bovine mastitis and food poisoning caused by S. aureus.

  3. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: Overall contribution to antioxidant activity.

    PubMed

    Lee, Ji Eun; Kim, Gon-Sup; Park, Semin; Kim, Yun-Hi; Kim, Man-Bae; Lee, Won Sup; Jeong, Sung Woo; Lee, Soo Jung; Jin, Jong Sung; Shin, Sung Chul

    2014-03-01

    The type and content of plant polyphenols can be influenced by maturity. Korean chokeberry (Aronia melanocarpa) leaves of three different maturities (young, mature, and aged) were extracted with 70% aqueous methanol. The polyphenols in the leaves were analysed for the first time using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and comparison with reported data. Among the 12 characterised components, five flavonoids, 3, 4, and 10-12, and a dicaffeoylquinic acid derivative, 6, were characterised for the first time in chokeberry leaves. Each polyphenol component was validated and quantified using a representative polyphenol standard of the same group. The antioxidant activity of the three different mature leaf extracts was determined. The antioxidant activity was highest for young leaves, followed by mature and aged leaves. The results suggest that younger chokeberry leaves may be more favourable for processing a higher quality functional tea due to their higher polyphenol content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Protective effects of Merlot red wine extract and its major polyphenols in PC12 cells under oxidative stress conditions.

    PubMed

    Martín, Sara; González-Burgos, Elena; Carretero, M Emilia; Gómez-Serranillos, M Pilar

    2013-01-01

    The potential effect of the extracts from free-run and pressed Merlot red wine has been evaluated in PC12 cells under oxidative stress situation. Comparing both vinification process, pressed Merlot red wine extract possessed higher neuroprotective activity than the free run wine, possibly attributed to the major content in all global polyphenolic families. High performance liquid chromatography determination of individual polyphenols showed that the major compounds found in Merlot red wine extract were quercetin, catechin, epicatechin, tyrosol, gallic acid, and procyanidins. Pretreatments with these polyphenolic compounds (0.25 mM and 0.1 mM, 24 h) significantly increased cell viability of H(2)O(2) and Fenton reaction treated cells. Moreover, these polyphenols attenuated ROS production and decreased the Redox Index of glutathione (RI = GSSG/GSH + GSSG) in cells treated only with Fenton reaction. Furthermore, some polyphenols induced antioxidant enzymes activity and protein expression. Quercetin was the most active. These results support the beneficial effects of red wine extracts and some of its polyphenols under oxidative stress conditions. This research provides evidences of the preventive properties of wine extracts and its major polyphenols under oxidative stress conditions. © 2012 Institute of Food Technologists®

  5. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols.

    PubMed

    Chethan, S; Dharmesh, Shylaja M; Malleshi, Nagappa G

    2008-12-01

    Retinopathy is a major cause of blindness in the Western world, while cataract is one of the three major causes of blindness worldwide. Diabetes is one of the major risk factor in retinopathy and cataract. The prevalence of blindness in India is 15 per 1000 while cataract alone accounts for 80% of this blindness. Diabetes induced cataract is characterized by an accumulation of sorbitol which is mediated by the action of a key enzyme aldose reductase (AR). Non-enzymatic glycation (binding of glucose to protein molecule) induced during diabetes appear to be the key factor for AR mediated sugar-induced cataract. Finger millet polyphenols (FMP) being a major anti-diabetic and antioxidant component, we have evaluated them for AR inhibiting activity. Phenolic constituents in FMP such as gallic, protocatechuic, p-hydroxy benzoic, p-coumaric, vanillic, syringic, ferulic, trans-cinnamic acids and the quercetin inhibited cataract eye lens effectively, the latter was more potent with an IC(50) of 14.8nM. Structure function analysis revealed that phenolics with OH group at 4th position was important for aldose reductase inhibitory property. Also the presence of neighboring O-methyl group in phenolics denatured the AR activity. Finger millet seed coat polyphenols (SCP) has been found to inhibit AR reversibly by non-competitive inhibition. Results thus, provide a stronger evidence for the potentials of FMP in inhibiting cataractogenesis in humans.

  6. Antioxidant activity of essential oil and extracts of Valeriana jatamansi roots.

    PubMed

    Thusoo, Sakshima; Gupta, Sahil; Sudan, Rasleen; Kour, Jaspreet; Bhagat, Sahil; Hussain, Rashid; Bhagat, Madhulika

    2014-01-01

    Valeriana jatamansi is an indigenous medicinal plant used in the treatment of a number of diseases. In the present study, chemical composition of the essential oil was determined by GC-MS. Seven major components were identified in Valeriana jatamansi essential oil, namely, β-vatirenene, β-patchoulene, dehydroaromadendrene, β-gurjunene, patchoulic alcohol, β-guaiene, and α-muurolene. Methanolic, aqueous, and chloroform extracts of Valeriana jatamansi roots were also prepared and analyzed for their polyphenols and flavonoid content. Antioxidant activity of essential oil and different extracts of Valeriana jatamansi roots was determined by DPPH radical scavenging and chelation power assay. A linear correlation has been obtained by comparing the antioxidant activity and polyphenols and flavonoid content of the extracts. Results indicated that antioxidant activity of methanolic extract could be attributed to the presence of rich amount of polyphenols and flavonoid. Essential oil of Valeriana jatamansi roots showed moderate antioxidant activity.

  7. Biochemical characterization of sap (latex) of a few Indian mango varieties.

    PubMed

    John, K Saby; Bhat, S G; Prasada Rao, U J S

    2003-01-01

    Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.

  8. Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action

    PubMed Central

    Alam, Md Nur; Almoyad, Muhammad

    2018-01-01

    Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section. PMID:29568751

  9. Effect of apple polyphenol concentrate on lipid metabolism in rats under experimental insulin resistance.

    PubMed

    Zagayko, Andriy L; Kravchenko, Ganna B; Fylymonenko, Viktoriia P; Krasilnikova, Oksana A

    Obesity is strongly associated with an increased risk of developing insulin resistance as the metabolic indicator of prediabetes and a major risk factor in diabetes mellitus type 2 pathogenesis. Medicinal products obtained from apples can be used as potent prophylactic and therapeutic remedies in treatment of diabetes mellitus. Experiment was designed to study the effect of total apple polyphenol food concentrate on lipid metabolism under experimental IR. Male Wistar rats weighting 180-210 g were used in the experiment. IR was induced by high-calorie diet enriched with fructose. The effect of total apple polyphenol food concentrate was compared with the action of epigallocatechin gallate and quercetin. To estimate the alterations in lipid metabolism in liver homogenate were measured triacylglycerols, free fatty acids, total phospholipids, TBA-reactive substance and conjugated dienes contents. In blood serum were measured total lipids, triacylglycerols, cholesterol, total phospholipids and reduced glutathione levels. The obtained results indicated that feeding rats with high-calorie diet enriched with fructose caused the dyslipidemia and oxidative stress development. The administration of quercetin, epigallocatechin gallate and total apple polyphenol food concentrate improved disorders of lipid metabolism and pro-oxidant-antioxidant homeostasis. Total apple polyphenol food concentrate had a more pronounced effect on studied indices that is probably due to synergism and additive effect of extract numerous components.

  10. Valorization of Olive Mill Wastewater by Membrane Processes to Recover Natural Antioxidant Compounds for Cosmeceutical and Nutraceutical Applications or Functional Foods.

    PubMed

    Alfano, Alberto; Corsuto, Luisana; Finamore, Rosario; Savarese, Maria; Ferrara, Filomena; Falco, Salvatore; Santabarbara, Giuseppe; De Rosa, Mario; Schiraldi, Chiara

    2018-05-23

    Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes. With specific focus on using technologies based on the application of ultra and nanofiltration membranes, the polyphenols fraction was extracted after an initial flocculation step. The nano-filtration permeate showed a reduction of about 95% of the organic load. The polyphenols recovery after two filtration steps was about 65% w / v . The nanofiltration retentate, dried using the spray dryer technique, was tested for cell viability after oxidative stress induction on human keratinocytes model in vitro and an improved cell reparation in the presence of this polyphenolic compound was demonstrated in scratch assays assisted through time lapse video-microscopy. The polyphenols recovered from these treatments may be suitable ingredients in cosmeceuticals and possibly nutraceutical preparations or functional foods.

  11. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome.

    PubMed

    Akaberi, Maryam; Hosseinzadeh, Hosein

    2016-04-01

    Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Dietary intake of polyphenols and major food sources in an institutionalised elderly population.

    PubMed

    González, S; Fernández, M; Cuervo, A; Lasheras, C

    2014-04-01

    Polyphenols are bioactive compounds widely found in fruit, vegetables and beverages of plant origin. Epidemiological studies have suggested an association between polyphenol intake and health; antioxidant, anti-inflammatory, anti-carcinogenic and other bioactivities may contribute to these beneficially protective effects. To date, most epidemiological studies describing polyphenol intake have been limited by the information available in nutrient databases. The present study aimed to determine the total and individual polyphenol intake among institutionalised elderly people living in Asturias (North of Spain) and to identify the major dietary sources of polyphenol classes and subclasses. The study sample comprised 304 subjects with a mean age of 73.2 years for men and 76.8 years for women. Dietary intake was assessed by means of a food frequency questionnaire. Phenol content was estimated from the Phenol-Explorer database, as developed at the French National Institute for Agricultural Research. The contribution of each food to the total and subgroup intake of polyphenols was calculated as a percentage. Except for flavonones, total polyphenol intake, groups and subgroups, was higher in men than women. The main polyphenol groups contributing to total polyphenol intake were flavonoids (62%) and phenolic acids (35.5%). We identified red wine, coffee, apples, oranges and green beans as the major food sources providing total polyphenol intake. Flavonoid and lignan intake was lower for those aged >80 years. Smoking habit, red wine consumption, physical activity and a Mediterranean diet score were associated with a greater polyphenol intake. The present study provides information on polyphenol intake in an elderly Mediterranean population with a level of detail that has not been achieved previously. The identification of age and lifestyle factors associated with the intake of polyphenols may be useful in future studies regarding polyphenols. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  13. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    PubMed

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  14. Development of a gluten-free rice noodle by utilizing protein-polyphenol interaction between soy protein isolate and extract of Acanthopanax sessiliflorus.

    PubMed

    Lee, Da-Som; Kim, Yang; Song, Youngwoon; Lee, Ji-Hye; Lee, Suyong; Yoo, Sang-Ho

    2016-02-01

    The potential of the protein-polyphenol interaction was applied to crosslinking reinforced protein networks in gluten-free rice noodles. Specifically, inter-component interaction between soy protein isolate and extract of Acanthopanax sessiliflorus fruit (ogaja) was examined with a view to improving its quality. In a components-interacting model system, a mixture of soy protein isolate (SPI) and ogaja extract (OE) induced a drastic increase in absorbance at 660 nm by haze formation, while the major anthocyanin of ogaja, cyanidin-3-O-sambubioside, sparsely interacted with SPI or gelatin. Individual or combined treatment of SPI and OE on rice dough decreased all the viscosity parameters in rapid visco analysis. However, SPI-OE treatment significantly increased all the texture parameters of rice dough derived from Mixolab(®) analysis (P < 0.05). Incorporation of SPI in rice dough significantly reduced endothermic ΔH, and SPI-OE treatment further decreased this value. SPI-OE interaction significantly increased the tensile properties of cooked noodle and decreased 53.7% of cooking loss compared to the untreated rice noodle. SPI-OE treatment caused a considerable reinforcement of the network as shown by reducing cooking loss and suggested the potential for utilizing protein-polyphenol interaction for gluten-free rice noodle production. © 2015 Society of Chemical Industry.

  15. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.).

    PubMed

    Smeriglio, A; Denaro, M; Barreca, D; D'Angelo, V; Germanò, M P; Trombetta, D

    2018-01-01

    Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content.

    PubMed

    Rothwell, Joseph A; Perez-Jimenez, Jara; Neveu, Vanessa; Medina-Remón, Alexander; M'hiri, Nouha; García-Lobato, Paula; Manach, Claudine; Knox, Craig; Eisner, Roman; Wishart, David S; Scalbert, Augustin

    2013-01-01

    Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys.

  17. Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: Role of tartrates and polyphenols.

    PubMed

    Prakash, Shipra; Iturmendi, Nerea; Grelard, Axelle; Moine, Virginie; Dufourc, Erick

    2016-05-15

    Stability of wines is of great importance in oenology matters. Quantitative estimation of dark red precipitates formed in Merlot and Cabernet Sauvignon wine from Bordeaux region for vintages 2012 and 2013 was performed during the oak barrel ageing process. Precipitates were obtained by placing wine at -4°C or 4°C for 2-6 days and monitored by periodic sampling during a one-year period. Spectroscopic identification of the main families of components present in the precipitate powder was performed with (13)C solid-state CPMAS NMR and 1D and 2D solution NMR of partially water re-solubilized precipitates. The study revealed that the amount of precipitate obtained is dependent on vintage, temperature and grape variety. Major components identified include potassium bitartrate, polyphenols, polysaccharides, organic acids and free amino acids. No evidence was found for the presence of proteins. The influence of main compounds found in the precipitates is discussed in relation to wine stability. Copyright © 2016. Published by Elsevier Ltd.

  18. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health.

    PubMed

    Soleti, Raffaella; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2018-04-15

    Polyphenols are found in plant-derived foods and beverages and display numerous protective effects against cancers, cardiovascular, metabolic and neurodegenerative diseases. Extracellular vesicles (EVs), microparticles, exosomes, and apoptotic bodies, originated by different cell types are emerging as a novel mean of cell-to-cell communication in physiology and pathology and represent a new way to convey fundamental information between cells. Polyphenols can act on signaling pathways that interfere with the biogenesis of EVs. Thus, they are able to control EV release from cells and their content and therefore their functional properties. Both EVs and polyphenols are therapeutic tools that can be used against several diseases. In this context, the combination of both tools can increase their therapeutic potential. Three types of strategies can be used: (i) plants are able to produce EVs that encapsulate natural components from vegetables, polyphenols for instance, (ii) mammalian cells can be treated with polyphenols and the subsequent EVs produced are enriched in these components, and (iii) EVs from mammalian cells can be uploaded with polyphenols. We review the novel aspects of the interplay between polyphenols and EVs that could trigger and improve the health benefits in cancer, cardiovascular, metabolic and neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Genome-wide association study dissects the genetic architecture of polyphenols and antioxidant capacity in a sorghum diversified collection

    USDA-ARS?s Scientific Manuscript database

    Consumption of polyphenol-rich food is associated with decreased risk of several oxidative stress-related chronic diseases. Sorghum, a major cereal crop grown worldwide, has many polyphenol-containing accessions with high antioxidant activity in the grain. However, many of these polyphenol-containin...

  20. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content

    PubMed Central

    Rothwell, Joseph A.; Perez-Jimenez, Jara; Neveu, Vanessa; Medina-Remón, Alexander; M'Hiri, Nouha; García-Lobato, Paula; Manach, Claudine; Knox, Craig; Eisner, Roman; Wishart, David S.; Scalbert, Augustin

    2013-01-01

    Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys. Database URL: http://www.phenol-explorer.eu PMID:24103452

  1. Characterization of Sugar and Polyphenolic Diversity in Floral Nectar of Different 'Oblačinska' Sour Cherry Clones.

    PubMed

    Guffa, Basem; Nedić, Nebojša M; Dabić Zagorac, Dragana Č; Tosti, Tomislav B; Gašić, Uroš M; Natić, Maja M; Fotirić Akšić, Milica M

    2017-09-01

    'Oblačinska' sour cherry, an autochthonous cultivar, is the most planted cultivar in Serbian orchards. Since fruit trees in temperate zone reward insects by producing nectar which 'quality' affects the efficiency of insect pollination, the aim of this study was analyzing of sugars and polyphenolics in floral nectar of 16 'Oblačinska' sour cherry clones with different yielding potential. The contents of sugars and sugar alcohols were analyzed by ion chromatography, while polyphenolic profile was established using liquid chromatography/mass spectrometry technique. Fourteen sugars and six sugar alcohols were detected in nectar samples and the most abundant were fructose, glucose, and sucrose. Eleven polyphenols were quantified using available standards, while another 17 were identified according to their exact masses and characteristic fragmentations. Among quantified polyphenols, rutin, naringenin, and chrysin were the most abundant in nectar. Principal component analysis showed that some polyphenol components (naringin, naringenin, and rutin) together with sugars had high impact of spatial distribution of nectar samples on score plot. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Quantification of tannins and related polyphenols in commercial products of tormentil (Potentilla tormentilla).

    PubMed

    Fecka, Izabela; Kucharska, Alicja Zofia; Kowalczyk, Adam

    2015-01-01

    Potentilla tormentilla has many biological and pharmacological properties and can be used as an ingredient of some herbal medicines or beverages. The aim of this study was to evaluate the content of individual polyphenols, especially condensed and hydrolysable tannins in commercially available tormentil rhizomes and tinctures using chromatographic methods. A quantitative analysis (HPLC-PDA) was preceded by qualitative studies (UPLC-qTOF-MS/MS) and the isolation (CC) of the major tannin compounds. The tested plant material is characterised by a high content of tannins and related polyphenols, i.e. in rhizomes even at the level above 20% and in tinctures above 2%. The main components of tormentil rhizomes are procyanidin B3 (mean ~ 3.6%), procyanidin C2 (mean ~ 2.8%), agrimoniin (mean ~ 2.5%), 3-O-galloylquinic acid (mean ~ 1.7%), catechin (mean ~ 1.6%), other flavan-3-ol oligomers (mean ~ 0.5-1.1) and laevigatins (mean ~ 0.2-0.6%). Free ellagic acid and glycosides of ellagic and methylellagic acids are secondary components. Underground parts of tormentil are a source of oligomeric proanthocyanidins and ellagitannins, but in smaller quantity of gallotannins. Monogalloylquinic acids are new identified compounds, which had not been described in Potentilla tormentilla before we started our research. In the analysed tormentil tinctures agrimoniin concentration is lower in relation to other tannins. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology.

    PubMed

    Luo, Yan; Wu, Wanxing; Chen, Dan; Lin, Yuping; Ma, Yage; Chen, Chaoyin; Zhao, Shenglan

    2017-12-01

    Walnut is a traditional food as well as a traditional medicine recorded in the Chinese Pharmacopoeia; however, the large amounts of walnut flour (WF) generated in walnut oil production have not been well utilized. This study maximized the total polyphenolic yield (TPY) from the walnut flour (WF) by optimizing simultaneous ultrasound/microwave-assisted hydroalcoholic extraction (SUMAE). Response surface methodology was used to optimize the processing parameters for the TPY, including microwave power (20-140 W), ultrasonic power (75-525 W), extraction temperature (25-55 °C), and time (0.5-9.5 min). The polyphenol components were analysed by LC-MS. A second-order polynomial model satisfactorily fit the experimental TPY data (R 2  = 0.9932, P < 0.0001 and R adj 2     = 0.9868). The optimized quick extraction conditions were microwave power 294.38 W, ultrasonic power 93.5 W, temperature 43.38 °C and time 4.33 min, with a maximum TPY of 34.91 mg GAE/g, which was a rapid extraction. The major phenolic components in the WF extracts were glansreginin A, ellagic acid, and gallic acid with peak areas of 22.15%, 14.99% and 10.96%, respectively, which might be used as functional components for health food, cosmetics and medicines. The results indicated that walnut flour, a waste product from the oil industry, was a rich source of polyphenolic compounds and thus could be used as a high-value functional food ingredient.

  4. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon.

    PubMed

    Singh, Barinderjit; Singh, Narpinder; Thakur, Sheetal; Kaur, Amritpal

    2017-03-01

    In this study, extraction of polyphenols using different solvents (acetone, ethanol, methanol and water) with ultrasound and conventional method from whole mung bean (WMB), hull and cotyledon was conducted. Total phenolic content (TPC), total flavonoids content (TFC), total antioxidant activities (TAA), ferric reducing power (FRP) and DPPH radical scavenging activity were determined. Ultrasound treated extracts exhibited higher TPC, TFC, TAA, FRP and DPPH in different mung bean fractions than CSE. Among the solvents, acetone showed better TPC, TFC, TAA, FRP and DPPH. Hull had significantly higher TPC, TFC, TAA, FRP and DPPH than WMB and cotyledon. Sinapic acid (SA) was the major polyphenol in different fractions. Acetone extract of hull showed high polyphenol content. SA, ferulic acid, catechin, p-coumaric acid, resveratrol, quercetin and luteolin were the major contributors to antioxidant activity of acetone extract. Mung bean hull contained the maximum polyphenols and acetone was observed to be the best extraction medium for polyphenols in combination with ultrasound.

  5. Comparison of polyphenol concentration and composition between genetically diverse cacao (Theobroma cacao L.) accessions selected for high yield and disease resistance

    USDA-ARS?s Scientific Manuscript database

    There is abundant evidence that consumption of cacao and dark chocolate promotes human health and that the main cacao components contributing positive health effects are polyphenols. The polyphenols in cacao bean constitute 12–18% dry weight of the whole bean and are predominantly catechins (37% w/w...

  6. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons.

    PubMed

    Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao

    2015-03-01

    Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®

  7. Treatment of mcf-7 breast cancer cells with a red grape wine polyphenol fraction results in disruption of calcium homeostasis and cell cycle arrest causing selective cytotoxicity.

    PubMed

    Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly

    2006-10-04

    Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.

  8. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease

    PubMed Central

    Khan, Nasiruddin; Khymenets, Olha; Urpí-Sardà, Mireia; Tulipani, Sara; Garcia-Aloy, Mar; Monagas, María; Mora-Cubillos, Ximena; Llorach, Rafael; Andres-Lacueva, Cristina

    2014-01-01

    Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMID:24566441

  9. Loss of heterocyclic amine mutagens by insoluble hemicellulose fiber and high-molecular-weight soluble polyphenolics of coffee.

    PubMed

    Kato, T; Takahashi, S; Kikugawa, K

    1991-01-01

    The presence of 2 kinds of components in brewed and instant coffee that could remove and destroy heterocyclic amine mutagens was demonstrated. The component that could remove the mutagens was insoluble fiber composed of hemicellulose. The fiber could tightly adsorb the mutagens Trp-P-1, Trp-P-2, Glu-P-1 and A alpha C, and those generated in roasted coffee beans. The component that could destroy the mutagens was high-molecular-weight soluble polyphenolics. They might be converted into quinone derivatives in the presence of molecular oxygen. The quinone derivatives might destroy the mutagens. The fibers and the polyphenolics in one cup of brewed or instant coffee had the capacity to remove and destroy a substantial amount of the mutagens in pyrolysates of foodstuffs.

  10. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    NASA Astrophysics Data System (ADS)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  11. Apples and Cardiovascular Health—Is the Gut Microbiota a Core Consideration?

    PubMed Central

    Koutsos, Athanasios; Tuohy, Kieran M.; Lovegrove, Julie A.

    2015-01-01

    There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action. PMID:26016654

  12. Apples and cardiovascular health--is the gut microbiota a core consideration?

    PubMed

    Koutsos, Athanasios; Tuohy, Kieran M; Lovegrove, Julie A

    2015-05-26

    There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.

  13. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    PubMed

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  14. Cardioprotective Effects of the Polyphenol Hydroxytyrosol from Olive Oil.

    PubMed

    Tejada, Silvia; Pinya, Samuel; Del Mar Bibiloni, Maria; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2017-01-01

    The Mediterranean diet includes olive oil as its primary source of fat. This diet is frequently associated to longevity and a lower incidence of chronic diseases due to its biological activities and health effects. Apart from oleic acid, olive oil contains many bioactive components including polyphenols that have been reported to exert antioxidant and anti-inflammatory activities. Polyphenols may almost in part be responsible for the protective effects against cardiovascular diseases associated with olive oil. To review and discuss the available literature on hydroxytyrosol effects as a cardioprotective agent. Moreover, we also discuss the chemistry, nutritional aspects and bioavailability of hydroxytyrosol. Hydroxytyrosol is one of the major phenolic compounds in olive oil and has demonstrated strong radical-scavenging properties. Several studies have been performed in order to look further into the effects of the polyphenol hydroxytyrosol in relation to cardiovascular events and illnesses in animal trials and in vitro. However, no clinical trials have focused on the specific action of hydroxytyrosol and cardiovascular diseases, although some are being undertaken to look at olive oil or olive leaf extract properties. Hydroxytyrosol from olive oil exerts antioxidant, anti-inflammatory, anti-platelet aggregation and ati-atherogenic activities in in vitro and animal models. However, its possible therapeutic use in humans requires additional clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage.

    PubMed

    Altındağ, Melek; Türkyılmaz, Meltem; Özkan, Mehmet

    2018-05-01

    Changes in polyphenols have important effects on the quality (especially color) and health benefits of dried apricots. SO 2 concentration, storage and the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were factors which had significant effects on polyphenols. Polyphenol profile and activities of PPO and PAL in sulfured dried apricots (SDAs, 0, 451, 832, 2112 and 3241 mg SO 2 kg -1 ) were monitored during storage at 4, 20 and 30 °C for 379 days for the first time. Even the lowest SO 2 concentration (451 mg kg -1 ) was sufficient to inactivate PPO during the entire storage period. However, while SO 2 led to the increase in PAL activity of the samples (r = 0.767) before storage, PAL activities of SDAs decreased during storage. After 90 days of storage, PAL activity was determined in only non-sulfured dried apricots (NSDAs) and dried apricots containing 451 mg SO 2 kg -1 . Although the major polyphenol in NSDAs was epicatechin (611.4 mg kg -1 ), that in SDAs was chlorogenic acid (455-1508 mg kg -1 ), followed by epicatechin (0-426.8 mg kg -1 ), rutin (148.9-477.3 mg kg -1 ), ferulic acid (23.3-55.3 mg kg -1 ) and gallic acid (2.4-43.6 mg kg -1 ). After storage at 30 °C for 379 days, the major polyphenol in SDAs was gallic acid (706-2324 mg kg -1 ). However, the major polyphenol in NSDAs did not change after storage. The highest total polyphenol content was detected in SDAs containing 2112 mg SO 2 kg -1 and stored at 30 °C. To produce dried apricots having high polyphenol content, ∼2000 mg SO 2 kg -1 should be used. Low storage temperature (<30 °C) was not necessary for the protection of polyphenols. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effect of Green and Brown Propolis Extracts on the Expression Levels of microRNAs, mRNAs and Proteins, Related to Oxidative Stress and Inflammation.

    PubMed

    Zaccaria, Vincenzo; Curti, Valeria; Di Lorenzo, Arianna; Baldi, Alessandra; Maccario, Cristina; Sommatis, Sabrina; Mocchi, Roberto; Daglia, Maria

    2017-10-01

    A large body of evidence highlights that propolis exerts many biological functions that can be ascribed to its antioxidant and anti-inflammatory components, including different polyphenol classes. Nevertheless, the molecular mechanisms are yet unknown. The aim of this study is to investigate the mechanisms at the basis of propolis anti-inflammatory and antioxidant activities. The effects of two brown and green propolis extracts-chemically characterized by RP-HPLC-PDA-ESI-MSn-on the expression levels of miRNAs associated with inflammatory responses (miR-19a-3p and miR-203a-3p) and oxidative stress (miR-27a-3p and miR-17-3p), were determined in human keratinocyte HaCat cell lines, treated with non-cytotoxic concentrations. The results showed that brown propolis, whose major polyphenolic components are flavonoids, induced changes in the expression levels of all miRNAs, and was more active than green propolis (whose main polyphenolic components are hydroxycinnamic acid derivatives) which caused changes only in the expression levels of miR-19a-3p and miR-27a-3p. In addition, only brown propolis was able to modify (1) the expression levels of mRNAs, the target of the reported miRNAs, which code for Tumor Necrosis Factor-α (TNF-α), Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) and Glutathione Peroxidase 2 (GPX2), and (2) the protein levels of TNF-α and NFE2L2. In conclusion, brown and green propolis, which showed different metabolite profiles, exert their biological functions through different mechanisms of action.

  17. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    PubMed

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  18. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    PubMed Central

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  19. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria.

    PubMed

    Cuervo, Adriana; Valdés, Lorena; Salazar, Nuria; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2014-06-11

    Several studies have addressed the use of dietary fibers in the modulation of intestinal microbiota; however, information about other highly correlated components in foods, such as polyphenols, is scarce. The aim of this work was to explore the association between the intake of fibers and polyphenols from a regular diet and fecal microbiota composition in 38 healthy adults. Food intake was recorded using an annual food frequency questionnaire (FFQ). Quantification of microbial populations in feces was performed by quantitative PCR. A negative association was found between the intake of pectins and flavanones from oranges and the levels of Blautia coccoides and Clostridium leptum. By contrast, white bread, providing hemicellulose and resistant starch, was directly associated with Lactobacillus. Because some effects on intestinal microbiota attributed to isolated fibers or polyphenols might be modified by other components present in the same food, future research should be focused on diet rather than individual compounds.

  20. Stability of Polyphenols Epigallocatechin Gallate and Pentagalloyl Glucose in a Simulated Digestive System

    PubMed Central

    Krook, Melanie A.; Hagerman, Ann E.

    2012-01-01

    Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5–6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food. PMID:23028206

  1. [Nutrition and health--favorable effect of wine and wine flavonoids on cardiovascular diseases].

    PubMed

    van de Wiel, A

    2002-12-21

    Epidemiological studies have shown a favourable effect of moderate alcohol consumption with regard to atherosclerotic disorders. In addition to alcohol, wine contains a large number of other components including polyphenols. These polyphenols mainly originate from the skins and seeds of grapes and, because of differences in vinification, their variety and concentration is higher in red wine than in white wine. In vitro and ex vivo studies have shown that some of these polyphenols are able to slow down LDL-cholesterol oxidation, stimulate NO production, influence prostaglandin synthesis and inhibit platelet aggregation. However, little is known about their resorption, bioavailability and effectiveness in vivo. Since data from intervention studies with wine polyphenols are also lacking, no statement can yet be made about any clinically relevant effect of these components, in either red or white wine, in terms of cardiovascular diseases.

  2. [Chemical studies on plant polyphenols and formation of black tea polyphenols].

    PubMed

    Tanaka, Takashi

    2008-08-01

    Recent biological and pharmacological studies strongly suggested that plant polyphenols in foods, beverages and crude drugs have various health benefits. However, still there are chemically uncharacterized polyphenols, especially those with large molecular weights. The typical example is black tea polyphenols. Four tea catechins of fresh tea leaves are enzymatically oxidized in tea fermentation process of black tea manufacture to give a complex mixture of the oxidation products. Despite many efforts since 1950's, major part of the black tea polyphenols has not been clarified yet. We have investigated the oxidation mechanism of each catechin by employing a newly developed in vitro model fermentation system. The oxidation was initiated by enzymatic dehydrogenation of catechins, and subsequent intermolecular quinone-phenol coupling reactions followed by cascade-type degradation of the unstable products resulted in the formation of complex black tea polyphenols. Besides black tea polyphenols, this review introduces the chemistry of insolubilization of persimmon proanthocyanidins, wood polyphenols in connection with whisky polyphenols, and co-polymerization of cinnamaldehyde and proanthocyanidins in cinnamon bark.

  3. Dietary intake and major food sources of polyphenols in people with type 2 diabetes: The TOSCA.IT Study.

    PubMed

    Vitale, M; Masulli, M; Rivellese, A A; Bonora, E; Cappellini, F; Nicolucci, A; Squatrito, S; Antenucci, D; Barrea, A; Bianchi, C; Bianchini, F; Fontana, L; Fornengo, P; Giorgino, F; Gnasso, A; Mannucci, E; Mazzotti, A; Nappo, R; Palena, A P; Pata, P; Perriello, G; Potenziani, S; Radin, R; Ricci, L; Romeo, F; Santini, C; Scarponi, M; Serra, R; Timi, A; Turco, A A; Vedovato, M; Zavaroni, D; Grioni, S; Riccardi, G; Vaccaro, O

    2018-03-01

    Proper evaluation of polyphenols intake at the population level is a necessary step in order to establish possible associations with health outcomes. Available data are limited, and so far no study has been performed in people with diabetes. The aim of this work was to document the intake of polyphenols and their major food sources in a cohort of people with type 2 diabetes and in socio-demographic subgroups. We studied 2573 men and women aged 50-75 years. Among others, anthropometry was measured by standard protocol and dietary habits were investigated by food frequency questionnaire (EPIC). The intake of polyphenols was evaluated using US Department of Agriculture and Phenol-Explorer databases. The mean total polyphenol intake was 683.3 ± 5.8 mg/day. Non-alcoholic beverages represented the main food source of dietary polyphenols and provided 35.5% of total polyphenol intake, followed by fruits (23.0%), alcoholic beverages (14.0%), vegetables (12.4%), cereal products and tubers (4.6%), legumes (3.7%) and oils (2.1%); chocolate, cakes and nuts are negligible sources of polyphenols in this cohort. The two most important polyphenol classes contributing to the total intake were flavonoids (47.5%) and phenolic acids (47.4%). Polyphenol intake increased with age and education level and decreased with BMI; furthermore, in the northern regions of Italy, the polyphenol intake was slightly, but significantly higher than in the central or southern regions. The study documents for the first time the intake of polyphenols and their main food sources in people with diabetes using validated and complete databases of the polyphenol content of food. Compared with published data, collected in people without diabetes, these results suggest a lower intake and a different pattern of intake in people with diabetes.

  4. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study☆

    PubMed Central

    Grosso, Giuseppe; Stepaniak, Urszula; Topor-Mądry, Roman; Szafraniec, Krystyna; Pająk, Andrzej

    2014-01-01

    Objective The aim of this study was to estimate the intake of known individual polyphenols and their major dietary sources in the Polish arm of the HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe) study. Methods A total of 10,477 random sample (45–69 y) of urban population of Krakow, Poland, completed a validated 148-item food frequency questionnaire. Polyphenol intake was calculated by matching food consumption data with the recently developed Phenol-Explorer database. Results The mean intake of polyphenols was 1756.5 ± 695.8 mg/d (median = 1662.5 mg/d). The main polyphenol groups were flavonoids (897 mg/d) and phenolic acids (800 mg/d). A total of 347 polyphenols from 19 polyphenol subclasses were found. The individual compounds with the highest intakes were isomers of chlorogenic acid (i.e., 5-caffeoylquinic acid and 4-caffeoylquinic acid) among hydroxycinnamic acids (average intake 150 mg/d), that largely originated from coffee, and compounds belonging to the catechin chemical family (i.e., [+]-gallocatechin, [-]-epigallocatechin 3-O-gallate, and [-]-epicatechin) among flavanols (average intake 50 mg/d), that mostly originated from tea and cocoa products. Conclusions The current study provides the most updated data for individual polyphenols intake in the diet of a well-established nutritional cohort. These findings will be useful to assess potential beneficial role on health of specific foods with high polyphenol content and characterize the effects of individual phenolic compounds. PMID:25280419

  5. Green tea: a promising natural product in oral health.

    PubMed

    Narotzki, Baruch; Reznick, Abraham Z; Aizenbud, Dror; Levy, Yishai

    2012-05-01

    Green tea is a leading beverage in the Far East for thousands of years; it is regarded for a long time as a health product. Green tea is important source of polyphenol antioxidants. Polyphenols including epigallocatechin 3 gallate (EGCG) constitute the most interesting components in green tea leaves. Green tea has the potential to protect against various malignant, cardiovascular and metabolic diseases. There is a growing body of evidence pointing a beneficial role of green tea and its polyphenols in oral health. Green tea protects against bacterial induced dental caries. Tea polyphenols possess antiviral properties, believed to help in protection from influenza virus. Additionally, green tea polyphenols can abolish halitosis through modification of odorant sulphur components. Oral cavity oxidative stress and inflammation, consequent to cigarette smoking and cigarettes' deleterious compounds nicotine and acrolein, may be reduced in the presence of green tea polyphenols. Generally, green tea defends healthy cells from malignant transformation and locally has the ability to induce apoptosis in oral cancer cells. All together, there is an increasing interest in the health benefits of green tea in the field of oral health. Nonetheless, there is still a need for more clinical and biological studies to support guidelines for green tea intake as part of prevention and treatment of specific oral pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Reorganisation of the Salivary Mucin Network by Dietary Components: Insights from Green Tea Polyphenols

    PubMed Central

    Davies, Heather S.; Pudney, Paul D. A.; Georgiades, Pantelis; Waigh, Thomas A.; Hodson, Nigel W.; Ridley, Caroline E.; Blanch, Ewan W.; Thornton, David J.

    2014-01-01

    The salivary mucins that include MUC5B (gel-forming) and MUC7 (non-gel-forming) are major contributors to the protective mucus barrier in the oral cavity, and it is possible that dietary components may influence barrier properties. We show how one dietary compound, the green tea polyphenol epigallocatechin gallate (EGCG), can substantially alter the properties of both the polymeric MUC5B network and monomeric MUC7. Using rate-zonal centrifugation, MUC5B in human whole saliva and MUC5B purified from saliva sedimented faster in the presence of EGCG. The faster sedimentation by EGCG was shown to be greater with increasing MUC5B concentration. Particle tracking microrheology was employed to determine the viscosity of purified MUC5B solutions and showed that for MUC5B solutions of 200–1600 µg/mL, EGCG caused a significant increase in mucin viscosity, which was greater at higher MUC5B concentrations. Visualisation of the changes to the MUC5B network by EGCG was performed using atomic force microscopy, which demonstrated increased aggregation of MUC5B in a heterogeneous manner by EGCG. Using trypsin-resistant, high-molecular weight oligosaccharide-rich regions of MUC5B and recombinant N-terminal and C-terminal MUC5B proteins, we showed that EGCG causes aggregation at the protein domains of MUC5B, but not at the oligosaccharide-rich regions of the mucin. We also demonstrated that EGCG caused the majority of MUC7 in human whole saliva to aggregate. Furthermore, purified MUC7 also underwent a large increase in sedimentation rate in the presence of EGCG. In contrast, the green tea polyphenol epicatechin caused no change in the sedimentation rate of either MUC5B or MUC7 in human whole saliva. These findings have demonstrated how the properties of the mucin barrier can be influenced by dietary components. In the case of EGCG, these interactions may alter the function of MUC5B as a lubricant, contributing to the astringency (dry puckering sensation) of green tea. PMID:25264771

  7. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-21

    It has been shown that encapsulation of dietary polyphenols leads to increased solubility and bioavailability of these micronutrients. The encapsulation of dietary polyphenols resveratrol, genistein, and curcumin by folic acid-PAMAM-G3 and folic acid-PAMAM-G4 nanoparticles was studied in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As folic acid-PAMAM nanoparticle size increased, the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol encapsulation induced major alterations of dendrimer morphology. Folic acid-PAMAM nanoconjugates are capable of delivery of polyphenols in vitro.

  8. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    PubMed

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial.

    PubMed

    Annuzzi, Giovanni; Bozzetto, Lutgarda; Costabile, Giuseppina; Giacco, Rosalba; Mangione, Anna; Anniballi, Gaia; Vitale, Marilena; Vetrani, Claudia; Cipriano, Paola; Della Corte, Giuseppina; Pasanisi, Fabrizio; Riccardi, Gabriele; Rivellese, Angela A

    2014-03-01

    The postprandial triglyceride-rich lipoprotein (TRL) concentration is a recognized independent cardiovascular disease risk factor. Diet is the natural approach for these postprandial alterations. Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3s) are associated with a lower cardiovascular disease risk. This randomized controlled study evaluated, in persons with a high risk of cardiovascular disease, the effects of diets naturally rich in polyphenols and/or marine LCn3s on plasma TRLs and urinary 8-isoprostane concentrations, a biomarker of oxidative stress. According to a 2 × 2 factorial design, 86 overweight/obese individuals with a large waist circumference and any other component of the metabolic syndrome were randomly assigned to an isoenergetic diet 1) poor in LCn3s and polyphenols, 2) rich in LCn3s, 3) rich in polyphenols, or 4) rich in LCn3s and polyphenols. The diets were similar in all other components. Before and after the 8-wk intervention, fasting and postmeal TRLs and 8-isoprostane concentrations in 24-h urine samples were measured. Dietary adherence was good in all participants. Polyphenols significantly reduced fasting triglyceride concentrations (2-factor ANOVA) in plasma (P = 0.023) and large very-low-density lipoproteins (VLDLs) (P = 0.016) and postprandial triglyceride total area under the curve in plasma (P = 0.041) and large VLDLs (P = 0.004). LCn3s reduced postprandial chylomicron cholesterol and VLDL apolipoprotein B-48. The concentrations of urinary 8-isoprostane decreased significantly with the polyphenol-rich diets. Lipoprotein changes induced by the intervention significantly correlated with changes in 8-isoprostane. Diets naturally rich in polyphenols positively influence fasting and postprandial TRLs and reduce oxidative stress. Marine LCn3s reduce TRLs of exogenous origin. Through their effects on postprandial lipemia and oxidative stress, polyphenols may favorably affect cardiovascular disease risk.

  10. Mass Spectral Characterization and UPLC Quantitation of 3-Deoxyanthocyanidins in Sorghum bicolor Varietals.

    PubMed

    Stern, Nathan P; Rana, Jatinder; Chandra, Amitabh; Balles, John

    2018-01-01

    A quantitative ultra-performance LC (UPLC) method was developed and validated to successfully separate, identify, and quantitate the major polyphenolic compounds present in different varieties of sorghum (Sorghum bicolor) feedstock. The method was linear from 3.2 to 320 ppm, with an r2 of 0.99999 when using luteolinidin chloride as the external standard. Method accuracy was determined to be 99.5%, and precision of replicate preparations was less than 1% RSD. Characterization by UPLC-MS determined that the predominant polyphenolic components of the sorghum varietals were 3-deoxyanthocyanidins (3-DXAs). High-throughput screening for 3-DXA identified four unique classes within the sorghum varieties. Certain feedstock varieties have been found to have a high potential to not only be plant-based colorants, but also provide significant amounts of bioactive 3-DXAs, making them of unique interest to the dietary supplement industry.

  11. Inheritance of polyphenol oxidase activity in wheat breeding lines derived from matings of low polyphenol oxidase parents

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) in grain plays a major role in time-dependent discoloration of wheat (Triticum aestivum L.) products, especially fresh noodles. Breeding wheat cultivars with low or nil PPO activity can reduce the undesirable product darkening. The low PPO line PI 117635 was crossed to two...

  12. Influence of diabetes on the pharmacokinetic behavior of natural polyphenols.

    PubMed

    Xiao, Jianbo; Högger, Petra

    2014-01-01

    The development of food fortified with polyphenols and polyphenol-rich foods represents a novel approach to prevent or attenuate type 2 diabetes. It has been reported that type 2 diabetes may affect the pharmacokinetics of various drugs in several animal models. There is powerful evidence linking dietary polyphenols consumption with the risk factors defining type 2 diabetes, even if some opposite results occurred. This mini-review summarizes important advances on diabetes-associated changes in pharmacokinetics of natural polyphenols. The pharmacokinetic behavior between drugs and dietary polyphenols probably may be different due to (i) Ingested dose/amount per day. The dietary polyphenol intake per day is much higher than that of clinical drugs; (ii) Complexity of the components. Clinical drugs are well-characterized and typically small molecules. However, the polyphenols in diet are unimaginably complex; (iii) Interaction with food proteins. Although the effects of food proteins on the bioavailability of polyphenols are still not examined in much detail, direct binding interactions of polyphenols to proteins always occur; (iv) The most common polyphenols in the human diet have a low intrinsic activity and are poorly absorbed from the intestine, highly metabolized, or rapidly eliminated. Although there is very limited information available so far, it is proposed that type 2 diabetes influences the pharmacokinetic behavior of dietary polyphenols including: i) competition of glucose with polyphenols regarding binding to plasma proteins; ii) weakened non-covalent interaction affinities of plasma proteins for natural polyphenols due to protein glycation in type II diabetes; iii) the enhanced clearance of polyphenols in type 2 diabetes. An understanding of diabetes-associated changes in absorption, distribution, metabolism, elimination and bioactivities of natural polyphenols as well as the mechanism of the variability should lead to the improvement of the benefits of these polyphenols and clinical outcomes for diabetics.

  13. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds.

    PubMed

    Sudjaroen, Yuttana; Hull, William E; Erben, Gerhard; Würtele, Gerd; Changbumrung, Supranee; Ulrich, Cornelia M; Owen, Robert W

    2012-05-01

    Longan (Dimocarpus longan Lour, syn. Euphoria longan Lam.) represents an important fruit in Northern Thailand and has significant economic impact. The fruit is either consumed fresh or as commercially prepared dried and canned products. The canning industry in Thailand produces considerable quantities of waste products, in particular Longan seeds. Because these seeds may be an exploitable source of natural phenolic antioxidants, it was of interest to identify, purify and quantitate the major potential antioxidant phenolics contained therein. The polyphenolic fraction from ground Longan seeds was obtained by extraction with methanol after delipidation with hexane. The hexane extract contained predominantly long-chain fatty acids with major contributions from palmitic (35%) and oleic (28%) acids. The polyphenolic fraction (80.90 g/kg dry weight) was dominated by ellagic acid (25.84 g/kg) and the known ellagitannins corilagin (13.31 g/kg), chebulagic acid (13.06 g/kg), ellagic acid 4-O-α-l-arabinofuranoside (9.93 g/kg), isomallotinic acid (8.56 g/kg) and geraniin (5.79 g/kg). Structure elucidation was performed with mass spectrometry and complete assignment of (1)H and (13)C NMR signals. The methanol extracts exhibited strong antioxidant capacities with an IC(50) of 154 μg/ml for reactive oxygen species attack on salicylic acid and 78 μg/ml for inhibition of xanthine oxidase in the hypoxanthine/xanthine oxidase assay. The extracts were less effective in the 2-deoxyguanosine assay (IC(50)=2.46 mg/ml), indicating that gallates along with ellagic acid and its congeners exert their potential antioxidant effects predominantly by precipitation of proteins such as xanthine oxidase. This was confirmed for the pure compounds gallic acid, methyl gallate, ellagic acid and corilagin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    PubMed Central

    Merino, Jordi; Fitó, Montse

    2017-01-01

    Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D) through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk. PMID:28883903

  15. Predictive relationship between polyphenol and nonfat cocoa solids content of chocolate.

    PubMed

    Cooper, Karen A; Campos-Giménez, Esther; Jiménez Alvarez, Diego; Rytz, Andreas; Nagy, Kornél; Williamson, Gary

    2008-01-09

    Chocolate is often labeled with percent cocoa solids content. It is assumed that higher cocoa solids contents are indicative of higher polyphenol concentrations, which have potential health benefits. However, cocoa solids include polyphenol-free cocoa butter and polyphenol-rich nonfat cocoa solids (NFCS). In this study the strength of the relationship between NFCS content (estimated by theobromine as a proxy) and polyphenol content was tested in chocolate samples with labeled cocoa solids contents in the range of 20-100%, grouped as dark (n = 46), milk (n = 8), and those chocolates containing inclusions such as wafers or nuts (n = 15). The relationship was calculated with regard to both total polyphenol content and individual polyphenols. In dark chocolates, NFCS is linearly related to total polyphenols (r2 = 0.73). Total polyphenol content appears to be systematically slightly higher for milk chocolates than estimated by the dark chocolate model, whereas for chocolates containing other ingredients, the estimates fall close to or slightly below the model results. This shows that extra components such as milk, wafers, or nuts might influence the measurements of both theobromine and polyphenol contents. For each of the six main polyphenols (as well as their sum), the relationship with the estimated NFCS was much lower than for total polyphenols (r2 < 0.40), but these relationships were independent of the nature of the chocolate type, indicating that they might still have some predictive capabilities.

  16. [Induction of NAD(P)H: quinone reductase by anticarcinogenic ingredients of tea].

    PubMed

    Qi, L; Han, C

    1998-09-30

    By assaying the activity of NAD(P)H: quinone reductase (QR) in Hep G2 cells exposed to inducing agents, a variety of ingredients in tea, we compared their abilities on inducing QR and preventing cancer. The results showed that tea polyphenols, tea pigments and mixed tea were all able to induce the activity of QR significantly. The single-component ingredients of tea polyphenols and tea pigments, including thearubigens, EGCG and ECG, also enhanced the activity of QR. But EGC, EC, theaflavins, tea polysaccharide and tea caffeine, showed no apparent induction of QR. We found that among those tea ingredients studied, the multi-component ingredients were more effective than the single-component ones. So we thought that the abilities of antioxidation and cancer prevention of tea depended on the combined effects of several kinds of active ingredients, which mainly include tea polyphenols and tea pigments.

  17. Flavonoid and lignan intake in a Mediterranean population: proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study.

    PubMed

    Pounis, G; Di Castelnuovo, A; Bonaccio, M; Costanzo, S; Persichillo, M; Krogh, V; Donati, M B; de Gaetano, G; Iacoviello, L

    2016-03-01

    The objective of this study is to extract and assess data on the dietary intake of flavonoids and lignans in a healthy free-living Mediterranean population, using newly updated harmonized European Union food composition data. This work also aimed at analyzing in a holistic way the total content of the diet in major classes of polyphenols. Six thousand nine hundred and eighty-one men and 7048 women (aged ⩾ 35 years) of the Moli-sani cohort, randomly recruited from the general population, were analyzed. The European Prospective Investigation into Cancer (EPIC) and Nutrition-Food Frequency Questionnaire was used for dietary assessment. The polyphenol content of each food group was evaluated using Eurofir BioActive Substances in Food Information System and the United States Department of Agriculture food composition tables (FCTs), when data were missing. Flavonol, flavone, flavanone, flavanol, anthocyanin, isoflavone and lignan intakes were calculated and polyphenol antioxidant content (PAC) score (-28, 28) constructed, to assess the total content of the diet in these nutrients. Seasonal and citrus fruits, leafy, grain, pod and root vegetables, and onions and garlic accounted for different proportions (11-70%) of the total intake of different polyphenols. Within the Moli-sani population, men or older, or no/former smokers, or physically active or obese/overweight individuals presented higher consumption of flavonoids, lignans and PAC score (P for all <0.01). Multiple regression analysis showed that PAC score and its seven components were positively associated with Mediterranean diet (MeD) adherence in both genders (β-coefficient >0, P<0.001). In addition, 1 unit increase in PAC score was associated with 7.1-7.8% increase in the likelihood of high MeD adherence (P<0.001). The intake of flavonoids and lignans in an European Union population was calculated using harmonized European Union FCT data. In addition, a holistic approach in dietary analysis of polyphenol intake was proposed.

  18. Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins

    PubMed Central

    Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  19. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    PubMed

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  20. Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry.

    PubMed

    Boath, Ashley S; Stewart, Derek; McDougall, Gordon J

    2012-12-01

    Polyphenol-rich extracts from certain berries inhibited α-glucosidase activity in vitro. The two most effective berry extracts, from black currant and rowanberry, inhibited α-glucosidase with IC(50) values respectively of 20 and 30μg GAE/ml and were as effective as the pharmaceutical inhibitor, acarbose. These berry extracts differed greatly in their polyphenol composition: black currant was dominated by anthocyanins (∼70% of total) whereas rowanberry was enriched in chlorogenic acids (65% total) and had low levels of anthocyanins. Both black currant and rowanberry extracts potentiated the inhibition caused by acarbose and could replace the inhibition lost by reducing the acarbose dose. However, no additive effects were noted when black currant and rowanberry extracts were added in combination. The mechanisms underlying the synergy between acarbose and the berry polyphenols and the lack of synergy between the berry components are discussed. These extracts exhibited the potential to replace acarbose (or reduce the dose required) in its current clinical use in improving post-prandial glycaemic control in type 2 diabetics. As a result, these polyphenols may offer a dietary means for type 2 diabetics to exercise glycaemic control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Immunochemical detection of food-derived polyphenols in the aorta: macrophages as a major target underlying the anti-atherosclerotic activity of polyphenols.

    PubMed

    Kawai, Yoshichika

    2011-01-01

    It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.

  2. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer.

    PubMed

    Khushnud, Tasnima; Mousa, Shaker A

    2013-09-01

    Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.

  3. Rapid reversed phase ultra-performance liquid chromatography analysis of the major cocoa polyphenols and inter-relationships of their concentrations in chocolate.

    PubMed

    Cooper, Karen A; Campos-Giménez, Esther; Jiménez Alvarez, Diego; Nagy, Kornél; Donovan, Jennifer L; Williamson, Gary

    2007-04-18

    Chocolate and other cocoa-containing products are a rich source of polyphenols. This paper describes an ultra-performance liquid chromatography (UPLC) method that can separate and quantify in 3 min six of the major chocolate polyphenols: catechin; epicatechin; B2 (epicatechin-4beta-8-epicatechin); B5 (epicatechin-4beta-6-epicatechin); C1 (epicatechin-4beta-8-epicatechin-4beta-8-epicatechin); and tetramer D (epicatechin-4beta-8-epicatechin-4beta-8-epicatechin-4beta-8-epicatechin). A survey of 68 chocolate samples indicated that there was a strongly predictive relationship between epicatechin and the other individual polyphenols, especially procyanidin B2 (R 2 = 0.989), even though the chocolates came from varied sources and manufacturers. The relationship was less strong with catechin, and so further work to explore the reasons for this difference was performed. Chiral analysis on a subset of 23 chocolates showed that (-)-epicatechin had a predictive relationship with (+)-catechin in line with the other polyphenols, but not with (-)-catechin (the predominant form). This indicates that (-)-catechin is the most affected by manufacturing conditions, possibly formed through epimerization from (-)-epicatechin during processing. The results show that epicatechin concentrations can be used to predict the content of other polyphenols, especially B2 and C1, and total polyphenols content. Finally, the (-)-catechin content is not predictable from the epicatechin content, and it is concluded that this is the main form of polyphenol that varies according to manufacturing conditions and cocoa origin.

  4. Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides.

    PubMed

    Le Sage, Fanny; Meilhac, Olivier; Gonthier, Marie-Paule

    2017-05-01

    In obesity, gut microbiota LPS may translocate into the blood stream and then contribute to adipose tissue inflammation and oxidative stress, leading to insulin resistance. A causal link between periodontal infection, obesity and type 2 diabetes has also been suggested. We evaluated the ability of polyphenols from Antirhea borbonica medicinal plant to improve the inflammatory and redox status of 3T3-L1 adipocytes exposed to LPS of Porphyromonas gingivalis periodontopathogen or Escherichia coli enterobacteria. Our results show that LPS enhanced the production of Toll-like receptor-dependent MyD88 and NFκB signaling factors as well as IL-6, MCP-1, PAI-1 and resistin. Plant polyphenols reduced LPS pro-inflammatory action. Concomitantly, polyphenols increased the production of adiponectin and PPARγ, known as key anti-inflammatory and insulin-sensitizing mediators. Moreover, both LPS increased intracellular ROS levels and the expression of genes encoding ROS-producing enzymes including NOX2, NOX4 and iNOS. Plant polyphenols reversed these effects and up-regulated MnSOD and catalase antioxidant enzyme gene expression. Noticeably, preconditioning of cells with caffeic acid, chlorogenic acid or kaempferol identified among A. borbonica major polyphenols, led to similar protective properties. Altogether, these findings demonstrate the anti-inflammatory and antioxidant effects of A. borbonica polyphenols on adipocytes, in response to P. gingivalis or E. coli LPS. It will be of major interest to assess A. borbonica polyphenol benefits against obesity-related metabolic disorders such as insulin resistance in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods.

    PubMed

    Ferruzzi, Mario G; Bordenave, Nicolas; Hamaker, Bruce R

    2012-11-05

    Astringency is a component of the overall flavor experienced when consuming polyphenol rich foods and beverages such as tea, wine, cocoa and select fruits. Following consumption, the astringent sensation results from the well documented ability of polyphenols to bind to salivary proline rich proteins (PRP) and facilitate their precipitation in the oral cavity. In a similar fashion, polyphenols are also known to non-specifically bind food and other biological proteins. While much is known regarding the polyphenol-protein interactions leading to astringency, significantly less information is available regarding the impact of these polyphenol-protein interactions with food or other biological proteins on relevant physiological outcomes. This paper focuses on the interactions between flavan-3-ols, one of the most abundant dietary polyphenol forms, with proteins in food, salivary PRP and other physiological proteins. The physiological implications of these interactions in food and through the gut will be discussed in relation to manipulation of flavan-3-ol bioavailability, metabolism and biological activities including inhibition of digestive enzymes in the gut. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation.

    PubMed

    Prateeksha; Singh, Braj R; Shoeb, M; Sharma, S; Naqvi, A H; Gupta, Vijai K; Singh, Brahma N

    2017-01-01

    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro . Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery.

  7. Inhibitory effects of magnolol and honokiol on human calcitonin aggregation

    PubMed Central

    Guo, Caiao; Ma, Liang; Zhao, Yudan; Peng, Anlin; Cheng, Biao; Zhou, Qiaoqiao; Zheng, Ling; Huang, Kun

    2015-01-01

    Amyloid formation is associated with multiple amyloidosis diseases. Human calcitonin (hCT) is a typical amyloidogenic peptide, its aggregation is associated with medullary carcinoma of the thyroid (MTC), and also limits its clinical application. Magnolia officinalis is a traditional Chinese herbal medicine; its two major polyphenol components, magnolol (Mag) and honokiol (Hon), have displayed multiple functions. Polyphenols like flavonoids and their derivatives have been extensively studied as amyloid inhibitors. However, the anti-amyloidogenic property of a biphenyl backbone containing polyphenols such as Mag and Hon has not been reported. In this study, these two compounds were tested for their effects on hCT aggregation. We found that Mag and Hon both inhibited the amyloid formation of hCT, whereas Mag showed a stronger inhibitory effect; moreover, they both dose-dependently disassembled preformed hCT aggregates. Further immuno-dot blot and dynamic light scattering studies suggested Mag and Hon suppressed the aggregation of hCT both at the oligomerization and the fibrillation stages, while MTT-based and dye-leakage assays demonstrated that Mag and Hon effectively reduced cytotoxicity caused by hCT aggregates. Furthermore, isothermal titration calorimetry indicated Mag and Hon both interact with hCT. Together, our study suggested a potential anti-amyloidogenic property of these two compounds and their structure related derivatives. PMID:26324190

  8. The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG).

    PubMed

    Zhang, Feng; Luo, Shi-Yun; Ye, Yan-Bin; Zhao, Wen-Hua; Sun, Xu-Guang; Wang, Zhi-Qun; Li, Ran; Sun, Ying-Hui; Tian, Wei-Xi; Zhang, Ying-Xia

    2008-10-01

    Polyphenols, including flavonoids, are the major components of the extracts from aceraceous plants. They possess remarkable antibacterial and antitumour activity. Our study focused on whether the inhibition of the bacterial type II fatty acid synthesis system is the mechanism for the antibacterial effect of the related plant polyphenols. Extracts obtained from the fallen leaves of the Shantung maple (Acer truncatum Bunge) using different solvents, and the related pure compound PGG (1,2,3,4,6-penta-O-galloyl-beta-D-glucose), potently inhibited the FabG (beta-oxoacyl-ACP reductase) steps in the fatty-acid-elongation cycle with the IC(50) values between 0.9 and 7.2 microg/ml. An ethyl acetate extract appeared to inhibit FabG reductase in a mixed manner with NADPH, as did PGG with NADPH, demonstrating that they interfered with the binding of the cofactor to the enzyme. Gram-positive and Gram-negative bacteria and some fungi were used to evaluate the antibacterial abilities of different extract samples. The experiments showed that a higher polyphenol content of the extracts led to a more potent inhibitory capacity against FabG, thus enhancing the antibacterial efficacy.

  9. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  10. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    PubMed

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. In vitro micropropagation and mycorrhizal treatment influences the polyphenols content profile of globe artichoke under field conditions.

    PubMed

    Pandino, Gaetano; Lombardo, Sara; Antonino, Lo Monaco; Ruta, Claudia; Mauromicale, Giovanni

    2017-09-01

    The commercial importance of plant tissue culture has grown in recent years, reflecting its application to vegetative propagation, disease elimination, plant improvement and the production of polyphenols. The level of polyphenols present in plant tissue is influenced by crop genotype, the growing environment, the crop management regime and the post-harvest processing practice. Globe artichoke is a significant component of the Mediterranean Basin agricultural economy, and is rich in polyphenols (phenolic acids and flavones). Most commercially grown plants are derived via vegetative propagation, with its attendant risk of pathogen build-up. Here, a comparison was drawn between the polyphenol profiles of conventionally propagated and micropropagated/mycorrhized globe artichoke plants. Micropropagation/mycorrhization appeared to deliver a higher content of caffeoylquinic acids. The accumulation of these compounds, along with luteolin and its derivatives, was not season-dependent. Luteolin aglycone was accumulated preferentially in the conventionally propagated plants. Overall, it appeared that micropropagation/mycorrhization enhanced the accumulation of polyphenols. Copyright © 2017. Published by Elsevier Ltd.

  12. Chemometric classification of apple juices according to variety and geographical origin based on polyphenolic profiles.

    PubMed

    Guo, Jing; Yue, Tianli; Yuan, Yahong; Wang, Yutang

    2013-07-17

    To characterize and classify apple juices according to apple variety and geographical origin on the basis of their polyphenol composition, the polyphenolic profiles of 58 apple juice samples belonging to 5 apple varieties and from 6 regions in Shaanxi province of China were assessed. Fifty-one of the samples were from protected designation of origin (PDO) districts. Polyphenols were determined by high-performance liquid chromatography coupled to photodiode array detection (HPLC-PDA) and to a Q Exactive quadrupole-Orbitrap mass spectrometer. Chemometric techniques including principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were carried out on polyphenolic profiles of the samples to develop discrimination models. SLDA achieved satisfactory discriminations of apple juices according to variety and geographical origin, providing respectively 98.3 and 91.2% success rate in terms of prediction ability. This result demonstrated that polyphenols could served as characteristic indices to verify the variety and geographical origin of apple juices.

  13. Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes.

    PubMed

    Pigani, Laura; Rioli, Cristina; Foca, Giorgia; Ulrici, Alessandro; Seeber, Renato; Terzi, Fabio; Zanardi, Chiara

    2016-10-01

    Poly(3,4-ethylenedioxythiophene)-modified electrodes have been used for the estimation of the polyphenolic content and of the colour index of different samples of wines. Synthetic wine solutions, prepared with different amount of oenocyanins, have been analysed spectrophotometrically and electrochemically in order to find a correlation between the total polyphenolic content or colour index and the current peak. The regression curves obtained have been used as external calibration lines for the analysis of several commercial wines, ranging from white to dark red wines. In this way, a rapid estimation of the total polyphenolic content and of the colour index may be accomplished from a single voltammetric measurement. Furthermore, principal component analysis has also been used to evaluate the effect of total polyphenolic content and colour index on the whole voltammetric signals within a selected potential range, both for the synthetic solutions and for the commercial products. Graphical abstract Electrochemical sensors for the rapid determination of colour index and polyphenol content in wines.

  14. Natural Polyphenol Disposition via Coupled Metabolic Pathways

    PubMed Central

    Liu, Zhongqiu; Hu, Ming

    2009-01-01

    A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in most of tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as UGT and SULT are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters such as MRP2, BCRP and OAT appear to serve as the gate keeper when there is an excess capacity to metabolize the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lives for these compounds and their conjugates. Since the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions. PMID:17539746

  15. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    PubMed

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  16. Plant Polyphenols as Chemopreventive Agents for Lung Cancer

    PubMed Central

    Amararathna, Madumani; Johnston, Michael R.; Rupasinghe, H. P. Vasantha

    2016-01-01

    Lung cancer may be prevented by a diet rich in fruits and vegetables as they are enriched with dietary antioxidant polyphenols, such as flavonoids, proanthocyanidins, lignans, stilbenes, and phenolic acids. Dietary polyphenols exert a wide range of beneficial biological functions beyond their antioxidative properties and are involved in regulation of cell survival pathways leading to anticarcinogenic and antimutagenic functions. There are sufficient evidence from in vitro, in vivo, and epidemiological studies to suggest that the dietary intervention of polyphenols in cancer prevention, including the chemopreventive ability of dietary polyphenols, act against lung carcinogens. Cohort and epidemiological studies in selected risk populations have evaluated clinical effects of polyphenols. Polyphenols have demonstrated three major actions: antioxidative activity, regulation of phase I and II enzymes, and regulation of cell survival pathways against lung carcinogenesis. They have also shown an inverse association of lung cancer occurrences among high risk populations who consumed considerable amounts of fruits and vegetables in their daily diet. In in vitro cell culture experimental models, polyphenols bind with electrophilic metabolites from carcinogens, inactivate cellular oxygen radicals, prevent membrane lipid peroxidation and DNA oxidative damage, and adduct formation. Further, polyphenols enhance the detoxifying enzymes such as the phase II enzymes, glutathione transferases and glucuronosyl transferases. PMID:27548149

  17. Characteristics and physiological functions of polyphenols from apples.

    PubMed

    Akazome, Yoko

    2004-01-01

    Apples contain many kinds of polyphenols, and the main components are oligomeric procyanidins. Applephenon is apple polyphenol extract produced commercially from unripe apples, and has been used as food additive in order to prevent oxidation of components in foods and its application in functional foods is expected. In a lipid metabolism regulation study, administration of Applephenon has the potential to exert strong anti-oxidative activity and to inhibit consumption of vitamin E and anti-oxidative enzymes. Double blind clinical trials of Applephenon on pediatric patients with atopic dermatitis, and tests using type I allergic model mice suggested that Applephenon might regulate allergic reactions. We found the no observed adverse effect level (NOAEL) of Applephenon is greater than 2000 mg/kg in a 90~day consecutive oral administration toxicity test in rats, and Applephenon is safe and acceptable based on mutagenicity tests.

  18. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.

    PubMed

    Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2014-12-01

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

  19. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods.

    PubMed

    Neveu, V; Perez-Jiménez, J; Vos, F; Crespy, V; du Chaffaut, L; Mennen, L; Knox, C; Eisner, R; Cruz, J; Wishart, D; Scalbert, A

    2010-01-01

    A number of databases on the plant metabolome describe the chemistry and biosynthesis of plant chemicals. However, no such database is specifically focused on foods and more precisely on polyphenols, one of the major classes of phytochemicals. As antioxidants, polyphenols influence human health and may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, some cancers or type 2 diabetes. To determine polyphenol intake in populations and study their association with health, it is essential to have detailed information on their content in foods. However this information is not easily collected due to the variety of their chemical structures and the variability of their content in a given food. Phenol-Explorer is the first comprehensive web-based database on polyphenol content in foods. It contains more than 37,000 original data points collected from 638 scientific articles published in peer-reviewed journals. The quality of these data has been evaluated before they were aggregated to produce final representative mean content values for 502 polyphenols in 452 foods. The web interface allows making various queries on the aggregated data to identify foods containing a given polyphenol or polyphenols present in a given food. For each mean content value, it is possible to trace all original content values and their literature sources. Phenol-Explorer is a major step forward in the development of databases on food constituents and the food metabolome. It should help researchers to better understand the role of phytochemicals in the technical and nutritional quality of food, and food manufacturers to develop tailor-made healthy foods. Database URL: http://www.phenol-explorer.eu.

  20. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods

    PubMed Central

    Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A.

    2010-01-01

    A number of databases on the plant metabolome describe the chemistry and biosynthesis of plant chemicals. However, no such database is specifically focused on foods and more precisely on polyphenols, one of the major classes of phytochemicals. As antoxidants, polyphenols influence human health and may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, some cancers or type 2 diabetes. To determine polyphenol intake in populations and study their association with health, it is essential to have detailed information on their content in foods. However this information is not easily collected due to the variety of their chemical structures and the variability of their content in a given food. Phenol-Explorer is the first comprehensive web-based database on polyphenol content in foods. It contains more than 37 000 original data points collected from 638 scientific articles published in peer-reviewed journals. The quality of these data has been evaluated before they were aggregated to produce final representative mean content values for 502 polyphenols in 452 foods. The web interface allows making various queries on the aggregated data to identify foods containing a given polyphenol or polyphenols present in a given food. For each mean content value, it is possible to trace all original content values and their literature sources. Phenol-Explorer is a major step forward in the development of databases on food constituents and the food metabolome. It should help researchers to better understand the role of phytochemicals in the technical and nutritional quality of food, and food manufacturers to develop tailor-made healthy foods. Database URL: http://www.phenol-explorer.eu PMID:20428313

  1. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods

    PubMed Central

    Roopchand, Diana E.; Grace, Mary H.; Kuhn, Peter; Cheng, Diana M.; Plundrich, Nathalie; Poulev, Alexander; Howell, Amy; Fridlender, Bertold; Lila, Mary Ann; Raskin, Ilya

    2013-01-01

    The present study demonstrated that defatted soybean flour (DSF) can sorb polyphenols from blueberry and cranberry juices while separating them from sugars. Depending on DSF concentration and juice dilution, the concentration of blueberry anthocyanins and total polyphenols sorbed to DSF ranged from 2 – 22 mg/g and 10 – 95 mg/g, respectively while the concentration of anthocyanins and proanthocyanidins in cranberry polyphenol-enriched DSF ranged from 2.5 – 17 mg/g and 21 – 101 mg/g, respectively. Blueberry polyphenols present in one serving of fresh blueberries (73g) were delivered in just 1.4 g of blueberry polyphenol-enriched DSF. Similarly, one gram of cranberry polyphenol-enriched DSF delivered the amount of proanthocyanidins available in three 240 ml servings of cranberry juice cocktail. The concentration of blueberry anthocyanins and total polyphenols eluted from DSF remained constant after 22 weeks of incubation at 37°C, demonstrating the high stability of the polyphenol-DSF matrix. LC-MS analysis of eluates confirmed DSF retained major cranberry and blueberry polyphenols remained intact. Blueberry polyphenol-enriched DSF exhibited significant hypoglycemic activities in C57bl/6J mice, and cranberry polyphenol-enriched DSF showed anti-microbial and anti-UTI activities in vitro, confirming its efficacy. The described sorption process provides a means to create protein-rich food ingredients containing concentrated plant bioactives without excess sugars, fats and water that can be incorporated in a variety of scientifically validated functional foods and dietary supplements. PMID:23950619

  2. Efficient sorption of polyphenols to soybean flour enables natural fortification of foods.

    PubMed

    Roopchand, Diana E; Grace, Mary H; Kuhn, Peter; Cheng, Diana M; Plundrich, Nathalie; Poulev, Alexander; Howell, Amy; Fridlender, Bertold; Lila, Mary Ann; Raskin, Ilya

    2012-04-15

    The present study demonstrated that defatted soybean flour (DSF) can sorb polyphenols from blueberry and cranberry juices while separating them from sugars. Depending on DSF concentration and juice dilution, the concentration of blueberry anthocyanins and total polyphenols sorbed to DSF ranged from 2 - 22 mg/g and 10 - 95 mg/g, respectively while the concentration of anthocyanins and proanthocyanidins in cranberry polyphenol-enriched DSF ranged from 2.5 - 17 mg/g and 21 - 101 mg/g, respectively. Blueberry polyphenols present in one serving of fresh blueberries (73g) were delivered in just 1.4 g of blueberry polyphenol-enriched DSF. Similarly, one gram of cranberry polyphenol-enriched DSF delivered the amount of proanthocyanidins available in three 240 ml servings of cranberry juice cocktail. The concentration of blueberry anthocyanins and total polyphenols eluted from DSF remained constant after 22 weeks of incubation at 37°C, demonstrating the high stability of the polyphenol-DSF matrix. LC-MS analysis of eluates confirmed DSF retained major cranberry and blueberry polyphenols remained intact. Blueberry polyphenol-enriched DSF exhibited significant hypoglycemic activities in C57bl/6J mice, and cranberry polyphenol-enriched DSF showed anti-microbial and anti-UTI activities in vitro, confirming its efficacy. The described sorption process provides a means to create protein-rich food ingredients containing concentrated plant bioactives without excess sugars, fats and water that can be incorporated in a variety of scientifically validated functional foods and dietary supplements.

  3. Physical and antibacterial properties of edible films formulated with apple skin polyphenols.

    PubMed

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H

    2011-03-01

    Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.

  4. Serum gamma-glutamyltransferase is inversely associated with dietary total and coffee-derived polyphenol intakes in apparently healthy Japanese men.

    PubMed

    Taguchi, Chie; Kishimoto, Yoshimi; Kondo, Kazuo; Tohyama, Kazushige; Goda, Toshinao

    2017-10-07

    Serum γ-glutamyltransferase (GGT) has been proposed as a marker of oxidative stress. Here, we examined the association between serum GGT and the dietary intake of polyphenols, which have antioxidant properties. A cross-sectional survey including 7960 apparently healthy Japanese men (aged 22-86 years) who participated in health checkups was conducted in Shizuoka, Japan. We analyzed these subjects' clinical serum parameters and lifestyle factors, including dietary polyphenol intake, which was evaluated by a self-administered questionnaire and by matching the subjects' food consumption data with our original polyphenol content database. The average intake of polyphenols was 1157 ± 471 mg/day, and green tea was the largest source of polyphenols at 40%, followed by coffee at 36%. Dividing the population according to quintiles of total polyphenol intake, the difference in polyphenol intake from coffee between the groups was much greater than the difference in polyphenol intake from green tea. The analysis of the association between polyphenol intake and biological parameters showed a significant negative association between polyphenol intake and the levels of systolic and diastolic blood pressure (SBP and DBP), GGT, and alanine aminotransferase (ALT) after adjusting for age, smoking habit, energy intake and alcohol intake. The GGT levels were inversely associated with the polyphenol intake from coffee, but not with that from green tea. Multivariable linear regression analyses demonstrated that the subjects' GGT levels were negatively and independently associated with their polyphenol intake. The intake of total polyphenol including coffee as a major contributor is inversely associated with the serum GGT concentration in Japanese males.

  5. Wine Polyphenols: Potential Agents in Neuroprotection

    PubMed Central

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  6. Wine polyphenols: potential agents in neuroprotection.

    PubMed

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  7. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    PubMed

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  8. Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce.

    PubMed

    Fujita, Narumi; Tanaka, Eriko; Murata, Masatsune

    2006-03-01

    Stored cut lettuce gradually turns brown on the cut section after several days of storage, because cutting induces phenylalanine ammonia-lyase (PAL) activity, the biosynthesis of polyphenol is promoted, and the polyphenols are oxidized by polyphenol oxidase. In this study, we screened for inhibitors of PAL derived from fermented broths of microbes and from foods and found that a cinnamon extract definitely inhibited PLA of cut lettuce. An active component was isolated by chromatographic procedures and was identified as trans-cinnamaldehyde. Browning of cut lettuce immersed in a solution containing trans-cinnamaldehyde was definitely repressed.

  9. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    PubMed

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Haematological and biochemical effects of polyphenolics in animal models.

    PubMed

    Gnanamani, Arumugam; Sudha, Munusamy; Deepa, G; Sudha, M; Deivanai, K; Sadulla, S

    2008-07-01

    Polyphenols of natural and synthetic origin are exploited in tanning sector to convert putrescible skin/hide to non-putrescible leather. However, only 30-40% of the inputs have been taken up for processing, the remaining is released as unspent. The existing conventional wastewater treatment systems are inefficient in removing or degrading these unspent polyphenols and thus detrimental to ecosystem. The present study demonstrates the evaluation of impact of both synthetic and natural polyphenols on biochemical and haematological properties of blood and serum in animal models. The results reveal that concentrations of polyphenols play a major role. At higher concentrations, irrespective of their nature, there was a marked change in the lipid profile (81% reduction), followed by insignificant change in glucose levels, RBC and WBC counts and other haematological parameters. At lower concentrations, no significant changes in the above said properties were observed.

  11. Introduction of distillate rosemary leaves into the diet of the Murciano-Granadina goat: transfer of polyphenolic compounds to goats' milk and the plasma of suckling goat kids.

    PubMed

    Jordán, Maria José; Moñino, María Inmaculada; Martínez, Cristina; Lafuente, Arturo; Sotomayor, José Antonio

    2010-07-28

    The effect of the introduction of distilled rosemary leaves into the diet of the Murciano-Granadina goat on the polyphenolic profile of the goats' milk during the physiological stages of gestation and lactation was studied. The inclusion of rosemary leaves into the animal diet modified neither animal productivity (milk yield) nor milk quality. The following components were found in increased concentration (P < 0.05) in the goats' milk after the introduction of rosemary leaves into their diet: flavonoids hesperidin, naringin, and genkwanin; gallic acid; and phenolic diterpenes carnosol and carnosic acid. With regard to the transfer of polyphenols to the plasma of the suckling goat kid, a statistically significant increase (P < 0.05) in rosmarinic acid, carnosic acid, and carnosol concentrations was detected. From this point of view, distillate rosemary leaves can be proposed as an ingredient in ruminant feed because they both alter neither the yield nor the quality of Murciano-Granadina goats' milk and allow for an increased concentration of polyphenolic components in the goats' milk and in the plasma of the suckling goat kid.

  12. Comparative study of submerged and surface culture acetification process for orange vinegar.

    PubMed

    Cejudo-Bastante, Cristina; Durán-Guerrero, Enrique; García-Barroso, Carmelo; Castro-Mejías, Remedios

    2018-02-01

    The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    PubMed

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component.

  14. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort.

    PubMed

    Godos, Justyna; Marventano, Stefano; Mistretta, Antonio; Galvano, Fabio; Grosso, Giuseppe

    2017-09-01

    The aim of this study was to estimate the dietary intake and major food sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyles (MEAL) study cohort. A total of 1937 individuals (18 + y) of urban population of Catania, Italy, completed a validated 110-item food frequency questionnaire; Phenol-Explorer database was used to estimate polyphenol intake. Mean intake of polyphenols was 663.7 mg/d; the most abundant classes were phenolic acids (362.7 mg/d) and flavonoids (258.7 mg/d). The main dietary sources of total polyphenols were nuts, followed by tea and coffee as source of flavanols and hydroxycinnamic acids, respectively, fruits (i.e. cherries were sources of anthocyanins and citrus fruits of flavanones) and vegetables (i.e. artichokes and olives were sources of flavones and spinach and beans of flavonols); chocolate, red wine and pasta contributed to flavanols and tyrosols, respectively. These findings will be useful to assess the potential benefits of foods with high polyphenol content.

  15. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.).

    PubMed

    Teixeira, L L; Costa, G R; Dörr, F A; Ong, T P; Pinto, E; Lajolo, F M; Hassimotto, N M A

    2017-06-21

    The bioavailability and metabolism of anthocyanins and ellagitannins following acute intake of grumixama fruit, native Brazilian cherry, by humans, and its in vitro antiproliferative activity against breast cancer cells (MDA-MB-231) were investigated. A single dose of grumixama juice was administered to healthy women (n = 10) and polyphenol metabolites were analyzed in urine and plasma samples collected over 24 h. The majority of the metabolites circulating and excreted in urine were phenolic acids and urolithin conjugates, the gut microbiota catabolites of both classes of polyphenols, respectively. According to pharmacokinetic parameters, the subjects were divided into two distinct groups, high and low urinary metabolite excretors. The pool of polyphenol metabolites found in urine samples showed a significant inhibition of cell proliferation and G2/M cell cycle arrest in MDA-MB-231 cells. Our findings demonstrate the large interindividual variability concerning the polyphenol metabolism, which possibly could reflect in health promotion.

  16. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats.

    PubMed

    Messaoudi, Michaël; Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Javelot, Hervé

    2008-12-01

    Depression is a major public health problem affecting about 12% of the world population. Drugs exist but they have many side effects. In the last few years, natural substances (e.g. flavonoids) have been tested to cure such disorders. Cocoa polyphenolic extract is a complex compound prepared from non-roasted cocoa beans containing high levels of flavonoids. The antidepressant-like effect of cocoa polyphenolic extract was evaluated using the forced swimming test in rats. Cocoa polyphenolic extract significantly reduced the duration of immobility at both doses of 24 mg/kg/14 days and 48 mg/kg/14 days, although no change of motor dysfunction was observed with the two doses tested in the open field. The results of the forced swimming test after a subchronic treatment and after an additional locomotor activity test confirm the assumption that the antidepressant-like effect of cocoa polyphenolic extract in the forced swimming test model is specific. Further, it can be speculated that this effect might be related to its content of active polyphenols.

  17. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  18. Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice.

    PubMed

    Bermúdez-Soto, María J; Larrosa, Mar; Garcia-Cantalejo, Jesús M; Espín, Juan C; Tomás-Barberan, Francisco A; García-Conesa, María T

    2007-04-01

    Consumption of berries and red fruits rich in polyphenols may contribute to the reduction of colon cancer through mechanisms not yet understood. In this study, we investigated the response of subconfluent Caco-2 cells (a human colon carcinoma model) to repetitive exposure (2 h a day for a 4-day period) of a subtoxic dose of a chokeberry (Aronia melanocarpa) juice containing mixed polyphenols. To mimic physiological conditions, we subjected the chokeberry juice to in vitro gastric and pancreatic digestion. The effects on viability, proliferation and cell cycle were determined, and changes in the expression of genes in response to the chokeberry treatment were screened using Affymetrix oligonucleotide microarrays. Exposure to the chokeberry juice inhibited Caco-2 cell proliferation by causing G(2)/M cell cycle arrest. We detected changes in the expression of a group of genes involved in cell growth and proliferation and cell cycle regulation, as well as those associated to colorectal cancer. A selection of these genes was further confirmed by quantitative RT-PCR. Among these, the tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), whose expression is known to be reduced in the majority of early adenomas and carcinomas, was up-regulated by the treatment both at the mRNA and protein levels (as shown by flow cytometry analysis). CEACAM1, with a significant regulatory role on cell proliferation of particular interest at early stages of cancer development, may be a potential target for chemoprevention by food components such as those present in polyphenol-rich fruits.

  19. Anticancer activity of seaweeds.

    PubMed

    Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C

    2018-02-01

    Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The fibres and polyphenols in sea buckthorn (Hippophaë rhamnoides) extraction residues delay postprandial lipemia.

    PubMed

    Linderborg, Kaisa M; Lehtonen, Henna-Maria; Järvinen, Riikka; Viitanen, Matti; Kallio, Heikki

    2012-06-01

    The triacylglycerol (TAG) response to fatty meals containing dried and crushed berries or berry extraction residues was studied in a postprandial cross-over study with healthy normal-weight male volunteers. The berry material included sea buckthorn berries, sea buckthorn CO₂ extraction residue (CO₂-sea buckthorn) and sea buckthorn or black currant CO₂ and ethanol extraction residue (CO₂-EtOH-sea buckthorn, CO₂-EtOH-black currant). Extraction residues were used in order to advance the potential use of valuable side stream components containing polyphenols and fibre as human food. Compared to the berry-depleted control, all berry meals delayed lipemia, whereas there were no differences in the total area under the TAG response curve. The lipemic delay largely derived from the fibre rather than from the polyphenols. Even so, the effect of polyphenols may be complementary since sea buckthorn and CO₂-sea buckthorn showed significant differences in relation to control in a wider range of TAG areas than polyphenol-depleted CO₂-EtOH-sea buckthorn.

  1. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation.

    PubMed

    Del Bubba, Massimo; Checchini, Leonardo; Chiuminatto, Ugo; Doumett, Saer; Fibbi, Donatella; Giordani, Edgardo

    2012-09-01

    High-performance liquid chromatography coupled with ion spray mass spectrometry in the tandem mode with both negative and positive ionization was used for investigating a variety of polyphenolic compounds in four genotypes of Fragaria vesca berries. About 60 phenolic compounds belonging to the compound classes of phenolic acids, ellagitannins, ellagic acid derivatives, flavonols, monomeric and oligomeric flavanols, dihydrochalcones and anthocyanins were reported, providing for the first time a quite complete picture of polyphenolic composition of F. vesca berries. Some of the polyphenols herein investigated, such as a tris-galloyl-hexahydroxydiphenoyl-hexose, two castalagin/vescalagin-like isomers and peonidin-malonylglucoside, were described for the first time. Principal component analysis applied on original HPLC-MS/MS data, acquired in multiple reaction monitoring mode, successfully discriminated the four investigated cultivars on the basis of their polyphenolic composition, highlighting the fundamental role of mass spectrometry for food characterization. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database.

    PubMed

    Rothwell, Joseph A; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Llorach, Rafael; Farran-Codina, Andreu; Barupal, Dinesh Kumar; Neveu, Vanessa; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2016-01-01

    The Phenol-Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here, we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O-methyl ethers. Around one-third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring-cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols, and flavonols. Median maximum plasma concentrations (C(max)) of all human metabolites were 0.09 and 0.32 μM when consumed from foods or dietary supplements, respectively. Median time to reach maximum plasma concentration in humans (T(max)) was 2.18 h. These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols.

    PubMed

    Guo, XiaoXuan; Sha, XiaoHong; Rahman, Ebeydulla; Wang, Yong; Ji, BaoPing; Wu, Wei; Zhou, Feng

    2018-03-01

    Millet bran, the by-product of millet processing industry, contains an abundance of phytochemicals, especially polyphenols. The main objective of this study was brewing antioxidant wine from millet bran, as well as the nutritional evaluation. The total polyphenol content of wine samples was determined by Folin-Ciocalteu colorimetric method, and the antioxidant capacity was evaluated by DPPH radical-scavenging capacity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). Results showed that millet bran wine (MBW) contained as much as six times of total polyphenols compared with millet wine (MW), and performed considerably stronger antioxidant activity in DPPH, TEAC and FRAP assays. More than sixfold of total amino acids (AA) were found in MBW than in MW. Moreover, the indispensable AA and functional AA were also abundant in MBW. The major polyphenol compounds in MBW were identified using HPLC, including vanillic acid, syringic acid (SA), p -coumaric acid (CA) and ferulic acid (FA). They exhibited synergism in the antioxidant assays, especially the combinations of SA and CA, SA and FA. This study not only provides evidence for MBW as a nutraceutical with antioxidant activity, but also opens new avenues in the area of making comprehensive utilization of agricultural by-products.

  4. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro.

    PubMed

    Magcwebeba, Tandeka Unathi; Riedel, Sylvia; Swanevelder, Sonja; Swart, Pieter; De Beer, Dalene; Joubert, Elizabeth; Andreas Gelderblom, Wentzel Christoffel

    2016-11-01

    The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo. © 2016 Royal Pharmaceutical Society.

  5. Apple Can Act as Anti-Aging on Yeast Cells

    PubMed Central

    Palermo, Vanessa; Mattivi, Fulvio; Silvestri, Romano; La Regina, Giuseppe; Falcone, Claudio; Mazzoni, Cristina

    2012-01-01

    In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C) and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components. PMID:22970337

  6. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes.

    PubMed

    Antonio, Francesko; Guillem, Rocasalbas; Sonia, Touriño; Clara, Mattu; Piergiorgio, Gentile; Valeria, Chiono; Gianluca, Ciardelli; Tzanov, Tzanko

    2011-10-01

    Collagen sponges loaded with polyphenols from Hamamelis virginiana were investigated as active materials for chronic wound dressings, evaluating in vitro the inhibition of two major enzymes that impair the wound healing process - myeloperoxidase (MPO) and collagenase. Prior to polyphenols loading, collagen was cross-linked with genipin to improve its biostability. The effect of genipin cross-linking and polyphenol concentration in the development of mechanically and enzymatically stable sponges was studied. The tensile strength of the cross-linked collagen increased with the increase of the cross-linking degree, coupled to decrease in the elongation and the swelling capacity of the sponges. The stability of the sponges to collagenase digestion reached maximum when 1 mM genipin was used. However, the biostability decreased more than 10-fold after loading the sponges with polyphenols (0.5 mg/mL), nevertheless, this effect was partially overcome using higher concentration of polyphenols (1 and 2 mg/mL) to inhibit collagenase. Moreover, the polyphenols released from the sponges were sufficient for complete inhibition of MPO activity. No considerable cytotoxicity of the genipin cross-linked collagen loaded with polyphenols was observed evaluating the NIH 3T3 fibroblasts viability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute?

    PubMed

    Paganga, G; Miller, N; Rice-Evans, C A

    1999-02-01

    Analysis of the major flavone, flavonol, anthocyanidin and hydroxycinnamic acid constituents (and their glycosides) of onion, tomato, egg plant and apple has been undertaken and the antioxidant activities of the phenolic extracts determined. The major phenolic antioxidant components of egg plant are chlorogenic acid in the flesh and a delphinidin conjugate in the skin. In the case of apple, the major phenolic antioxidants detected are chlorogenic acid, procyanidins/catechin compounds, rutin and phloridzin. Quercetin glycosides are well-known to be the major phenolic components of onion. Assessment of the antioxidant activities of a serving of 100g fresh weight fruit, vegetable and comparison with previously reported findings for 150 ml beverage (500 ml portion in the case of beer), expressed in micromol Trolox equivalents show that the antioxidant activities of 1 glass (150 ml) red wine equivalent to 12 glasses white wine equivalent to 2 cups of tea equivalent to 4 apples equivalent to 5 portions of onion equivalent to 5.5 portions egg plant equivalent to 3.5 glasses of blackcurrant juice equivalent to 3.5 (500 ml) glasses of beer equivalent to 7 glasses of orange juice equivalent to 20 glasses of apple juice (long life).

  8. Polyphenolic chemistry of tea and coffee: a century of progress.

    PubMed

    Wang, Yu; Ho, Chi-Tang

    2009-09-23

    Tea and coffee, the most popular beverages in the world, have been consumed for thousands of years for their alluring flavors and health benefits. Polyphenols, particularly flavonoids and phenolic acids, are of great abundance in tea and coffee and contribute a lot to their flavor and health properties. This paper reviews the polyphenol chemistry of tea and coffee, specifically their stability, and scavenging ability of reactive oxygen species (ROS) and reactive carbonyl species (RCS). During the manufacturing and brewing process, green tea and black tea polyphenols undergo epimerization and oxidation, respectively. Meanwhile, the lactonization and the polymerization of chlorogenic acid are the major causes for the degradation of polyphenols in coffee. Tea catechins, besides having antioxidant properties, have the novel characteristic of trapping reactive carbonyl species. The A ring of the catechins is the binding site for RCS trapping, whereas the B ring is the preferred site for antioxidation.

  9. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits.

    PubMed

    Jurikova, Tunde; Sochor, Jiri; Rop, Otakar; Mlcek, Jiri; Balla, Stefan; Szekeres, Ladislav; Adam, Vojtech; Kizek, Rene

    2012-12-06

    Chinese hawthorn (Crataegus pinnatifida Bge.) fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid)--active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  10. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-01

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  11. The role of polyphenols in modern nutrition.

    PubMed

    Williamson, G

    2017-09-01

    Polyphenols are found in plant-based foods and beverages, notably apples, berries, citrus fruit, plums, broccoli, cocoa, tea and coffee and many others. There is substantial epidemiological evidence that a diet high in polyphenol-rich fruit, vegetables, cocoa and beverages protects against developing cardiovascular disease and type 2 diabetes. The absorption and metabolism of these compounds have been well described and, for many, the gut microbiota play a critical role in absorption; taking into consideration the parent compound and the metabolites from colon bacteria catabolism, more than 80% of a dose can be absorbed and ultimately excreted in the urine. Common polyphenols in the diet are flavanols (cocoa, tea, apples, broad beans), flavanones (hesperidin in citrus fruit), hydroxycinnamates (coffee, many fruits), flavonols (quercetin in onions, apples and tea) and anthocyanins (berries). Many intervention studies, mechanistic in vitro data and epidemiological studies support a role for polyphenols against the development of chronic diseases. For example, flavanols decrease endothelial dysfunction, lower blood pressure and cholesterol, and modulate energy metabolism. Coffee and tea both reduce the risk of developing type 2 diabetes, through action of their constituent polyphenols. Despite extensive research, the exact mechanisms of action of polyphenols in the human body have not been decisively proven, but there is strong evidence that some targets such as nitric oxide metabolism, carbohydrate digestion and oxidative enzymes are important for health benefits. Consumption of polyphenols as healthy dietary components is consistent with the advice to eat five or more portions of fruit and vegetables per day, but it is currently difficult to recommend what 'doses' of specific polyphenols should be consumed to derive maximum benefit.

  12. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.

    PubMed

    Xiao, Xiaomei; He, Liangmei; Chen, Yayun; Wu, Longhuo; Wang, Lin; Liu, Zhiping

    2017-11-01

    Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.

  13. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens (Ara h 1 and Ara h 2). Because high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts were treated with each of th...

  14. High-polyphenol sorghum bran extract inhibits cancer cell growth through DNA damage, cell cycle arrest, and apoptosis

    USDA-ARS?s Scientific Manuscript database

    As diet is one of the major controllable factors in cancer development, potentially chemopreventive foods are of significant interest to public health. One such food is sorghum (Sorghum bicolor), a cereal grain that contains varying concentrations of polyphenols. In a panel of 15 sorghum germplasm...

  15. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    PubMed Central

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  16. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    PubMed

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  17. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity

    PubMed Central

    Kschonsek, Josephine; Wolfram, Theresa; Stöckl, Annette; Böhm, Volker

    2018-01-01

    Polyphenols are antioxidant ingredients in apples and are related to human health because of their free radical scavenging activities. The polyphenolic profiles of old and new apple cultivars (n = 15) were analysed using high-performance liquid chromatography (HPLC) with diode array detection (DAD). The in vitro antioxidant capacity was determined by total phenolic content (TPC) assay, hydrophilic trolox equivalent antioxidant capacity (H-TEAC) assay and hydrophilic oxygen radical absorbance (H-ORAC) assay. Twenty polyphenolic compounds were identified in all investigated apples by HPLC analysis. Quercetin glycosides (203 ± 108 mg/100 g) were the main polyphenols in the peel and phenolic acids (10 ± 5 mg/100 g) in the flesh. The calculated relative contribution of single compounds indicated flavonols (peel) and vitamin C (flesh) as the major contributors to the antioxidant capacity, in all cultivars investigated. The polyphenolic content (HPLC data) of the flesh differed significantly between old (29 ± 7 mg/100 g) and new (13 ± 4 mg/100 g) cultivars, and the antioxidant capacity of old apple cultivars was up to 30% stronger compared to new ones. PMID:29364189

  18. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation.

    PubMed

    Ancillotti, Claudia; Ciofi, Lorenzo; Rossini, Daniele; Chiuminatto, Ugo; Stahl-Zeng, Jianru; Orlandini, Serena; Furlanetto, Sandra; Del Bubba, Massimo

    2017-02-01

    Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

  19. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    PubMed

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  20. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  1. Dietary polyphenol intake and their major food sources in the Mexican Teachers' Cohort.

    PubMed

    Zamora-Ros, Raul; Biessy, Carine; Rothwell, Joseph A; Monge, Adriana; Lajous, Martin; Scalbert, Augustin; López-Ridaura, Ruy; Romieu, Isabelle

    2018-06-04

    Several descriptive studies on the intake of polyphenols, mostly flavonoids, have been published, especially in Europe and the USA, but insufficient data are still available in Latin-American countries, where different types of foods are consumed and different dietary habits are observed. The goal of this cross-sectional study was to estimate dietary intakes of polyphenols, including grand total, total per classes and subclasses and individual compounds, and to identify their main food sources in Mexican women. The Mexican Teachers' Cohort includes 115 315 female teachers, 25 years and older, from twelve states of Mexico, including urban and rural areas. Dietary data were collected in the period 2008-2011 using a validated FFQ, and individual polyphenol intake was estimated using food composition data from the Phenol-Explorer database. Median total polyphenol intake was the highest in Baja California (750 mg/d) and the lowest in Yucatan (536 mg/d). The main polyphenols consumed were phenolic acids (56·3-68·5 % total polyphenols), followed by flavonoids (28·8-40·9 %). Intake of other polyphenol subclasses (stilbenes, lignans and others) was insignificant. Coffee and fruits were the most important food sources of phenolic acids and flavonoids, respectively. Intake of a total of 287 different individual polyphenols could be estimated, of which forty-two were consumed in an amount ≥1 mg/d. The most largely consumed polyphenols were several caffeoylquinic acids (ranging from 20 and 460 mg/d), ferulic acid, hesperidin and proanthocyanidins. This study shows a large heterogeneity in intakes of individual polyphenols among Mexican women, but a moderate heterogeneity across Mexican states. Main food sources were also similar in the different states.

  2. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-Induced Inflammation through Dual Modulation of Inflammatory and Antioxidant Mediators.

    PubMed

    Wu, Shusong; Yano, Satoshi; Chen, Jihua; Hisanaga, Ayami; Sakao, Kozue; He, Xi; He, Jianhua; Hou, De-Xing

    2017-06-28

    Lonicera caerulea L. berry polyphenols (LCBP) are considered as major components for bioactivity. This study aimed to clarify the molecular mechanisms by monitoring inflammatory and antioxidant mediator actions in lipopolysaccharide (LPS)-induced mouse paw edema and macrophage cell model. LCBP significantly attenuated LPS-induced paw edema (3.0 ± 0.1 to 2.8 ± 0.1 mm, P < 0.05) and reduced (P < 0.05) serum levels of monocyte chemotactic protein-1 (MCP-1, 100.9 ± 2.3 to 58.3 ± 14.5 ng/mL), interleukin (IL)-10 (1596.1 ± 424.3 to 709.7 ± 65.7 pg/mL), macrophage inflammatory protein (MIP)-1α (1761.9 ± 208.3 to 1369.1 ± 56.4 pg/mL), IL-6 (1262.8 ± 71.7 to 499.0 ± 67.1 pg/mL), IL-4 (93.3 ± 25.7 to 50.7 ± 12.5 pg/mL), IL-12(p-70) (580.4 ± 132.0 to 315.2 ± 35.1 pg/mL), and tumor necrosis factor-α (TNF-α, 2045.5 ± 264.9 to 1270.7 ± 158.6 pg/mL). Cell signaling analysis revealed that LCBP inhibited transforming growth factor β activated kinase-1 (TAK1)-mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways, and enhanced the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and manganese-dependent superoxide dismutase (MnSOD) in earlier response. Moreover, cyanidin 3-glucoside (C3G) and (-)-epicatechin (EC), two major components of LCBP, directly bound to TAK1. These data demonstrated that LCBP might inhibit LPS-induced inflammation by modulating both inflammatory and antioxidant mediators.

  3. Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice.

    PubMed

    Mihalev, Kiril; Schieber, Andreas; Mollov, Plamen; Carle, Reinhold

    2004-12-01

    The effects of enzymatic mash treatments on yield, turbidity, color, and polyphenolic content of cloudy apple juice were studied. Using HPLC-ESI-MS, cryptochlorogenic acid was identified in cv. Brettacher cloudy apple juice for the first time. Commercial pectolytic enzyme preparations with different levels of secondary protease activity were tested under both oxidative and nonoxidative conditions. Without the addition of ascorbic acid, oxidation substantially decreased chlorogenic acid, epicatechin, and procyanidin B2 contents due to enzymatic browning. The content of chlorogenic acid as the major polyphenolic compound was also influenced by the composition of pectolytic enzyme preparations because the presence of secondary protease activity resulted in a rise of chlorogenic acid. The latter effect was probably due to the inhibited protein-polyphenol interactions, which prevented binding of polyphenolic compounds to the matrix, thus increasing their antioxidative potential. The results obtained clearly demonstrate the advantage of the nonoxidative mash maceration for the production of cloud-stable apple juice with a high polyphenolic content, particularly in a premature processing campaign.

  4. Cocoa Polyphenols: Evidence from Epidemiological Studies.

    PubMed

    Matsumoto, Chisa

    2018-01-01

    Accumulating evidence suggests potential preventive effects of chocolate/cocoa on the risk of cardio vascular disease (CVD). However, cocoa products also contain high levels of sugar and fat, which increase CVD risk factors. Even, the identity of the substance in chocolate/cocoa that has a favorable effect on CVD and CVD risk factors remains unclear, growing evidence from experimental studies suggests that cocoa polyphenols might be a major contributor to cardiovascular-protective effects. However, epidemiological studies, which are necessary to evaluate an association between the risk of CVD and cocoa polyphenol, remain sparse. We will discuss recent evidence regarding the association between cocoa polyphenol consumption and the risks of CVD and its risk factors by reviewing recent epidemiological studies. We shall also provide some guidance for patient counseling and will discuss the public health implications for recommending cocoa polyphenol consumption to prevent CVD. Epidemiological studies evaluating the association between cocoa polyphenol itself and the risk of CVD are sparse. However, evidence from limited epidemiological studies suggests that cocoa polyphenol consumption may lower the risk of CVD. Given the potential adverse effects of the consumption of cocoa products with high fat and sugar and the fact that the most appropriate dose of cocoa polyphenol for cardio-protective effects has not yet been established, health care providers should remain cautious about recommending cocoa/cocoa polyphenol consumption to their patients to reduce the risk of CVD, taking the characteristics of individual patients into careful consideration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Association of Polyphenols from Oranges and Apples with Specific Intestinal Microorganisms in Systemic Lupus Erythematosus Patients

    PubMed Central

    Cuervo, Adriana; Hevia, Arancha; López, Patricia; Suárez, Ana; Sánchez, Borja; Margolles, Abelardo; González, Sonia

    2015-01-01

    Our group has recently shown the existence of a gut microbial dysbiosis in systemic lupus erythematosus (SLE), supporting previous evidence involving intestinal bacteria in the initiation and amplification of autoimmune diseases. While several studies have addressed the use of dietary fibres to modify intestinal microbiota, information about other correlated components, such as polyphenols, is scarce. The aim of this work was to identify dietary components able to influence this altered microbiota in 20 SLE women and 20 age-matched controls. Food intake was recorded by means of a food frequency questionnaire. The intake of fibres was calculated from Marlett tables, and Phenol-Explorer was used for polyphenol consumption. Results showed positive associations between flavone intake and Blautia, flavanones and Lactobacillus, and dihydrochalcones and Bifidobacterium in the SLE group. Regarding the controls, dihydroflavonols were directly associated with Faecalibacterium, whereas flavonol intake was inversely associated with Bifidobacterium. From the food sources of these polyphenols related to microbiota, orange intake was directly associated with Lactobacillus and apple with Bifidobacterium in SLE, whilst red wine was the best contributor to Faecalibacterium variation. The association between common foods and particular microbial genera, reported to be decreased in SLE, could be of great importance for these patients. PMID:25690419

  6. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins.

    PubMed

    Guo, Jing; Yuan, Yahong; Dou, Pei; Yue, Tianli

    2017-10-01

    Fifty-one kiwifruit juice samples of seven kiwifruit varieties from five regions in China were analyzed to determine their polyphenols contents and to trace fruit varieties and geographical origins by multivariate statistical analysis. Twenty-one polyphenols belonging to four compound classes were determined by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. (-)-Epicatechin, (+)-catechin, procyanidin B1 and caffeic acid derivatives were the predominant phenolic compounds in the juices. Principal component analysis (PCA) allowed a clear separation of the juices according to kiwifruit varieties. Stepwise linear discriminant analysis (SLDA) yielded satisfactory categorization of samples, provided 100% success rate according to kiwifruit varieties and 92.2% success rate according to geographical origins. The result showed that polyphenolic profiles of kiwifruit juices contain enough information to trace fruit varieties and geographical origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis.

    PubMed

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-15

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes.

    PubMed

    Bonarska-Kujawa, D; Pruchnik, H; Cyboran, S; Żyłka, R; Oszmiański, J; Kleszczyńska, H

    2014-07-01

    The aim of the present research was to determine the effect of blue honeysuckle fruit and leaf extracts components on the physical properties of erythrocyte and lipid membranes and assess their antioxidant properties. The HPLC analysis showed that the extracts are rich in polyphenol anthocyanins in fruits and flavonoids in leaves. The results indicate that both extracts have antioxidant activity and protect the red blood cell membrane against oxidation induced by UVC irradiation and AAPH. The extracts do not induce hemolysis and slightly increase osmotic resistance of erythrocytes. The research showed that extracts components are incorporated mainly in the external part of the erythrocyte membrane, inducing the formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that the extracts polyphenols alter the packing arrangement of the hydrophilic part of the erythrocyte and lipid membranes, without changing the fluidity of the hydrophobic part. The DSC results also show that the extract components do not change the main phase transition temperature of DPPC membrane. Studies of electric parameters of membranes modified by the extracts showed that they slightly stabilize lipid membranes and do not reduce their specific resistance or capacity. Examination of IR spectra indicates small changes in the degree of hydration in the hydrophilic region of liposomes under the action of the extracts. The location of polyphenolic compounds in the hydrophilic part of the membrane seems to constitute a protective shield of the cell against other substances, the reactive forms of oxygen in particular.

  9. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans

    PubMed Central

    Rigacci, Stefania; Stefani, Massimo

    2016-01-01

    The increasing interest in the Mediterranean diet hinges on its healthy and anti-ageing properties. The composition of fatty acids, vitamins and polyphenols in olive oil, a key component of this diet, is considered a key feature of its healthy properties. Therefore, it is of significance that the Rod of Asclepius lying on a world map surrounded by olive tree branches has been chosen by the World Health Organization as a symbol of both peace and well-being. This review travels through most of the current and past research, recapitulating the biochemical and physiological correlations of the beneficial properties of olive tree (Olea europaea) polyphenols and their derivatives found in olive oil. The factors influencing the content and beneficial properties of olive oil polyphenols will also be taken into account together with their bioavailability. Finally, the data on the clinical and epidemiological relevance of olive oil and its polyphenols for longevity and against age- and lifestyle-associated pathologies such as cancer, cardiovascular, metabolic and neurodegenerative diseases are reviewed. PMID:27258251

  10. Determination of total polyphenol index in wines employing a voltammetric electronic tongue.

    PubMed

    Cetó, Xavier; Gutiérrez, Juan Manuel; Gutiérrez, Manuel; Céspedes, Francisco; Capdevila, Josefina; Mínguez, Santiago; Jiménez-Jorquera, Cecilia; del Valle, Manel

    2012-06-30

    This work reports the application of a voltammetric electronic tongue system (ET) made from an array of modified graphite-epoxy composites plus a gold microelectrode in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples were analyzed using cyclic voltammetry without any sample pretreatment. The obtained responses were preprocessed employing discrete wavelet transform (DWT) in order to compress and extract significant features from the voltammetric signals, and the obtained approximation coefficients fed a multivariate calibration method (artificial neural network-ANN-or partial least squares-PLS-) which accomplished the quantification of total polyphenol content. External test subset samples results were compared with the ones obtained with the Folin-Ciocalteu (FC) method and UV absorbance polyphenol index (I(280)) as reference values, with highly significant correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L(-1) gallic acid equivalents, respectively. In a separate experiment, qualitative discrimination of different polyphenols found in wine was also assessed by principal component analysis (PCA). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Efficient delivery and distribution in skin of chlorogenic acid and resveratrol induced by microemulsion using sucrose laurate.

    PubMed

    Yutani, Reiko; Kikuchi, Taketomo; Teraoka, Reiko; Kitagawa, Shuji

    2014-01-01

    To achieve efficient skin delivery of polyphenols, we prepared a novel oil-in-water (o/w)-type microemulsion (MESL) using sucrose laurate as a surfactant and ethanol, isopropyl myristate and water as other components. We examined its usefulness by in vitro studies on skin delivery of chlorogenic acid and resveratrol as hydrophilic and hydrophobic polyphenols using Yucatan micropig skin, and also examined the difference in the distribution of these polyphenols in skin. MESL significantly improved skin incorporation of these polyphenols at all time points examined (6, 20, 40 h) in the epidermis and at 20 and 40 h in the dermis, compared with the microemulsion using Tween 80 as a surfactant component (MEK), although the solubilization capacity of MESL was lower than that of MEK. Using MESL, the incorporation amount in the dermis of each polyphenol increased with time, while the amount in the epidermis was almost constant during the time examined. Incorporation efficiencies into skin of chlorogenic acid and resveratrol induced by MESL at 40 h after application were about 6-fold and 19-fold higher in the epidermis and 3.5-fold and 15-fold higher in the dermis, respectively, than those by MEK. The increase was more prominent for resveratrol. Hydrophilic chlorogenic acid was distributed slightly more in the epidermis, while hydrophobic and smaller-molecular-weight resveratrol was mainly distributed in the dermis. These findings suggest that MESL could be a promising vehicle for the efficient skin delivery of chlorogenic acid and resveratrol, especially for resveratrol to the dermis.

  12. Consumer Labels can Convey Polyphenolic Content: Implications for Public Health

    PubMed Central

    Waterhouse, Andrew L.

    2005-01-01

    Polyphenolics are a large group of related substances. Many of these, in fact much of that found in food, is composed of processing-derived substances too complex for complete identification. Recent studies have suggested likely benefits for diets high in polyphenols, particular in reducing heart disease mortality, but other benefits have also been suggested. A consumer label based on the major polyphenolic classes is both manageable and fairly informative as most foods do not contain all possible classes. Differences between class member can be significant, but data on individual substances is impractical and no data is certainly less informative. Equivalency scales may be useful but may skew content of many foods towards the high-equivalency substances, even while the full beneficial effects of each individual substance is poorly described. PMID:15712598

  13. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effectmore » of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.« less

  14. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    PubMed Central

    Wilson, Mark A; Shukitt-Hale, Barbara; Kalt, Wilhelmina; Ingram, Donald K; Joseph, James A; Wolkow, Catherine A

    2006-01-01

    Summary The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects. PMID:16441844

  15. Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts.

    PubMed

    IM, Krishnakumar; Issac, Abin; NM, Johannah; Ninan, Eapen; Maliakel, Balu; Kuttan, Ramadassan

    2014-09-01

    Cinnamomum zeylanicum is a popular kitchen spice widely investigated for insulin potentiating effects. Though a group of water soluble polyphenols belonging to the oligomeric procyanidins has been identified as the bioactive principle, the lack of systematic information on the effect of the polyphenol content on safety and anti-diabetic efficacy remains as a major limitation for the development of optimized and standardized cinnamon extracts for functional use. In the present paper, water soluble extracts of Cinnamomum zeylanicum containing 45 and 75% gallic acid equivalents (GAE) of polyphenol content were prepared by a novel process and characterized by tandem mass spectrometry. The polyphenol enhanced extracts were shown to be safe and offered better antioxidant potential, hypoglycemic effect, hypolipidimic effect, and significant decrease in other biochemical parameters as compared to the standard aqueous extract containing 15% GAE, when administered to streptozotocin-induced diabetic rats at 200 mg per kg b.w. for 30 days. The efficacy of polyphenol extracts in lowering blood glucose levels and ameliorating oxidative stress was further demonstrated in humans by administrating 'procynZ-45' containing 45% GAE polyphenols at a relatively low dosage of (125 mg × 2) per day for 30 days to 15 volunteers who had elevated fasting blood glucose levels; but not involved in any medication.

  16. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    PubMed

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  17. Impact of Proteins on the Uptake, Distribution, and Excretion of Phenolics in the Human Body.

    PubMed

    Draijer, Richard; van Dorsten, Ferdi A; Zebregs, Yvonne E; Hollebrands, Boudewijn; Peters, Sonja; Duchateau, Guus S; Grün, Christian H

    2016-12-15

    Polyphenols, a complex group of secondary plant metabolites, including flavonoids and phenolic acids, have been studied in depth for their health-related benefits. The activity of polyphenols may, however, be hampered when consumed together with protein-rich food products, due to the interaction between polyphenols and proteins. To that end we have tested the bioavailability of representatives of a range of polyphenol classes when consumed for five days in different beverage matrices. In a placebo-controlled, randomized, cross-over study, 35 healthy males received either six placebo gelatine capsules consumed with 200 mL of water, six capsules with 800 mg polyphenols derived from red wine and grape extracts, or the same dose of polyphenols incorporated into 200 mL of either pasteurized dairy drink, soy drink (both containing 3.4% proteins) or fruit-flavoured protein-free drink . At the end of the intervention urine and blood was collected and analysed for a broad range of phenolic compounds using Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry (LC-MRM-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy techniques. The plasma and urine concentrations of the polyphenols identified increased with all formats, including the protein-rich beverages. Compared to capsule ingestion, consumption of polyphenol-rich beverages containing either dairy, soy or no proteins had minor to no effect on the bioavailability and excretion of phenolic compounds in plasma (118% ± 9%) and urine (98% ± 2%). We conclude that intake of polyphenols incorporated in protein-rich drinks does not have a major impact on the bioavailability of a range of different polyphenols and phenolic metabolites.

  18. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study.

    PubMed

    Tresserra-Rimbau, A; Rimm, E B; Medina-Remón, A; Martínez-González, M A; de la Torre, R; Corella, D; Salas-Salvadó, J; Gómez-Gracia, E; Lapetra, J; Arós, F; Fiol, M; Ros, E; Serra-Majem, L; Pintó, X; Saez, G T; Basora, J; Sorlí, J V; Martínez, J A; Vinyoles, E; Ruiz-Gutiérrez, V; Estruch, R; Lamuela-Raventós, R M

    2014-06-01

    Epidemiologic and biological evidence supports an inverse association between polyphenol consumption and the risk of cardiovascular disease (CVD). However, no previous studies have prospectively evaluated the relationship between polyphenol intake and the incidence of CVD in such a comprehensive way. The aim was to evaluate the association between intakes of total polyphenol and polyphenol subgroups, and the risk of major cardiovascular events (myocardial infarction, stroke or death from cardiovascular causes) in the PREDIMED study. The present work is an observational study within the PREDIMED trial. Over an average of 4.3 years of follow-up, there were 273 confirmed cases of CVD among the 7172 participants (96.3%) who completed a validated 137-item food frequency questionnaire (FFQ) at baseline. Polyphenol consumption was calculated by matching food consumption data from the FFQ with the Phenol-Explorer database on polyphenol content of each reported food. After multivariate adjustment, a 46% reduction in risk of CVD risk was observed comparing Q5 vs. Q1 of total polyphenol intake (HR = 0.54; 95% confidence interval [CI] = 0.33-0.91; P-trend = 0.04). The polyphenols with the strongest inverse associations were flavanols (HR = 0.40; CI 0.23-0.72; P-trend = 0.003), lignans (HR = 0.51; CI 0.30-0.86; P-trend = 0.007), and hydroxybenzoic acids (HR = 0.47; CI 0.26-0.86; P-trend 0.02). Greater intake of polyphenols, especially from lignans, flavanols, and hydroxybenzoic acids, was associated with decreased CVD risk. Clinical trials are needed to confirm this effect and establish accurate dietary recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC.

    PubMed

    Natsume, M; Osakabe, N; Yamagishi, M; Takizawa, T; Nakamura, T; Miyatake, H; Hatano, T; Yoshida, T

    2000-12-01

    The antioxidant polyphenols in cacao liquor, a major ingredient of chocolate and cocoa, have been characterized as flavan-3-ols and proanthocyanidin oligomers. In this study, various cacao products were analyzed by normal-phase HPLC, and the profiles and quantities of the polyphenols present, grouped by molecular size (monomers to approximately oligomers), were compared. Individual cacao polyphenols, flavan-3-ols (catechin and epicatechin), and dimeric (procyanidin B2), trimeric (procyanidin C1), and tetrameric (cinnamtannin A2) proanthocyanidins, and galactopyranosyl-ent-(-)-epicatechin (2alpha-->7, 4alpha-->8)-(-)-epicatechin (Gal-EC-EC), were analyzed by reversed-phase HPLC and/or HPLC/MS. The profile of monomers (catechins) and proanthocyanidin in dark chocolate was similar to that of cacao liquor, while the ratio of flavan-3-ols to the total amount of monomeric and oligomeric polyphenols in the case of pure cocoa powder was higher than that in the case of cacao liquor or chocolate.

  20. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®

  1. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system.

    PubMed

    Bandyopadhyay, Prasun; Ghosh, Amit K; Ghosh, Chandrasekhar

    2012-06-01

    Tea and coffee are widely consumed beverages across the world and they are rich sources of various polyphenols. Polyphenols are responsible for the bitterness and astringency of beverages and are also well known to impart antioxidant properties which is beneficial against several oxidative stress related diseases like cancer, cardiovascular diseases, and aging. On the other hand, proteins are also known to display many important roles in several physiological activities. Polyphenols can interact with proteins through hydrophobic or hydrophilic interactions, leading to the formation of soluble or insoluble complexes. According to recent studies, this complex formation can affect the bioavailability and beneficiary properties of both the individual components, in either way. For example, polyphenol-protein complex formation can reduce or enhance the antioxidant activity of polyphenols; similarly it can also affect the digestion ability of several digestive enzymes present in our body. Surprisingly, no review article has been published recently which has focused on the progress in this area, despite numerous articles having appeared in this field. This review summarizes the recent trends and patterns (2005 onwards) in polyphenol-protein interaction studies focusing on the characterization of the complex, the effect of this complex formation on tea and coffee taste, antioxidant properties and the digestive system.

  2. Prospectus for the utilization of leafy spurge (Euphorbia esula L. ) as a source of liquid fuel and biomass. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-01-01

    This study investigates the biomass potential of leafy spurge (Euphorbia esula). Whole plant biomass yields of 3.6 to 4.9 dry weight tons per acre were obtained from late summer harvests of wild stands in southcentral Montana. Shoot biomass comprised 70% of the harvest with the remainder derived from the basal crowns and first 20 to 30cm of rootstock. Total biomass was comprised of the following components: oils, 3.6%; polyphenols, 6.8%; soluble sugars, 6.1%; starch, 1.1% and protein, 7.1%. Lignin and crude fiber were major biomass components. Shoot biomass contained 44.6% lignin and 40.9% crude fiber while root biomass contained 34.2%more » lignin and 24.6% crude fiber. Seasonal variation in content was evident for all extractives and classes of biomass. Calorimetric determinations were made for whole plant biomass, extractives and residual biomass. The energy content was as follows: shoot, 4343 cal/g; root, 4214 cal/g and standing dry matter, 4293 cal/g. Whole plant oils had a calorific value of 9513 cal/g with 4976 cal/g for polyphenols and 4228 cal/g in the residue remaining after extraction. Total crop energy yields based on biomass yield and calorific values were 35 to 48 x 10/sup 6/ kcal/ha. It is concluded that E. esula does not presently constitute a productive source of whole plant, extractable oils. Alternative uses of E. esula are not dismissed due to the favorable net energy yield calculated for wild stands of this species. Suggested uses include conversion of whole plant biomass to biocrude oil or a multiple use approach to the use of E. esula biomass as a primary source of lignin and crude fiber, and secondary raw materials consisting of extractable oils, polyphenols, protein and fermentable carbohydrates. 57 references, 8 figures, 13 tables.« less

  3. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics

    PubMed Central

    Pinasseau, Lucie; Vallverdú-Queralt, Anna; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Le Cunff, Loïc; Péros, Jean-Pierre; Ageorges, Agnès; Sommerer, Nicolas; Boulet, Jean-Claude; Terrier, Nancy; Cheynier, Véronique

    2017-01-01

    Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014–2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality. PMID:29163566

  4. Genetic Mapping of a new family of Seed-Expressed Polyphenol Oxidase genes in Wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. However it has been shown that wheat contains multiple PPO genes. Recently a novel PPO gene...

  5. Profile of plasma and urine metabolites after the intake of almond [Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans.

    PubMed

    Urpi-Sarda, Mireia; Garrido, Ignacio; Monagas, María; Gómez-Cordovés, Carmen; Medina-Remón, Alexander; Andres-Lacueva, Cristina; Bartolomé, Begoña

    2009-11-11

    Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The aim of the present study was to determine the profiles of both phase II and microbial-derived phenolic metabolites in plasma and urine samples before and after the intake of almond skin polyphenols by healthy human subjects (n = 2). Glucuronide, O-methyl glucuronide, sulfate, and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and glucuronide and sulfate conjugates of isorhamnetin, were detected in plasma and urine samples after consumption of almond skin polyphenols. The main microbial-derived metabolites of flavanols, such as 5-(dihydroxyphenyl)-gamma-valerolactone and 5-(hydroxymethoxyphenyl)-gamma-valerolactone, were also detected in their glucuronide and sulfate forms. In addition, numerous metabolites derived from further microbial degradation of hydroxyphenylvalerolactones, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxyhippuric acids, registered major changes in urine after the consumption of almond skin polyphenols. The urinary excretion of these microbial metabolites was estimated to account for a larger proportion of the total polyphenol ingested than phase II metabolites of (epi)catechin, indicating the important role of intestinal bacteria in the metabolism of highly polymerized almond skin polyphenols. To the authors' knowledge this study constitutes the most complete report of the absorption of almond skin polyphenols in humans.

  6. Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats.

    PubMed

    Massot-Cladera, Malen; Abril-Gil, Mar; Torres, Sandra; Franch, Angels; Castell, Margarida; Pérez-Cano, Francisco J

    2014-12-28

    A diet containing 10% cocoa, a rich source of polyphenols and fibre, is able to modify intestinal immune status as well as microbiota composition. The present study was aimed at investigating whether cocoa flavonoid content is uniquely responsible for these modulatory effects of cocoa, and to establish whether these effects depend on the rat strain. To this end, 3-week-old Wistar and Brown Norway rats were fed, for 4 weeks, either a standard diet or the following three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols (from conventional defatted cocoa), and two others with 0.4 and 0.8% polyphenols (from non-fermented cocoa, very rich in polyphenols). Serum Ig concentrations, faecal IgA levels, microbiota composition and IgA-coating bacterial proportion were evaluated at the beginning and at the end of the study. After the nutritional intervention, the composition of lymphocytes in Peyer's patches and mesenteric lymph nodes was evaluated. In some respects, the Wistar strain was more sensitive to the impact of the cocoa diets than the Brown Norway strain. After 4 weeks of dietary intervention, similar modulatory effects of the diets containing 0.2 and 0.8% polyphenols on mucosal IgA levels and microbiota composition were found, although the 0.2% diet, with a higher proportion of theobromine and fibre, had more impact, suggesting that polyphenols are not the only components involved in such effects.

  7. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    PubMed

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa; Silva-Neto, Mário Alberto Cardoso

    2016-10-01

    Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  8. Potent suppressing activity of the non-polyphenolic fraction of green tea (Camellia sinensis) against genotoxin-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002)--association with pheophytins a and b.

    PubMed

    Okai, Y; Higashi-Okai, K

    1997-11-25

    Antigenotoxic and antimutagenic activities of green tea extract and tea-derived polyphenols have been studied using in vitro and in vivo experiments. However, antigenotoxic substances in the non-polyphenolic fraction of green tea have been poorly elucidated. In the present study, the effect of the non-polyphenolic fraction of green tea on genotoxin-induced umu C gene expression was analyzed using a tester bacteria, and potent antigenotoxic substances in the non-polyphenolic fraction were identified. The non-polyphenolic fraction of green tea showed strong suppressive activities against umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) induced by 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1) or mitomycin C (MMC) in the presence or absence of S9 metabolizing enzyme mixture. The non-polyphenolic fraction of green tea exhibited major two-color bands in a silica gel TLC and they were identified as chlorophyll-related compounds, pheophytins a and b, judged by their specific colors, Rf values in silica gel TLC and absorption spectra. These pigments showed significant suppressive activities against umu C gene expression in tester bacteria induced by Trp-P- and MMC in a dose-dependent manner. These results suggest that the non-polyphenolic fraction of green tea contains pheophytins a and b as potent antigenotoxic substances.

  9. Fruits, vegetables and their components and mild cognitive impairment and dementia: A review

    USDA-ARS?s Scientific Manuscript database

    The aim of this review is to evaluate the current literature on the role of fruit and vegetable (F&V) consumption and their components in the prevention of mild cognitive impairment (MCI) and dementia. The components investigated include vitamins C and E, carotenoids, polyphenols, and B-vitamins. Th...

  10. Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples.

    PubMed

    Devic, Emilie; Guyot, Sylvain; Daudin, Jean-Dominique; Bonazzi, Catherine

    2010-01-13

    Several cultivars of apples (Malus domestica) were chosen for their variable concentrations and compositions in phenolic compounds. Cubed samples (1 cm3) were subjected to osmotic dehydration, and the effect of temperature was studied at 45 and 60 degrees C. Water loss, sucrose impregnation, and the evolution of some natural components of the product were followed to quantify mass transfer. Ascorbic acid and polyphenols were quantified by HPLC for several osmotic dehydration times and regardless of the quantity of impregnated sugar. Changes in antioxidant components differed as a function of the nature of molecules. Their concentrations decreased in line with temperature, and few differences were observed between cultivars. Processing at a lower temperature (45 degrees C) caused a total loss in ascorbic acid but allowed the retention of between 74 and 85% of initial polyphenols, depending on the cultivar. Cultivars containing highly polymerized procyanidins (such as Guillevic) experienced less loss. Hydroxycinnamic acids and monomeric catechins displayed the most marked changes. Leaching with water into the soaking solution was the principal mechanism retained to explain these losses.

  11. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    PubMed

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Character and chlorine reactivity of dissolved organic matter from a mountain pine beetle impacted watershed.

    PubMed

    Beggs, Katherine M H; Summers, R Scott

    2011-07-01

    Lodgepole pine needle leachates from trees killed by the mountain pine beetle epidemic in Colorado were evaluated for dissolved organic matter (DOM) character, biodegradation, treatability by coagulation and disinfection byproduct (DBP) formation. An average of 8.0 (±0.62) mg-DOC/g-dry weight of litter was leached from three sets of needle samples representing different levels of forest floor degradation. Fluorescence analysis included collection of excitation and emission matrices, examination of peak intensities and development of a 4-component parallel factor (PARAFAC) analysis model. Peak intensity and PARAFAC analyses provided complementary results showing that fresh leachates were initially dominated by polyphenolic/protein-like components (60-70%) and humic-like fluorescence increased (40-70%) after biodegradation. Humic-like components were removed by coagulation (20-64%), while polyphenolic/protein-like components were not, which may create challenges for utilities required to meet OM removal regulations. DBP formation yields after 24 h chlorination were 20.5-26.4 μg/mg-DOC for trihalomethanes and 9.0-14.5 μg/mg-DOC for haloacetic acids for fresh leachates; increased after biodegradation to 19.2-64.2 and 7.1-30.9 μg/mg-DOC, respectively; and decreased after coagulation (fresh: 11.3-17.7;5.7-7.6 μg/mg-DOC, respectively; biodegraded: 12.0-27.3 and 2.9-7.2 μg/mg-DOC, respectively), reflective of changes in concentration of humic material. Humic-like PARAFAC components and peak intensities were positively correlated (R(2) ≥ 0.45) to DBP concentrations, while polyphenolic/protein-like components were not (R(2) ≤ 0.17).

  13. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity.

    PubMed

    Brudzynski, Katrina; Miotto, Danielle

    2011-08-01

    Size-exclusion chromatography (SEC) and activity-guided fractionation of honeys allowed the isolation of high molecular weight brown compounds, ranging in size from 66 to 235kDa that exhibited peroxyl radical-scavenging activity. Their concentrations, antioxidant activity and degree of browning increased after heat-treatment of honeys, suggesting that they represent melanoidins. Chemical analysis of melanoidins demonstrated the presence of proteins, polyphenols and oligosaccharides. Heat-treatment caused an increased incorporation of phenolics into high molecular weight melanoidins and drastically decreased the protein content in these fractions with a concomitant appearance of high molecular weight protein-polyphenol complexes of reduced solubility. LC-ESI-MS demonstrated the presence of oligosaccharide moieties, supporting the postulated origin of melanoidins. The changes in the phenolic content of melanoidins from heated honeys were strongly correlated with their oxygen radical absorbance capacity (ORAC) values (R=0.75, p<0.0001), indicating that polyphenols contribute to the antioxidant activity of melanoidins. In summary, honey melanoidins are multi-component polymers consisting of protein-polyphenol-oligosaccharide complexes. A direct interaction between polyphenols and melanoidins resulted in a loss or gain of function for melanoidin antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Dietary fiber content and associated antioxidant compounds in Roselle flower (Hibiscus sabdariffa L.) beverage.

    PubMed

    Sáyago-Ayerdi, Sonia G; Arranz, Sara; Serrano, José; Goñi, Isabel

    2007-09-19

    The beverage of Hibiscus sabdariffa flowers is widely consumed in Mexico. Polyphenols contained in plant foods are frequently associated with dietary fiber. The aim of this work is to quantify the dietary fiber, associated polyphenols, and antioxidant capacity of the Roselle flower and the beverage traditionally prepared from it and its contribution to the Mexican diet. Roselle flower contained dietary fiber as the largest component (33.9%) and was rich in phenolic compounds (6.13%). Soluble dietary fiber was 0.66 g/L in beverage, and 66% of total extractable polyphenols contained in Roselle flower passed to the beverage and showed an antioxidant capacity of 335 micromoL trolox equivalents/100 mL beverage measured by ABTS. These data suggest that Roselle flower beverage intake in the Mexican diet may contribute around 166 and 165 mg/per serving to the intake of dietary fiber and polyphenols, respectively. The health benefits from consumption of Hibiscus beverage could be of considerable benefit to the whole population.

  15. Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement.

    PubMed

    Stewart, Derek; McDougall, Gordon J; Sungurtas, Julie; Verrall, Susan; Graham, Julie; Martinussen, Inger

    2007-06-01

    Plant polyphenolics continue to be the focus of attention with regard to their putative impact on human health. An increasing and ageing human population means that the focus on nutrition and nutritional enhancement or optimisation of our foodstuffs is paramount. Using the raspberry as a model, we have shown how modern metabolic profiling approaches can be used to identify the changes in the level of beneficial polyphenolics in fruit breeding segregating populations and how the level of these components is determined by genetic and/or environmental control. Interestingly, the vitamin C content appeared to be significantly influenced by environment (growth conditions) whilst the content of the polyphenols such as cyanidin, pelargonidin and quercetin glycosides appeared much more tightly regulated, suggesting a rigorous genetic control. Preliminary metabolic profiling showed that the fruit polyphenolic profiles divided into two gross groups segregating on the basis of relative levels of cyanidin-3-sophoroside and cyanidin-3-rutinoside, compounds implicated as conferring human health benefits.

  16. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Selective treatment to reduce contamination of propolis by polycyclic aromatic hydrocarbons (PAHs) still preserving its active polyphenol component and antioxidant activity.

    PubMed

    Galeotti, Fabio; Crimaldi, Laura; Maccari, Francesca; Zaccaria, Vincenzo; Fachini, Alfredo; Volpi, Nicola

    2017-09-01

    The adverse effects on health and environment caused by polycyclic aromatic hydrocarbons (PAHs) are critical problems. EFSA has defined 16 priority PAHs that are both genotoxic and carcinogenic, and identified eight (PAH8) priority PAHs as good indicators of the toxicity and occurrence in food. Food supplements containing propolis were also found to contain relatively high quantities of PAHs. We report about an extractive procedure which is able to purify propolis from a high content of PAHs using a balanced mixture of ethanol and water solvents. Extracts were characterised for total content of polyphenols, for in vitro antioxidant activity, and single classes of polyphenols evaluated by HPLC-ESI-MS. Obtained propolis extracts were found to have PAH8 and specific benzo[a]pyrene content below limits recommended by EFSA. The reported extractive procedure is easily applicable for possible industrial productions and may also be adopted to the purification of polyphenols from other plant extracts and natural sources.

  18. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying.

    PubMed

    Francini, Alessandra; Romeo, Stefania; Cifelli, Mario; Gori, Daniele; Domenici, Valentina; Sebastiani, Luca

    2017-04-15

    Dry and fresh apples have been studied monitoring their polyphenolic profiles through 1 H NMR, antioxidant capacity and total polyphenol content. Six ancient and underutilized apple varieties (Mantovana, Mora, Nesta, Cipolla, Ruggina, Sassola) and a commercial one (Golden Delicious) were dried with an air-drying system at 45°C for 19h. Although some of their polyphenol constituents were lost during drying, the antioxidant capacity of some apple varieties remained higher compared to Golden Delicious. This result is very important for ancient and underutilized varieties that are not consumed on large scale as fresh product since they have low attractiveness, due to their ugly appearance. Combining quantitative NMR spectroscopy with principal component analysis we have identified and quantified several polyphenols (such as catechin, epicathechin, and chlorogenic acid) that are important to establish the nutraceutical value of the different investigated apple varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  20. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    PubMed

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. In vitro fermentation patterns of rice bran components by human gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Rice bran is a rich source of bioactive components that can promote gastrointestinal health. However, bran is removed during polishing. Among those, feruloylated arabinoxylan oligosaccharides (FAXO) and rice bran polyphenolics (RBPP) are hypothesized to have positive impacts on human gut microbiota ...

  2. In vitro fermentation patterns of rice bran components by human gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenolics (RBPP) isolated from ri...

  3. Regulation of inflammation and redox signaling by dietary polyphenols.

    PubMed

    Rahman, Irfan; Biswas, Saibal K; Kirkham, Paul A

    2006-11-30

    Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.

  4. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components.

    PubMed

    Gentile, Carla; Tesoriere, Luisa; Butera, Daniela; Fazzari, Marco; Monastero, Massimo; Allegra, Mario; Livrea, Maria A

    2007-02-07

    Pistacia vera L. is the only species of Pistacia genus producing edible nuts. This paper investigates the antioxidant potential of a Sicilian variety of pistachio nut by chemical as well as biological assays and measured antioxidant vitamins and a number of antioxidant polyphenols in either the hydrophilic and/or the lipophilic nut extract. In accordance with the majority of foods, the total antioxidant activity, measured as a TAA test, was much higher (50-fold) in the hydrophilic than in the lipophilic extract. Substantial amounts of total phenols were measured. The hydrophilic extract inhibited dose-dependently both the metal-dependent and -independent lipid oxidation of bovine liver microsomes, and the Cu+2-induced oxidation of human low-density lipoprotein (LDL). Peroxyl radical-scavenging as well as chelating activity of nut components may be suggested to explain the observed inhibition patterns. Among tocopherols, gamma-tocopherol was the only vitamin E isomer found in the lipophilic extract that did not contain any carotenoid. Vitamin C was found only in a modest amount. The hydrophilic extract was a source of polyphenol compounds among which trans-resveratrol, proanthocyanidins, and a remarkable amount of the isoflavones daidzein and genistein, 3.68 and 3.40 mg per 100 g of edible nut, respectively, were evaluated. With the exception of isoflavones that appeared unmodified, the amounts of other bioactive molecules were remarkably reduced in the pistachio nut after roasting, and the total antioxidant activity decreased by about 60%. Collectively, our findings provide evidence that the Sicilian pistachio nut may be considered for its bioactive components and can effectively contribute to a healthy status.

  5. Biosynthesis of flat silver nanoflowers: from Flos Magnoliae Officinalis extract to simulation solution

    NASA Astrophysics Data System (ADS)

    Jing, Xiaolian; Huang, Jiale; Wu, Lingfeng; Sun, Daohua; Li, Qingbiao

    2014-03-01

    Flat Ag nanoflowers were directly synthesized from the bioreduction of AgNO3 using Flos Magnoliae Officinalis extract without any additional stabilizer or protective agent at room temperature. Effects of concentrations of the Flos Magnoliae Officinalis extract on the Ag nanostructures were investigated. The main components containing flavone, polyphenol, protein, and reducing sugar in the plant extract were thoroughly determined before and after the reaction, and the dialysis experiments were also conducted. The results of components analysis and dialysis showed that gallic acid representing polyphenols played an important role in the biosynthesis of silver nanoplates. Trisodium citrate combined gallic acid solution, instead of Flos Magnoliae Officinalis extract, was employed and successfully simulated the biosynthesis process of the flat Ag nanoflowers.

  6. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health.

    PubMed

    Hara, Kumiko; Ohara, Masaru; Hayashi, Ikue; Hino, Takamune; Nishimura, Rumi; Iwasaki, Yoriko; Ogawa, Tetsuji; Ohyama, Yoshihiko; Sugiyama, Masaru; Amano, Hideaki

    2012-04-01

    Green tea is a popular drink throughout the world, and it contains various components, including the green tea polyphenol (-)-epigallocatechin gallate (EGCG). Tea interacts with saliva upon entering the mouth, so the interaction between saliva and EGCG interested us, especially with respect to EGCG-protein binding. SDS-PAGE revealed that several salivary proteins were precipitated after adding EGCG to saliva. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting indicated that the major proteins precipitated by EGCG were alpha-amylase, S100, and cystatins. Surface plasmon resonance revealed that EGCG bound to alpha-amylase at dissociation constant (K(d)) = 2.74 × 10(-6) M, suggesting that EGCG interacts with salivary proteins with a relatively strong affinity. In addition, EGCG inhibited the activity of alpha-amylase by non-competitive inhibition, indicating that EGCG is effective at inhibiting the formation of fermentable carbohydrates involved in caries formation. Interestingly, alpha-amylase reduced the antimicrobial activity of EGCG against the periodontal bacterium Aggregatibacter actinomycetemcomitans. Therefore, we considered that EGCG-salivary protein interactions might have both protective and detrimental effects with respect to oral health. © 2012 Eur J Oral Sci.

  7. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds.

    PubMed

    Da Porto, Carla; Porretto, Erica; Decorti, Deborha

    2013-07-01

    Ultrasound-assisted extraction (US) carried out at 20 KHz, 150 W for 30 min gave grape seed oil yield (14% w/w) similar to Soxhlet extraction (S) for 6 h. No significant differences for the major fatty acids was observed in oils extracted by S and US at 150 W. Instead, K232 and K268 of US- oils resulted lower than S-oil. From grape seeds differently defatted (S and US), polyphenols and their fractions were extracted by maceration for 12 h and by ultrasound-assisted extraction for 15 min. Sonication time was optimized after kinetics study on polyphenols extraction. Grape seed extracts obtained from seeds defatted by ultrasound (US) and then extracted by maceration resulted the highest in polyphenol concentration (105.20mg GAE/g flour) and antioxidant activity (109 Eq αToc/g flour). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols.

    PubMed

    Murray, Margaret; Dordevic, Aimee L; Ryan, Lisa; Bonham, Maxine P

    2018-05-24

    Marine macroalgae are gaining recognition among the scientific community as a significant source of functional food ingredients. Due to the harsh environments in which macroalgae survive, they produce unique bioactive compounds that are not found in terrestrial plants. Polyphenols are the predominant bioactive compound in brown algae and are accountable for the majority of its biological activity. Phlorotannins are a type of polyphenol that are unique to marine sources and have exhibited protective effects against hyperglycemia, hyperlipidemia, inflammation and oxidative stress, known risk factors for cardiovascular disease and diabetic complications, in cell culture, animal studies and some human studies. This review updates the information on marine polyphenols, with a particular focus on phlorotannins and their potential health benefits in relation to the prevention and treatment of risk factors for type 2 diabetes and cardiovascular diseases.

  9. Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W; Yusof, Ahmad P

    2016-04-15

    The aim of this study was to: (a) develop a simple, high performance thin layer chromatographic (HPTLC) method combined with direct 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to rapidly assess and compare free radical scavenging activity or anti-oxidant activity for major classes of polyphenolics present in wines; and (b) to investigate relationship between free radical scavenging activity to the total polyphenolic content (TPC) and total antioxidant capacity (TAC) in the wine samples. The most potent free radical scavengers that we tested for in the wine samples were found to be resveratrol (polyphenolic non-flavonoid) and rutin (flavonoid), while polyphenolic acids (caffeic acid and gallic acid) although present in all wine samples were found to be less potent free radical scavengers. Therefore, the total antioxidant capacity was mostly affected by the presence of resveratrol and rutin, while total polyphenolic content was mostly influenced by the presence of the less potent free radical scavengers gallic and caffeic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry.

    PubMed

    Bolling, Bradley W; Dolnikowski, Gregory; Blumberg, Jeffrey B; Oliver Chen, C Y

    2009-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN(2)) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN(2) blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols.

  11. Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Bolling, Bradley W.; Dolnikowski, Gregory; Blumberg, Jeffrey B.; Oliver Chen, C.Y.

    2014-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN2) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN2 blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols. PMID:19490319

  12. Characterisation and Antioxidant Activity of Crude Extract and Polyphenolic Rich Fractions from C. incanus Leaves

    PubMed Central

    Gori, Antonella; Ferrini, Francesco; Marzano, Maria Cristina; Tattini, Massimiliano; Centritto, Mauro; Baratto, Maria Camilla; Pogni, Rebecca; Brunetti, Cecilia

    2016-01-01

    Cistus incanus (Cistaceae) is a Mediterranean evergreen shrub. Cistus incanus herbal teas have been used as a general remedy in traditional medicine since ancient times. Recent studies on the antioxidant properties of its aqueous extracts have indicated polyphenols to be the most active compounds. However, a whole chemical characterisation of polyphenolic compounds in leaves of Cistus incanus (C. incanus) is still lacking. Moreover, limited data is available on the contribution of different polyphenolic compounds towards the total antioxidant capacity of its extracts. The purpose of this study was to characterise the major polyphenolic compounds present in a crude ethanolic leaf extract (CEE) of C. incanus and develop a method for their fractionation. Superoxide anion, hydroxyl and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assays were also performed to evaluate the antioxidant properties of the obtained fractions. Three different polyphenolic enriched extracts, namely EAC (Ethyl Acetate Fraction), AF1 and AF2 (Aqueos Fractions), were obtained from CEE. Our results indicated that the EAC, enriched in flavonols, exhibited a higher antiradical activity compared to the tannin enriched fractions (AF1 and AF2). These findings provide new perspectives for the use of the EAC as a source of antioxidant compounds with potential uses in pharmaceutical preparations. PMID:27548139

  13. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    PubMed

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  14. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  15. Laticiferous taxa as a source of energy and hydrocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, S.; Subramanian, R.B.; Kothari, I.L.

    Twenty-nine laticiferous taxa of Apocynaceae, Asclepiadaceae, and Sapotaceae were screened for suitability as alternative sources of renewable energy, rubber, and phytochemicals and to select the most promising ones for large-scale cultivation. Of these, Allamanda violacea (14.9% protein, 13.8% polyphenol, 8.6% oil, 3.2% hydrocarbon), Catharanthus roseus (15.4% protein, 10.4% polyphenol, 11.5% oil, 1.9% hydrocarbon), and Holarrhena antidysenterica (14.2% protein, 16.4% polyphenol, 5,4% oil, 4.8% hydrocarbon) of Apocynaceae; Asclepias curassavica (19.3% protein, 6.5% polyphenol, 3.9% oil, 2.0% hydrocarbon), Calotropis gigantea (18.5% protein, 6.8% polyphenol, 7.0% oil, 2.8% hydrocarbon) of Asclepiadaceae; Mimusops elengi (11.3% protein, 9.7% polyphenol, 7.2% oil, 4.0% hydrocarbon) of Sapotaceaemore » show promising potential for future petrochemical plantations; of all these taxa, Holarrhena antidysenterica yielded an unusually high percentage (4.8%) of hydrocarbon fraction followed by Mimusops elengi (4.0%). NMR spectra confirmed the presence of cis-polyisoprene in all species studied except Nerium indicum (white-flowered var.). These data indicate that the majority of the species under investigation may be considered for large-scale cultivation as an alternative source of rubber, intermediate energy, and other phytochemicals.« less

  16. Apple Procyanidins Suppress Amyloid β-Protein Aggregation

    PubMed Central

    Toda, Toshihiko; Sunagawa, Tadahiro; Kanda, Tomomasa; Tagashira, Motoyuki; Shirasawa, Takuji; Shimizu, Takahiko

    2011-01-01

    Procyanidins (PCs) are major components of the apple polyphenols (APs). We previously reported that treatment with PC extended the mean lifespan of Caenorhabditis elegans (Sunagawa et al., 2011). In order to estimate the neuroprotective effects of PC, we investigated the antiaggregative activity of PC on amyloid β-protein (Aβ) aggregation, which is a pathological hallmark of Alzheimer's disease. We herein report that PC significantly suppressed Aβ42 aggregation and dissociated Aβ42 aggregates in a dose-dependent manner, indicating that PC is a potent suppressor of Aβ aggregation. Furthermore, PC significantly inhibited Aβ42 neurotoxicity and stimulated proliferation in PC-12 cells. These results suggested that the PC and AP acted as neuroprotective factors against toxic Aβ aggregates. PMID:21826271

  17. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells.

    PubMed

    Yeon Park, Jun; Young Kim, Hyun; Shibamoto, Takayuki; Su Jang, Tae; Cheon Lee, Sang; Suk Shim, Jae; Hahm, Dae-Hyun; Lee, Hae-Jeung; Lee, Sanghyun; Sung Kang, Ki

    2017-09-01

    The biological activities of the ethanol extract from Cirsium japonicum var. maackii (ICF-1) and its major component, polyphenol cirsimaritin, were investigated as part of the search for possible alternative drugs for breast cancer. Three in vitro cell-based assays were used: the cell proliferation assay, tube-formation assay, and Western blot analysis. Both the ICF-1 extract and cirsimaritin inhibited the viability of HUVECs in a dose-dependent manner. The inhibition achieved was 36.89% at a level of 200μg/ml by the ICF-1 extract and 62.04% at a level of 100μM by cirsimaritin. The ICF-1 extract and cirsimaritin reduced tube formation by 12.69% at level of 25μg/ml and 32.18% at the levels of 6.25μM, respectively. Cirsimaritin inhibited angiogenesis by downregulation of VEGF, p-Akt and p-ERK in MDA-MB-231 cells, suggesting that cirsimaritin is potentially useful as an anti-metastatic agent. The present study demonstrated that Cirsium japonicum extract and its active component cirsimaritin is an excellent candidate as an alternative anti-breast cancer drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Grape polyphenols do not affect vascular function in healthy men.

    PubMed

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk.

  19. Managing hypertension by polyphenols.

    PubMed

    Fernández-Arroyo, Salvador; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-06-01

    Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  20. Laboratory, Epidemiological, and Human Intervention Studies Show That Tea (Camellia sinensis) May Be Useful in the Prevention of Obesity12

    PubMed Central

    Grove, Kimberly A.; Lambert, Joshua D.

    2010-01-01

    Tea (Camellia sinensis, Theaceae) and tea polyphenols have been studied for the prevention of chronic diseases, including obesity. Obesity currently affects >20% of adults in the United States and is a risk factor for chronic diseases such as type II diabetes, cardiovascular disease, and cancer. Given this increasing public health concern, the use of dietary agents for the prevention of obesity would be of tremendous benefit. Whereas many laboratory studies have demonstrated the potential efficacy of green or black tea for the prevention of obesity, the underlying mechanisms remain unclear. The results of human intervention studies are mixed and the role of caffeine has not been clearly established. Finally, there is emerging evidence that high doses of tea polyphenols may have adverse side effects. Given that the results of scientific studies on dietary components, including tea polyphenols, are often translated into dietary supplements, understanding the potential toxicities of the tea polyphenols is critical to understanding their potential usefulness in preventing obesity. In this review, we will critically evaluate the evidence for the prevention of obesity by tea, discuss the relevance of proposed mechanisms in light of tea polyphenol bioavailability, and review the reports concerning the toxic effects of high doses of tea polyphenols and the implication that this has for the potential use of tea for the prevention of obesity. We hope that this review will expose areas for further study and encourage research on this important public health issue. PMID:20089791

  1. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis.

    PubMed

    Attri, Sampan; Sharma, Kavita; Raigond, Pinky; Goel, Gunjan

    2018-03-01

    The present study investigates the stability of polyphenolic in Sea buckthorn berries juice (SBJ) during different phases of digestion and its effect on colonic microbial diversity. At each stage, the Total polyphenolic content (TPC), Total antioxidant activity (TAA) and polyphenolic profile was determined. A 1.64 and 2.20 folds increase in TPC with 4.88 and 9.61 folds increase in TAA were observed during gastric and small intestine digestion (p<0.05) with the release of quercetin from food matrix. The digestion resulted in deformation of intact crystalline structure as indicated by scanning electron micrographs. The colonic fermentation resulted in an increase in quercetin, caffeic acid with decrease in rutin and chlorogenic acid after 36h of fermentation (p<0.05). The Shannon diversity index (H) of beneficial groups including Lactic acid bacteria (LAB), Bacteroides/Prevotella and Bifidobacteria was increased by 35%, 71% and 17%, respectively (p<0.05). The PCA analysis indicated that the presence and digestion of polyphenolics promote the proliferation of Bacteroides/Prevotella group as well as Lactic acid bacteria and Bifidobacteria. The results suggest that SBJ is good source of prebiotic substrate in terms of the proliferation of beneficial gut microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?

    PubMed Central

    Goszcz, Katarzyna; Duthie, Garry G; Stewart, Derek; Leslie, Stephen J

    2017-01-01

    Polyphenols are widely regarded to have a wide range of health‐promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well‐recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti‐inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet‐derived components. Linked Articles This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc PMID:28071785

  4. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries

    PubMed Central

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-01-01

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs. PMID:28245627

  5. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    PubMed

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  6. Wine consumption and intestinal redox homeostasis.

    PubMed

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.

  7. Wine consumption and intestinal redox homeostasis

    PubMed Central

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  8. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity.

    PubMed

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2018-04-15

    Germination along with ultrasonic assisted extraction induced a significant beneficial effect on the characteristics of polyphenolic components profile, GABA contents and in vitro antioxidant capacity of the foxtail millet flour extracts. The total antioxidant activity (29.0-45.23 mgAAE/g) and reducing power (0.53-0.76 µg/ml) increase during germination were due to quantitative increase in phthalicacid; hex-3yl-ester; hexadecanoicacid methylester etc. whereas, increase in DPPH (48.32-59.62%) and hydrogen peroxide scavenging activities (35.44-63.07 mM-Trolox/g) were attributed to increase in hexadecanoic acid methylester; 9,12-Octadecadienoicacid ethylester and synthesis of new compounds like pentadecanoicacid; 14-methyl-methylester etc. The metal chelating abilities (34.92-57.38 mgEDTA/g) and in vitro antioxidant activity increase due to overall increase in phenolics, flavonoids along with GABA contents. Synthesis of additional polyphenolic components viz. astaxanthin, propanoicacid, 1-monolinoleoylglycerol trimethylsilylether, 9,12,15-octadecatrienoicacid etc. as a result of germinated explored the possible potential utilization of germinated foxtail millet grains in various functional and convenience food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regular consumption of HolisFiit, a polyphenol-rich extract-based food supplement, improves mind and body well-being of overweight and slightly obese volunteers: a randomized, double-blind, parallel trial.

    PubMed

    Romain, Cindy; Alcaraz, Pedro Emilio; Chung, Linda Haiwon; Cases, Julien

    2017-11-01

    Modern lifestyles face growing demands for natural solutions to help improve general well-being. Accordingly, mind-body activities such as yoga have considerably grown. However, beneficial effects require regular workout. Besides, literature suggests that polyphenols may demonstrate positive effects on both mental and physical health. Overweight and obese volunteers, for which well-being might be perceived degraded, were included in a 16-week double-blind, randomized and parallel trial with a daily supplementation of HolisFiit ® , a polyphenol-rich food supplement. Body composition was assessed by dual-energy X-ray absorptiometry (DXA) technology; well-being was evaluated with both, Athens Insomnia Scale (AIS) and components from Short Form-36 questionnaire (SF-36). Body composition significantly rebalanced by 7.7% (p = .019) of the lean-to-fat mass ratio. Also, sleep quality significantly improved by 43% (p = .00015) as well as both physical and mental components from SF-36, respectively by 10% (p = .004) and 7% (p = .021). These data altogether, suggest that regular consumption of HolisFiit ® , might significantly improve mind and body well-being.

  10. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer

    NASA Astrophysics Data System (ADS)

    Szuvandzsiev, Péter; Helyes, Lajos; Lugasi, Andrea; Szántó, Csongor; Baranowski, Piotr; Pék, Zoltán

    2014-10-01

    Processing tomato production represents an important part of the total production of processed vegetables in the world. The quality characteristics of processing tomato, important for the food industry, are soluble solids content and antioxidant content (such as lycopene and polyphenols) of the fruit. Analytical quantification of these components is destructive, time and labour consuming. That is why researchers try to develop a non-destructive and rapid method to assess those quality parameters. The present study reports the suitability of a portable handheld visible near infrared spectrometer to predict soluble solids, lycopene and polyphenol content of tomato fruit puree. Spectral ranges of 500-1000 nm were directly acquired on fruit puree of five different tomato varieties using a FieldSpec HandHeld 2™ Portable Spectroradiometer. Immediately after spectral measurement, each fruit sample was analysed to determine soluble solids, lycopene and polyphenol content. Partial least square regressions were carried out to create models of prediction between spectral data and the values obtained from the analytical results. The accuracy of the predictions was analysed according to the coefficient of determination value (R2), the root mean square error of calibration/ cross-validation.

  11. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    PubMed

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate the search for biomolecules with potential anti-aging effects.

  12. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States.

    PubMed

    Miller, Kenneth B; Stuart, David A; Smith, Nancy L; Lee, Chang Y; McHale, Nancy L; Flanagan, Judith A; Ou, Boxin; Hurst, W Jeffrey

    2006-05-31

    In the United States, commercially available foods, including cocoa and chocolate, are being marketed with statements referring to the level of antioxidant activity and polyphenols. For cocoa-containing foods, there has been no comprehensive survey of the content of these and other chemistries. A survey of cocoa and chocolate-containing products marketed in the United States was conducted to determine antioxidant activity and polyphenol and procyanidin contents. Commercially available samples consisted of the top market share products in each of the following six categories: natural cocoa, unsweetened baking chocolate, dark chocolate, semisweet baking chips, milk chocolate, and chocolate syrup. Composite samples were characterized using four different methods: oxygen radical absorbance capacity (ORAC), vitamin C equivalence antioxidant capacity (VCEAC), total polyphenols, and procyanidins. All composite lots were further characterized for percent nonfat cocoa solids (NFCS) and percent fat. Natural cocoas had the highest levels of antioxidant activities, total polyphenols, and procyanidins followed by baking chocolates, dark chocolates and baking chips, and finally milk chocolate and syrups. The results showed a strong linear correlation between NFCS and ORAC (R (2) = 0.9849), total polyphenols (R (2) = 0.9793), and procyanidins (R (2) = 0.946), respectively. On the basis of principal component analysis, 81.4% of the sample set was associated with NFCS, antioxidant activity, total polyphenols, and procyanidins. The results indicated that, regardless of the product category, NFCS were the primary factor contributing to the level of cocoa antioxidants in the products tested. Results further suggested that differences in cocoa bean blends and processing, with the possible exception of Dutching, are minor factors in determining the level of antioxidants in commercially available cocoa-containing products in the United States.

  13. Bonum vinum laetificat cor hominum.

    PubMed

    Stoclet, J C

    2001-01-01

    Beneficial effects of wine consumption on health have been suspected since the antiquity. Recent epidemiological studies show that coronary heart disease mortality markedly decreases from northern to southern Europe and is lower in Mediterranean than in other developed countries. Because wine is a component of the Mediterranean diet, it has been suggested that moderate wine especially red wine consumption may produce additional beneficial effects on cardiovascular morbidity and mortality compared to consuming the same quantity of alcohol in other beverages. Polyphenols are good candidates to explain the putative cardiovascular protective effect of wine, because they are abundant in wine especially red wine, and possess antioxidant and superoxide ion scavenging properties. Because it is readily accessible from blood and produces cardioprotective agents like nitric oxide (NO) the endothelial cell may be a privileged target for wine polyphenols. Polyphenols from red wine can prevent oxidation of low density lipoproteins (LDL). As oxidized LDL inhibit agonist-activated NO release from endothelial cells and subsequent endothelium-dependent relaxation of arteries, wine polyphenols might prevent LDL-induced alterations of endothelial function. Furthermore some wine polyphenols contained in oligomeric condensed tannins- and anthocyaninsD enriched fractions can act directly on endothelial cells to cause calcium-dependent release of NO. The latter effect is independent from superoxide scavenging and antioxidant properties of the polyphenols, and it is produced by compounds with specific structures only. Thus, decreased oxidation of LDL and enhanced release of NO from endothelium caused by polyphenols from red wine may result in cardiovascular protection. However further studies are required to demonstrate whether or not these effects are involved in the putative protective effect of wine on cardiovascular morbidity and mortality.

  14. Oenology: red wine procyanidins and vascular health.

    PubMed

    Corder, R; Mullen, W; Khan, N Q; Marks, S C; Wood, E G; Carrier, M J; Crozier, A

    2006-11-30

    Regular, moderate consumption of red wine is linked to a reduced risk of coronary heart disease and to lower overall mortality, but the relative contribution of wine's alcohol and polyphenol components to these effects is unclear. Here we identify procyanidins as the principal vasoactive polyphenols in red wine and show that they are present at higher concentrations in wines from areas of southwestern France and Sardinia, where traditional production methods ensure that these compounds are efficiently extracted during vinification. These regions also happen to be associated with increased longevity in the population.

  15. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica).

    PubMed

    De Santiago, Elsy; Domínguez-Fernández, Maite; Cid, Concepción; De Peña, María-Paz

    2018-02-01

    The impact of cooking methods (boiling, microwaving, griddling and frying in olive and soybean oils) on nutritional composition (protein, minerals, fat, carbohydrates, fibre, fatty acid profile and energy), antioxidant capacity and (poly)phenolic compounds of cactus cladodes (Opuntia ficus-indica) was evaluated. Culinary processes, except boiling, increased soluble and insoluble fibre up to 5.0g/100g becoming a good fibre source. Cactus cladodes fried in olive oil showed a healthier fatty acid profile and lower ω-6/ω-3 ratio than in soybean oil. Flavonoids accounted for 80% of total (poly)phenolic compounds, being isorhamnetin the most abundant. Heat treatment, particularly griddling and microwaving, increased every flavonoid and phenolic acid up to 3.2-fold higher than in raw samples, and consequently their antioxidant capacity. Even boiling induced losses in total (poly)phenols and antioxidant capacity by leaching into water, the main compounds were maintained. Principal Component Analysis distributed heat treated cactus cladodes according to their distinctive polyphenols and antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of the cultivar in choosing Clementine fruits with a high level of health-promoting compounds.

    PubMed

    Milella, Luigi; Caruso, Marisa; Galgano, Fernanda; Favati, Fabio; Padula, Maria Carmela; Martelli, Giuseppe

    2011-05-25

    Thirteen cultivars and two hybrids of Clementine fruits (Citrus clementina Hort. Ex. Tan) cultivated in Italy were characterized according to pH, titratable acidity, total soluble solids, total polyphenols, carotenoids, vitamin C, hesperidin, rutin, narirutin and naringin and radical scavenging activity. The presence of rutin in Clementine fruit juice is reported for the first time here. The results indicated that all chemical parameters statistically differentiated each cultivar (P < 0.001). In particular, principal component analysis showed a clear discrimination of five cultivars from all the other varieties based on vitamin C and total polyphenols for the Caffin cultivar, which showed also the highest antioxidant activity; narirutin for the Etna hybrid cultivar; hesperidin, rutin and total soluble solids for the SRA 89 cultivar; and naringin, hesperidin and rutin for the Esbal cultivar. Moreover, the Mandalate hybrid cultivar showed the lowest antioxidant activity as well as vitamin C and total polyphenols content, while titratable acidity and naringin level were the highest. The antioxidant activity assessed in all the fruits was closely correlated with vitamin C and total polyphenols content, rather than with the flavonoid compounds.

  17. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    The production of rose oil from rose flowers by water steam distillation leaves a water fraction of the distillate as main part of the waste. Therefore, the rose oil distillation wastewater represents a serious environmental problem due to the high content of polyphenols which are difficult to decompose and have to be considered as biopollutants when discarded into the drainage system and rivers. On the other hand, natural polyphenols are valuable compounds with useful properties as bioactive substances. Until now there is no established practice for processing of rose oil distillation wastewater and utilization of contained substances. Thus, it was the aim of this study to develop a strategy to separate this wastewater into a polyphenol depleted water fraction and a polyphenol enriched fraction which could be developed into innovative value-added products. In a first step, the phytochemical profile of rose oil distillation wastewater was determined. Its HPLC-PDA-MS analysis revealed the presence of flavan-3-ols, flavanones, flavonols and flavones. In a second step, the development of a stepwise concentration of rose oil distillation wastewater was performed. The concentration process includes a filtration process to eliminate suspended solids in the wastewater, followed by adsorption of the contained phenolic compounds onto adsorption resins (XAD and SP). Finally, desorption of the polyphenol fraction from the resin matrix was achieved using ethanol and/or aqueous ethanol. The result of the process was a wastewater low in soluble organic compounds and an enriched polyphenol fraction (RF20 SP-207). The profile of this fraction was similar to that of rose oil distillation wastewater and showed the presence of flavonols such as quercetin and kaempferol glycosides as major metabolites. These compounds were isolated from the enriched polyphenol fraction and their structures confirmed by NMR. In summary, a pilot medium scale system was developed using adsorption resins for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. Georg Thieme Verlag KG Stuttgart · New York.

  18. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    PubMed

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of diffusible species in the stomach that have not only a local but also a general impact.

  19. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    PubMed Central

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit. PMID:28649251

  20. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.

    PubMed

    Hu, Bing; Liu, Xixia; Zhang, Chunlan; Zeng, Xiaoxiong

    2017-01-01

    Diet polyphenols-primarily categorized into flavonoids (e.g., flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones) and nonflavonoids (with major subclasses of stilbenes and phenolic acids)-are reported to have health-promoting effects, such as antioxidant, antiinflammatory, anticarcinoma, antimicrobial, antiviral, and cardioprotective properties. However, their applications in functional foods or medicine are limited because of their inefficient systemic delivery and poor oral bioavailability. Epigallocatechin-3-gallate, curcumin, and resveratrol are the well-known representatives of the bioactive diet polyphenols but with poor bioavailability. Food macromolecule based nanoparticles have been fabricated using reassembled proteins, crosslinked polysaccharides, protein-polysaccharide conjugates (complexes), as well as emulsified lipid via safe procedures that could be applied in food. The human gastrointestinal digestion tract is the first place where the food grade macromolecule nanoparticles exert their effects on improving the bioavailability of diet polyphenols, via enhancing their solubility, preventing their degradation in the intestinal environment, elevating the permeation in small intestine, and even increasing their contents in the bloodstream. We contend that the stability and structure behaviors of nanocarriers in the gastrointestinal tract environment and the effects of nanoencapsulation on the metabolism of polyphenols warrant more focused attention in further studies. Copyright © 2016. Published by Elsevier B.V.

  1. Polyphenols in foods are more complex than often thought.

    PubMed

    Cheynier, Véronique

    2005-01-01

    Dietary polyphenols show a great diversity of structures, ranging from rather simple molecules (monomers and oligomers) to polymers. Higher-molecular-weight structures (with molecular weights of > 500) are usually designated as tannins, which refers to their ability to interact with proteins. Among them, condensed tannins (proanthocyanidins) are particularly important because of their wide distribution in plants and their contributions to major food qualities. All phenolic compounds are highly unstable and rapidly transformed into various reaction products when the plant cells are damaged (for instance, during food processing), thus adding to the complexity of dietary polyphenol composition. The polyphenol composition of plant-derived foods and beverages depends on that of the raw material used but also on the extraction process and subsequent biochemical and chemical reactions of plant polyphenols. The occurrence of specific tannin-like compounds (ie, thearubigins and theaflavins) arising from enzymatic oxidation is well documented in black tea. Various chemical reactions involving anthocyanins and/or flavanols have been demonstrated to occur during red wine aging. Current knowledge regarding the reaction mechanisms involved in some of these processes and the structures of the resulting products is reviewed. Their effects on organoleptic and nutritional quality are also discussed.

  2. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds.

    PubMed

    Sanz-Pintos, Nerea; Pérez-Jiménez, Jara; Buschmann, Alejandro H; Vergara-Salinas, José Rodrigo; Pérez-Correa, José Ricardo; Saura-Calixto, Fulgencio

    2017-02-01

    Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants. © 2017 Institute of Food Technologists®.

  3. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  4. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  5. A new process for the management of olive oil mill waste water and recovery of natural antioxidants.

    PubMed

    Agalias, Apostolis; Magiatis, Prokopios; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Tsarbopoulos, Anthony; Gikas, Evagelos; Spanos, Ioannis; Manios, Thrasyvoulos

    2007-04-04

    The high polyphenol content of the wastewater is the major environmental problem caused by the olive mills. A pilot scale system for the treatment of the olive oil mills wastewater was developed aiming at the recovery of high added value-contained polyphenols and the reduction of the environmental problems. The treatment system consists of three main successive sections: The first one includes successive filtration stages aiming at the gradual reduction of the wastewater suspended solids up to a limit of 25 microm. The second section includes passing of the filtered wastewater through a series of adsorbent resins (XAD16 and XAD7HP) in order to achieve the de-odoring and decolorization of the wastewater and the removal/ recovery of the polyphenol and lactone content. The third section of the procedure includes the thermal evaporation and recovery of the organic solvents mixture, which has been used in the resin regeneration process, and finally the separation of the polyphenols and other organic substance contents using fast centrifuge partition chromatography. The final outcome of the whole procedure is (i) an odorless yellowish wastewater with a 99.99% reduced content in polyphenols and 98% reduced COD, (ii) an extract rich in polyphenols and lactones with high antioxidant activity and high added value, (iii) an extract containing the coloring substances of the olive fruit, and (iv) pure hydroxytyrosol.

  6. Comparison of Various Databases for Estimation of Dietary Polyphenol Intake in the Population of Polish Adults.

    PubMed

    Witkowska, Anna M; Zujko, Małgorzata E; Waśkiewicz, Anna; Terlikowska, Katarzyna M; Piotrowski, Walerian

    2015-11-11

    The primary aim of the study was to estimate the consumption of polyphenols in a population of 6661 subjects aged between 20 and 74 years representing a cross-section of the Polish society, and the second objective was to compare the intakes of flavonoids calculated on the basis of the two commonly used databases. Daily food consumption data were collected in 2003-2005 using a single 24-hour dietary recall. Intake of total polyphenols was estimated using an online Phenol-Explorer database, and flavonoid intake was determined using following data sources: the United States Department of Agriculture (USDA) database combined of flavonoid and isoflavone databases, and the Phenol-Explorer database. Total polyphenol intake, which was calculated with the Phenol-Explorer database, was 989 mg/day with the major contributions of phenolic acids 556 mg/day and flavonoids 403.5 mg/day. The flavonoid intake calculated on the basis of the USDA databases was 525 mg/day. This study found that tea is the primary source of polyphenols and flavonoids for the studied population, including mainly flavanols, while coffee is the most important contributor of phenolic acids, mostly hydroxycinnamic acids. Our study also demonstrated that flavonoid intakes estimated according to various databases may substantially differ. Further work should be undertaken to expand polyphenol databases to better reflect their food contents.

  7. Effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (Pagrosomus major) during frozen storage.

    PubMed

    Wang, Tiantian; Li, Zhenxing; Yuan, Fangzhou; Lin, Hong; Pavase, Tushar Ramesh

    2017-03-01

    Frozen storage of minced fish is currently one of the most important techniques to maintain its functional properties. However, some deterioration does occur during frozen storage and cause quality loss. The effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on lipid and protein oxidation and textural properties of red sea bream (Pagrosomus major) during 90 days of frozen storage at -18 °C were investigated. All added antioxidants at 1 g kg -1 resulted in significantly lower thiobarbituric acid-reactive substances (TBARS) compared to the control during the 45 days of frozen storage. The antioxidants were also effective in retarding protein oxidation concerning to total sulfhydryl content and protein carbonyl content. Brown seaweed polyphenols and α-tocopherol significantly retarded the inactivation of Ca 2+ -ATPase activity during the first 45 days, whereas ascorbic acid had no such effect. The antioxidant activity showed either an invariable or decrease trend after 45 days storage. Adding antioxidants had a significant effect on the breaking force of the gels during the frozen storage period. These results indicate that brown seaweed polyphenols and α-tocopherol can be used to prevent oxidative reactions and thus maintain the structure of the gel formed by fish mince during frozen storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Gontscharovia popovii, a new source of carvacrol, its polyphenolic constituents, essential oil analysis, total phenolic content and antioxidant activity.

    PubMed

    Zareiyan, Faraneh; Rowshan, Vahid; Bahmanzadegan, Atefeh; Hatami, Ahmad

    2017-09-28

    The experiment was carried out using the shadow-dried aerial parts including leaves and shoots of Gontscharovia popovii collected in Fars province in order to investigate the polyphenolic compositions, antioxidant activity, total phenolic content and essential oil constituents. The result showed IC 50 of 395.77 μg mL -1 and total phenolic content of about 20.01 mg g -1 gallic acid equivalent dry weight. It also showed a wild range of polyphenols such as; Gallic acid, catechin, chloregenic acid, rutin, vanillin, trans-Ferulic acid, sinapic acid, coumarin, hesperedin, quercetin, hesperetin, eugenol and carvacrol as the main detected polyphenols. Some major compounds were also detected through essential oil analysis, such as; 76.7% carvacrol, 4.25% γ-Terpinene, 3.8% p-Cymene and 2.4% (E)-Caryophyllene. Qualitative and quantitative analyses of chemical compounds of G. popovii was performed using HPLC, GC, GC/MS and microplate reader.

  9. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Galloyl Catechins Contributing to Main Antioxidant Capacity of Tea Made from Camellia sinensis in China

    PubMed Central

    Zhao, Chunjian; Li, Chunying; Liu, Shuaihua; Yang, Lei

    2014-01-01

    Total polyphenol content, catechins content, and antioxidant capacities of green, dark, oolong, and black teas made from Camellia sinensis in China were evaluated. The total polyphenol content of 20 samples of tea was in the range of 7.82–32.36%. Total catechins content was in the range of 4.34–24.27%. The antioxidant capacity of tea extract was determined by the oxygen radical absorbance capacity (ORAC) test and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging test. Total polyphenol content, catechins content, and antioxidant capacity decreased in the following order: green > oolong > black > dark tea. A positive correlation existed between the antioxidant capacity and total polyphenol content or catechins content (R 2 = 0.67–0.87). The antioxidant capacities of five major catechins (epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epicatechin, epigallocatechin, and catechin) were determined by online HPLC DPPH radical-scavenging; the antioxidant activity of tea was mainly attributed to the esterified catechins (EGCG or ECG). PMID:25243234

  11. Green Tea Polyphenols and Metabolites in Prostatectomy Tissue: Implications for Cancer Prevention

    PubMed Central

    Wang, Piwen; Aronson, William J.; Huang, Min; Zhang, Yanjun; Lee, Ru-Po; Heber, David; Henning, Susanne M.

    2011-01-01

    Epidemiologic, preclinical, and clinical trials suggest that green tea (GT) consumption may prevent prostate cancer via the action of green tea polyphenols including (-)-epigallocatechin-3-gallate (EGCG). In order to study the metabolism and bioactivity of green tea polyphenols in human prostate tissue, men with clinically localized prostate cancer consumed 6 cups of GT (n=8) daily or water (n=9) for 3-6 weeks prior to undergoing radical prostatectomy. Using high performance liquid chromatography 4″-O-methyl EGCG (4″-MeEGCG) and EGCG were identified in comparable amounts, and (-)-epicatechin-3-gallate (ECG) in lower amounts in prostatectomy tissue from men consuming GT (38.9 ± 19.5, 42.1 ± 32.4, and 17.8 ± 10.1 pmol/g tissue, respectively). The majority of EGCG and other green tea polyphenols were not conjugated. Green tea polyphenols were not detected in prostate tissue or urine from men consuming water preoperatively. In the urine of men consuming GT, 50-60% of both (-)-epigallocatechin (EGC) and (-)-epicatechin were present in methylated form with 4′-O-MeEGC being the major methylated form of EGC. When incubated with EGCG LNCaP prostate cancer cells were able to methylate EGCG to 4″-MeEGCG. The capacity of 4″-MeEGCG to inhibit proliferation and NF-κB activation and induce apoptosis in LNCaP cells was decreased significantly compared to EGCG. In summary, methylated and non-methylated forms of EGCG are detectable in prostate tissue following a short-term GT intervention and the methylation status of EGCG may potentially modulate its preventive impact on prostate cancer, possibly based on genetic polymorphisms of catechol O-methyltransferase. PMID:20628004

  12. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial.

    PubMed

    Bozzetto, Lutgarda; Annuzzi, Giovanni; Pacini, Giovanni; Costabile, Giuseppina; Vetrani, Claudia; Vitale, Marilena; Griffo, Ettore; Giacco, Angela; De Natale, Claudia; Cocozza, Sara; Della Pepa, Giuseppe; Tura, Andrea; Riccardi, Gabriele; Rivellese, Angela A

    2015-07-01

    Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3) are associated with lower cardiovascular risk. This may relate to their influence on glucose metabolism and diabetes risk. We evaluated the effects of diets naturally rich in polyphenols and/or LCn3 of marine origin on glucose metabolism in people at high cardiometabolic risk. According to a 2 × 2 factorial design, individuals with high waist circumference and at least one more component of the metabolic syndrome were recruited at the obesity outpatient clinic. Eighty-six participants were randomly assigned by MINIM software to an isoenergetic diet: (1) control, low in LCn3 and polyphenol (analysed n = 20); (2) rich in LCn3 (n = 19); (3) rich in polyphenols (n = 19); or (4) rich in LCn3 and polyphenols (n = 19). The assigned diets were known for the participants and blinded for people doing measurements. Before and after the 8 week intervention, participants underwent a 3 h OGTT and a test meal with a similar composition as the assigned diet for the evaluation of plasma glucose, insulin and glucagon-like peptide 1 (GLP-1) concentrations, and indices of insulin sensitivity and beta cell function. During OGTT, polyphenols significantly reduced plasma glucose total AUC (p = 0.038) and increased early insulin secretion (p = 0.048), while LCn3 significantly reduced beta cell function (p = 0.031) (two-factor ANOVA). Moreover, polyphenols improved post-challenge oral glucose insulin sensitivity (OGIS; p = 0.05 vs control diet by post hoc ANOVA). At test meal, LCn3 significantly reduced GLP-1 total postprandial AUC (p < 0.001; two-factor ANOVA). Diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. The implications of the decrease in insulin secretion and postprandial GLP-1 observed with diets rich in marine LCn3 need further clarification. ClinicalTrials.gov NCT01154478. The trial was funded by European Community's Seventh Framework Programme FP7/2009-2012 under grant agreement FP7-KBBE-222639, Etherpaths Project and 'Ministero Istruzione Università e Ricerca' PRIN 2010-2011 - 2010JCWWKM.

  13. Beneficial effects of herbs, spices and medicinal plants on the metabolic syndrome, brain and cognitive function.

    PubMed

    Panickar, Kiran S

    2013-03-01

    Herbs and spices have been used since ancient times to not only improve the flavor of edible food but also to prevent and treat chronic health maladies. While the scientific evidence for the use of such common herbs and medicinal plants then had been scarce or lacking, the beneficial effects observed from such use were generally encouraging. It is, therefore, not surprising that the tradition of using such herbs, perhaps even after the advent of modern medicine, has continued. More recently, due to an increased interest in understanding the nutritional effects of herbs/spices more comprehensively, several studies have examined the cellular and molecular modes of action of the active chemical components in herbs and their biological properties. Beneficial actions of herbs/spices include anti-inflammatory, antioxidant, anti-hypertensive, gluco-regulatory, and anti-thrombotic effects. One major component of herbs and spices is the polyphenols. Some of the aforementioned properties are attributed to the polyphenols and they are associated with attenuating the metabolic syndrome. Detrimental changes associated with the metabolic syndrome over time affect brain and cognitive function. Metabolic syndrome and type-2 diabetes are also risk factors for Alzheimer's disease and stroke. In addition, the neuroprotective effects of herbs and spices have been demonstrated and, whether directly or indirectly, such beneficial effects may also contribute to an improvement in cognitive function. This review evaluates the current evidence available for herbs/spices in potentially improving the metabolic syndrome, as well as their neuroprotective effects on the brain, and cognitive function in animal and human studies.

  14. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo.

    PubMed

    Liu, Suwen; You, Lu; Zhao, Yuhua; Chang, Xuedong

    2018-05-01

    The hypocholesterolemic effect of Lonicera caerulea berry extract rich in polyphenols (LCBP) on high cholesterol-induced hypercholesterolemia and lipoprotein metabolite changes was examined in Caco-2 cells and rats. Cyanidin-3-glucoside, catechin, and chlorogenic acid are the major phenolic components of LCBP. The cholesterol-reducing effect and antioxidant capacity of these components were compared in Caco-2 cells. LCBP (80 μg/mL) and cyanidin-3-glucoside, catechin, and chlorogenic acid (50 μM) were found to be effective (p < 0.05). Rats were fed a high cholesterol diet (HCD) with or without LCBP supplementation (75, 150, and 300 mg/kg body weight intragastrically once daily) for 12 weeks. Compared with the HCD control group, LCBP supplementation at 150 and 300 mg/kg decreased the levels of TC, TG, and LDL-C, but increased that of HDL-C. LCBP treatment promoted greater neutral and acidic sterol excretion (p < 0.05) and improved the antioxidant capacity of the colon tissue, colon contents, and blood. Moreover, trimethylamine N-oxide (TMAO) levels were decreased in serum (p < 0.05). NPC1L1, ACAT2, and MTP mRNA and protein expression were reduced and ABCG5/8 expression was increased (p < 0.05) after LCBP treatment. Our results suggest that LCBP could be used as a functional food for the prevention and treatment of diseases related to excessive cholesterol accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers.

    PubMed

    Marhuenda, Javier; Medina, Sonia; Martínez-Hernández, Pedro; Arina, Simón; Zafrilla, Pilar; Mulero, Juana; Genieser, Hans-Gottfried; Ferreres, Federico; Gil-Izquierdo, Ángel

    2016-12-07

    The Mediterranean Diet (MD) has been proved to exert benefits with respect to the maintenance of the redox balance, and wine is a representative component. Bioactive compounds such as polyphenols, melatonin and hydroxytyrosol act as radical scavengers and regulate the oxidation status of organisms. Oxidative damage to DNA yields a large range of end products. The repair of oxidized DNA entails the removal of the useless bases and/or nucleotides as well as the release of circulating nucleotides and nucleosides. The current research aims to elucidate, for the first time, the DNA protection against oxidative stress provided by three types of red wine - relating it to the intake of bioactive compounds - after the intake of a serving of red wine/must by 18 healthy female volunteers during a short term double-blind, crossover and placebo-controlled study. The novelty of our work is to describe the importance of melatonin and hydroxytyrosol and its metabolites (from gut microflora) in comparison with polyphenols in a red wine matrix (excluding colon derivatives). The results show that the intake of red wine and must secondarily reduces oxidative stress and carcinogenesis due to their content of homovanillic acid, as measured by decreases in the plasmatic concentration of 8-hydroxy-2'deoxyguanosine, 8-hydroxyguanine, and 8-nitroguanosine. Moreover, the intake of wine appears to exert vasodilatory effects, mediated by the action of nitric oxide and increased plasma guanosine-3'-5'-cyclic monophosphate plasmatic levels, owing to the intake of wines higher in melatonin and homovanillic acid. Therefore, the results obtained in the present study revealed that polyphenols, despite being the major compounds in the red wine matrix, are not the most effective compounds protecting DNA from oxidative attack.

  16. Green tea and its major polyphenol EGCG increase the activity of oral peroxidases.

    PubMed

    Narotzki, Baruch; Levy, Yishai; Aizenbud, Dror; Reznick, Abraham Z

    2013-01-01

    Oral peroxidases (OPO) consist mainly of salivary peroxidase and myeloperoxidase and are involved in oral defense mechanisms. Salivary peroxidase is synthesized and secreted by salivary glands, whereas myeloperoxidase is found in polymorphonuclear leukocytes, which migrate into the oral cavity at gingival crevices. Green tea is the world's second most popular drink after water. Polyphenols are the most biologically active group of tea components. The purpose of our study was to elucidate the interaction between green tea & EGCG (Epigallocatechin 3-gallate), its main polyphenol and OPO. In previous studies we have shown that elderly trained people who drink green tea for 3 months, have a higher level of OPO activity compared to non-drinkers. Thus, we decided to extend our project in order to understand the above observations by studying the interaction of green tea and OPO both in vitro and in vivo. Addition of green tea and black tea infusions (50 μl/ml) and EGCG (50 μM) to saliva, resulted in a sharp rise of OPO activity +280% (p = 0.009), 54% (p = 0.04) and 42% (p = 0.009), respectively. The elevation of OPO activity due to addition of green tea and EGCG was in a dose dependent manner: r = 0.91 (p = 0.001) and r = 0.637 (p = 0.019), respectively. Also, following green tea infusion mouth rinsing, a rise of OPO activity was observed: +268% (p = 0.159). These results may be of great clinical importance, as tea consumer's oral epithelium may have better protection against the deleterious effects of hydroxyl radicals, produced by not removed hydrogen peroxides in the presence of metal ions. Higher OPO activity upon green tea drinking may provide an extra protection against oxidative stress in the oral cavity.

  17. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.

    PubMed

    Touriño, Sonia; Fuguet, Elisabet; Jáuregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Lluís

    2008-11-01

    Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.

  18. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting

    PubMed

    Dybkowska, Ewa; Sadowska, Anna; Rakowska, Rita; Dębowska, Maria; Świderski, Franciszek; Świąder, Katarzyna

    The roasting stage constitutes a key component in the manufacturing process of natural coffee because temperature elicits changes in bioactive compounds such as polyphenols and that Maillard-reaction compounds appear, thus affecting the product’s sensory and antioxidant properties. Actual contents of these compounds may depend on which region the coffee is cultivated as well as the extent to which the beans are roasted To determine polyphenols content and antioxidant activity in the ‘Arabica’ coffee type coming from various world regions of its cultivation and which have undergone industrial roasting. Also to establish which coffee, taking into account the degree of roasting (ie. light, medium and strong), is nutritionally the most beneficial The study material was natural coffee beans (100% Arabica) roasted to various degrees, as aforementioned, that had been cultivated in Brazil, Ethiopia, Columbia and India. Polyphenols were measured in the coffee beans by spectrophotometric means based on the Folin-Ciocalteu reaction, whereas antioxidant activity was measured colourimetrically using ABTS+ cat-ionic radicals Polyphenol content and antioxidant activity were found to depend both on the coffee’s origin and degree of roasting. Longer roasting times resulted in greater polyphenol degradation. The highest polyphenol concentrations were found in lightly roasted coffee, ranging 39.27 to 43.0 mg/g, whereas levels in medium and strongly roasted coffee respectively ranged 34.06 to 38.43 mg/g and 29.21 to 36.89 mg/g. Antioxidant activity however significantly rose with the degree of roasting, where strongly roasted coffee had higher such activity than lightly roasted coffee. This can be explained by the formation of Maillard-reaction compounds during roasting, leading then to the formation of antioxidant melanoidin compounds which, to a large extent, compensate for the decrease in polyphenols during roasting Polyphenols levels and antioxidant activities in the studied Arabica coffee beans that had undergone roasting depended on the cultivation region of the world. Longer roasting caused a significant decline in polyphenols compound levels (from 7.3% to 32.1%) in the coffee beans. Antioxidant activities of coffee increased with roasting, despite reduced levels of natural antioxidants. From a nutritional standpoint, the most favoured coffees are those lightly or medium roasted

  19. Simultaneous Determination of Black Tea-Derived Catechins and Theaflavins in Tissues of Tea Consuming Animals Using Ultra-Performance Liquid-Chromatography Tandem Mass Spectrometry

    PubMed Central

    Ganguly, Souradipta; G., Taposh Kumar; Mantha, Sudarshan

    2016-01-01

    The bioavailability, tissue distribution and metabolic fate of the major tea polyphenols, catechins and theaflavins as well as their gallated derivatives are yet to be precisely elucidated on a single identification platform for assessment of their relative bioefficacy in vivo. This is primarily due to the lack of suitable analytical tools for their simultaneous determination especially in an in vivo setting, which continues to constrain the evaluation of their relative health beneficiary potential and therefore prospective therapeutic application. Herein, we report a rapid and sensitive Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) based method for the simultaneous determination of the major catechins and theaflavins in black tea infusions as well as in different vital tissues and body fluids of tea-consuming guinea pigs. This method allowed efficient separation of all polyphenols within seven minutes of chromatographic run and had a lower limit of quantification (LLOQ) of ~5 ng/ml. Using this method, almost all bioactive catechins and theaflavins could be simultaneously detected in the plasma of guinea pigs orally administered 5% black tea for 14 days. Our method could further detect the majority of these polyphenols in the lung and kidney as well as identify the major catechin metabolites in the urine of the tea-consuming animals. Overall, our study presents a novel tool for simultaneous detection and quantitation of both catechins and theaflavins in a single detection platform that could potentially enable precise elucidation of their relative bioavailability and bioefficacy as well as true health beneficiary potential in vivo. Such information would ultimately facilitate the accurate designing of therapeutic strategies utilizing high efficacy formulations of tea polyphenols for effective mitigation of oxidative damage and inflammation in humans as well as prevention of associated diseases. PMID:27695123

  20. Curcumin: A Review of Its' Effects on Human Health.

    PubMed

    Hewlings, Susan J; Kalman, Douglas S

    2017-10-22

    Turmeric, a spice that has long been recognized for its medicinal properties, has received interest from both the medical/scientific world and from culinary enthusiasts, as it is the major source of the polyphenol curcumin. It aids in the management of oxidative and inflammatory conditions, metabolic syndrome, arthritis, anxiety, and hyperlipidemia. It may also help in the management of exercise-induced inflammation and muscle soreness, thus enhancing recovery and performance in active people. In addition, a relatively low dose of the complex can provide health benefits for people that do not have diagnosed health conditions. Most of these benefits can be attributed to its antioxidant and anti-inflammatory effects. Ingesting curcumin by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. There are several components that can increase bioavailability. For example, piperine is the major active component of black pepper and, when combined in a complex with curcumin, has been shown to increase bioavailability by 2000%. Curcumin combined with enhancing agents provides multiple health benefits. The purpose of this review is to provide a brief overview of the plethora of research regarding the health benefits of curcumin.

  1. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates.

    PubMed

    Delfanian, Mojtaba; Razavi, Seyed M A; Haddad Khodaparast, Mohammad Hossein; Esmaeilzadeh Kenari, Reza; Golmohammadzadeh, Shiva

    2018-06-01

    In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and basil seed gum (SPI-BSG), whey protein isolate and basil seed gum (WPI-BSG) and also Hi-Cap 100 in the outer aqueous phase were used to produce W/O/W nano-emulsions. Z-average size of emulsions stabilized by Hi-Cap, WPI-BSG, and SPI-BSG was 318, 736.9 and 1918 nm, respectively. The encapsulation efficiency of polyphenols for powders produced by Hi-Cap, WPI-BSG, and SPI-BSG was 95.25, 90.9 and 92.88%, respectively, which was decreased to 72.47, 67.12 and 64.44% after 6 weeks storage at 30 °C. The antioxidant activity of encapsulated polyphenols at 100, 200 and 300 ppm was measured in oil by peroxide and p-anisidine values during storage and was compared to non-encapsulated extract and synthetic antioxidant. Results showed oxidative alterations in oils containing encapsulated polyphenols was lower than unencapsulated form, which among them capsules produced by SPI-BSG exhibited higher antioxidant effects due to the better gradual release. Generally, the higher antioxidant potential was achieved with increased solubility and controlled release of polyphenols through their nano-encapsulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits.

    PubMed

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2013-03-15

    Tomato (Solanum lycopersicum) fruit samples, in two ripening stages, ripe (red) and unripe (green), collected from a cultivar in the North of Spain (Barrika, Basque Country), were analyzed directly, without any sample pretreatment, with two different Raman instruments (portable spectrometer coupled to a micro-videocamera and a confocal Raman microscope), using two different laser excitation wavelengths (514 and 785 nm, only for the confocal microscope). The combined use of these laser excitation wavelengths allows obtaining, in a short period of time, the maximum spectral information about the main organic compounds present in this fruit. The major identified components of unripe tomatoes were cutin and cuticular waxes. On the other hand, the main components on ripe tomatoes were carotenes, polyphenoles and polysaccharides. Among the carotenes, it was possible to distinguish the presence of lycopene from β-carotene with the help of both excitation wavelengths, but specially using the 514 nm one, which revealed specific overtones and combination tones of this type of carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits

    NASA Astrophysics Data System (ADS)

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2013-03-01

    Tomato (Solanum lycopersicum) fruit samples, in two ripening stages, ripe (red) and unripe (green), collected from a cultivar in the North of Spain (Barrika, Basque Country), were analyzed directly, without any sample pretreatment, with two different Raman instruments (portable spectrometer coupled to a micro-videocamera and a confocal Raman microscope), using two different laser excitation wavelengths (514 and 785 nm, only for the confocal microscope). The combined use of these laser excitation wavelengths allows obtaining, in a short period of time, the maximum spectral information about the main organic compounds present in this fruit. The major identified components of unripe tomatoes were cutin and cuticular waxes. On the other hand, the main components on ripe tomatoes were carotenes, polyphenoles and polysaccharides. Among the carotenes, it was possible to distinguish the presence of lycopene from β-carotene with the help of both excitation wavelengths, but specially using the 514 nm one, which revealed specific overtones and combination tones of this type of carotene.

  4. Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer.

    PubMed

    Katiyar, Santosh K

    2016-11-24

    Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.

  5. Influence of extraction techniques on physical-chemical characteristics and volatile compounds of extra virgin olive oil.

    PubMed

    Volpe, Maria Grazia; De Cunzo, Fausta; Siano, Francesco; Paolucci, Marina; Barbarisi, Costantina; Cammarota, Giancarlo

    2014-01-01

    The purpose of this study was to investigate three types of extraction methods of extra virgin olive oil (EVOO) from the same cultivar (Ortice olive cultivar): traditional or pressing (T) system, decanter centrifugation (DC) system and a patented horizontal axis decanter centrifugation (HADC) system. Oil samples were subjected to chemical analyses: free acidity, peroxide value, ultraviolet light absorption K232 and K270, total polyphenols, antioxidant capacity, volatile compounds and olfactory characteristics by electronic nose. The two centrifugation systems showed better free acidity and peroxides value but total polyphenol content was particularly high in extra virgin olive oil produced by patented HADC system. Same volatile substances that positively characterize the oil aroma were found in higher amount in the two centrifugation systems, although some differences have been detected between DC and HADC system, other were found in higher amount in extra virgin olive oil produced by T system. The electronic nose analysis confirmed these results, principal component analysis (PCA) and correlation matrix showed the major differences between EVOO produced by T and HADC system. Taken together the results showed that DC and HADC systems produce EVOO with better characteristics than T system and patented HADC is the best extraction system.

  6. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  7. Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester.

    PubMed

    Tsubaki, Shuntaro; Iida, Hiroyuki; Sakamoto, Masahiro; Azuma, Jun-ichi

    2008-12-10

    Microwave heating was used to produce aqueous-soluble components from green, oolong, and black tea residues. Heating at 200-230 degrees C for 2 min extracted 40-50% of polysaccharides and 60-70% of the polyphenols. Solubilization of arabinose and galactose by autohydrolysis occurred with heating above 170 degrees C, whereas heating above 200 degrees C was necessary to solubilize xylose. Catechins were soluble in water by heating at low temperature (110 degrees C); however, new polyphenols having strong antioxidant activity were produced above 200 degrees C. The amount of solubilized materials and antioxidant activity increased with increased fermentation of harvested tea leaves (green tea < oolong tea < black tea). Cutin, a plant biopolyester, remained in the residue after heating as did cellulose and lignin/tannin. The predominant cutin monomer that was recovered was 9,10-epoxy-18-hydroxyoctadecanoic acid, followed by dihydroxyhexadecanoic acid and 9,10,18-trihydroxyoctadecanoic acid.

  8. Identification of phenylpropanoids in fig (Ficus carica L.) leaves.

    PubMed

    Takahashi, Toru; Okiura, Aya; Saito, Keita; Kohno, Masahiro

    2014-10-15

    In this study, the phenylpropanoid composition and antioxidant activity of identified components in fig (Ficus carica L.) leaves were examined. Known polyphenols rutin, isoschaftoside, isoquercetin, and chlorogenic acid were identified. Furthermore, caffeoylmalic acid (CMA) was the most abundant polyphenol and was identified for the first time. CMA exhibited antioxidant activity similar to that of vitamin C or catechin. Psoralen and bergapten were identified as known furanocoumarins, with psoralen being the most abundant. Moreover, psoralic acid glucoside (PAG) was identified for the first time. As a precursor of psoralen, PAG content was equivalent to the psoralen content in moles. Notably, the content of these compounds varied between the five fig varieties, and the furanocoumarin and PAG contents varied more than that of the polyphenols. Further investigations concerning the influence of CMA and PAG on human health are necessary to elucidate functionalities of fig leaves.

  9. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets.

    PubMed

    Rajendran, Peramaiyan; Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Divya, H; Nishigaki, Ikuo

    2015-02-01

    A variety of bioactive food components have been shown to modulate inflammatory responses and to attenuate carcinogenesis. Polyphenols isolated several years ago from various medicinal plants now seem to have a prominent role in the prevention and therapy of a variety of ailments. Mangiferin, a unique, important, and highly investigated polyphenol, has attracted much attention of late for its potential as a chemopreventive and chemotherapeutic agent against various types of cancer. Mangiferin has been shown to target multiple proinflammatory transcription factors, cell- cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and inflammatory enzymes. These targets can potentially mediate the chemopreventive and therapeutic effects of mangiferin by inhibiting the initiation, promotion, and metastasis of cancer. This review not only summarizes the diverse molecular targets of mangiferin, but also gives the results of various preclinical studies that have been performed in the last decade with this promising polyphenol.

  10. The polyphenolics in the aqueous extract of Psidium guajava kinetically reveal an inhibition model on LDL glycation.

    PubMed

    Chen, Kuan-Chou; Chuang, Chao-Ming; Lin, Li-Yun; Chiu, Wen-Ta; Wang, Hui-Er; Hsieh, Chiu-Lan; Tsai, Tsuimin; Peng, Robert Y

    2010-01-01

    Guava [Psidium guajava L. (Myrtaceae)] budding leaf extract (PE) has shown tremendous bioactivities. Previously, we found seven major compounds in PE, i.e., gallic acid, catechin, epicatechin, rutin, quercetin, naringenin, and kaempferol. PE showed a potentially active antiglycative effect in an LDL (low density lipoprotein) mimic biomodel, which can be attributed to its large content of polyphenolics. The glycation and antiglycative reactions showed characteristic distinct four-phase kinetic patterns. In the presence of PE, the kinetic coefficients were 0.000438, 0.000060, 0.000, and -0.0001354 ABS-mL/mg-min, respectively, for phases 1 to 4. Computer simulation evidenced the dose-dependent inhibition model. Conclusively, PE contains a large amount of polyphenolics, whose antiglycative bioactivity fits the inhibition model.

  11. Matrix solid-phase dispersion as a tool for phytochemical and bioactivities characterisation: Crataegus oxyacantha L._A case study.

    PubMed

    Benabderrahmane, Wassila; Lores, Marta; Lamas, Juan Pablo; Benayache, Samir

    2018-05-01

    The use of a matrix solid-phase dispersion (MSPD) process to extract polyphenols from hawthorn (Crataegus oxyacantha L.) a deciduous shrub with an expected rich phytochemical profile, has been evaluated. MSPD extracts of fruits and leaves have an outstanding content of polyphenols, although the particular phenolic profile is solvent dependent. The extracts were analysed by HPLC-DAD for the accurate identification of the major bioactive polyphenols, some of which have never been described for this species. MSPD has proven to be a good alternative to the classic methods of obtaining natural extracts, fast and with low consumption of organic solvents, therefore, environmentally friendly. The bioactivities can be considered also very remarkable, revealing extracts with high levels of antioxidant activity.

  12. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity.

    PubMed

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D'Angelo, Valeria; Galati, Enza Maria

    2017-10-01

    Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca 2+ for muscle contraction. Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%Polyphenols and Vitamin E complex occurrence in OFI cladodes were characterized by high-performance liquid chromatographyOFI cladodes exhibited significative antispasmodic activity. The antispasmodic effect was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Abbreviations used: OFI: Opuntia ficus-indica , DPPH: Ethanol 1,1-diphenyl-2-picrylhydrazyl.

  13. Optimization of polyphenol removal from kiwifruit juice using a macroporous resin.

    PubMed

    Gao, Zhenpeng; Yu, Zhifang; Yue, Tianli; Quek, Siew Young

    2017-06-01

    The separation of polyphenols from kiwifruit juice is essential for enhancing sensory properties and prevent the browning reaction in juice during processing and storage. The present study investigated the dynamic adsorption and desorption of polyphenols in kiwifruit juice using AB-8 resin. The model obtained could be successfully applied to predict the experimental results of dynamic adsorption capacity (DAC) and dynamic desorption quantity (DDQ). The results showed that dynamic adsorption of polyphenols could be optimised in a juice concentration of 19 °Brix, with a feed flow-rate of 1.3 mL min -1 and a feed volume of 7 bed volume (BV). The optimum conditions for dynamic desorption of polyphenols from the AB-8 resin were an ethanol concentration of 43% (v/v), an elute flow-rate of 2.2 mL min -1 and an elute volume of 3 BV. The optimized DAC value was 3.16 g of polyphenols kg -1 resin, whereas that for DDQ was 917.5 g kg -1 , with both values being consistent with the predicted values generated by the regression models. The major polyphenols in the dynamic desorption solution consisted of seven compositions. The present study could be scaled-up using a continuous column system for industrial application, thus contributing to the improved flavor and color of kiwifruit juice. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe.

    PubMed

    Cvetkovikj, I; Stefkov, G; Acevska, J; Stanoeva, J Petreska; Karapandzova, M; Stefova, M; Dimitrovska, A; Kulevanova, S

    2013-03-22

    Although the knowledge and use of several Salvia species (Salvia officinalis, Salvia fruticosa, and Salvia pomifera) can be dated back to Greek Era and have a long history of culinary and effective medicinal use, still there is a remarkable interest concerning their chemistry and especially the polyphenolic composition. Despite the demand in the food and pharmaceutical industry for methods for fast quality assessment of the herbs and spices, even now there are no official requirements for the minimum content of polyphenols in sage covered by current regulations neither the European Pharmacopoeia monographs nor the ISO 11165 standard. In this work a rapid analytical method for extraction, characterization and quantification of the major polyphenolic constituents in Sage was developed. Various extractions (infusion - IE; ultrasound-assisted extraction - USE and microwave-assisted extraction - MWE) were performed and evaluated for their effectiveness. Along with the optimization of the mass-detector and chromatographic parameters, the applicability of three different reverse C18 stationary phases (extra-density bonded, core-shell technology and monolith column) for polyphenolics characterization was evaluated. A comprehensive overview of the very variable polyphenolic composition of 118 different plant samples of 68 populations of wild growing culinary Salvia species (S. officinalis: 101; S. fruticosa: 15; S. pomifera: 2) collected from South East Europe (SEE) was performed using HPLC-DAD-ESI-MS(n) and more than 50 different compounds were identified and quantified. With this work the knowledge about polyphenols of culinary Sage was expanded thus the possibility for gaining an insight into the chemodiversity of culinary Salvia species in South East Europe was unlocked. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.

    PubMed

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150-200 nm average diameter NPs were prepared by the double emulsion-solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA-PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer.

  16. Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples ( Malus domestica Bork. Cultivar 'Golden Delicious').

    PubMed

    Stracke, Berenike A; Rüfer, Corinna E; Weibel, Franco P; Bub, Achim; Watzl, Bernhard

    2009-06-10

    The present study was performed to evaluate the polyphenol content and antioxidant capacity of apples (cv. ;Golden Delicious') grown under defined organic and conventional conditions. Apples were harvested at five comparable commercial farms over the course of three years (2004-2006). In 2005 and 2006 the antioxidant capacity was 15% higher (p < 0.05) in organically produced apples than in conventionally produced fruits. In 2005 significantly higher polyphenol concentrations were found in the organically grown apples. In 2004 and 2006 no significant differences were observed (2004, 304 +/- 68 microg/g organic vs 284 +/- 69 microg/g conventional, p = 0.18; 2005, 302 +/- 58 micro/g organic vs 253 +/- 41 microg/g conventional, p = 0.002; 2006, 402 +/- 100 microg/g organic vs 365 +/- 58 microg/g conventional, p = 0.17). Year-to-year variations in the antioxidant capacity and the polyphenol content of up to 20% were more significant than the production method found within one year. Finally, flavanols and flavonols were major determinants of the antioxidant capacities in these apples. Overall, the production method had a smaller impact on the variation in the polyphenol content and antioxidant capacity of apples than the yearly climate.

  17. Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: randomized, crossover, controlled trials in healthy subjects.

    PubMed

    Kerimi, Asimina; Nyambe-Silavwe, Hilda; Gauer, Julia S; Tomás-Barberán, Francisco A; Williamson, Gary

    2017-12-01

    Background: Low-glycemic index diets have demonstrated health benefits associated with a reduced risk of developing type 2 diabetes. Objectives: We tested whether pomegranate polyphenols could lower the glycemic response of a high-glycemic index food when consumed together and the mechanism by which this might occur. Design: We compared the acute effect of a pomegranate juice and a polyphenol-rich extract from pomegranate (supplement) on the bread-derived postprandial blood glucose concentration in 2 randomized, crossover, controlled studies (double-blinded for the supplements), each on 16 healthy volunteers. An additional randomized, crossover, controlled study on 16 volunteers consuming constituent fruit acids in a pH-balanced solution (same pH as pomegranate) and bread was conducted to determine any contributions to postprandial responses caused by acidic beverages. Results: As primary outcome, the incremental area under the curve for bread-derived blood glucose (-33.1% ± 18.1%, P = 0.000005) and peak blood glucose (25.4% ± 19.3%, P = 0.0004) were attenuated by pomegranate juice, compared with a control solution containing the equivalent amount of sugars. In contrast, the pomegranate supplement, or a solution containing the malic and citric acid components of the juice, was ineffective. The pomegranate polyphenol punicalagin was a very effective inhibitor of human α-amylase in vitro, comparable to the drug acarbose. Neither the pomegranate extract nor the individual component polyphenols inhibited 14 C-D-glucose transport across differentiated Caco-2/TC7 cell monolayers, but they inhibited uptake of 14 C-glucose into Xenopus oocytes expressing the human glucose transporter type 2. Further, some of the predicted pomegranate gut microbiota metabolites modulated 14 C-D-glucose and 14 C-deoxy-D-glucose uptake into hepatic HepG2 cells. Conclusions: These data indicate that pomegranate polyphenols, when present in a beverage but not in a supplement, can reduce the postprandial glycemic response of bread, whereas microbial metabolites from pomegranate polyphenols exhibit the potential to further modulate sugar metabolism much later in the postprandial period. This trial was registered at clinicaltrials.gov as NCT02486978, NCT02624609, and NCT03242876. © 2017 American Society for Nutrition.

  18. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration.

    PubMed

    Orellana-Palma, Patricio; Petzold, Guillermo; Pierre, Lissage; Pensaben, José Manuel

    2017-11-01

    Block freeze concentration allows produces high-quality cryoconcentrates with important protection of valuable components from fresh fruit juices. The aim of this study was to investigate the use of vacuum-assisted block freeze concentration under different experimental conditions to protect polyphenols in the elaboration of concentrated blueberry juice. Fresh blueberry juice was radial or unidirectional frozen at -20 and -80 °C for 12 h and vacuum process was performed at 80 kPa during 120 min. Results showed a significant solute increased in the concentrated fraction in all treatments, and the best treatment was - 20 °C/unidirectional with a value of ≈63 °Brix, equivalent to an increase of 3.8 times in the total polyphenol content (76% of retention). The color of concentrated samples was darker than the initial sample, with ΔE* values of >25 CIELab units in all treatments. The vacuum-assisted block freeze concentrations was an effective technology for protecting polyphenols and obtain a concentrated with a higher concentration of solids from blueberry juice, as well as interesting values of process parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of engineered yeast for biosorption of beer haze-active polyphenols.

    PubMed

    Cejnar, Rudolf; Hložková, Kateřina; Jelínek, Lukáš; Kotrba, Pavel; Dostálek, Pavel

    2017-02-01

    Compared to most other alcoholic beverages, the shelf life of beer is much more limited due to its instability in the bottle. That instability is most likely to appear as turbidity (haze), even sedimentation, during storage. The haze in beer is mostly caused by colloidal particles formed by interactions between proteins and polyphenols within the beer. Therefore, beers are usually stabilized by removing at least one of these components. We developed and constructed a Saccharomyces cerevisiae strain with a proline-rich QPF peptide attached to the cell wall, using the C-terminal anchoring domain of α-agglutinin. The QPF peptide served to bind polyphenols during fermentation and, thus, to decrease their concentration. Strains displaying QPF were able to bind about twice as much catechin and epicatechin as a control strain displaying only the anchoring domain. All these experiments were done with model solutions. Depending on the concentration of yeast, uptake of polyphenols was 1.7-2.5 times higher. Similarly, the uptake of proanthocyanidins was increased by about 20 %. Since the modification of yeasts with QPF did not affect their fermentation performance under laboratory conditions, the display of QPF appears to be an approach to increase the stability of beer.

  20. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  1. Direct mass spectrometry approaches to characterize polyphenol composition of complex samples.

    PubMed

    Fulcrand, Hélène; Mané, Carine; Preys, Sébastien; Mazerolles, Gérard; Bouchut, Claire; Mazauric, Jean-Paul; Souquet, Jean-Marc; Meudec, Emmanuelle; Li, Yan; Cole, Richard B; Cheynier, Véronique

    2008-12-01

    Lower molecular weight polyphenols including proanthocyanidin oligomers can be analyzed after HPLC separation on either reversed-phase or normal phase columns. However, these techniques are time consuming and can have poor resolution as polymer chain length and structural diversity increase. The detection of higher molecular weight compounds, as well as the determination of molecular weight distributions, remain major challenges in polyphenol analysis. Approaches based on direct mass spectrometry (MS) analysis that are proposed to help overcome these problems are reviewed. Thus, direct flow injection electrospray ionization mass spectrometry analysis can be used to establish polyphenol fingerprints of complex extracts such as in wine. This technique enabled discrimination of samples on the basis of their phenolic (i.e. anthocyanin, phenolic acid and flavan-3-ol) compositions, but larger oligomers and polymers were poorly detectable. Detection of higher molecular weight proanthocyanidins was also restricted with matrix-assisted laser desorption ionization (MALDI) MS, suggesting that they are difficult to desorb as gas-phase ions. The mass distribution of polymeric fractions could, however, be determined by analyzing the mass distributions of bovine serum albumin/proanthocyanidin complexes using MALDI-TOF-MS.

  2. Bioactive constituents in pulses and their health benefits.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Shevkani, Khetan; Singh, Narpinder; Kaur, Amritpal

    2017-03-01

    Pulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed.

  3. Strategies for the extraction and analysis of non-extractable polyphenols from plants.

    PubMed

    Domínguez-Rodríguez, Gloria; Marina, María Luisa; Plaza, Merichel

    2017-09-08

    The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    PubMed

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  5. Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of Amygdalus pedunculata Pall.

    PubMed

    Lu, Cairui; Li, Cong; Chen, Bang; Shen, Yehua

    2018-11-01

    This study aims at identifying the composition of polyphenols present in Amygdalus pedunculata Pall seed coat (APSC), and characterizing their antioxidant, antibacterial, and anticancer activities. The polyphenols from APSC were composed of 32 compounds. The compounds with important biological activities included apigenin 7-O-glucoside (the main component; 34.53 mg/100 g), quercitrin (23.43 mg/100 g), kaempferol (10.28 mg/100 g), naringenin (6.27 mg/100 g), cyanidin 3-rutinoside (5.76 mg/100 g), cyanidin 3-O-galactoside (5.19 mg/100 g), and quercetin (2.50 mg/100 g), as well as a variety of phenolic acids (gentisic acid, 23.13 mg/100 g; salicylic acid, 18.79 mg/100 g; gallic acid, 2.55 mg/100 g; etc.). Characterization of the identified polyphenols indicated that APSC possessed high antioxidant activity, due to its ability to reduce Fe 3+ and scavenge ABTS, DPPH, OH, O 2 - , and H 2 O 2 free radicals. The ability of APSC to reduce Fe 3+ and scavenge ABTS radical, and H 2 O 2 was stronger than that of control group ascorbic acid (Vc). The data from bacteriostatic test showed that polyphenols from APSC had good antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Bacillus subtilis, but showed no activity against Aspergillus niger. Cell viability assays using HepG2 cell illustrated that polyphenols from APSC significantly inhibited cell proliferation and induced cell apoptosis. The findings demonstrate that polyphenols from APSC may be utilized as is or further developed into natural antioxidant, antibacterial, and anticancer agents. This work also provides a basis for the development and utilization of Amygdalus pedunculata Pall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Polyphenol-Rich Bilberry Ameliorates Total Cholesterol and LDL-Cholesterol when Implemented in the Diet of Zucker Diabetic Fatty Rats

    PubMed Central

    Brader, Lea; Overgaard, Ann; Christensen, Lars P.; Jeppesen, Per B.; Hermansen, Kjeld

    2013-01-01

    BACKGROUND: Bilberries and blackcurrants are nutrient sources rich in bioactive components, including dietary fibers, polyphenols, and anthocyanins, which possess potent cardiovascular protective properties. Few studies investigating the cardio-protective effects of natural components have focused on whole bilberries or blackcurrants. OBJECTIVE: The aim of this trial was to investigate whether a diet enriched with bilberries or blackcurrants has beneficial effects on glucose metabolism, lipid profile, blood pressure, and expression of genes related to glucose and lipid metabolism. METHODS: Male Zucker Diabetic Fatty (ZDF) rats (n = 48) were randomly assigned to either a control, bilberry-enriched, blackcurrant-enriched, or fiber-enriched diet for 8 weeks ad libitum. Real-time quantitative PCR analysis was performed on liver, adipose, and muscle tissue. Berry polyphenol content was determined by HPLC and LC-MS analysis. RESULTS: Bilberry enrichment reduced total (-21%, p = 0.0132) and LDL-cholesterol (-60%, p = 0.0229) levels, but increased HDL-cholesterol to a lesser extent than in controls. This may partly be due to the altered hepatic liver X receptor-α expression (-24%, p < 0.001). Neither bilberries nor blackcurrants influenced glucose metabolism or blood pressure. Nevertheless, transcriptional analysis implied a better conservation of hepatic and adipocyte insulin sensitivity by bilberry enrichment. Anthocyanins constituted 91% and 87% of total polyphenol content in bilberries and blackcurrants, respectively. However, total anthocyanin content (3441 mg/100 g) was 4-fold higher in bilberries than in blackcurrants (871 mg/100 g). CONCLUSIONS: Bilberry consumption ameliorated total and LDL-cholesterol levels, but not HDL-cholesterol levels in ZDF rats. Neither bilberry nor blackcurrant enrichment delayed the development of diabetes or hypertension. Thus, in rats, bilberries may be valuable as a dietary preventive agent against hypercholesterolemia, probably by virtue of their high anthocyanin content. PMID:24841880

  7. Unraveling a mechanism of honey antibacterial action: polyphenol/H₂O₂-induced oxidative effect on bacterial cell growth and on DNA degradation.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Miotto, Danielle

    2012-07-15

    Several compounds with antibacterial activities were identified in honey however, a mechanism by which they lead to bacterial growth inhibition and bacterial death remains still unknown. We recently found that honeys possess DNA degrading activity mediated by honey hydrogen peroxide and an unknown honey component(s). Here we provide evidence that active honeys (MIC90 of 6.25-12.5% v/v) possessed significantly higher levels of phenolics (p<0.02) of higher radical scavenging activities (p<0.005) than honeys of average activity. Removal of H2O2 by catalase eliminated bacteriostatic activities caused by both phenolics and H2O2 suggesting that the growth inhibition resulted from the coupling chemistry between these compounds. Both phenolics and H2O2 were involved in DNA degradation by honeys. Treatment of plasmid DNA with H2O2 alone did not affect the DNA integrity but H2O2 removal from honey by catalase prevented DNA degradation. Polyphenols extracted from honeys degraded plasmid DNA in the presence of H2O2 and Cu(II) in the Fenton-type reaction. The extent of DNA degradation was inversely related to the polyphenol concentration in this system as well as in honeys. At low content, honey polyphenols exerted pro-oxidant activity damaging to DNA. In conclusion, honey phenolics with pro-oxidant activities were necessary intermediates that conferred oxidative action of H2O2. Phenolic/H2O2-induced oxidative stress constituted the mechanism of honey bacteriostatic and DNA damaging activities. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols

    PubMed Central

    Marin, Daniela Eliza; Pelmus, Rodica Stefania; Habeanu, Mihaela; Rotar, Mircea Catalin; Gras, Mihail Alexandru; Pistol, Gina Cecilia; Taranu, Ionelia

    2018-01-01

    The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These parameters are modulated by the different polyphenols absorbed, mainly by the procyanidin trimers and catechin on one side and the polyphenols metabolites on the other side. PMID:29747456

  9. Fermented Papaya Preparation Restores Age-Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube-Fed Patients

    PubMed Central

    Fujita, Yuhzo; Tsuno, Haruo; Nakayama, Jiro

    2017-01-01

    Tube-fed elderly patients are generally supplied with the same type of nutrition over long periods, resulting in an increased risk for micronutrient deficiencies. Dietary polyphenols promote immunity and have anti-inflammatory, anti-carcinogenic, and anti-oxidative properties. Carica papaya Linn. is rich in several polyphenols; however, these polyphenols are poorly absorbed from the digestive tract in their original polymerized form. Therefore, we determined the molecular components of a fermented Carica papaya Linn. preparation, as well as its effects on immunity and the composition of gut microbiota in tube-fed patients. Different doses of the fermented C. papaya L. preparation were administered to three groups of tube-fed patients for 30 days. Its effects on fecal microbiota composition and immunity were assessed by 16S rRNA gene sequencing and immune-marker analysis, respectively. The chemical composition of the fermented C. papaya L. preparation was analyzed by capillary electrophoresis- and liquid chromatography- time of flight mass spectrometry. The fermented C. papaya L. preparation restored peripheral blood mononuclear cell (PBMC) cytolytic activity; however, no other biomarkers of immunity were observed. Treatment with the preparation (9 g/day) significantly reduced the abundance of Firmicutes in the fecal microbiota. In particular, treatment reduced Clostridium scindens and Eggerthella lenta in most patients receiving 9 g/day. Chemical analysis identified low-molecular-weight phenolic acids as polyphenol metabolites; however, no polymerized, large-molecular-weight molecules were detected. Our study indicates that elderly patients who are tube-fed over the long-term have decreased PBMC cytolytic activity. In addition, low-molecular-weight polyphenol metabolites fermented from polymerized polyphenols restore PBMC cytolytic activity and modulate the composition of gut microbiota in tube-fed patients. PMID:28060858

  10. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication.

    PubMed

    Karamese, Murat; Aydogdu, Sabiha; Karamese, Selina Aksak; Altoparlak, Ulku; Gundogdu, Cemal

    2015-01-01

    Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti- tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than 100 μM. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.

  11. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    PubMed

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  12. Biological effects of the olive polyphenol, hydroxytyrosol: An extra view from genome-wide transcriptome analysis.

    PubMed

    Nan, Jia Nancy; Ververis, Katherine; Bollu, Sameera; Rodd, Annabelle L; Swarup, Oshi; Karagiannis, Tom C

    2014-01-01

    Epidemiological and clinical studies have established the health benefits of the Mediterranean diet, an important component of which are olives and olive oil derived from the olive tree (Olea Europea). It is now well-established that not only the major fatty acid constituents, but also the minor phenolic components, in olives and olive oil have important health benefits. Emerging research over the past decade has highlighted the beneficial effects of a range of phenolic compounds from olives and olive oil, particularly for cardiovascular diseases, metabolic syndrome and inflammatory conditions. Mechanisms of action include potent antioxidant and anti-inflammatory effects. Further, accumulating evidence indicates the potential of the polyphenols and potent antioxidants, hydroxytyrosol and oleuropein in oncology. Numerous studies, both in vitro and in vivo, have demonstrated the anticancer effects of hydroxytyrosol which include chemopreventive and cell-specific cytotoxic and apoptotic effects. Indeed, the precise molecular mechanisms accounting for the antioxidant, anti-inflammatory and anticancer properties are now becoming clear and this is, at least in part, due to high through-put gene transcription profiling. Initially, we constructed phylogenetic trees to visualize the evolutionary relationship of members of the Oleaceae family and secondly, between plants producing hydroxytyrosol to make inferences of potential similarities or differences in their medicinal properties and to identify novel plant candidates for the treatment and prevention of disease. Furthermore, given the recent interest in hydroxytyrosol as a potential anticancer agent and chemopreventative we utilized transcriptome analysis in the erythroleukemic cell line K562, to investigate the effects of hydroxytyrosol on three gene pathways: the complement system, The Warburg effect and chromatin remodeling to ascertain relevant gene candidates in the prevention of cancer.

  13. Seaweed and human health.

    PubMed

    Brown, Emma S; Allsopp, Philip J; Magee, Pamela J; Gill, Chris I R; Nitecki, Sonja; Strain, Conall R; McSorley, Emeir M

    2014-03-01

    Seaweeds may have an important role in modulating chronic disease. Rich in unique bioactive compounds not present in terrestrial food sources, including different proteins (lectins, phycobiliproteins, peptides, and amino acids), polyphenols, and polysaccharides, seaweeds are a novel source of compounds with potential to be exploited in human health applications. Purported benefits include antiviral, anticancer, and anticoagulant properties as well as the ability to modulate gut health and risk factors for obesity and diabetes. Though the majority of studies have been performed in cell and animal models, there is evidence of the beneficial effect of seaweed and seaweed components on markers of human health and disease status. This review is the first to critically evaluate these human studies, aiming to draw attention to gaps in current knowledge, which will aid the planning and implementation of future studies.

  14. The role of seaweed bioactives in the control of digestion: implications for obesity treatments.

    PubMed

    Chater, Peter I; Wilcox, Matthew D; Houghton, David; Pearson, Jeffrey P

    2015-11-01

    Seaweeds are an underutilised nutritional resource that could not only compliment the current western diet but potentially bring additional health benefits over and above their nutritional value. There are four groups of seaweed algae; green algae (Chlorophyceae), red algae (Rhodophycae), blue-green algae (Cyanophyceae) and brown algae (Phaeophyceae). Seaweeds are rich in bioactive components including polysaccharides and polyphenols. Polysaccharides content, such as fucoidan, laminarin, as well as alginate is generally high in brown seaweeds which are also a source of polyphenols such as phenolic acids, flavonoids, phlorotannin, stilbenes and lignans. These components have been shown to reduce the activity of digestive enzymes, modulating enzymes such as α-amylase, α-glucosidase, pepsin and lipase. This review discusses the effect of several of these components on the digestive processes within the gastrointestinal tract; focusing on the effect of alginate on pancreatic lipase activity and its potential health benefits. Concluding that there is evidence to suggest alginate has the potential to be used as an obesity treatment, however, further in vivo research is required and an effective delivery method for alginate must be designed.

  15. Cancer Chemoprevention by Dietary Polyphenols: Promising Role for Epigenetics

    PubMed Central

    Link, Alexander; Balaguer, Francesc; Goel, Ajay

    2010-01-01

    Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans. PMID:20599773

  16. Analysis of flavonoid glycosides with potential medicinal properties on Bauhinia uruguayensis and Bauhinia forficata subspecies pruinosa.

    PubMed

    Santos, Marina; Fortunato, Renée H; Spotorno, Viviana G

    2018-04-05

    Several Bauhinia species are widely used in Southern South America in the treatment of infections, pain and several diseases including diabetes. Flavonoid compounds based on quercetin and kaempferol glycoside derivatives are believed to be responsible for their therapeutic properties. To investigate this, we have studied two native species from Argentina: B. uruguayensis (BU) and B. forficata subsp. pruinosa (BF). We have analyzed the major polyphenol components in hydro-methanolic extracts of leaves, by high performance liquid chromatography tandem mass spectrometry. Chromatographic analysis yielded five main compounds in BF, corresponding to rutinosides and rhamnosides derivatives of kaempferol and quercetin, which are considered chemotaxonomic markers and responsible for antioxidant activity. The presence of kaempferitrin, an antidiabetic agent, has been confirmed. In extracts of BU, four major compounds were identified as rhamnosides and galloyl derivates from quercetin and kaempferol. One of these compounds, quercitrin-3-rhamnoside may confer anti-inflammatory and analgesic properties to BU extracts.

  17. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-06-01

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging.

    PubMed

    Roh, Eunmiri; Kim, Jong-Eun; Kwon, Jung Yeon; Park, Jun Seong; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2017-05-24

    Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.

  19. In vivo bioavailability of polyphenols from grape by-product extracts, and effect on lipemia of normocholesterolemic Wistar rats.

    PubMed

    Olivero-David, Raul; Ruiz-Roso, Maria Belen; Caporaso, Nicola; Perez-Olleros, Lourdes; De Las Heras, Natalia; Lahera, Vicente; Ruiz-Roso, Baltasar

    2018-04-24

    The direct use of phenolic extracts from grape by-products can be useful to formulate functional food to improve consumers' health. The use of phenolic extracts instead of pure polyphenols as an ingredient is relevant in this context. The current work studied the bioavailability and absorption of polyphenols from grape by-product extracts and their health effect on cholesterolemia, by adding the extract (GE) to Wistar rats diet (50 g/kg) in vivo. GE caused the appearance of (+)-catechin, myricetin and quercetic acid in plasma and liver. (+)-Catechin was the most abundant compound, with 6 μg/mL in plasma and 0.7 μg/mg protein in liver, while no phenolic compounds were detected in plasma or liver in the control group. Similarly, 3,4-hydroxyphenylacetic (DOPAC), a major product of polyphenol digestion, was detected in the plasma, liver and urine of the GE-group only. GE-group had significantly lower cholesterol level and lower total cholesterol/HDL ratio in plasma. Total bile acid (TBA) content significantly increased in faecal matter after 24 h administration of the GE-enriched diet. Grape extract polyphenols are partially bioavailable and showed improvement in lipid metabolism. Thus, the results suggest that GE is promising as a functional ingredient in the prevention of hypercholesterolemia. This article is protected by copyright. All rights reserved.

  20. Inhibitory effect(s) of polymeric black tea polyphenols on the formation of B(a)P-derived DNA adducts in mouse skin.

    PubMed

    Krishnan, Rajesh; Maru, Girish B

    2005-01-01

    The biological activities and chemopreventive properties of green tea polyphenols have been demonstrated, while similar information regarding newly formed major polymeric polyphenols in black tea are not available. Cancer chemoprevention may be achieved by the inhibition of any stage of carcinogenesis. In the present study, we investigated the anti-initiating effects of five polymeric black tea polyphenol (PBP) fractions, by determining their effects on the formation of [3H]-B(a)P-derived DNA adducts as well as the activity of cytochrome P-450 isozymes CYP 1A1 and 1A2 in vitro employing rat liver microsomes. PBP 1-3 inhibited both the microsome catalyzed [3H]-B(a)P-derived DNA adduct formation as well as the activity of CYP 1A1 and 1A2 as assessed by the decreased formation of resorufin from the respective substrates. Further investigation revealed that topical pretreatment(s) of mice with PBP 1-5 (200 mug/day x 4) resulted in a significant decrease in the levels of single topical B(a)P (1 mg/mouse) - induced DNA adducts in epidermal DNA determined by employing 32P-post labeling analysis. Overall, our results suggest that black tea-derived PBPs have one of the chemopreventive properties shown by monomeric green tea polyphenols.

  1. Chemical characterisation of old cabbage (Brassica oleracea L. var. acephala) seed oil by liquid chromatography and different spectroscopic detection systems.

    PubMed

    Cacciola, Francesco; Beccaria, Marco; Oteri, Marianna; Utczas, Margita; Giuffrida, Daniele; Cicero, Nicola; Dugo, Giacomo; Dugo, Paola; Mondello, Luigi

    2016-07-01

    We report an extensive chemical characterisation of fatty acids, triacylglycerols, tocopherols, carotenoids and polyphenols contained in the oil extracted from old cabbage (Brassica oleracea L. var. acephala) by cold-pressing of the seeds. Analyses were performed by GC-FID combined with mass spectrometry, HPLC with photodiode array, fluorescence and mass spectrometry detection. The 94% of the total fatty acids were unsaturated, rappresented by erucic acid (more than 50%) followed by linoleic, linolenic and oleic acids accounting for approximately 10% each. The most abundant triacylglycerols (>13%) were represented by erucic-gadolenic-linoleic, erucic-eruci-linoleic and erucic-erucic-oleic. Among tocopherols, γ-tocopherol accounted for over 70% of the total content. Thirteen carotenoids and 11 polyphenols were identified and measured. In particular, the total content in carotenoids was 10.9 ppm and all-E-lutein was the main component (7.7 ppm); among polyphenols, six hydroxycinnamic acids and five flavonoids, were identified by combining information from retention times, PDA and MS data.

  2. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    PubMed

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats.

    PubMed

    Kosmala, Monika; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Jurgoński, Adam; Karlińska, Elżbieta; Macierzyński, Jakub; Jańczak, Rafał; Rój, Edward

    2015-03-25

    Strawberry and raspberry seeds were chemically analyzed and added as dietary ingredients to investigate the physiological response of rats. In both cases the main component was dietary fiber and the main polyphenols were ellagitannins (ET). The strawberry ET were mainly constituted by monomers and a dimer, agrimoniin, whereas raspberry ET were mainly constituted by a dimer, sanguiin-H-6, and a trimer, lambertianin-C. The lower content and the less polymerized structure of strawberry ET resulted in a higher cecal metabolites concentration (mainly nasutin and urolithin-A) in comparison to rats fed diet containing raspberry seeds. Dietary raspberry seeds, a source of dietary fiber, despite being richer in polyphenol compounds, were better utilized in fermentation processes, resulting in enhanced production of short-chain fatty acids. As opposed to strawberry seeds, the treatment with raspberry seeds beneficially improved the atherogenic index of a diet, mainly due to reduced triacylglycerol concentration in the serum.

  4. Antioxidant activity, polyphenolic contents and essential oil composition of Pimpinella anisum L. as affected by zinc fertilizer.

    PubMed

    Tavallali, Vahid; Rahmati, Sadegh; Bahmanzadegan, Atefeh

    2017-11-01

    The antioxidant activity and essential oil content of plants may vary considerably with respect to environmental conditions, especially nutrient availability. Among micronutrients, zinc (Zn) is needed by plants in only small amounts but is crucial to plant development. This study aimed to evaluate the effects of Zn fertilization on the antioxidant activity, polyphenolic contents and essential oil composition of Pimpinella anisum fruit. Foliar application of Zn fertilizer considerably increased the number of detected essential oil components from 27 to 45. Zinc application at a rate of 0.2% (w/v) significantly enhanced the levels of β-bisabolene, germacrene D, n-decane and α-zingiberene, whereas the opposite trend was observed for (E)-anethole and geijerene. Application of 0.2% Zn considerably increased the levels of phenolic compounds, with chlorogenic acid showing the highest content among eight phenolic compounds detected in treated plants. The maximum antioxidant activity was achieved through application of 0.2% Zn fertilizer. These findings indicated that the quality and quantity of anise fruit essential oil components were significantly altered by application of low levels of Zn. After foliar application of Zn, polyphenolic contents as well as antioxidant activity of anise fruit increased. Using Zn fertilizer is an efficient method to improve the pharmaceutical and food properties of anise fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. The biological responses to resveratrol and other polyphenols from alcoholic beverages

    PubMed Central

    Brown, Lindsay; Kroon, Paul A.; Das, Dipak K.; Das, Samarjit; Tosaki, Arpad; Chan, Vincent; Singer, Manfred V.; Feick, Peter

    2009-01-01

    Although excessive consumption of ethanol in alcoholic beverages causes multi-organ damage, moderate consumption, particularly of red wine, is protective against all-cause mortality. These protective effects could be due to one or many components of the complex mixture of bioactive compounds present in red wine including flavonols, monomeric and polymeric flavan-3-ols, highly coloured anthocyanins as well as phenolic acids and the stilbene polyphenol, resveratrol. The therapeutic potential of resveratrol, firstly in cancer chemoprevention and then later for cardioprotection, has stimulated many studies on the possible mechanisms of action. Further indications for resveratrol have been developed, including the prevention of age-related disorders such as neurodegenerative diseases, inflammation, diabetes and cardiovascular disease. These improvements are remarkably similar yet there is an important dichotomy: low doses improve cell survival as in cardio- and neuro-protection yet high doses increase cell death as in cancer treatment. Fewer studies have examined the responses to other components of red wine, but the results have, in general, been similar to resveratrol. If the non-alcoholic constitutents of red wine are to become therapeutic agents, their ability to get to the sites of action needs to be understood. This mini-review summarizes recent studies on the possible mechanisms of action, potential therapeutic uses and bioavailability of the non-alcoholic constitutents of alcoholic beverages, in particular resveratrol and other polyphenols. PMID:19519720

  6. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    PubMed

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  7. Benefits from dietary polyphenols for brain aging and Alzheimer's disease.

    PubMed

    Rossi, L; Mazzitelli, S; Arciello, M; Capo, C R; Rotilio, G

    2008-12-01

    Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.

  8. Barks Essential Oil, Secondary Metabolites and Biological Activities of Four Organs of Tunisian Calligonum azel Maire.

    PubMed

    Bannour, Marwa; Aouadhi, Chedia; Khalfaoui, Houssem; Aschi-Smiti, Samira; Khadhri, Ayda

    2016-11-01

    This study is the first to investigate the chemical composition of barks essential oil (EO), secondary metabolites and biological activities of the MeOH and infusions extracts of seeds, leaves, barks and roots of Calligonum azel Maire (Polygonaceae) harvested from Tunisian desert. The gas chromatography/mass spectrometry (GC/MS) results showed the presence of fifty-four compounds in barks EO. The major components were: viridiflorol (14.6%), α-eudesmol (8.65%), trans-caryophyllene (6.72%), elemol (6.63%), β-eudesmol (6.21%). The obtained results showed that C. azel is a very rich plant in secondary metabolites. High contents in polyphenols, flavonoids and tannins were observed in both extracts of all studied organs. Significant differences were found between both extracts of the four organs. Thus, polyphenols and tannins were more abundant in leaves infusion extract, while, flavonoids showed a high level in barks extract. The antioxidant activity data demonstrated that all extracts showed strong antioxidant and radical scavenging activities. The MeOH extracts presented potential for antibacterial and antifungal activities against all tested microorganisms. The inhibition zones diameters and minimal inhibitrice concentration values were in the range of 9 - 15 mm and 2.5 - 20 μg/ml, respectively. This study demonstrated that C. azel can be regarded as an excellent plant source for natural antimicrobial agents. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  9. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  10. Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems.

    PubMed

    Vajdy, Michael

    2011-11-01

    During the past century, vaccinologists have attempted to mimic pathogens in their immune-enhancing capacity. This led to the development of life-saving vaccines based on live attenuated viruses, bacteria and toxoids. Hence, intense research in vaccine adjuvant discovery has focused on toll like receptors, mutant toxins and viral and bacterial vectors. Nutritive components such as vitamins and select polyphenols also possess immunomodulating properties without the potential toxic and adverse side effects of agents that mimic danger signals. This review pertains to immunomodulatory properties of nutritive components, that is vitamins A, C, D, E, flavonoids and plant oils, as potential vaccine adjuvants and delivery systems, covering Pubmed publication searches from 1980 through 2011. This relatively unexplored field of the potential of nutritive components as vaccine adjuvants holds great promise to promote the development of effective and above all safe vaccines. Hence the future focus should be placed on enhancing their efficacy, mainly through novel approaches in designing structural derivatives, formulations, delivery systems and routes of administration. As safety has been the major issue in development of novel vaccines, this new approach will probably result in new discoveries in designing safe and effective vaccines.

  11. Diet Quality-The Greeks Had It Right!

    PubMed

    Anderson, John J B; Nieman, David C

    2016-10-14

    The Mediterranean diet is upheld in the 2015-2020 Dietary Guidelines as an example of an eating pattern that promotes good health, a healthy body weight, and disease prevention throughout the lifespan. The Mediterranean eating pattern is based on a variety of unprocessed plant foods including fruits, vegetables, whole grains, legumes, nuts, and seeds that are high in polyphenols. The majority of polyphenols arrive in the colon where bacteria degrade them into smaller phenolics that can be translocated via the portal vein to the liver. In the liver, the phenolics undergo additional biotransformation prior to release into the circulation and transport to specific tissues where bioactive effects take place before removal in the urine. Recent epidemiologic studies using improved assessment techniques support that high versus low dietary polyphenol intake predicts reduced risk for neurodegenerative diseases, diabetes, cardiovascular disease, hypertension, obesity, and early death from all causes. Emerging science reveals that many of these health-related benefits can be traced to the biotransformed, gut-derived phenolics. In conclusion, the high consumption of unprocessed plant foods by inhabitants of countries bordering the Mediterranean Sea has been linked to multiple health and disease prevention benefits that are in large part due to a varied intake of polyphenols.

  12. Diet Quality—The Greeks Had It Right!

    PubMed Central

    Anderson, John J. B.; Nieman, David C.

    2016-01-01

    The Mediterranean diet is upheld in the 2015–2020 Dietary Guidelines as an example of an eating pattern that promotes good health, a healthy body weight, and disease prevention throughout the lifespan. The Mediterranean eating pattern is based on a variety of unprocessed plant foods including fruits, vegetables, whole grains, legumes, nuts, and seeds that are high in polyphenols. The majority of polyphenols arrive in the colon where bacteria degrade them into smaller phenolics that can be translocated via the portal vein to the liver. In the liver, the phenolics undergo additional biotransformation prior to release into the circulation and transport to specific tissues where bioactive effects take place before removal in the urine. Recent epidemiologic studies using improved assessment techniques support that high versus low dietary polyphenol intake predicts reduced risk for neurodegenerative diseases, diabetes, cardiovascular disease, hypertension, obesity, and early death from all causes. Emerging science reveals that many of these health-related benefits can be traced to the biotransformed, gut-derived phenolics. In conclusion, the high consumption of unprocessed plant foods by inhabitants of countries bordering the Mediterranean Sea has been linked to multiple health and disease prevention benefits that are in large part due to a varied intake of polyphenols. PMID:27754409

  13. Development and Phytochemical Characterization of High Polyphenol Red Lettuce with Anti-Diabetic Properties

    PubMed Central

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Krueger, Christian G.; Johnson, William D.; Raskin, Ilya

    2014-01-01

    Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes. PMID:24637790

  14. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple.

    PubMed

    Amaki, Kanako; Saito, Eri; Taniguchi, Kumiko; Joshita, Keiko; Murata, Masatsune

    2011-01-01

    Chlorogenic acid (CQA) is one of the major polyphenols in apple and a good substrate for the polyphenol oxidase (PPO) in apple. Apple contains catechins as well as CQA, and the role of CQA quinone and its interaction with catechins in the enzymatic browning of apple were examined. Browning was repressed and 2-cysteinyl-CQA was formed when cysteine was added to apple juice. CQA quinone was essential for browning to occur. Although catechins and CQA were oxidized by PPO, some catechins seemed to be non-enzymatically oxidized by CQA quinone.

  15. Black soybean seed coat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice.

    PubMed

    Zhang, Tianshun; Jiang, Songyan; He, Chao; Kimura, Yuki; Yamashita, Yoko; Ashida, Hitoshi

    2013-04-15

    Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25μg/mL was non-genotoxic. It is noteworthy that BE (at 4.85μg/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10μM significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and up-regulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    PubMed

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  17. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    PubMed

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  18. Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly.

    PubMed

    Beaulieu, Michaël; Franke, Kristin; Fischer, Klaus

    2017-09-01

    In ripe fruit, energy mostly derives from sugar, while in over-ripe fruit, it also comes from ethanol. Such ripeness differences may alter the fitness benefits associated with frugivory if animals are unable to degrade ethanol when consuming over-ripe fruit. In the tropical butterfly Bicyclus anynana , we found that females consuming isocaloric solutions mimicking ripe (20% sucrose) and over-ripe fruit (10% sucrose, 7% ethanol) of the palm Astrocaryum standleyanum exhibited higher fecundity than females consuming a solution mimicking unripe fruit (10% sucrose). Moreover, relative to butterflies consuming a solution mimicking unripe fruit, survival was enhanced when butterflies consumed a solution mimicking either ripe fruit supplemented with polyphenols (fruit antioxidant compounds) or over-ripe fruit devoid of polyphenols. This suggests that (1) butterflies have evolved tolerance mechanisms to derive the same reproductive benefits from ethanol and sugar, and (2) polyphenols may regulate the allocation of sugar and ethanol to maintenance mechanisms. However, variation in fitness owing to the composition of feeding solutions was not paralleled by corresponding physiological changes (alcohol dehydrogenase activity, oxidative status) in butterflies. The fitness proxies and physiological parameters that we measured therefore appear to reflect distinct biological pathways. Overall, our results highlight that the energy content of fruit primarily affects the fecundity of B. anynana butterflies, while the effects of fruit consumption on survival are more complex and vary depending on ripening stage and polyphenol presence. The actual underlying physiological mechanisms linking fruit ripeness and fitness components remain to be clarified. © 2017. Published by The Company of Biologists Ltd.

  19. Exploring the role of cranberry polyphenols in periodontits: A brief review

    PubMed Central

    Mukherjee, Malancha; Bandyopadhyay, Prasanta; Kundu, Debabrata

    2014-01-01

    Cranberry juice polyphenols have gained importance over the past decade due to their promising health benefits. The bioactive component, proanthocyanidins is mainly responsible for its protective effect. A lot has been said about its role in urinary tract infection and other systemic diseases, but little is known about its oral benefits. An extensive search was carried out in the PubMed database using the terms “cranberry polyphenols” and “periodontitis” together. The institute library was also thoroughly scrutinized for all relevant information. Thus, a paper was formulated, the aim of which was to review the role of high molecular weight cranberry fraction on oral tissues and periodontal diseases. PMID:24872617

  20. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    PubMed

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity

    PubMed Central

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D’Angelo, Valeria; Galati, Enza Maria

    2017-01-01

    Background: Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Objectives: Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Material and Methods: Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Results: Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. Conclusion: The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca2+ for muscle contraction. SUMMARY Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%Polyphenols and Vitamin E complex occurrence in OFI cladodes were characterized by high-performance liquid chromatographyOFI cladodes exhibited significative antispasmodic activity. The antispasmodic effect was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Abbreviations used: OFI: Opuntia ficus-indica, DPPH: Ethanol 1,1-diphenyl-2-picrylhydrazyl. PMID:29142394

  2. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells.

    PubMed

    Sahpazidou, Despina; Geromichalos, George D; Stagos, Dimitrios; Apostolou, Anna; Haroutounian, Serkos A; Tsatsakis, Aristidis M; Tzanakakis, George N; Hayes, A Wallace; Kouretas, Dimitrios

    2014-10-15

    A major part of the wineries' wastes is composed of grape stems which are discarded mainly in open fields and cause environmental problems due mainly to their high polyphenolic content. The grape stem extracts' use as a source of high added value polyphenols presents great interest because this combines a profitable venture with environmental protection close to wine-producing zones. In the present study, at first, the Total Polyphenolic Content (TPC) and the polyphenolic composition of grape stem extracts from four different Greek Vitis vinifera varieties were determined by HPLC methods. Afterwards, the grape stem extracts were examined for their ability to inhibit growth of colon (HT29), breast (MCF-7 and MDA-MB-23), renal (786-0 and Caki-1) and thyroid (K1) cancer cells. The cancer cells were exposed to the extracts for 72 h and the effects on cell growth were evaluated using the SRB assay. The results indicated that all extracts inhibited cell proliferation, with IC₅₀ values of 121-230 μg/ml (MCF-7), 121-184 μg/ml (MDA-MD-23), 175-309 μg/ml (HT29), 159-314 μg/ml (K1), 180-225 μg/ml (786-0) and 134->400 μg/ml (Caki-1). This is the first study presenting the inhibitory activity of grape stem extracts against growth of colon, breast, renal and thyroid cancer cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds.

    PubMed

    Afshari, Mahvash; Rahimmalek, Mehdi; Miroliaei, Mehran

    2018-05-19

    A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end-products (AGE) in vitro. A. pachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC 50 = 365.5 μg/ml) presented strong anti-AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order A. pachycephalla > A. nobilis > A. filipendulina > A. santolina > A. aucheri > A. millefolium. Most extracts exhibited marked anti-AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though A. pachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and Circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attribute to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Improvement of physico-chemical properties and phenolic compounds bioavailability by concentrating dietary fiber of peach (Prunus persica) juice by-product.

    PubMed

    Rodríguez-González, Sarahí; Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Amaya-Llano, Silvia; Rodríguez-García, Mario E; Reynoso-Camacho, Rosalía

    2018-06-01

    This study aimed to concentrate dietary fiber (DF) from peach (Prunus persica) juice by-product (PJBP), to improve its functional properties, and its polyphenols bioavailability. The dietary fiber concentrates (DFCs) were obtained from PJBP using water/ethanol treatments (100:0, 20:80, 50:50, 80:20, and 0:100, v/v) at 1:5 ratio (wet weight/solvent, w/v) for 5 and 20 min at 21 °C. All treatments concentrated condensed tannins, total and insoluble DF, with the highest content found with 100% H 2 O treatment. The major polyphenols of DFC were 4-O-caffeoylquinic, chlorogenic, and 1,5-di-O-caffeoylquinic acids. Water and oil retention capacity and maximum glucose diffusion rate were improved mainly with 100% H 2 O treatment. Healthy rats were fed with a standard diet supplemented with 8% of PJBP, DFC obtained with 100% H 2 O for 5 min, or DFC obtained with 20% EtOH for 5 min. Gastrointestinal digesta weight and viscosity were increased in animals supplemented with 100% H 2 O DFC. Moreover, the urinary excretion of polyphenol metabolites, mainly glucuronide and sulfate conjugates, was increased with this treatment, indicating a greater bioavailability of PJBP polyphenols, which was associated with an increased dietary fiber porosity. Water treatment could be used to potentiate PJBP functional properties and polyphenols bioavailability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.

    PubMed

    Seeram, Navindra P; Adams, Lynn S; Henning, Susanne M; Niu, Yantao; Zhang, Yanjun; Nair, Muraleedharan G; Heber, David

    2005-06-01

    Pomegranate (Punica granatum L.) fruits are widely consumed as juice (PJ). The potent antioxidant and anti-atherosclerotic activities of PJ are attributed to its polyphenols including punicalagin, the major fruit ellagitannin, and ellagic acid (EA). Punicalagin is the major antioxidant polyphenol ingredient in PJ. Punicalagin, EA, a standardized total pomegranate tannin (TPT) extract and PJ were evaluated for in vitro antiproliferative, apoptotic and antioxidant activities. Punicalagin, EA and TPT were evaluated for antiproliferative activity at 12.5-100 microg/ml on human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620) and prostate (RWPE-1, 22Rv1) tumor cells. Punicalagin, EA and TPT were evaluated at 100 microg/ml concentrations for apoptotic effects and at 10 microg/ml concentrations for antioxidant properties. However, to evaluate the synergistic and/or additive contributions from other PJ phytochemicals, PJ was tested at concentrations normalized to deliver equivalent amounts of punicalagin (w/w). Apoptotic effects were evaluated against the HT-29 and HCT116 colon cancer cell lines. Antioxidant effects were evaluated using inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC) assays. Pomegranate juice showed greatest antiproliferative activity against all cell lines by inhibiting proliferation from 30% to 100%. At 100 microg/ml, PJ, EA, punicalagin and TPT induced apoptosis in HT-29 colon cells. However, in the HCT116 colon cells, EA, punicalagin and TPT but not PJ induced apoptosis. The trend in antioxidant activity was PJ>TPT>punicalagin>EA. The superior bioactivity of PJ compared to its purified polyphenols illustrated the multifactorial effects and chemical synergy of the action of multiple compounds compared to single purified active ingredients.

  6. Capillary electrophoresis fingerprinting and spectrophotometric determination of antioxidant potential for classification of Mentha products.

    PubMed

    Roblová, Vendula; Bittová, Miroslava; Kubáň, Petr; Kubáň, Vlastimil

    2016-07-01

    In this work aqueous infusions from ten Mentha herbal samples (four different Mentha species and six hybrids of Mentha x piperita) and 20 different peppermint teas were screened by capillary electrophoresis with UV detection. The fingerprint separation was accomplished in a 25 mM borate background electrolyte with 10% methanol at pH 9.3. The total polyphenolic content in the extracts was determined spectrophotometrically at 765 nm by a Folin-Ciocalteu phenol assay. Total antioxidant activity was determined by scavenging of 2,2-diphenyl-1-picrylhydrazyl radical at 515 nm. The peak areas of 12 dominant peaks from CE analysis, present in all samples, and the value of total polyphenolic content and total antioxidant activity obtained by spectrophotometry was combined into a single data matrix and principal component analysis was applied. The obtained principal component analysis model resulted in distinct clusters of Mentha and peppermint tea samples distinguishing the samples according to their potential protective antioxidant effect. Principal component analysis, using a non-targeted approach with no need for compound identification, was found as a new promising tool for the screening of herbal tea products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Flavonoid consumption and esophageal cancer among Black and White men in the United States

    USDA-ARS?s Scientific Manuscript database

    Flavonoids and proanthocyanidins are bioactive polyphenolic components of fruits and vegetables that may account for part of the protective effect of raw fruit and vegetable consumption in esophageal cancer. We studied the relationship between esophageal cancer and dietary proanthocyanidins, flavon...

  8. Phytochemicals for personalized health

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation is often a major contributor to the onset and progression of cardiometabolic dysfunction. Whether through effects on the inflammatory response system or independent of inflammation, plant-derived polyphenols comprise a micro-nutrient class important in CVD and other cardiometabo...

  9. Alkaloid and polyphenol analysis by HPLC in green and black tea powders and their potential use as additives in ruminant diets

    NASA Astrophysics Data System (ADS)

    Ramdani, Diky; Chaudhry, Abdul S.; Seal, Chris J.

    2018-02-01

    We used HPLC to examine the bioactive compounds such as alkaloids and polyphenols in green and black tea powders and their use as potential additives in ruminant diets. Caffeine was the highest alkaloid in both green and black teas. Green tea had significantly higher concentrations of alkaloids and catechins but lower theaflavins than black tea. Epigallocatechin gallate, epicatechin gallate and epigallocatechin were the major catechins in green tea while theaflavin-3, 3'-digallate and theaflavin-3-gallate were the major theaflavins in black tea. Tea powders in ruminant diets decreased in vitro rumen ammonia and methane production without affecting volatile fatty acid profiles and the degradability of the diets. The tea powders containing variable amounts of alkaloids, catechins and theaflavins can potentially be used to decrease rumen ammonia and methane productions without any detrimental effect on rumen functions in vitro and perhaps ruminant productive efficiency.

  10. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  11. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer

    PubMed Central

    Arranz, Sara; Chiva-Blanch, Gemma; Valderas-Martínez, Palmira; Medina-Remón, Alex; Lamuela-Raventós, Rosa M.; Estruch, Ramón

    2012-01-01

    Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols. PMID:22852062

  12. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management

    PubMed Central

    Alkhatib, Ahmad; Tsang, Catherine; Tiss, Ali; Bahorun, Theeshan; Arefanian, Hossein; Barake, Roula; Khadir, Abdelkrim; Tuomilehto, Jaakko

    2017-01-01

    Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM). A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD)—such as fruits, vegetables, oily fish, olive oil, and tree nuts—serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs—such as coffee, green tea, black tea, and yerba maté—have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an “omics” biological profiling of individuals’ molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach. PMID:29194424

  13. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management.

    PubMed

    Alkhatib, Ahmad; Tsang, Catherine; Tiss, Ali; Bahorun, Theeshan; Arefanian, Hossein; Barake, Roula; Khadir, Abdelkrim; Tuomilehto, Jaakko

    2017-12-01

    Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM). A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD)-such as fruits, vegetables, oily fish, olive oil, and tree nuts-serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs-such as coffee, green tea, black tea, and yerba maté-have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an "omics" biological profiling of individuals' molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach.

  14. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    PubMed Central

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  15. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    PubMed

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  16. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species.

    PubMed

    Koyama, Kazuya; Kamigakiuchi, Hiroshi; Iwashita, Kazuhiro; Mochioka, Ryosuke; Goto-Yamamoto, Nami

    2017-02-01

    Grapes (Vitis spp.) produce diverse polyphenolic compounds, which are phytochemicals that contribute to human health. In this study, the polyphenolic profiles of the red-purple berries of two wild grape species native to Japan, Vitis ficifolia and V. coignetiae, and their interspecific hybrid cultivars were investigated and compared with the profiles of V. vinifera and V. × labruscana cultivars. Proanthocyanidins (PAs) were present at lower concentrations in both skins and seeds of wild grape species and their hybrid cultivars than those in V. vinifera cultivars. They also differed in their composition, consisting mainly of epicatechin in wild grape species, but containing considerable amounts of both epigallocatechin in the skins and epicatechin gallate in the seeds of V. vinifera. In contrast, V. ficifolia varieties and their hybrid cultivars accumulated high concentrations of diverse anthocyanins, and whose compositions of anthocyanins and flavonols differed between species in their degree of modification by glucosylation, acylation, methylation and B-ring hydroxylation. Principal component analysis (PCA) indicated that the polyphenolic constituents clearly separate V. vinifera and V. × labruscana cultivars from the wild grape species as well as between wild grape species, V. coignetiae and V. ficifolia. Intermediate compositions were also observed in the hybrid cultivars between these wild grape species and V. vinifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Wine and endothelial function.

    PubMed

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  18. Repression of mammosphere formation in breast cancer cells by soy isoflavone genistein and blueberry polyphenols

    USDA-ARS?s Scientific Manuscript database

    Epidemiological evidence implicates diets rich in fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms for their anti-tumor activities are not well-understood. A small population of mammary epithelial cells, termed cancer stem cells (CSC), may be re...

  19. Avenanthramide-enriched oats have an anti-inflammatory action: a pilot clinical trial

    USDA-ARS?s Scientific Manuscript database

    Regular consumption of oats has been shown to benefit heart health by lowering serum lipids in humans, an effect mediated primarily via beta-glucan. Other components of oats, including the polyphenolic avenanthramides (AV), may also contribute to reducing the risk of atherogenesis. In vivo, oat AV e...

  20. Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods

    PubMed Central

    Tanaka, Takashi; Matsuo, Yosuke; Kouno, Isao

    2010-01-01

    This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone–phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing. PMID:20161999

  1. Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography.

    PubMed

    Tsao, Rong; Yang, Raymond

    2003-11-07

    An HPLC method is reported for the separation and quantification of five major polyphenolic groups found in fruits and related products: single ring phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid derivatives), flavan-3-ols, flavonols, anthocyanins, and dihydrochalcones. A binary mobile phase consisting of 6% acetic acid in 2 mM sodium acetate aqueous solution (v/v, final pH 2.55) (solvent A) and acetonitrile (solvent B) was used. The use of sodium acetate was new and key to the near baseline separation of 25 phenolics commonly found in fruits. A photodiode array detector was used and data were collected at four wavelengths (280, 320, 360, and 520 nm). This method was sensitive and gave good separation of polyphenolics in apple, cherry, strawberry, blackberry, grape, apple juice, and a processing by-product. The improved separation has led to better understanding of the polyphenolic profiles of these fruits. Individual as well as total phenolic content was obtained, and the latter was close to and correlated well with that obtained by the Folin-Ciocalteu method (FC). The HPLC data can be used as a total phenolic index (TPI) for quantification of fruit phenolics, which is advantageous over the FC because it has more information on individual compounds.

  2. Influence of variety and storage on the polyphenol composition of apple flesh.

    PubMed

    Napolitano, Aurora; Cascone, Annunziata; Graziani, Giulia; Ferracane, Rosalia; Scalfi, Luca; Di Vaio, Claudio; Ritieni, Alberto; Fogliano, Vincenzo

    2004-10-20

    Apple is among the most consumed fruits worldwide. It is available on the market for the whole year being a major source of dietary polyphenols. Several studies suggested that apple polyphenols could play a role in prevention of degenarative diseases. The action of these compounds has been partially ascribed to their antioxidative ability, and fruit antioxidants profile is influenced by apple variety and by the postharvest storage. In this work, the polyphenols composition of the flesh of four apple varieties cultivated in southern Italy were investigated by HPLC, and a flow injection MS/MS procedure to quantify cholorogenic acid and catechins was set up. Phenolic composition and the radical scavenging activity were monitored during a postharvest storage of four months. The quantification by flow injection procedure gives results comparable to those obtained by HPLC, and the increase of the antioxidant activity during storage correlated with an increase of the concentration of catechin and phloridzin. This trend is particularly evident for the variety "Annurca" which is a typical product cultivated in the area around Naples. The genetic characteristics of the Annurca variety together with the anticipated harvest time and the peculiar postharvest conditions are likely responsible for this increase of the antioxidant activity. Copyright 2004 American Chemical Society

  3. Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold.

    PubMed

    Engel, Rita; Szabó, Krisztina; Abrankó, László; Rendes, Kata; Füzy, Anna; Takács, Tünde

    2016-05-18

    The aim of this study is to examine the effect of arbuscular mycorrhizal fungi (AMF) colonization on biomass, polyphenol profile, and content of economically important herbs. A pot experiment was performed with marjoram, lemon balm, and marigold applying a commercially available AMF mixture for inoculation. Major polyphenols were identified using HPLC-UV-ESI-qTOFMS on the basis of their UV-vis and mass spectral characteristics, and selected ones were quantified. We showed that AMF can provide different services for each herb. Marjoram had the highest level of fungal colonization (82 M%) followed by lemon balm (62 M%) and marigold (17 M%). AMF inoculation significantly increased the biomass of marjoram (1.5-fold), the number of marigold flowers (1.2-fold), and the yield of rosmarinic acid and lithospermic acid isomers of marjoram (1.5-fold) and lemon balm (1.2-fold). Therefore, the quantity and quality of plant material could be improved by the application of optimized AMF inoculum.

  4. Polyphenols produced during red wine ageing.

    PubMed

    Brouillard, R; George, F; Fougerousse, A

    1997-01-01

    Over the past few years, it has been accepted that a moderate red wine consumption is a factor beneficial to human health. Indeed, people of France and Italy, the two major wine-producing European countries, eat a lot of fatty foods but suffer less from fatal heart strokes than people in North-America or in the northern regions of Europe, where wine is not consumed on a regular basis. For a time, ethanol was thought to be the "good" chemical species hiding behind what is known as the "French paradox". Researchers now have turned their investigations towards a family of natural substances called "polyphenols", which are only found in plants and are abundant in grapes. It is well known that these molecules behave as radical scavengers and antioxidants, and it has been demonstrated that they can protect cholesterol in the LDL species from oxidation, a process thought to be at the origin of many fatal heart attacks. However, taken one by one, it remains difficult to demonstrate which are the best polyphenols as far as their antioxidant activities are concerned. The main obstacle in that kind of research is not the design of the chemical and biological tests themselves, but surprisingly enough, the limited access to chemically pure and structurally elucidated polyphenolic compounds. In this article, particular attention will be paid to polyphenols of red wine made from Vitis vinifera cultivars. With respect to the "French paradox", we address the following question: are wine polyphenolic compounds identical to those found in grapes (skin, pulp and seed), or are there biochemical modifications specifically taking place on the native flavonoids when a wine ages? Indeed, structural changes occur during wine conservation, and one of the most studied of those changes concerns red wine colour evolution, called "wine ageing". As a wine ages, it has been demonstrated that the initially present grape pigments slowly turn into new more stable red pigments. That phenomenon goes on for weeks, months and years. Since grape and wine polyphenols are chemically distinct, their antioxidant activities cannot be the same. So, eating grapes might well lead to beneficial effects on human health, due to the variety and sometimes large amounts of their polyphenolic content. However, epidemiological surveys have focused on wines, not on grapes....

  5. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence.

    PubMed

    Yamagata, Kazuo

    2018-02-04

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.

  6. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence

    PubMed Central

    Yamagata, Kazuo

    2018-01-01

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716

  7. Influence of functional food components on gut health.

    PubMed

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  8. Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model

    PubMed Central

    Koutsos, Athanasios; Lima, Maria; Conterno, Lorenza; Gasperotti, Mattia; Bianchi, Martina; Fava, Francesca; Vrhovsek, Urska; Lovegrove, Julie A.; Tuohy, Kieran M.

    2017-01-01

    Apples are a rich source of polyphenols and fiber. A major proportion of apple polyphenols escape absorption in the small intestine and together with non-digestible polysaccharides reach the colon, where they can serve as substrates for bacterial fermentation. Animal studies suggest a synergistic interaction between apple polyphenols and the soluble fiber pectin; however, the effects of whole apples on human gut microbiota are less extensively studied. Three commercial apple varieties—Renetta Canada, Golden Delicious and Pink Lady—were digested and fermented in vitro using a batch culture colonic model (pH 5.5–6.0, 37 °C) inoculated with feces from three healthy donors. Inulin and cellulose were used as a readily and a poorly fermentable plant fiber, respectively. Fecal microbiota composition was measured by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region) and Fluorescence in Situ Hybridization. Short chain fatty acids (SCFAs) and polyphenol microbial metabolites were determined. The three apple varieties significantly changed bacterial diversity, increased Actinobacteria relative abundance, acetate, propionate and total SCFAs (p < 0.05). Renetta Canada and Golden Delicious significantly decreased Bacteroidetes abundance and increased Proteobacteria proportion and bifidobacteria population (p < 0.05). Renetta Canada also increased Faecalibacterium prausnitzii, butyrate levels and polyphenol microbial metabolites (p < 0.05). Together, these data suggest that apples, particularly Renetta Canada, can induce substantial changes in microbiota composition and metabolic activity in vitro, which could be associated with potential benefits to human health. Human intervention studies are necessary to confirm these data and potential beneficial effects. PMID:28538678

  9. Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model.

    PubMed

    Koutsos, Athanasios; Lima, Maria; Conterno, Lorenza; Gasperotti, Mattia; Bianchi, Martina; Fava, Francesca; Vrhovsek, Urska; Lovegrove, Julie A; Tuohy, Kieran M

    2017-05-24

    Apples are a rich source of polyphenols and fiber. A major proportion of apple polyphenols escape absorption in the small intestine and together with non-digestible polysaccharides reach the colon, where they can serve as substrates for bacterial fermentation. Animal studies suggest a synergistic interaction between apple polyphenols and the soluble fiber pectin; however, the effects of whole apples on human gut microbiota are less extensively studied. Three commercial apple varieties-Renetta Canada, Golden Delicious and Pink Lady-were digested and fermented in vitro using a batch culture colonic model (pH 5.5-6.0, 37 °C) inoculated with feces from three healthy donors. Inulin and cellulose were used as a readily and a poorly fermentable plant fiber, respectively. Fecal microbiota composition was measured by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region) and Fluorescence in Situ Hybridization. Short chain fatty acids (SCFAs) and polyphenol microbial metabolites were determined. The three apple varieties significantly changed bacterial diversity, increased Actinobacteria relative abundance, acetate, propionate and total SCFAs ( p < 0.05). Renetta Canada and Golden Delicious significantly decreased Bacteroidetes abundance and increased Proteobacteria proportion and bifidobacteria population ( p < 0.05). Renetta Canada also increased Faecalibacterium prausnitzii , butyrate levels and polyphenol microbial metabolites ( p < 0.05). Together, these data suggest that apples, particularly Renetta Canada, can induce substantial changes in microbiota composition and metabolic activity in vitro, which could be associated with potential benefits to human health. Human intervention studies are necessary to confirm these data and potential beneficial effects.

  10. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  11. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    NASA Astrophysics Data System (ADS)

    Chung, Si-Yin; Houska, Milan; Reed, Shawndrika

    2013-12-01

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens. Since high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts containing caffeic acid were treated with each of the following: (1) HP; (2) HP+PPO; (3) PPO; and (4) none. HP was conducted at 300 and 500 MPa, each for 3 and 10 min, 37 °C. After treatment, SDS-PAGE was performed and allergenic capacity (IgE binding) was determined colorimetrically in inhibition enzyme-linked immunosorbent assay and Western blots, using a pooled plasma from peanut-allergic patients. Data showed that HP alone had no effect on major peanut allergens. However, HP at 500 MPa combined with PPO (HP500/PPO) induced a higher (approximately twofold) reduction of major peanut allergens and IgE binding than PPO alone or HP300/PPO. There was no difference between treatment times. We concluded that HP500/PPO at 3-min enhanced a twofold reduction of the allergenic capacity of peanut extracts, as compared to PPO itself.

  12. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    PubMed Central

    Ben Salem, Maryem; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective. Artichoke (Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β-carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties. PMID:28539965

  13. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC.

    PubMed

    Ben Salem, Maryem; Affes, Hanen; Athmouni, Khaled; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir

    2017-01-01

    Objective . Artichoke ( Cynara scolymus L.) was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods . Artichoke Leaves Extracts (ALE) were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr) model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results . It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%), ABTS (538.75 mmol), FRAP assay (542.62 umol), and β -carotene bleaching (70.74%) compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo). Conclusion . ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  14. Evidences for Chlorogenic Acid — A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit

    PubMed Central

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813

  15. Network-based characterization of inflammation biomarkers, phytochemicals and disease

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation is often a major contributor to the onset and progression of cardiometabolic dysfunction. Whether through effects on the inflammatory response system or independent of inflammation, plant-derived polyphenols comprise a micro-nutrient class important in cardiovascular disease and...

  16. Identification of Free Radical Scavengers from Brazilian Green Propolis Using Off-Line HPLC-DPPH Assay and LC-MS.

    PubMed

    Zhang, Cuiping; Shen, Xiaoge; Chen, Jiawei; Jiang, Xiasen; Hu, FuLiang

    2017-07-01

    Brazilian green propolis is known as an appreciable natural antioxidant with abundant polyphenolic compounds. For quality control, a fingerprint-efficacy study of Brazilian green propolis was carried out in this work. Chemical fingerprints of Brazilian green propolis from 22 different sources were determined by HPLC and investigated by similarity analysis. The fingerprint-efficacy relationships between chemical fingerprint and DPPH radical-scavenging activity were established. The results showed that 14 characteristic common peaks were identified, and 9 compounds were discovered with free radical-scavenging activities. Caffeoylquinic acids and artepillin C might be the major effective components for quality control of Brazilian green propolis due to their specificity and strong antioxidant activity. This study provides new markers for the quality assessment of Brazilian green propolis and its derived products. © 2017 Institute of Food Technologists®.

  17. Chemical Composition and Inhibitory Effect of Lentinula edodes Ethanolic Extract on Experimentally Induced Atopic Dermatitis in Vitro and in Vivo.

    PubMed

    Choi, Eun-Ju; Park, Zee-Yong; Kim, Eun-Kyung

    2016-07-29

    The ethanolic extract of Lentinula edodes was partially analyzed and then characterized for its efficacy in treating atopic dermatitis. Polyphenols were determined to be the major antioxidant component in the extract (6.12 mg/g), followed by flavonoids (1.76 mg/g), β-carotene (28.75 μg/g), and lycopene (5.25 μg/g). An atopic dermatitis (AD) model was established and epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured after oral administration of the L. edodes extract for 4 weeks. L. edodes extract decreased Dermatophagoides farinae extract (DFE) and 4-dinitrochlorobenzene (DNCB)-induced expression of several inflammatory cytokines in the ears, cervical lymph nodes, and splenocytes. Consequently, L. edodes extract may have therapeutic potential in the treatment of AD attributable to its immunomodulatory effects.

  18. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.

    PubMed

    Nevin, K G; Rajamohan, T

    2004-09-01

    The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.

  19. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea.

    PubMed

    Liu, Ze; Xie, Hua-Lin; Chen, Lin; Huang, Jian-Hua

    2018-05-02

    Background: Pu-erh tea is a unique microbially fermented tea, which distinctive chemical constituents and activities are worthy of systematic study. Near infrared spectroscopy (NIR) coupled with suitable chemometrics approaches can rapidly and accurately quantitatively analyze multiple compounds in samples. Methods: In this study, an improved weighted partial least squares (PLS) algorithm combined with near infrared spectroscopy (NIR) was used to construct a fast calibration model for determining four main components, i.e., tea polyphenols, tea polysaccharide, total flavonoids, theanine content, and further determine the total antioxidant capacity of pu-erh tea. Results: The final correlation coefficients R square for tea polyphenols, tea polysaccharide, total flavonoids content, theanine content, and total antioxidant capacity were 0.8288, 0.8403, 0.8415, 0.8537 and 0.8682, respectively. Conclusions : The current study provided a comprehensive study of four main ingredients and activity of pu-erh tea, and demonstrated that NIR spectroscopy technology coupled with multivariate calibration analysis could be successfully applied to pu-erh tea quality assessment.

  20. Impact of Dietary Antioxidants on Sport Performance: A Review.

    PubMed

    Braakhuis, Andrea J; Hopkins, Will G

    2015-07-01

    Many athletes supplement with antioxidants in the belief this will reduce muscle damage, immune dysfunction and fatigue, and will thus improve performance, while some evidence suggests it impairs training adaptations. Here we review the effect of a range of dietary antioxidants and their effects on sport performance, including vitamin E, quercetin, resveratrol, beetroot juice, other food-derived polyphenols, spirulina and N-acetylcysteine (NAC). Older studies suggest vitamin E improves performance at altitude, with possible harmful effects on sea-level performance. Acute intake of vitamin E is worthy of further consideration, if plasma levels can be elevated sufficiently. Quercetin has a small beneficial effect for exercise of longer duration (>100 min), but it is unclear whether this benefits athletes. Resveratrol benefits trained rodents; more research is needed in athletes. Meta-analysis of beetroot juice studies has revealed that the nitrate component of beetroot juice had a substantial but unclear effect on performance when averaged across athletes, non-athletes and modes of exercise (single dose 1.4 ± 2.0%, double dose 0.5 ± 1.9%). The effect of addition of polyphenols and other components to beetroot juice was trivial but unclear (single dose 0.4 ± 3.2%, double dose -0.5 ± 3.3%). Other food-derived polyphenols indicate a range of performance outcomes from a large improvement to moderate impairment. Limited evidence suggests spirulina enhances endurance performance. Intravenous NAC improved endurance cycling performance and reduced muscle fatigue. On the basis of vitamin E and NAC studies, acute intake of antioxidants is likely to be beneficial. However, chronic intakes of most antioxidants have a harmful effect on performance.

  1. Modulation of endothelial nitric oxide by plant-derived products.

    PubMed

    Schmitt, Christoph A; Dirsch, Verena M

    2009-09-01

    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is recognised as a central anti-inflammatory and anti-atherogenic principle in the vasculature. Decreased availability of NO in the vasculature promotes the progression of cardiovascular diseases. Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, may improve vascular function by enhancing NO bioavailability. In this article we first outline common pathways modulating endothelial NO production or bioavailability to provide a basis for subsequent mechanistic discussions. Then we comprehensively review natural products and plant extracts known to positively influence eNOS activity and/or endothelial function in vitro or in vivo. We will discuss red wine, highlighting polyphenols, oligomeric procyanidins (OPC) and resveratrol as modulators of endothelial NO production. Other dietary products and their active components known to activate eNOS include cocoa (OPC and its monomer (-)-epicatechin), pomegranates (polyphenols), black and green tea (flavanoids, especially epigallocatechin gallate), olive oil (oleic acid and polyphenols), soy (genistein), and quercetin, one of the most abundant flavonoids in plants. In addition, phytomedical preparations made from ginkgo, hawthorn and ginseng, as well as formulations used in traditional Chinese Medicine, have been shown to affect endothelial NO production. Recurring phytochemical patterns among active fractions and purified compounds are discussed. In summary, there is increasing evidence that several single natural products and plant extracts influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of cardiovascular diseases.

  2. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana

    PubMed Central

    Ganapathi, T. R.

    2017-01-01

    Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana. PMID:28234982

  3. Puffed cereals with added chamomile - quantitative analysis of polyphenols and optimization of their extraction method.

    PubMed

    Blicharski, Tomasz; Oniszczuk, Anna; Olech, Marta; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Krawczyk, Wojciech; Nowak, Renata

    2017-05-11

    [b]Abstract Introduction[/b]. Functional food plays an important role in the prevention, management and treatment of chronic diseases. One of the most interesting techniques of functional food production is extrusion-cooking. Functional foods may include such items as puffed cereals, breads and beverages that are fortified with vitamins, some nutraceuticals and herbs. Due to its pharmacological activity, chamomile flowers are the most popular components added to functional food. Quantitative analysis of polyphenolic antioxidants, as well as comparison of various methods for the extraction of phenolic compounds from corn puffed cereals, puffed cereals with an addition of chamomile (3, 5, 10 and 20%) and from [i]Chamomillae anthodium. [/i] [b]Materials and Methods[/b]. Two modern extraction methods - ultrasound assisted extraction (UAE) at 40 °C and 60 °C, as well as accelerated solvent extraction (ASE) at 100 °C and 120 °C were used for the isolation of polyphenols from functional food. Analysis of flavonoids and phenolic acids was carried out using reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry (LC-ESI-MS/MS). [b]Results and Conclusions[/b]. For most of the analyzed compounds, the highest yields were obtained by ultrasound assisted extraction. The highest temperature during the ultrasonification process (60 °C) increased the efficiency of extraction, without degradation of polyphenols. UAE easily arrives at extraction equilibrium and therefore permits shorter periods of time, reducing the energy input. Furthermore, UAE meets the requirements of 'Green Chemistry'.

  4. Stable Binding of Alternative Protein-enriched Food Matrices with Concentrated Cranberry Bioflavonoids for Functional Food Applications

    PubMed Central

    Grace, Mary H.; Guzman, Ivette; Roopchand, Diana E.; Moskal, Kristin; Cheng, Diana M.; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann

    2013-01-01

    Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium roast peanut flour (MPF) and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), while total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable anti-adhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4 to 0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in one cup (300 mL) of commercial CB juice cocktail; which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited gram- positive and gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations. PMID:23786629

  5. Rice Cakes Containing Dietary Fiber Supplemented with or without Artemisia Annua and Gynura Procumbens Merr. Alleviated the Risk Factors of Metabolic Syndrome.

    PubMed

    Yoon, Na Rae; Yoon, Sun; Lee, Seung-Min

    2016-04-01

    We investigated whether the consumption of Korean rice cakes enriched with dietary fiber with or without polyphenol rich plants might decrease the risk factors of metabolic syndrome (MetS). Rice cakes were manufactured using fructooligosaccharides, resistant starch, and psyllium as sources of dietary fibers with and without polyphenol rich Artemisia annua and Gynura procumbens Merr. (RC+FP and RC+F, respectively), and prepared in three forms (songpyeon, seolgidduk, and chaldduk). Ninety subjects with at least one MetS risk factor were recruited for 6 weeks of dietary intervention. Sixty subjects were finally included for the analysis. Compared to the initial values, RC+FP group had decreased levels of fasting blood glucose (FBG), HOMA-IR and blood pressure after 6 weeks, whereas RC+F group didn't have significant changes in them. Regarding the improvement of individual MetS risk factors, RC+FP group showed significant reduction in FBG and blood pressures but RC+F group only had reduction in systolic blood pressure. After the intervention, a reduction in the number of MetS risk factors was greatert in the RC+FP group than in the RC+F group. In conclusion, Dietary fiber enriched rice cakes with or without polyphenols decreased the number and/or the levels of MetS risk factors. Polyphenol rich plant components may provide additional health benefits in controlling FBG and blood pressure.

  6. Rice Cakes Containing Dietary Fiber Supplemented with or without Artemisia Annua and Gynura Procumbens Merr. Alleviated the Risk Factors of Metabolic Syndrome

    PubMed Central

    2016-01-01

    We investigated whether the consumption of Korean rice cakes enriched with dietary fiber with or without polyphenol rich plants might decrease the risk factors of metabolic syndrome (MetS). Rice cakes were manufactured using fructooligosaccharides, resistant starch, and psyllium as sources of dietary fibers with and without polyphenol rich Artemisia annua and Gynura procumbens Merr. (RC+FP and RC+F, respectively), and prepared in three forms (songpyeon, seolgidduk, and chaldduk). Ninety subjects with at least one MetS risk factor were recruited for 6 weeks of dietary intervention. Sixty subjects were finally included for the analysis. Compared to the initial values, RC+FP group had decreased levels of fasting blood glucose (FBG), HOMA-IR and blood pressure after 6 weeks, whereas RC+F group didn't have significant changes in them. Regarding the improvement of individual MetS risk factors, RC+FP group showed significant reduction in FBG and blood pressures but RC+F group only had reduction in systolic blood pressure. After the intervention, a reduction in the number of MetS risk factors was greatert in the RC+FP group than in the RC+F group. In conclusion, Dietary fiber enriched rice cakes with or without polyphenols decreased the number and/or the levels of MetS risk factors. Polyphenol rich plant components may provide additional health benefits in controlling FBG and blood pressure. PMID:27152297

  7. Classification of Spanish white wines using their electrophoretic profiles obtained by capillary zone electrophoresis with amperometric detection.

    PubMed

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2014-06-01

    A method was developed for the simultaneous detection of eight polyphenols (t-resveratrol, (+)-catechin, quercetin and p-coumaric, caffeic, sinapic, ferulic, and gallic acids) by CZE with electrochemical detection. Separation of these polyphenols was achieved within 25 min using a 200 mM borate buffer (pH 9.4) containing 10% methanol as separation electrolyte. Amperometric detection of polyphenols was carried out with a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (CNT) layer obtained from a dispersion of CNT in polyethylenimine. The excellent electrochemical properties of this modified electrode allowed the detection and quantification of the selected polyphenols in white wines without any pretreatment step, showing remarkable signal stability despite the presence of potential fouling substances in wine. The electrophoretic profiles of white wines, obtained using this methodology, have proven to be useful for the classification of these wines by means of chemometric multivariate techniques. Principal component analysis and discriminant analysis allowed accurate classification of wine samples on the basis of their grape varietal (verdejo and airén) using the information contained in selected zones of the electropherogram. The utility of the proposed CZE methodology based on the electrochemical response of CNT-modified electrodes appears to be promising in the field of wine industry and it is expected to be successfully extended to classification of a wider range of wines made of other grape varietals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease

    PubMed Central

    Ho, Lap; Ferruzzi, Mario G.; Janle, Elsa M.; Wang, Jun; Gong, Bing; Chen, Tzu-Ying; Lobo, Jessica; Cooper, Bruce; Wu, Qing Li; Talcott, Stephen T.; Percival, Susan S.; Simon, James E.; Pasinetti, Giulio Maria

    2013-01-01

    Epidemiological and preclinical studies indicate that polyphenol intake from moderate consumption of red wines may lower the relative risk for developing Alzheimer's disease (AD) dementia. There is limited information regarding the specific biological activities and cellular and molecular mechanisms by which wine polyphenolic components might modulate AD. We assessed accumulations of polyphenols in the rat brain following oral dosage with a Cabernet Sauvignon red wine and tested brain-targeted polyphenols for potential beneficial AD disease-modifying activities. We identified accumulations of select polyphenolic metabolites in the brain. We demonstrated that, in comparison to vehicle-control treatment, one of the brain-targeted polyphenol metabolites, quercetin-3-O-glucuronide, significantly reduced the generation of β-amyloid (Aβ) peptides by primary neuron cultures generated from the Tg2576 AD mouse model. Another brain-targeted metabolite, malvidin-3-O-glucoside, had no detectable effect on Aβ generation. Moreover, in an in vitro analysis using the photo-induced cross-linking of unmodified proteins (PICUP) technique, we found that quercetin-3-O-glucuronide is also capable of interfering with the initial protein-protein interaction of Aβ1–40 and Aβ1–42 that is necessary for the formation of neurotoxic oligomeric Aβ species. Lastly, we found that quercetin-3-O-glucuronide treatment, compared to vehicle-control treatment, significantly improved AD-type deficits in hippocampal formation basal synaptic transmission and long-term potentiation, possibly through mechanisms involving the activation of the c-Jun N-terminal kinases and the mitogen-activated protein kinase signaling pathways. Brain-targeted quercetin-3-O-glucuronide may simultaneously modulate multiple independent AD disease-modifying mechanisms and, as such, may contribute to the benefits of dietary supplementation with red wines as an effective intervention for AD.—Ho, L., Ferruzzi, M. G., Janle, E. M., Wang, J., Gong, B., Chen, T.-Y., Lobo, J., Cooper, B., Wu, Q. L., Talcott, S. T., Percival, S. S., Simon, J. E., Pasinetti, G. M. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease. PMID:23097297

  9. Plasma and Urinary Phenolic Profiles after Acute and Repetitive Intake of Wild Blueberry.

    PubMed

    Feliciano, Rodrigo P; Istas, Geoffrey; Heiss, Christian; Rodriguez-Mateos, Ana

    2016-08-25

    Recent studies have shown that blueberries may have cardiovascular and cognitive health benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual variability in plasma and urinary polyphenol levels was also investigated. Blood samples were collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline, of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between 40%-48% in plasma and 47%-54% in urine. Taken together, our results illustrate that blueberry (poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects observed after blueberry consumption.

  10. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update.

    PubMed

    Rodriguez-Mateos, Ana; Vauzour, David; Krueger, Christian G; Shanmuganayagam, Dhanansayan; Reed, Jess; Calani, Luca; Mena, Pedro; Del Rio, Daniele; Crozier, Alan

    2014-10-01

    There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.

  11. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System

    PubMed Central

    Sadeghi Ekbatan, Shima; Iskandar, Michele M.; Sleno, Lekha; Sabally, Kebba; Khairallah, Joelle; Prakash, Satya

    2018-01-01

    The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of the human intestinal microbial ecosystem (GI model). Simulated digestion showed extensive degradation of the parent compounds and the generation of microbial phenolic metabolites. To characterize the transport and metabolism of microbial phenolic metabolites following digestion, a co-culture of intestinal Caco-2 and hepatic HepG2 cells was exposed to the PRPE-derived digests obtained from the colonic vessels. Following a 2 h incubation of the digesta with the Caco-2/HepG2 co-cultures, approximately 10–15% of ferulic, dihydrocaffeic, and dihydroferulic acids and 3–5% of 3-hydroxybenzoic, 3-hydroxyphenylpropionic, and coumaric acids were observed in the basolateral side, whereas 3-hydroxyphenylacetic acid, phenylpropanoic acid, and cinnamic acid were not detected. Subsequent HepG2 cellular metabolism led to major increases in ferulic, dihydrocaffeic, 3-hydroxyphenylpropionic, and coumaric acids ranging from 160–370%. These findings highlight the importance of hepatic metabolism towards the generation of secondary metabolites of polyphenols despite low selective Caco-2 cellular uptake of microbial phenolic metabolites. PMID:29329242

  12. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans.

    PubMed

    Girard, Catherine; Charette, Tania; Leclerc, Maxime; Shapiro, B Jesse; Amyot, Marc

    2018-03-01

    Fish consumption is a major pathway for mercury exposure in humans. Current guidelines and risk assessments assume that 100% of methylmercury (MeHg) in fish is absorbed by the human body after ingestion. However, a growing body of literature suggests that this absorption rate may be overestimated. We used an in vitro digestion method to measure MeHg bioaccessibility in commercially-purchased fish, and investigated the effects of dietary practices on MeHg bioaccessibility. Cooking had the greatest effect, decreasing bioaccessibility on average to 12.5±5.6%. Polyphenol-rich beverages also significantly reduced bioaccessibility to 22.7±3.8% and 28.6±13.9%, for green and black tea respectively. We confirmed the suspected role of polyphenols in tea as being a driver of MeHg's reduced bioaccessibility, and found that epicatechin, epigallocatechin gallate, rutin and cafeic acid could individually decrease MeHg bioaccessibility by up to 55%. When both cooking and polyphenol-rich beverage treatments were combined, only 1% of MeHg remained bioaccessible. These results call for in vivo validation, and suggest that dietary practices should be considered when setting consumer guidelines for MeHg. More realistic risk assessments could promote consumption of fish as a source of fatty acids, which can play a protective role against cardiovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents

    NASA Astrophysics Data System (ADS)

    Malik, Ruchi; Bunkar, Devendra; Choudhary, Bhanwar Singh; Srivastava, Shubham; Mehta, Pakhuri; Sharma, Manish

    2016-10-01

    Human semen is principal vehicle for transmission of HIV-1 and other enveloped viruses. Several endogenous peptides present in semen, including a 39-amino acid fragments of prostatic acid phosphatase (PAP248-286) assemble into amyloid fibrils named as semen-derived enhancer of viral infection (SEVI) that promote virion attachment to target cells which dramatically enhance HIV virus infection by up to 105-fold. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound, is the major catechin found in green tea which disaggregates existing SEVI fibers, and inhibits the formation of SEVI fibers. The aim of this study was to screen a number of relevant polyphenols to develop a rational approach for designing PAP248-286 aggregation inhibitors as potential anti-HIV agents. The molecular docking based virtual screening results showed that polyphenolic compounds 2-6 possessed good docking score and interacted well with the active site residues of PAP248-286. Amino acid residues of binding site namely; Lys255, Ser256, Leu258 and Asn265 are involved in binding of these compounds. In silico ADMET prediction studies on these hits were also found to be promising. Polyphenolic compounds 2-6 identified as hits may act as novel leads for inhibiting aggregation of PAP248-286 into SEVI.

  14. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis

    PubMed Central

    2011-01-01

    Background Withania somnifera is an important medicinal plant traditionally used in the treatment of many diseases. The present study was carried out to characterize the phenolic acids, flavonoids and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activities in methanolic extracts of W. somnifera fruits, roots and leaves (WSFEt, WSREt and WSLEt). Methods WSFEt, WSREt and WSLEt was prepared by using 80% aqueous methanol and total polyphenols, flavonoids as well as DPPH radical scavenging activities were determined by spectrophotometric methods and phenolic acid profiles were determined by HPLC methods. Results High concentrations of both phenolics and flavonoids were detected in all parts of the plant with the former ranging between 17.80 ± 5.80 and 32.58 ± 3.16 mg/g (dry weight) and the latter ranging between 15.49 ± 1.02 and 31.58 ± 5.07 mg/g. All of the three different plant parts showed strong DPPH radical scavenging activities (59.16 ± 1.20 to 91.84 ± 0.38%). Eight polyphenols (gallic, syringic, benzoic, p-coumaric and vanillic acids as well as catechin, kaempferol and naringenin) have been identified by HPLC in parts of the plant as well. Among all the polyphenols, catechin was detected in the highest concentration (13.01 ± 8.93 to 30.61 ± 11.41 mg/g). Conclusion The results indicating that W. somnifera is a plant with strong therapeutic properties thus further supporting its traditional claims. All major parts of W. somnifera such as the roots, fruits and leaves provide potential benefits for human health because of its high content of polyphenols and antioxidant activities with the leaves containing the highest amounts of polyphenols specially catechin with strong antioxidant properties. PMID:21854608

  15. Sensory characteristics of antioxidant extracts from Uruguayan native plants: influence of deodorization by steam distillation.

    PubMed

    Miraballes, Marcelo; Gámbaro, Adriana; Ares, Gastón

    2013-12-01

    Polyphenolic-rich antioxidant extracts from native plants have potential applications as ingredients in functional foods; however, their intense characteristic flavour is a major limitation to their application. In this context, the aim of the present work was to evaluate the influence of steam distillation on the sensory and physicochemical characteristics of extracts of five native Uruguayan plants (Acca sellowiana, Achyrocline satureioides, Aloysia gratisima, Baccharis trimera and Mikania guaco). Aqueous extracts from the five native plants were obtained. Steam distillation was used to produce two types of deodorized extracts: extracts from deodorized leaves and extracts deodorized after the extraction. The extracts were characterized in terms of their total polyphenolic content and antioxidant activity (using 2,2-diphenyl-1-picryl-hydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid methods). A trained assessor panel evaluated characteristic odour, characteristic flavour, bitterness and astringency of the extracts. The total polyphenolic content of the extracts ranged from 112.4 to 974.4 mg/100 mL, whereas their antioxidant capacity ranged from 9.6 to 1008.7 mg vitamin C equivalents/100 mL, depending on the type of extract and the method being considered. Steam distillation was effective in reducing the characteristic odour and flavour of the extracts, without causing large changes in their polyphenolic content and antioxidant activity. In general, in terms of sensory characteristics, steam distillation performed on the extracts gave better results than when performed on the leaves; whereas the opposite trend was found for polyphenolic content and antioxidant activity. Results suggested that steam distillation could be a promising low-cost procedure for the production of antioxidant extracts for food products.

  16. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    PubMed

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic strategy to reduce the deleterious effects of increased adrenergic tone, particularly in essential hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz

    2015-04-29

    The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).

  18. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    PubMed Central

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  19. Antioxidant potential of polyphenols and tannins from burs of Castanea mollissima Blume.

    PubMed

    Zhao, Shan; Liu, Jie Yuan; Chen, Si Yu; Shi, Ling Ling; Liu, Yu Jun; Ma, Chao

    2011-10-12

    Spiny burs of Castanea mollissima Blume (Chinese chestnut) are usually discarded as industrial waste during post-harvesting processing. The objective of this study was to establish an extraction and isolation procedure for tannins from chestnut burs, and to assess their potential antioxidant activity. Aqueous ethanol solution was used as extraction solvent, and HPD 100 macroporous resin column was applied for isolation. The influence of solvent concentration in the extraction and elution process on extraction yield, tannins and polyphenols content, as well as antioxidant potential, including DPPH and ABTS radical scavenging ability, reducing power ability and cellular antioxidant ability were assessed. In both the extraction and isolation process, 50% aqueous ethanol led to superior total tannins and polyphenols content as well as significantly higher antioxidant activity. In addition, the antioxidant activity and the total tannins content in extracts and fractions had a positive linear correlation, and the predominant components responsible for antioxidant activities were characterized as hydrolysable tannins. To the best of our knowledge, this is the first report on the enrichment of tannins from burs of C. mollissim using macroporous resin chromatography, and to assess the cellular antioxidant activity of them.

  20. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.

    PubMed

    Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki

    2018-05-30

    The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.

  1. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  2. Research on the effect of culture time on the kombucha tea beverage's antiradical capacity and sensory value.

    PubMed

    Gramza-Michałowska, Anna; Kulczyński, Bartosz; Xindi, Yuan; Gumienna, Małgorzata

    2016-01-01

    Recent consumption trends shows high consumer acceptability and growing medicinal interest in the biological value of kombucha tea. This tea is a sweetened tea leaf brew fermented with a layer containing mainly acetic acid bacteria, yeast and lactic acid bacteria. The main antioxidants in tea leaves are polyphenols, the consumption of which is proven to be beneficial for human health, e.g. protecting from reactive oxygen species (ROS). The aim of the present research was to evaluate antiradical activity, total polyphenol content (TPC) and sensory value of kombucha tea brews. In the present study, Kombucha tea beverages were analyzed for TPC content, DPPH radical scavenging method and sensory value. The highest TPC content and DPPH radical scavenging capacity values were evaluated in yellow tea samples, both unfermented and kombucha, which did not differ within the storage time. The results of sensory evaluations of kombucha tea brews depend on the tea leaf variety used for preparing the drink. Research indicates that the fermentation process of tea brews with kombucha microbiota does not affect significantly its polyphenol content and antiradical capacity, and retains its components' biological activity.

  3. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes.

    PubMed

    Masuda, Isao; Koike, Masato; Nakashima, Shohei; Mizutani, Yu; Ozawa, Yusuke; Watanabe, Kenji; Sawada, Yoko; Sugiyama, Hiroshi; Sugimoto, Atsushi; Nojiri, Hidetoshi; Sashihara, Koichi; Yokote, Koutaro; Shimizu, Takahiko

    2018-05-08

    Apples are well known to have various benefits for the human body. Procyanidins are a class of polyphenols found in apples that have demonstrated effects on the circulatory system and skeletal organs. Osteoarthritis (OA) is a locomotive syndrome that is histologically characterized by cartilage degeneration associated with the impairment of proteoglycan homeostasis in chondrocytes. However, no useful therapy for cartilage degeneration has been developed to date. In the present study, we detected beneficial effects of apple polyphenols or their procyanidins on cartilage homeostasis. An in vitro assay revealed that apple polyphenols increased the activities of mitochondrial dehydrogenases associated with an increased copy number of mitochondrial DNA as well as the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), suggesting the promotion of PGC-1α-mediated mitochondrial biogenesis. Apple  procyanidins also enhanced proteoglycan biosynthesis with aggrecan upregulation in primary chondrocytes. Of note, oral treatment with apple procyanidins prevented articular cartilage degradation in OA model mice induced by mitochondrial dysfunction in chondrocytes. Our findings suggest that apple procyanidins are promising food components that inhibit OA progression by promoting mitochondrial biogenesis and proteoglycan homeostasis in chondrocytes.

  4. Laccase-based biosensor for the determination of polyphenol index in wine.

    PubMed

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated. (c) 2009 Elsevier B.V. All rights reserved.

  5. Comparative anti-platelet and antioxidant properties of polyphenol-rich extracts from: berries of Aronia melanocarpa, seeds of grape and bark of Yucca schidigera in vitro.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Tomczak, Anna; Erler, Joachim; Stochmal, Anna; Oleszek, Wieslaw

    2008-02-01

    The aim of the present study was to investigate and compare the anti-platelet action of extracts from three different plants: bark of Yucca schidigera, seeds of grape and berries of Aronia melanocarpa (chokeberry). Anti-platelet action of tested extracts was compared with action of well characterized antioxidative and anti-platelet commercial monomeric polyphenol-resveratrol. The effects of extracts on platelet adhesion to collagen, collagen-induced platelet aggregation and on the production of O2-* in resting platelets and platelets stimulated by a strong platelet agonist-thrombin were studied. The in vitro experiments have shown that all three tested extracts (5-50 microg/ml) rich in polyphenols reduce platelet adhesion, aggregation and generation of O2-* in blood platelets. Comparative studies indicate that all three plant extracts were found to be more reactive in reduction of platelet processes than the solution of pure resveratrol. The tested extracts due to their anti-platelet effects may play an important role as components of human diet in prevention of cardiovascular or inflammatory diseases, where blood platelets are involved.

  6. Polyphenols and Sunburn.

    PubMed

    Saric, Suzana; Sivamani, Raja K

    2016-09-09

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  7. Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans.

    PubMed

    Calani, Luca; Del Rio, Daniele; Luisa Callegari, Maria; Morelli, Lorenzo; Brighenti, Furio

    2012-08-01

    Green tea is a popular beverage, prepared with infusion of unfermented dried leaves of Camellia sinensis, and is one of the most relevant sources of polyphenolic compounds in the human diet. This study reports green tea flavan-3-ol absorption, metabolism and complete urinary excretion up to 48 h in 20 healthy volunteers. Urinary and tea samples were analysed by high-performance liquid chromatography coupled with tandem mass spectrometry. Green tea contained monomeric flavan-3-ols and proanthocyanidins with a total polyphenol content of 728 μmol. A total of 41 metabolites were identified in urines, all present in conjugated forms. Among these, six colonic metabolites of green tea flavan-3-ols were identified for the first time after green tea consumption in humans. The average 48 h bioavailability was close to 62%, major contributors being microbial metabolites. Some volunteer showed a 100% absorption/excretion, whereas some others were unable to efficiently absorb/excrete this class of flavonoids. This suggests that colonic ring fission metabolism could be relevant in the putative bioactivity of green tea polyphenols.

  8. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix

    PubMed Central

    Cheng, Diana M.; Kuhn, Peter; Poulev, Alexander; Rojo, Leonel E.; Lila, Mary Ann; Raskin, Ilya

    2012-01-01

    Cinnamon has a long history of medicinal use and continues to be valued for its therapeutic potential for improving metabolic disorders such as type 2 diabetes. In this study, a phytochemically-enhanced functional food ingredient that captures water soluble polyphenols from aqueous cinnamon extract (CE) onto a protein rich matrix was developed. CE and cinnamon polyphenol-enriched defatted soy flour (CDSF) were effective in acutely lowering fasting blood glucose levels in diet-induced obese hyperglycemic mice at 300 and 600 mg/kg, respectively. To determine mechanisms of action, rat hepatoma cells were treated with CE and eluates of CDSF at a range of 1–25 µg/ml. CE and eluates of CDSF demonstrated dose-dependent inhibition of hepatic glucose production with significant levels of inhibition at 25 µg/ml. Furthermore, CE decreased the gene expression of two major regulators of hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. The hypoglycemic and insulin-like effects of CE and CDSF may help to ameliorate type 2 diabetes conditions. PMID:22980902

  9. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media.

    PubMed

    Sinela, André Mundombe; Mertz, Christian; Achir, Nawel; Rawat, Nadirah; Vidot, Kevin; Fulcrand, Hélène; Dornier, Manuel

    2017-11-15

    Effect of oxygen, polyphenols and metals was studied on degradation of delphinidin and cyanidin 3-O-sambubioside of Hibiscus sabdariffa L. Experiments were conducted on aqueous extracts degassed or not, an isolated polyphenolic fraction and extract-like model media, allowing the impact of the different constituents to be decoupled. All solutions were stored for 2months at 37°C. Anthocyanin and their degradation compounds were regularly HPLC-DAD-analyzed. Oxygen concentration did not impact the anthocyanin degradation rate. Degradation rate of delphinidin 3-O-sambubioside increased 6-fold when mixed with iron from 1 to 13mg.kg -1 but decreased with chlorogenic and gallic acids. Degradation rate of cyanidin 3-O-sambubioside was not affected by polyphenols but increased by 3-fold with increasing iron concentration with a concomitant yield decrease of scission product, protocatechuic acid. Two pathways of degradation of anthocyanins were identified: a major metal-catalyzed oxidation followed by condensation and a minor scission which represents about 10% of degraded anthocyanins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix.

    PubMed

    Cheng, Diana M; Kuhn, Peter; Poulev, Alexander; Rojo, Leonel E; Lila, Mary Ann; Raskin, Ilya

    2012-12-15

    Cinnamon has a long history of medicinal use and continues to be valued for its therapeutic potential for improving metabolic disorders such as type 2 diabetes. In this study, a phytochemically-enhanced functional food ingredient that captures water soluble polyphenols from aqueous cinnamon extract (CE) onto a protein rich matrix was developed. CE and cinnamon polyphenol-enriched defatted soy flour (CDSF) were effective in acutely lowering fasting blood glucose levels in diet induced obese hyperglycemic mice at 300 and 600 mg/kg, respectively. To determine mechanisms of action, rat hepatoma cells were treated with CE and eluates of CDSF at a range of 1-25 μg/ml. CE and eluates of CDSF demonstrated dose-dependent inhibition of hepatic glucose production with significant levels of inhibition at 25 μg/ml. Furthermore, CE decreased the gene expression of two major regulators of hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. The hypoglycemic and insulin-like effects of CE and CDSF may help to ameliorate type 2 diabetes conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace.

    PubMed

    Ying, DanYang; Hlaing, Mya Myintzu; Lerisson, Julie; Pitts, Keith; Cheng, Lijiang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Olive pomace, a waste stream from olive oil processing, was fractionated by centrifugation to obtain a supernatant and a flesh-enriched fraction, and freeze dried to obtain a powder. The dried supernatant contained 5.8% moisture, 4.8% protein, 3.5% fat, 3.5% ash, 82.4% carbohydrate (including 17.2% dietary fiber) and polyphenols (2970mg gallic acid equivalents (GAE)/100g). The dried flesh-enriched fraction, contained 5.9% moisture, 13.4% protein, 14.2% fat, 3.5% ash, 63.1% carbohydrate (including 42.7% dietary fiber) and polyphenols (1960mg GAE/100g). The extruded products using rice-oat flour or maize-oat flour mixtures as the base were formulated to contain 5% or 10% olive pomace fractions (dry basis). The extruded products with added olive pomace fractions has higher fiber (2-7g/100g) and polyphenol contents (67-161mg GAE/100g) compared to the corresponding mixtures of rice-oat flour base (0.92g/100g fiber, 20mg GAE/100g) or maize-oat flour base (3.2g/100g fiber, 20mg GAE/100g) without olive pomace fractions. Addition of olive pomace fractions reduced the die pressure and specific mechanical energy during extrusion and resulted in lower radial expansion in the extruded product. The impact of the addition of olive pomace fraction on physical characteristics of the extruded product is higher for rice-oat flour base than maize-oat flour base. The underlining mechanism was explained by FTIR analysis. FTIR showed that there were significant changes in the carbohydrate components and the structure of the proteins on extrusion, with consequent effects on the expansion and density of the extruded product. This study showed the feasibility of preparing fiber and polyphenol enriched extruded products by incorporation of olive pomace. This shows the potential of recovery and diversion of edible components from waste streams of olive oil processing for formulation of extruded products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mixtures of wine, essential oils, and plant polyphenolics do not act synergistically against Escherichia coli O157 and Salmonella enterica

    USDA-ARS?s Scientific Manuscript database

    Red wine or fortified red wine formulations containing some various essential oils from oregano or thyme or their pure active components, and a mixture of plant extract powders from apple skin, green tea, and olive, were evaluated for inhibitory activity against the foodborne pathogens Escherichia c...

  13. Dietary Polyphenol Intake Estimated by 7-Day Dietary Records among Japanese Male Workers: Evaluation of the Within- and Between-Individual Variation.

    PubMed

    Taguchi, Chie; Kishimoto, Yoshimi; Fukushima, Yoichi; Saita, Emi; Tanaka, Miori; Takahashi, Yoshinari; Masuda, Yasunobu; Goda, Toshinao; Kondo, Kazuo

    2017-01-01

    Polyphenol intake has been estimated in some populations; however, information about day-to-day and individual differences in polyphenol intake has not been well-evaluated. In this study, we aimed to examine within- and between-individual variation in polyphenol intake in Japanese male workers. First, 56 male subjects (aged 37.9±10.4 y) completed detailed 7-d dietary records (DR). We then calculated their total polyphenol intake using our polyphenol content database and the within- and between-individual variations. We also estimated the minimum number of days of dietary assessment required both to rank individuals within a group and to assess an individual's usual polyphenol intake with acceptable accuracy. The estimated daily total polyphenol intake was 965±471 mg/d, which was largely sourced from beverages. The day-to-day variation (CV w ) for polyphenol intake was 43.6%, and the variation between the individuals in the population (CV b ) for polyphenol intake was 45.9%. A 4-d DR was required to rank individuals within a group with high correlation coefficients (r=0.9), and a 19-d DR was required to assess the individual's usual polyphenol intake with 20% deviation. The CV w for polyphenol intake was intermediate between those of the other nutrients, but the CV b for polyphenol intake was largest among the nutrients. These results suggest that the dietary intake of polyphenols should be carefully estimated considering its within- and between-individual variation.

  14. Polyphenols and Sunburn

    PubMed Central

    Saric, Suzana; Sivamani, Raja K.

    2016-01-01

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols. PMID:27618035

  15. The role of dietary polyphenols in the management of inflammatory bowel disease.

    PubMed

    Farzaei, Mohammad H; Rahimi, Roja; Abdollahi, Mohammad

    2015-01-01

    Inflammatory bowel disease (IBD) is an idiopathic chronic, relapsing inflammation of the bowel which is caused by dysregulation of the mucosal immune system. Polyphenols as the secondary plant metabolites universally present in vegetables and fruits and are the most abundant antioxidants in the human diet. There is evidence demonstrating the beneficial health effects of dietary polyphenols. This review criticizes the potential of commonly used polyphenols including apple polyphenol, bilberry anthocyanin, curcumin, epigallocatechin-3-gallate (EGCG) and green tea polyphenols, naringenin, olive oil polyphenols, pomegranate polyphenols and ellagic acid, quercetin, as well as resveratrol specifically in IBD with an emphasis on cellular mechanisms and pharmaceutical aspects. Scientific research confirmed that dietary polyphenols possess both protective and therapeutic effects in the management of IBD mediated via down-regulation of inflammatory cytokines and enzymes, enhancing antioxidant defense, and suppressing inflammatory pathways and their cellular signaling mechanisms. Further preclinical and clinical studies are needed in order to understand safety, bioavailability and bioefficacy of dietary polyphenols in IBD patients.

  16. Biochemical analysis and in vivo hypoglycemic activity of a grape polyphenol-soybean flour complex.

    PubMed

    Roopchand, Diana E; Kuhn, Peter; Poulev, Alexander; Oren, Andrew; Lila, Mary Ann; Fridlender, Bertold; Raskin, Ilya

    2012-09-12

    Defatted soybean flour (DSF) can efficiently sorb, concentrate, and stabilize polyphenols, but not sugars, from Concord grape juice, to yield grape polyphenol-enriched DSF. Sorption of grape polyphenols to DSF particles was dependent on the ratio of DSF and grape juice concentrate used, but not time of mixing or pH. Depending on ratios of starting materials, 1 g of grape polyphenol-enriched DSF contained 1.6-10.4 mg of anthocyanins, 7.5-93.1 mg of proanthocyanidins, and 20.5-144.5 mg of total polyphenols. LC-MS analysis of grape juice samples before and after addition and removal of DSF and eluate from grape polyphenol-enriched DSF confirmed that a broad range of grape compounds were sorbed to the DSF matrix. Finally, grape polyphenol-enriched DSF was able to significantly lower blood glucose levels in hyperglycemic C57BL/6J mice. The data indicate that grape polyphenol-enriched DSF can provide a high-protein, low-sugar ingredient for delivery of concentrated grape polyphenolics.

  17. Inhibitory effect of burdock leaves on elastase and tyrosinase activity.

    PubMed

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-10-01

    Burdock ( Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30-50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties.

  18. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    PubMed Central

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties. PMID:28912875

  19. Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences.

    PubMed

    Zhang, Hao; Yu, Dandan; Sun, Jing; Liu, Xianting; Jiang, Lu; Guo, Huiyuan; Ren, Fazheng

    2014-06-01

    Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.

  20. Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate

    PubMed Central

    He, Yan; Cui, Jiankun; Lee, James C-M; Ding, Shinghua; Chalimoniuk, Malgorzata; Simonyi, Agnes; Sun, Albert Y; Gu, Zezong; Weisman∥, Gary A; Gibson Wood, W; Sun, Grace Y

    2011-01-01

    Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-d-aspartate)-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid) release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III)-tetrakis(4-benzoic acid)-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−)-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD. PMID:21434871

  1. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system

    PubMed Central

    Li, Gaowen; Ruan, Lina; Chen, Ruijie; Wang, Renye; Xie, Xupei; Zhang, Meixi; Chen, Lichao; Yan, Qizhi; Reed, Miranda; Chen, Jiechun; Xu, Ying; Pan, Jianchun; Huang, Wu

    2016-01-01

    The lifetime prevalence rate for major depressive disorder (MDD) is approximately 17 % for most developed countries around the world. Dietary polyphenols are currently used as an adjuvant therapy to accelerate the therapeutic efficacy on depression. Ferulic acid (FA) or 4-hydroxy-3-methoxy-cinnamic acid (Fig. 1a) is a main polyphenolic component of Chinese herb Radix Angelicae Sinensis, which is found to have antidepressant-like effects through regulating serotonergic and noradrenergic function. The present study examined the synergistic effect of low doses of FA combined with subthreshold dose of piperine, a bioavailability enhancer, on depression-like behaviors in mice, and investigated the possible mechanism. The administration of FA, even in the highest dose tested, reduced immobility time by 60 % in the tail suspension and forced swimming tests (TST and FST) in mice when compared to control. The maximal antidepressant-like effect of FA was obtained with 200 mg/kg. In addition, piperine only produced a weak antidepressant-like effect in the TST and FST. However, the evidence from the interaction analysis suggested a synergistic effect when low doses of FA were combined with a subthreshold dose of piperine. Further neurochemical evidence such as monoamine levels in the frontal cortex, hippocampus, and hypothalamus and measurements of monoamine oxidase activity also supported a synergistic effect of FA and piperine in the enhancement of monoaminergic function. This finding supports the concept that the combination strategy might be an alternative therapy in the treatment of psychiatric disorders with high efficacy and low side effects. PMID:26220010

  2. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  3. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  4. Comparison of bioactive components in fresh, pressurized, pasteurized and sterilized pennywort (Centella asiatica L.) juices

    NASA Astrophysics Data System (ADS)

    Apichartsrangkoon, Arunee; Chattong, Utaiwan; Chunthanom, Pornprapa

    2012-06-01

    The biologically active constituents of pennywort juice were analyzed by HPLC. The juice extract contained the bioactive glycosides, including asiaticoside and madecassoside. Antioxidant properties of juices were determined in terms of ferric-reducing antioxidant power assay, total polyphenol, β-carotene and ascorbic acid contents. After processing, asiaticoside, madecassoside and β-carotene in the extracted juice were relatively stable with no significant losses occurring. Pressurization could significantly retain ascorbic acid, polyphenols and antioxidant capacity than those pasteurization or sterilization. For storage assessment, asiaticoside in the processed juices was relatively stable during 4 months storage. Losses of ascorbic acid in the pressurized juice during storage were greater than in pasteurized and sterilized juice. However, the total amount of ascorbic acid retained in pressurized juice was still higher than those thermal-treated products.

  5. Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases.

    PubMed

    Ben Lagha, Amel; Dudonné, Stéphanie; Desjardins, Yves; Grenier, Daniel

    2015-08-12

    Blueberries contain significant amounts of flavonoids to which a number of beneficial health effects in humans have been associated. The present study investigated the effect of a polyphenol-rich lowbush blueberry (Vaccinium angustifolium Ait.) extract on the two main etiologic components of periodontitis, a multifactorial disorder affecting the supporting structures of the teeth. Phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins made up 16.6, 12.9, and 2.7% of the blueberry extract, respectively. The blueberry extract showed antibacterial activity (MIC = 1 mg/mL) against the periodontopathogenic bacterium Fusobacterium nucleatum. This property may result from the ability of blueberry polyphenols to chelate iron. Moreover, the blueberry extract at 62.5 μg/mL inhibited F. nucleatum biofilm formation by 87.5 ± 2.3%. Subsequently, the ability of the blueberry extract to inhibit the NF-κB signaling pathway in U937-3xκB cells was investigated. The blueberry extract dose-dependently inhibited the activation of NF-κB induced by F. nucleatum. In addition, a pretreatment of macrophages with the blueberry extract (62.5 μg/mL) inhibited the secretion of IL-1β, TNF-α, and IL-6 by 87.3 ± 1.3, 80.7 ± 5.6, and 28.2 ± 9.3%, respectively, following a stimulation with F. nucleatum. Similarly, the secretion of MMP-8 and MMP-9 was also dose-dependently inhibited. This dual antibacterial and anti-inflammatory action of lowbush blueberry polyphenols suggests that they may be promising candidates for novel therapeutic agents.

  6. Metabolite fingerprinting of Punica granatum L. (pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection.

    PubMed

    Brighenti, Virginia; Groothuis, Sebastiaan Frearick; Prencipe, Francesco Pio; Amir, Rachel; Benvenuti, Stefania; Pellati, Federica

    2017-01-13

    The present study was aimed at the development of a new analytical method for the comprehensive multi-component analysis of polyphenols in Punica granatum L. (pomegranate) juice and peel. While pomegranate juice was directly analysed after simple centrifugation, different extraction techniques, including maceration, heat reflux extraction, ultrasound-assisted extraction and microwave-assisted extraction, were compared in order to obtain a high yield of the target analytes from pomegranate peel. Dynamic maceration with a mixture of water and ethanol 80:20 (v/v) with 0.1% of hydrochloric acid as the extraction solvent provided the best result in terms of recovery of pomegranate secondary metabolites. The quali- and quantitative analysis of pomegranate polyphenols was performed by high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection. The application of fused-core column technology allowed us to obtain an improvement of the chromatographic performance in comparison with that of conventional particulate stationary phases, thus enabling a good separation of all constituents in a shorter time and with low solvent usage. The analytical method was completely validated to show compliance with the International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use guidelines and successfully applied to the characterisation of commercial and experimental pomegranate samples, thus demonstrating its efficiency as a tool for the fingerprinting of this plant material. The quantitative data collected were submitted to principal component analysis, in order to highlight the possible presence of pomegranate samples with high content of secondary metabolites. From the statistical analysis, four experimental samples showed a notable content of bioactive compounds in the peels, while commercial ones still represent the best source of healthy juice. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Transcriptome analyses provide insights into the difference of alkaloids biosynthesis in the Chinese goldthread (Coptis chinensis Franch.) from different biotopes.

    PubMed

    Chen, Hanting; Deng, Cao; Nie, Hu; Fan, Gang; He, Yang

    2017-01-01

    Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

  8. The role of condensed tannins in animal production: advances, limitations and future directions

    USDA-ARS?s Scientific Manuscript database

    Tannins represent one of the most abundant polyphenolic compounds in plants, second only to lignin. Tannins exist as a multitude of chemically unique entities in nature. The most commonly occurring tannins are typically divided into two major classes based on chemical structure: hydrolysable or cond...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, H.M.; Eskin, N.A.M.; Pinsky, C.

    Potato polyphenol oxidase activity was strongly and noncompetitively inhibited by the 'Perov mixture' of coal tar components and by pyridine alone, while phenol competitively inhibited the enzyme. These two inhibitors are structural components of the parkinsonogenic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). By extension, dopamine and neuromelanin synthesis in the brain may be influenced by the inhibitory effects of such compounds upon the copper-dependent steps of tyrosine metabolism. The non-animal model used in this study may represent an alternative to the use of animal tissues in neurodegenerative disease research.

  10. Simultaneous determination of 20 components in red wine by LC-MS: application to variations of red wine components in decanting.

    PubMed

    Cui, Yan; Li, Qing; Liu, Zhenzhen; Geng, Lulu; Zhao, Xu; Chen, Xiaohui; Bi, Kaishun

    2012-11-01

    The decanting of red wines has a long tradition in red wine service from the perspective of modifying the aroma or taste of a wine. A simple and sensitive liquid chromatography-mass spectrometry method was developed for the simultaneous determination of 20 organic acids and polyphenols in decanting red wine. The separation was performed on a Diamonsil C(18) column (250 mm × 4.6 mm, 5 μm) using a mobile phase composed of methanol-0.1% acetic acid under gradient elution. Analysis was performed in selected ion monitoring mode with negative electrospray ionization interface. All the linear regressions showed good linear relationships (r(2) > 0.9973) between the peak area and concentration of each marker. The assay was reproducible with overall intra and interday variation of less than 5.0%. The recoveries for the quantified compounds were observed over the range of 92.1-108.3% with RSD values less than 5.7%. The method developed was successfully applied to determine the variations of the 20 components in red wine after decanting in different conditions. Concentrations of most organic acids and polyphenols investigated in the red wine were decreased in decanting. In addition, increment of duration, temperature, and light intensity would intensify the changes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. IN-VITRO evidence for the protective properties of the main components of the Mediterranean diet against colorectal cancer: A systematic review.

    PubMed

    Rotelli, M T; Bocale, D; De Fazio, M; Ancona, P; Scalera, I; Memeo, R; Travaglio, E; Zbar, A P; Altomare, D F

    2015-09-01

    Epidemiological studies have shown that the incidence and mortality rates of colorectal cancer (CRC) vary over 10-fold worldwide where within Westernized societies lower rates are observed amongst populations living within the Mediterranean basin, suggesting a significant influence of environment and dietary style in CRC carcinogenesis. Interpretation of the data concerning the benefits of mediterranean (MD) diet is difficult in vivo because of the variability of alimentary regimens used, the differing compliance with dietary supplementation and because of the non-uniform duration of patient cohort observation. Therefore, the aim of this review is to evaluate the in-vitro effects on colorectal cancer cell lines. the literature concerning the in-vitro effects of 4 of the principal components symbolizing the MD such as olive oil (polyphenol), red chili (capsaicin), tomato (lycopene) and red grapes (resveratrol) have been systematically reviewed. Several studies have demonstrated that polyphenols form olive oil, lycopene, resveratrol and capsaicin have multiple anticancer properties affecting several metabolic pathways involved in cancerogenesis, apoptosis, and metastasis in CRC cell lines. This review summarizes some of the most recent data potentially supportive of the use of MD in CRC chemoprevention, analyzing the in vitro effects of individual components of the MD on CRC cell development, progression, metastasis and apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    PubMed

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?

    PubMed

    Jagannathan, Venkataseshan; Viswanathan, Pragasam

    2018-05-18

    Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study.

    PubMed

    Godos, Justyna; Castellano, Sabrina; Ray, Sumantra; Grosso, Giuseppe; Galvano, Fabio

    2018-04-24

    Background : The epidemiological evidence for a relation between dietary polyphenol intake and depression is limited. Therefore, the aim of this study was to assess the association between habitual dietary intake of total polyphenols, their classes, subclasses and individual compounds and depressive symptoms among the participants of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study. Methods : Demographic and dietary characteristics of 1572 adults living in southern Italy were analyzed. Food frequency questionnaires and Phenol-Explorer were used to calculate habitual dietary intakes of polyphenols. The Center for Epidemiologic Studies Depression Scale (CES-D-10) was used as screening tool for depressive symptoms. Multivariate logistic regression analyses were used to test associations and were expressed as odds ratio (OR) and 95% confidence intervals (CI). Results : A total of 509 individuals reported having depressive symptoms. Based on multivariate logistic regression analyses, total polyphenol intake was not associated with depressive symptoms. After adjustment for potential confounding factors, dietary intake of phenolic acid (OR = 0.64, 95% CI: 0.44, 0.93), flavanones (OR = 0.54, 95% CI: 0.32, 0.91), and anthocyanins (OR = 0.61, 95% CI: 0.42, 0.89) showed significant inverse association with depressive symptoms, when comparing the highest with the lowest quartile. Moreover, flavanones and anthocyanins, were associated with depressive symptoms in a dose-response manner. Among individual compounds, inverse association was observed for quercetin (OR = 0.53, 95% CI: 0.32, 0.86) and naringenin (OR = 0.51, 95% CI: 0.30, 0.85), for the highest versus lowest quartile of intake. When taking into consideration the major sources of the polyphenols, only citrus fruits and wine consumption was inversely associated with depressive symptoms (Q4 vs. Q1: OR= 0.51, 95% CI: 0.35, 0.75; Q4 vs. Q1: OR = 0.53, 95% CI: 0.38, 0.74, respectively). Conclusions : Higher dietary intake of flavonoid may be inversely associated with depressive symptoms. Further studies are needed to definitively confirm these observed associations.

  15. Bioavailability study of a polyphenol-enriched extract from Hibiscus sabdariffa in rats and associated antioxidant status.

    PubMed

    Fernández-Arroyo, Salvador; Herranz-López, María; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Joven, Jorge; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio; Micol, Vicente

    2012-10-01

    The aqueous extracts of Hibiscus sabdariffa have been commonly used in folk medicine. Nevertheless, the compounds or metabolites responsible for its healthy effects have not yet been identified. The major metabolites present in rat plasma after acute ingestion of a polyphenol-enriched Hibiscus sabdariffa extract were characterized and quantified in order to study their bioavailability. The antioxidant status of the plasma samples was also measured through several complementary antioxidant techniques. High-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) was used for the bioavailability study. The antioxidant status was measured by ferric reducing ability of plasma method, thiobarbituric acid reactive substances assay, and superoxide dismutase activity assay. Seventeen polyphenols and metabolites have been detected and quantified. Eleven of these compounds were metabolites. Although phenolic acids were found in plasma without any modification in their structures, most flavonols were found as quercetin or kaempferol glucuronide conjugates. Flavonol glucuronide conjugates, which show longer half-life elimination values, are proposed to contribute to the observed lipid peroxidation inhibitory activity in the cellular membranes. By contrast, phenolic acids appear to exert their antioxidant activity through ferric ion reduction and superoxide scavenging at shorter times. We propose that flavonol-conjugated forms (quercetin and kaempferol) may be the compounds responsible for the observed antioxidant effects and contribute to the healthy effects of H. sabdariffa polyphenolic extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome.

    PubMed

    Rocha, Bárbara S; Nunes, Carla; Laranjinha, João

    2016-12-01

    Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit.

    PubMed

    Blando, Federica; Albano, Clara; Liu, Yazheng; Nicoletti, Isabella; Corradini, Danilo; Tommasi, Noemi; Gerardi, Carmela; Mita, Giovanni; Kitts, David D

    2016-06-01

    The identification of novel plant-based functional foods or nutraceutical ingredients that possess bioactive properties with antioxidant function has recently become important to the food, nutraceutical and cosmetic industries. This study evaluates the polyphenolic composition, identifies bioactive compounds and assays the total antioxidant capacity of Prunus mahaleb L. fruits collected from different populations and sampling years in the countryside around Bari (Apulia Region, Italy). We identified nine polyphenolic compounds including major anthocyanins, coumaric acid derivatives and flavonols from P. mahaleb fruits. The anthocyanin content (in some populations > 5 g kg(-1) fresh weight; FW) in the fruit was comparable to that reported for so-called superfruits such as bilberries, chokeberries and blackcurrants. Coumaric acid derivatives comprised a large portion of the total polyphenolic content in the P. mahaleb fruits. Antioxidant activities, assessed using ORAC and TEAC assays, measured up to 150 and 45 mmol Trolox equivalents kg(-1) FW, respectively. Therefore antioxidant capacity of P. mahaleb fruits is relatively high and comparable to that of superfruit varieties that are often used in commercial nutraceutical products. Our findings suggest that mahaleb fruit (currently not consumed fresh or used in other ways) could serve as a source of bioactive compounds and therefore find interest from the functional food and nutraceutical industries, as a natural food colorant and antioxidant ingredient in the formulation of functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles).

  19. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: Implications for prebiotic and metabolic effects.

    PubMed

    Li, Zhaoping; Summanen, Paula H; Komoriya, Tomoe; Henning, Susanne M; Lee, Ru-Po; Carlson, Eliisa; Heber, David; Finegold, Sydney M

    2015-08-01

    The present study investigated the effect of pomegranate extract (POMx) and pomegranate juice (POM juice) on the growth of major groups of intestinal bacteria: Enterobacteriaceae, Bacteroides fragilis group, clostridia, bifidobacteria, and lactobacilli, and the utilization of pomegranate polyphenols by Bifidobacterium and Lactobacillus. The total phenolic content of the pomegranate extract and juice was determined using the Folin-Ciocalteau colorimetric method and reported as gallic acid equivalent (GAE). The polyphenol composition was determined by HPLC. Stool specimens were incubated with 400, 100, and 25 μg/ml GAE POMx and POM juice and subjected to selective culture. Bifidobacterium and Lactobacillus strains were incubated with 400 μg/ml GAE POMx and POM juice and metabolites were analyzed. POMx and POM juice increased the mean counts of Bifidobacterium and Lactobacillus and significantly inhibited the growth of B. fragilis group, clostridia, and Enterobacteriaceae in a dose-response manner. Bifidobacterium and Lactobacillus utilized ellagic acid and glycosyl ellagic acid but little or no punicalin was utilized. Neither POMx nor POM juice was converted to urolithins by the test bacteria or the in vitro stool cultures. The effect of pomegranate on the gut bacteria considered to be beneficial (Bifidobacterium and Lactobacillus) suggests that pomegranate may potentially work as a prebiotic. The concept that polyphenols such as those in pomegranate impact gut microbiota populations may establish a new role for polyphenols in human health. Published by Elsevier Ltd.

  20. Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species.

    PubMed

    Suvanto, Jussi; Nohynek, Liisa; Seppänen-Laakso, Tuulikki; Rischer, Heiko; Salminen, Juha-Pekka; Puupponen-Pimiä, Riitta

    2017-08-01

    The polyphenol profiles of 18 cell cultures from 12 plant species were screened. The detected polyphenol fingerprints were diverse and differed from polyphenol profiles typically found in corresponding plant species. Cell cultures originating from 12 different plant species growing or grown in the Nordic countries were screened for their ability to synthesize polyphenols to assess their suitability for future studies and applications. The focus was on plant families Rosaceae and Ericaceae. On average, the Rosaceae cultures were the most efficient to produce hydrolysable tannins and the Ericaceae cultures were the most efficient to produce proanthocyanidins. This is in line with the general trend of polyphenols found in Rosaceae and Ericaceae leaves and fruits, even though several individual cell cultures differed from natural plants in their polyphenolic composition. Overall, several of the studied cell cultures exhibited capability in producing a large variety of polyphenols, including tannins with a high molecular weight, thus also showing promise for further studies concerning, for example, the accumulation of specific polyphenols or biosynthesis of polyphenols in the cell cultures.

  1. A nutrient-dense, high fiber, fruit-based supplement bar increases HDL, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-week trial

    USDA-ARS?s Scientific Manuscript database

    Dietary intake modulates disease risk, but little is known as to how components within food mixtures affect pathophysiology. Here, a low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins/minerals, fruit polyphenolics, B-glucan, docosahexaenoic acid (DHA)) app...

  2. Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    PubMed Central

    Daglia, Maria; Papetti, Adele; Mascherpa, Dora; Grisoli, Pietro; Giusto, Giovanni; Lingström, Peter; Pratten, Jonathan; Signoretto, Caterina; Spratt, David A.; Wilson, Michael; Zaura, Egija; Gazzani, Gabriella

    2011-01-01

    This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods. PMID:22013381

  3. Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner.

    PubMed

    Fast, David J; Balles, John A; Scholten, Jeffrey D; Mulder, Timothy; Rana, Jatinder

    2015-10-01

    Polysaccharides derived from Echinacea have historically been shown to be immunostimulatory. We describe in this work however the anti-inflammatory effect of a water extract of Echinacea purpurea roots (EPRW) that inhibited Pam3Csk4 stimulated production of TNFα by human monocytic THP-1 cells. The polyphenols and alkylamides typically found in Echinacea extracts were absent in EPRW suggesting that the anti-inflammatory component(s) was a polysaccharide. This anti-inflammatory activity was shown to be mediated by the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway as chemical inhibition of PI3K abolished the EPRW anti-inflammatory effect. Demonstration of phosphorylation of Akt and ribosomal S6 proteins, downstream targets of PI3K confirmed EPRW-mediated activation of this pathway. In conclusion, this observation suggests that non-alkylamide/non-polyphenolic phytochemicals from Echinacea may contribute in part to some of the anti-inflammatory therapeutic effects such as reduced severity of symptoms that have been observed in vivo in the treatment of upper respiratory tract infections with Echinacea. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database.

    PubMed

    Pérez-Jiménez, J; Neveu, V; Vos, F; Scalbert, A

    2010-11-01

    The diversity of the chemical structures of dietary polyphenols makes it difficult to estimate their total content in foods, and also to understand the role of polyphenols in health and the prevention of diseases. Global redox colorimetric assays have commonly been used to estimate the total polyphenol content in foods. However, these assays lack specificity. Contents of individual polyphenols have been determined by chromatography. These data, scattered in several hundred publications, have been compiled in the Phenol-Explorer database. The aim of this paper is to identify the 100 richest dietary sources of polyphenols using this database. Advanced queries in the Phenol-Explorer database (www.phenol-explorer.eu) allowed retrieval of information on the content of 502 polyphenol glycosides, esters and aglycones in 452 foods. Total polyphenol content was calculated as the sum of the contents of all individual polyphenols. These content values were compared with the content of antioxidants estimated using the Folin assay method in the same foods. These values were also extracted from the same database. Amounts per serving were calculated using common serving sizes. A list of the 100 richest dietary sources of polyphenols was produced, with contents varying from 15,000 mg per 100 g in cloves to 10 mg per 100 ml in rosé wine. The richest sources were various spices and dried herbs, cocoa products, some darkly coloured berries, some seeds (flaxseed) and nuts (chestnut, hazelnut) and some vegetables, including olive and globe artichoke heads. A list of the 89 foods and beverages providing more than 1 mg of total polyphenols per serving was established. A comparison of total polyphenol contents with antioxidant contents, as determined by the Folin assay, also showed that Folin values systematically exceed the total polyphenol content values. The comprehensive Phenol-Explorer data were used for the first time to identify the richest dietary sources of polyphenols and the foods contributing most significantly to polyphenol intake as inferred from their content per serving.

  5. Biomolecular characterization of wild sicilian oregano: phytochemical screening of essential oils and extracts, and evaluation of their antioxidant activities.

    PubMed

    Tuttolomondo, Teresa; La Bella, Salvatore; Licata, Mario; Virga, Giuseppe; Leto, Claudio; Saija, Antonella; Trombetta, Domenico; Tomaino, Antonio; Speciale, Antonio; Napoli, Edoardo M; Siracusa, Laura; Pasquale, Andrea; Curcuruto, Giusy; Ruberto, Giuseppe

    2013-03-01

    An extensive survey of wild Sicilian oregano was made. A total of 57 samples were collected from various sites, followed by taxonomic characterization from an agronomic perspective. Based on morphological and production characteristics obtained from the 57 samples, cluster analysis was used to divide the samples into homogeneous groups, to identify the best biotypes. All samples were analyzed for their phytochemical content, applying a cascade-extraction protocol and hydrodistillation, to obtain the non volatile components and the essential oils, respectively. The extracts contained thirteen polyphenol derivatives, i.e., four flavanones, seven flavones, and two organic acids. Their qualitative and quantitative characterization was carried out by LC/MS analyses. The essential oils were characterized using a combination of GC-FID and GC/MS analyses; a total of 81 components were identified. The major components of the oils were thymol, p-cymene, and γ-terpinene. Cluster analysis was carried out on both phytochemical profiles and resulted in the division of the oregano samples into different chemical groups. The antioxidant activity of the essential oils and extracts was investigated by the Folin-Ciocalteau (FC) colorimetric assay, by UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and by determining the O(2)(∙-)-scavenging activity. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  6. State of polyphenols in the drying process of fruits and vegetables.

    PubMed

    McSweeney, M; Seetharaman, K

    2015-01-01

    This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.

  7. The Cardiovascular Effects of Cocoa Polyphenols—An Overview

    PubMed Central

    Aprotosoaie, Ana Clara; Miron, Anca; Trifan, Adriana; Luca, Vlad Simon; Costache, Irina-Iuliana

    2016-01-01

    Cocoa is a rich source of high-quality antioxidant polyphenols. They comprise mainly catechins (29%–38% of total polyphenols), anthocyanins (4% of total polyphenols) and proanthocyanidins (58%–65% of total polyphenols). A growing body of experimental and epidemiological evidence highlights that the intake of cocoa polyphenols may reduce the risk of cardiovascular events. Beyond antioxidant properties, cocoa polyphenols exert blood pressure lowering activity, antiplatelet, anti-inflammatory, metabolic and anti-atherosclerotic effects, and also improve endothelial function. This paper reviews the role of cocoa polyphenols in cardiovascular protection, with a special focus on mechanisms of action, clinical relevance and correlation between antioxidant activity and cardiovascular health. PMID:28933419

  8. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits.

    PubMed

    Vinson, Joe A; Cai, Yuxing

    2012-02-01

    Free and total (after basic hydrolysis) polyphenols in nine types of raw and roasted nuts and two types of peanut butter (54 commercial samples) were analyzed after methanol extraction by a single step Folin-Ciocalteu reagent using catechin as standard. Walnuts had the highest free and total polyphenols in both the combined raw and roasted samples. Total polyphenols in the nuts were significantly higher than free polyphenols. Roasting had little effect on either free or total polyphenols in nuts. Raw and roasted walnuts had the highest total polyphenols. The efficacy of raw and roasted nut antioxidants was assessed by measuring the ability of the free polyphenol nut extracts to inhibit the oxidation of lower density lipoproteins (LDL + VLDL). A nut polyphenol, catechin, was measured after binding of three nut extracts to lower density lipoproteins. Walnut polyphenols had the best efficacy among the nuts and also the highest lipoprotein-bound antioxidant activity. Based on USDA availability data, the per capita total polyphenols was 162 mg from nuts per day in 2008. This corresponds to 19% of the total polyphenols from fruits and vegetables, nuts, grains, oils and spices in the US diet. Nuts provided 158 mg of polyphenols per day to the European Union diet. Nuts are high in polyphenol antioxidants which by binding to lipoproteins would inhibit oxidative processes that lead to atherosclerosis in vivo. In human supplementation studies nuts have been shown to improve the lipid profile, increase endothelial function and reduce inflammation, all without causing weight gain. These qualities make nuts a nutritious healthy snack and food additive.

  9. Polyphenols from cocoa and vascular health-a critical review.

    PubMed

    Rimbach, Gerald; Melchin, Mona; Moehring, Jennifer; Wagner, Anika E

    2009-11-20

    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted.

  10. Polyphenols from Cocoa and Vascular Health—A Critical Review

    PubMed Central

    Rimbach, Gerald; Melchin, Mona; Moehring, Jennifer; Wagner, Anika E.

    2009-01-01

    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted. PMID:20057946

  11. Polyphenols excreted in urine as biomarkers of total polyphenol intake.

    PubMed

    Medina-Remón, Alexander; Tresserra-Rimbau, Anna; Arranz, Sara; Estruch, Ramón; Lamuela-Raventos, Rosa M

    2012-11-01

    Nutritional biomarkers have several advantages in acquiring data for epidemiological and clinical studies over traditional dietary assessment tools, such as food frequency questionnaires. While food frequency questionnaires constitute a subjective methodology, biomarkers can provide a less biased and more accurate measure of specific nutritional intake. A precise estimation of polyphenol consumption requires blood or urine sample biomarkers, although their association is usually highly complex. This article reviews recent research on urinary polyphenols as potential biomarkers of polyphenol intake, focusing on clinical and epidemiological studies. We also report a potentially useful methodology to assess total polyphenols in urine samples, which allows a rapid, simultaneous determination of total phenols in a large number of samples. This methodology can be applied in studies evaluating the utility of urinary polyphenols as markers of polyphenol intake, bioavailability and accumulation in the body.

  12. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    PubMed Central

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  13. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    PubMed

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  14. The regular consumption of a polyphenol-rich apple does not influence endothelial function: a randomised double-blind trial in hypercholesterolemic adults.

    PubMed

    Auclair, S; Chironi, G; Milenkovic, D; Hollman, P C H; Renard, C M G C; Mégnien, J-L; Gariepy, J; Paul, J-L; Simon, A; Scalbert, A

    2010-10-01

    Epidemiological studies suggest that apple consumption is associated with a reduction in cardiovascular disease risk. Apple polyphenols may contribute to explain these effects. Endothelial dysfunction has been associated with early stage of atherosclerosis and polyphenols from various dietary sources have been shown to reverse it. The aim of the present study was to investigate the effect of the consumption of a polyphenol-rich apple on endothelial function. In all, 30 hypercholesterolemic volunteers were included in a double-blind, randomized crossover trial. They successively consumed 40 g of two lyophilized apples, polyphenol-rich and polyphenol-poor, providing respectively 1.43 and 0.21 g polyphenols per day during two 4-week periods separated by a 4-week washout period. Brachial artery flow-mediated vasodilation (FMD) was assessed at the beginning and at the end of each intervention period. FMD did not differ between the polyphenol-rich and the polyphenol-poor apples, neither did the other cardiovascular disease risk factors (plasma lipids, homocysteine, antioxidant capacity). These data suggest that over a 4-week period, the consumption of a polyphenol-rich apple does not improve vascular function in hypercholesterolemic patients.

  15. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades.

    PubMed

    Kamiloglu, Senem; Pasli, Ayca Ayfer; Ozcelik, Beraat; Van Camp, John; Capanoglu, Esra

    2015-11-01

    Black carrot is indicated to play an important role in nutrition, as it comprises a variety of health-promoting components, including polyphenols. The objective of the present study was to monitor the stability of total phenolics, antioxidant capacity and phenolic acids in black carrot jams and marmalades after processing, storage and in vitro gastrointestinal digestion. Total phenolic content and antioxidant capacity were determined using spectrophotometric methods, whereas phenolic acids were identified using HPLC-PDA. Jam and marmalade processing significantly decreased total phenolics (89.2-90.5%), antioxidant capacity (83.3-91.3%) and phenolic acids (49.5-96.7%) (p < 0.05). After 20 weeks of storage, the percent decrease in total phenolics in samples stored at 25 °C (26.4-48.0%) was slightly higher than the samples stored at 4 °C (21.0-42.5%). In addition, jam and marmalade processing led to increases in the percent recovery of bioaccessible total phenolics (7.2-12.6%) and phenolic acids (4.7-31.5%), as well as antioxidant capacity (1.4-8.1%). In conclusion, current study highlighted black carrot jams and marmalades as good sources of polyphenols, with high bioaccessibility levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fast method for the simultaneous quantification of toxic polyphenols applied to the selection of genotypes of yam bean (Pachyrhizus sp.) seeds.

    PubMed

    Lautié, E; Rozet, E; Hubert, P; Vandelaer, N; Billard, F; Felde, T Zum; Grüneberg, W J; Quetin-Leclercq, J

    2013-12-15

    The purpose of the research was to develop and validate a rapid quantification method able to screen many samples of yam bean seeds to determine the content of two toxic polyphenols, namely pachyrrhizine and rotenone. The analytical procedure described is based on the use of an internal standard (dihydrorotenone) and is divided in three steps: microwave assisted extraction, purification by solid phase extraction and assay by ultra high performance liquid chromatography (UHPLC). Each step was included in the validation protocol and the accuracy profiles methodology was used to fully validate the method. The method was fully validated between 0.25 mg and 5 mg pachyrrhizin per gram of seeds and between 0.58 mg/g and 4 mg/g for rotenone. More than one hundred samples from different accessions, locations of growth and harvest dates were screened. Pachyrrhizine concentrations ranged from 3.29 mg/g to lower than 0.25 mg/g while rotenone concentrations ranged from 3.53 mg/g to lower than 0.58 mg/g. This screening along with principal component analysis (PCA) and discriminant analysis (DA) analyses allowed the selection of the more interesting genotypes in terms of low concentrations of these two toxic polyphenols. © 2013 Elsevier B.V. All rights reserved.

  17. Profile of Polyphenol Compounds of Five Muscadine Grapes Cultivated in the United States and in Newly Adapted Locations in China

    PubMed Central

    Wei, Zheng; Luo, Jianming; Huang, Yu; Guo, Wenfeng; Zhang, Yali; Guan, Huan; Xu, Changmou; Lu, Jiang

    2017-01-01

    Polyphenol compositions and concentrations in skins and seeds of five muscadine grapes (cv. “Noble”, “Alachua”, “Carlos”, “Fry”, and “Granny Val”) cultivated in the United States (Tallahassee-Florida, TA-FL) and South China (Nanning-Guangxi, NN-GX and Pu’er-Yunnan, PE-YN) were investigated, using ultra performance liquid chromatography tandem triple quadrupole time-of-flight mass spectrometry (UPLC Triple TOF MS/MS). Fourteen ellagitannins were newly identified in these muscadine grapes. The grapes grown in NN-GX accumulated higher levels of ellagic acid, methyl brevifolin carboxylate, and ellagic acid glucoside in skins, and penta-O-galloyl-glucose in seeds. In PE-YN, more flavonols were detected in skins, and higher contents of flavan-3-ols, ellagic acid, and methyl gallate were identified in seeds. Abundant seed gallic acid and flavonols were found among the grapes grown in TA-FL. Based on principal component analysis (PCA) of 54 evaluation parameters, various cultivars grown in different locations could be grouped together and vice versa for the same cultivar cultivated in different regions. This is the result of the interaction between genotype and environmental conditions, which apparently influences the polyphenol synthesis and accumulation. PMID:28335440

  18. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension.

    PubMed

    Ciocoiu, Manuela; Badescu, Laurentiu; Miron, Anca; Badescu, Magda

    2013-01-01

    The aim of this study is to characterize the content of Aronia melanocarpa Elliott (black chokeberry) extract and also to estimate the influence of polyphenolic compounds contained in chokeberries on oxidative stress, on an L-NAME-induced experimental model of arterial hypertension. The rat blood pressure values were recorded using a CODA Noninvasive Blood Pressure System. HPLC/DAD coupled with ElectroSpray Ionization-Mass Spectrometry allowed identification of five phenolic compounds in berries ethanolic extract as follows: chlorogenic acid, kuromanin, rutin, hyperoside, and quercetin. The serous activity of glutathione-peroxidase (GSH-Px) has significantly lower values in the hypertensive (AHT) group as compared to the group protected by polyphenols (AHT + P). The total antioxidant capacity (TAC) values are lower in the AHT group and they are significantly higher in the AHT + P group. All the measured blood pressure components revealed a biostatistically significant blood pressure drop between the AHT group and the AHT + P group. The results reveal the normalization of the reduced glutathion (GSH) concentration as well as a considerable reduction in the malondialdehyde (MDA) serum concentration in the AHT + P group. Ethanolic extract of black chokeberry fruits not only has a potential value as a prophylactic agent but also may function as a nutritional supplement in the management of arterial hypertension.

  19. Curcumin, a component of turmeric: from farm to pharmacy.

    PubMed

    Gupta, Subash C; Kismali, Gorkem; Aggarwal, Bharat B

    2013-01-01

    Curcumin, an active polyphenol of the golden spice turmeric, is a highly pleiotropic molecule with the potential to modulate the biological activity of a number of signaling molecules. Traditionally, this polyphenol has been used in Asian countries to treat such human ailments as acne, psoriasis, dermatitis, and rash. Recent studies have indicated that curcumin can target newly identified signaling pathways including those associated with microRNA, cancer stem cells, and autophagy. Extensive research from preclinical and clinical studies has delineated the molecular basis for the pharmaceutical uses of this polyphenol against cancer, pulmonary diseases, neurological diseases, liver diseases, metabolic diseases, autoimmune diseases, cardiovascular diseases, and numerous other chronic diseases. Multiple studies have indicated the safety and efficacy of curcumin in numerous animals including rodents, monkeys, horses, rabbits, and cats and have provided a solid basis for evaluating its safety and efficacy in humans. To date, more than 65 human clinical trials of curcumin, which included more than 1000 patients, have been completed, and as many as 35 clinical trials are underway. Curcumin is now used as a supplement in several countries including the United States, India, Japan, Korea, Thailand, China, Turkey, South Africa, Nepal, and Pakistan. In this review, we provide evidence for the pharmaceutical uses of curcumin for various diseases. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  20. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte.

    PubMed

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-05-12

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.

  1. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte

    PubMed Central

    Yang, Lubing; Ma, Sihui; Han, Yu; Wang, Yuhan; Guo, Yan; Weng, Qiang; Xu, Meiyu

    2016-01-01

    4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC), two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE) on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells) and T cell subsets (CD4+ and CD8+ T cells), as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B) in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress. PMID:27187455

  2. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells.

    PubMed

    Touriño, Sonia; Lizárraga, Daneida; Carreras, Anna; Lorenzo, Sonia; Ugartondo, Vanessa; Mitjans, Montserrat; Vinardell, María Pilar; Juliá, Luis; Cascante, Marta; Torres, Josep Lluís

    2008-03-01

    Witch hazel ( Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.

  3. Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis).

    PubMed

    Adel Pilerood, Shirin; Prakash, Jamuna

    2014-05-01

    The nutritional composition and antioxidant activity (in aqueose and solvent extracts) of two medicinal plants of Iranian origin Borage (Echium amoenum) and Valerian (Valerian officinalis) used as tea were determined. Samples were analyzed for antioxidant components viz. polyphenols, vitamin C, β carotene, flavonoids, anthocyanins and tannins. Antioxidant assays such as free radical scavenging activity, reducing power and total antioxidant activity were carried out for ethanol, methanol, acetone, 80% methanol and 80% ethanolic extracts. In borage highest and least activity was observed in water and acetone extract respectively in all assays. In Valerian, 80% methanolic extract showed highest activity in reducing power and free radical scavenging activity assay. Total polyphenols in borage and valerian were 1,220 and 500 mg in ethanolic extracts and 25 and 130 mg in acetonic extracts respectively. Total carotenoids and vitamin C contents were 31.6 and 133.69 mg and 51.2 and 44.87 mg for borage and valerian respectively. Highest amount of tannins were extracted in 80% methanolic extract. It can be concluded that borage and valerian exhibited antioxidant activity in all extracts. The antioxidant activity could be attributed to their polyphenol and tannin and flavonoids contents. In all assays borage showed higher activity than valerian.

  4. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage

    PubMed Central

    Petriccione, Milena; Mastrobuoni, Francesco; Pasquariello, Maria Silvia; Zampella, Luigi; Nobis, Elvira; Capriolo, Giuseppe; Scortichini, Marco

    2015-01-01

    The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity) and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity) properties along with the enzymatic activity (catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), guaiacol peroxidase (GPX) and lipoxygenase (LOX)) were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars. PMID:28231220

  5. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    PubMed

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  6. QTL analysis and candidate gene mapping for the polyphenol content in cider apple.

    PubMed

    Verdu, Cindy F; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, François

    2014-01-01

    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed.

  7. Antiamoebic and spasmolytic activities of extracts from some antidiarrhoeal traditional preparations used in Kinshasa, Congo.

    PubMed

    Tona, L; Kambu, K; Ngimbi, N; Mesia, K; Penge, O; Lusakibanza, M; Cimanga, K; De Bruyne, T; Apers, S; Totte, J; Pieters, L; Vlietinck, A J

    2000-03-01

    Three major extracts from some traditional preparations, based on medicinal plants, used as antidiarrhoeal agents were investigated for their putative antiamoebic and spasmolytic activities in vitro. Results indicated that both biological activities are concentrated in the polyphenolic fraction, and not in the saponin or alkaloid containing fractions. The most active polyphenolic extracts were those from Euphorbia hirta whole plant, leaves of Alchornea cordifolia, Crossopteryx febrifuga, Nauclea latifolia, Psidium guajava, Tithonia diversifolia, stem bark of Harungana madagascariensis, Mangifera indica, Maprounea africana and Psidium guajava, inhibiting Entamoeba histolytica growth with MAC < 10 micrograms/ml. The same extracts, at a concentration of 80 micrograms/ml in an organ bath, also exhibited more than 70% inhibition of acetylcholine and/or KCl solution-induced contractions on isolated guinea-pig ileum.

  8. Effects of food processing on polyphenol contents: a systematic analysis using Phenol-Explorer data.

    PubMed

    Rothwell, Joseph A; Medina-Remón, Alexander; Pérez-Jiménez, Jara; Neveu, Vanessa; Knaze, Viktoria; Slimani, Nadia; Scalbert, Augustin

    2015-01-01

    The Phenol-Explorer web database (http://www.phenol-explorer.eu) was recently updated with new data on polyphenol retention due to food processing. Here, we analyze these data to investigate the effect of different variables on polyphenol content and make recommendations aimed at refining estimation of intake in epidemiological studies. Data on the effects of processing upon 161 polyphenols compiled for the Phenol-Explorer database were analyzed to investigate the effects of polyphenol structure, food, and process upon polyphenol loss. These were expressed as retention factors (RFs), fold changes in polyphenol content due to processing. Domestic cooking of common plant foods caused considerable losses (median RF = 0.45-0.70), although variability was high. Food storage caused fewer losses, regardless of food or polyphenol (median RF = 0.88, 0.95, 0.92 for ambient, refrigerated, and frozen storage, respectively). The food under study was often a more important determinant of retention than the process applied. Phenol-Explorer data enable polyphenol losses due to processing from many different foods to be rapidly compared. Where experimentally determined polyphenol contents of a processed food are not available, only published RFs matching at least the food and polyphenol of interest should be used when building food composition tables for epidemiological studies. © 2014 The Authors Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Novel strategy to create a hypoallergenic peanut protein-polyphenol edible matrices for oral immunotherapy

    USDA-ARS?s Scientific Manuscript database

    Peanut allergy affects approximately 1% of infants and children and 0.6% of adults in the U.S., and is responsible for the majority of fatal allergic reactions. Generally, immunoglobulin E (IgE) binds to epitopes on peanut proteins, triggering the cascades responsible for the allergic response. Poly...

  10. Comparison of phenolic acid profiles and anti-inflammatory effects of two major species of blueberries in the US

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) contain high levels of polyphenols. Among them, phenolic acids (PAs) have been recently suggested as a group of important bioactive compounds. Highbush BB (Vaccinium corymbosum) and lowbush “wild" BB (Vaccinium angustifolium) are two predominant species in North America. The first o...

  11. Niosomes consisting of tween-60 and cholesterol improve the chemical stability and bioavailability of (-)-epigallocatechin gallate during gastrointestinal tract

    USDA-ARS?s Scientific Manuscript database

    (-)-Epigallocatechin gallate (EGCG), the major polyphenol in green tea, has been shown to protect against chronic diseases. The mechanisms have been attributed to interactions with cell signaling pathways and its antioxidant properties. In vivo studies are difficult because of its limited bioavail...

  12. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr-/- mice

    USDA-ARS?s Scientific Manuscript database

    Background: The consumption of oats reduces plasma cholesterol, a major risk factor for heart disease. Oats, in addition to cholesterol lowering properties through its beta-glucan content, are a good source of several antioxidants including Avenanthramides (Avns), a unique group of polyphenols prese...

  13. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.

    PubMed

    Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L

    2011-05-01

    Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Polyphenols, Inflammation, and Cardiovascular Disease

    PubMed Central

    Tangney, Christy; Rasmussen, Heather E.

    2013-01-01

    Polyphenols are compounds found in foods such as tea, coffee, cocoa, olive oil, and red wine and have been studied to determine if their intake may modify cardiovascular disease (CVD) risk. Historically, biologic actions of polyphenols have been attributed to antioxidant activities, but recent evidence suggests that immunomodulatory and vasodilatory properties of polyphenols may also contribute to CVD risk reduction. These properties will be discussed, and recent epidemiological evidence and intervention trials will be reviewed. Further identification of polyphenols in foods and accurate assessment of exposures through measurement of biomarkers (i.e., polyphenol metabolites) could provide the needed impetus to examine the impact of polyphenol-rich foods on CVD intermediate outcomes (especially those signifying chronic inflammation) and hard endpoints among high risk patients. Although we have mechanistic insight into how polyphenols may function in CVD risk reduction, further research is needed before definitive recommendations for consumption can be made. PMID:23512608

  15. Metabolism of 2,4-dichlorophenol in tobacco engineered with bacterial degradative genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, E.J.; Sekine, M.; Gordon, M.P.

    1990-05-01

    The potential use of plants in toxic waste remediation has been overlooked. While chlorophenols are relatively slowly metabolized in Nicotiana tabacum var. Xanthi leaf extracts, chlorocatechols are rapidly metabolized, presumably by polyphenol oxidases. Our initial focus has been the fate of 2,4-dichlorophenol (2,4DCP) in var. Xanthi plants which express a bacterial 2,4DCP hydroxylase, which converts 2,4DCP to 3,5-dichlorocatechol. The roots of wild type and 2,4DCP hydroxylase transgenic plants growing in hydroponics were exposed to {sup 14}C-2,4DCP. Approximately 95% of {sup 14}C-2,4DCP metabolites remained in the roots when exposed to 2,4DCP. Upon extraction of root tissue, three major metabolites were foundmore » in untransformed plants and four major metabolites in transformed plants. Upon digestion with beta-D-glucosidase, these metabolites disappeared concomitant with the appearance of free 2,4DCP in wild type plants and 2,4DCP and 3,5-dichlorocatechol in transgenic plants. It is apparent that the chlorophenols are not readily available substrates for polyphenol oxidases in whole plants.« less

  16. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance.

    PubMed

    Zhou, Jin; Farah, Benjamin Livingston; Sinha, Rohit Anthony; Wu, Yajun; Singh, Brijesh Kumar; Bay, Boon-Huat; Yang, Chung S; Yen, Paul Michael

    2014-01-01

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has been shown to have anti-inflammatory, anti-cancer, anti-steatotic effects on the liver. Autophagy also mediates similar effects; however, it is not currently known whether EGCG can regulate hepatic autophagy. Here, we show that EGCG increases hepatic autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in hepatic cells and in vivo. EGCG also increases phosphorylation of AMPK, one of the major regulators of autophagy. Importantly, siRNA knockdown of AMPK abrogated autophagy induced by EGCG. Interestingly, we observed lipid droplet within autophagosomes and autolysosomes and increased lipid clearance by EGCG, suggesting it promotes lipid metabolism by increasing autophagy. In mice fed with high-fat/western style diet (HFW; 60% energy as fat, reduced levels of calcium, vitamin D3, choline, folate, and fiber), EGCG treatment reduces hepatosteatosis and concomitantly increases autophagy. In summary, we have used genetic and pharmacological approaches to demonstrate EGCG induction of hepatic autophagy, and this may contribute to its beneficial effects in reducing hepatosteatosis and potentially some other pathological liver conditions.

  17. Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue.

    PubMed

    Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R

    2010-04-01

    Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.

  18. Release of small phenolic compounds from brewer's spent grain and its lignin fractions by human intestinal microbiota in vitro.

    PubMed

    Aura, Anna-Marja; Niemi, Piritta; Mattila, Ismo; Niemelä, Klaus; Smeds, Annika; Tamminen, Tarja; Faulds, Craig; Buchert, Johanna; Poutanen, Kaisa

    2013-10-09

    Brewer's spent grain (BSG), the major side-stream from brewing, is rich in protein, lignin, and nonstarch polysaccharides. Lignin is a polyphenolic macromolecule considered resilient toward breakdown and utilization by colon microbiota, although some indications of release of small phenolic components from lignin in animals have been shown. The aim of this study was to investigate if the human intestinal microbiota can release lignans and small phenolic compounds from whole BSG, a lignin-enriched insoluble fraction from BSG and a deferuloylated fraction, in a metabolic in vitro colon model. The formation of short-chain fatty acid (SCFA) was also investigated. More lignin-related monomers and dilignols were detected from the lignin-enriched fraction than from BSG or deferuloylated BSG. SCFA formation was not suppressed by any of the fractions. It was shown that small lignin-like compounds were released from these samples in the in vitro colon model, originating most likely from lignin.

  19. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea.

    PubMed

    Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi

    2017-09-27

    Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  20. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease.

    PubMed

    El-Mostafa, Karym; El Kharrassi, Youssef; Badreddine, Asmaa; Andreoletti, Pierre; Vamecq, Joseph; El Kebbaj, M'Hammed Saïd; Latruffe, Norbert; Lizard, Gérard; Nasser, Boubker; Cherkaoui-Malki, Mustapha

    2014-09-17

    Opuntia ficus-indica, commonly referred to as prickly pear or nopal cactus, is a dicotyledonous angiosperm plant. It belongs to the Cactaceae family and is characterized by its remarkable adaptation to arid and semi-arid climates in tropical and subtropical regions of the globe. In the last decade, compelling evidence for the nutritional and health benefit potential of this cactus has been provided by academic scientists and private companies. Notably, its rich composition in polyphenols, vitamins, polyunsaturated fatty acids and amino acids has been highlighted through the use of a large panel of extraction methods. The identified natural cactus compounds and derivatives were shown to be endowed with biologically relevant activities including anti-inflammatory, antioxidant, hypoglycemic, antimicrobial and neuroprotective properties. The present review is aimed at stressing the major classes of cactus components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefit and therapeutic impacts.

  1. Variability in Foliar Ellagitannins of Hippophaë rhamnoides L. and Identification of a New Ellagitannin, Hippophaenin C.

    PubMed

    Suvanto, Jussi; Tähtinen, Petri; Valkamaa, Saku; Engström, Marica T; Karonen, Maarit; Salminen, Juha-Pekka

    2018-01-24

    Berries of common sea-buckthorn (Hippophaë rhamnoides L.) are well-known and used for their bioactive components, and while there is a considerable amount of research on the leaves as well, their ellagitannins (ETs) have not been a prominent focus of research. We identified and quantified ten major hydrophilic polyphenols, all ETs, in H. rhamnoides leaves and compared their abundance between 58 plant individuals. Of these compounds, hippophaenin C was characterized as a new ellagitannin by various spectrometric methods. The total concentrations of ETs ranged from 42.5 mg g -1 dry weight (DW) to 109.1 mg g -1 DW between individual plants. Among the ETs, hippophaenin C, stachyurin, and casuarinin were on average the most abundant compounds. Sexes did not differ significantly, while cultivars showed variation in some ETs. These results suggest that H. rhamnoides leaves could be a potential and rich source of several ETs.

  2. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity.

    PubMed

    Pardo-Andreu, Gilberto L; Sánchez-Baldoquín, Carlos; Avila-González, Rizette; Yamamoto, Edgar T Suzuki; Revilla, Andrés; Uyemura, Sérgio Akira; Naal, Zeki; Delgado, René; Curti, Carlos

    2006-11-01

    A standard aqueous stem bark extract from selected species of Mangifera indica L. (Anacardiaceae)--Vimang, whose major polyphenolic component is mangiferin, displays potent in vitro and in vivo antioxidant activity. The present study provides evidence that the Vimang-Fe(III) mixture is more effective at scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as in protecting against t-butyl hydroperoxide-induced mitochondrial lipid peroxidation and hypoxia/reoxygenation-induced hepatocytes injury, compared to Vimang alone. Voltammetric assays demonstrated that Vimang, in line with the high mangiferin content of the extract, behaves electrochemically like mangiferin, as well as interacts with Fe(III) in close similarity with mangiferin's interaction with the cation. These results justify the high efficiency of Vimang as an agent protecting from iron-induced oxidative damage. We propose Vimang as a potential therapy against the deleterious action of reactive oxygen species generated during iron-overload, such as that occurring in diseases like beta-thalassemia, Friedreich's ataxia and haemochromatosis.

  3. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    PubMed

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. White Light Emission from Vegetable Extracts

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Mishra, Ashok K.

    2015-06-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.

  5. Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders

    PubMed Central

    Leonetti, Daniela; Soleti, Raffaella; Clere, Nicolas; Vergori, Luisa; Jacques, Caroline; Duluc, Lucie; Dourguia, Catherine; Martínez, Maria C.; Andriantsitohaina, Ramaroson

    2017-01-01

    Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO•) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO• production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO• bioavailability. ERα deletion, however, had no effect on polyphenol’s ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake. PMID:28119607

  6. Biochemical Analysis and in Vivo Hypoglycemic Activity of a Grape Polyphenol–Soybean Flour Complex

    PubMed Central

    Roopchand, Diana E.; Kuhn, Peter; Poulev, Alexander; Oren, Andrew; Lila, Mary Ann; Fridlender, Bertold; Raskin, Ilya

    2012-01-01

    Defatted soybean flour (DSF) can efficiently sorb, concentrate, and stabilize polyphenols, but not sugars, from Concord grape juice, to yield grape polyphenol-enriched DSF. Sorption of grape polyphenols to DSF particles was dependent on the ratio of DSF and grape juice concentrate used, but not time of mixing or pH. Depending on ratios of starting materials, 1 g of grape polyphenol-enriched DSF contained 1.6–10.4 mg of anthocyanins, 7.5–93.1 mg of proanthocyanidins, and 20.5–144.5 mg of total polyphenols. LC-MS analysis of grape juice samples before and after addition and removal of DSF and eluate from grape polyphenol-enriched DSF confirmed that a broad range of grape compounds were sorbed to the DSF matrix. Finally, grape polyphenol-enriched DSF was able to significantly lower blood glucose levels in hyperglycemic C57BL/6J mice. The data indicate that grape polyphenol-enriched DSF can provide a high-protein, low-sugar ingredient for delivery of concentrated grape polyphenolics. PMID:22462390

  7. Polyphenols and Glycemic Control

    PubMed Central

    Kim, Yoona; Keogh, Jennifer B.; Clifton, Peter M.

    2016-01-01

    Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5′ adenosine monophosphate-activated protein kinase (AMPK), modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols. PMID:26742071

  8. Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi

    PubMed Central

    Li, Hui

    2017-01-01

    Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092

  9. Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity.

    PubMed

    Kaulmann, Anouk; Jonville, Marie-Caroline; Schneider, Yves-Jacques; Hoffmann, Lucien; Bohn, Torsten

    2014-07-15

    The consumption of phytochemicals such as carotenoids and polyphenols within whole fruits and vegetables has been associated with decreased incidence of various inflammation and oxidative stress related chronic diseases, which may be due to direct antioxidant effects, or indirect mechanisms such as affecting signal transduction/gene expression. Within the present study, we investigated the antioxidant composition of two major groups of vegetables and fruits, Brassica oleraceae and prunus spp., and estimated their contribution to antioxidant capacity. For this purpose, 17 plum and 27 Brassica varieties were collected in Luxembourg, and analysed for their individual polyphenol and carotenoid profile, vitamin C, dietary fibre, and minerals/trace elements, and their correlation with markers of antioxidant capacity (FRAP, ABTS, Folin-Ciocalteu). Total carotenoid and polyphenol content varied considerably between the different Brassica and plum varieties, with highest concentrations in the variety Kale (13.3 ± 0.58 mg/100g wet weight) and Cherry plum (1.96 ± 0.28 mg/100g) for carotenoids; and Kale (27.0 ± 0.91 mg/100g) and Kirks plum (185 ± 14 mg/100g) for polyphenols. In developed multiple linear-regression-models for Brassica, flavonoids, anthocyanins, lutein and vitamin C were found to be the best predictors of antioxidant capacity as assessed by FRAP (R(2)=0.832) and flavonoids, neochlorogenic acid and vitamin C as assessed by ABTS (R(2)=0.831); while for plums these were selenium, total sugars, chlorogenic acid and vitamin C (R(2)=0.853), and selenium, chlorogenic acid and flavonoids for FRAP (R(2)=0.711). When considering Brassica and plum consumption in Luxembourg, it is estimated that both contribute to an antioxidant intake equivalent to 26 and 6 mg per day of ascorbic acid equivalents, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Diet supplementation for 5 weeks with polyphenol-rich cereals improves several functions and the redox state of mouse leucocytes.

    PubMed

    Alvarez, Pedro; Alvarado, Carmen; Mathieu, Florence; Jiménez, Liliana; De la Fuente, Mónica

    2006-12-01

    Cereals naturally contain a great variety of polyphenols, which exert a wide range of physiological effects both in vitro and in vivo. Many of their protective effects, including an improvement of the function and redox state of immune cells in unhealthy or aged subjects come from their properties as powerful antioxidant compounds. However, whether cereal-based dietary supplementation positively affects the immune function and cellular redox state of healthy subjects remains unclear. To investigate the effects of supplementation (20% wt/wt) for 5 weeks with four different cereal fractions on healthy mice. Several parameters of function and redox state of peritoneal leukocytes were measured. The cereals, named B (wheat germ), C (buckwheat flour), D (fine rice bran) and E (wheat middlings) contained different amounts of gallic acid, p-hydroxybenzoic acid, vanillic acid, sinapic acid, p-coumaric acid, ferulic acid, quercetin, catechin, rutin and oryzanol as major polyphenols. In general, all cereal fractions caused an improvement of the leukocyte parameters studied such as chemotaxis capacity, microbicidal activity, lymphoproliferative response to mitogens, interleukin-2 (IL-2) and tumor necrosis factor (TNFalpha) release, as well as oxidized glutathione (GSSG), GSSG/GSH ratio, catalase (CAT) activity and lipid oxidative damage. We observed similar effects among the cereal fractions. The results suggest that some of these effects may due, at least partially, to the antioxidant activity of the polyphenols naturally present in cereals. Since an appropriate function of the leukocytes has been proposed as marker of the health state, a short-term intake of cereals seems to be sufficient to exert a benefit in the health of the general population. However, further studies are needed to assess the optimal doses and to find out which active polyphenols are able to mediate the observed physiological effects before recommending their regular consumption.

  11. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice.

    PubMed

    Nemec, Matthew J; Kim, Hyemee; Marciante, Alexandria B; Barnes, Ryan C; Hendrick, Erik D; Bisson, William H; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2017-03-01

    The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Review: The Potential of the Common Bean (Phaseolus vulgaris) as a Vehicle for Iron Biofortification

    PubMed Central

    Petry, Nicolai; Boy, Erick; Wirth, James P.; Hurrell, Richard F.

    2015-01-01

    Common beans are a staple food and the major source of iron for populations in Eastern Africa and Latin America. Bean iron concentration is high and can be further increased by biofortification. A major constraint to bean iron biofortification is low iron absorption, attributed to inhibitory compounds such as phytic acid (PA) and polyphenol(s) (PP). We have evaluated the usefulness of the common bean as a vehicle for iron biofortification. High iron concentrations and wide genetic variability have enabled plant breeders to develop high iron bean varieties (up to 10 mg/100 g). PA concentrations in beans are high and tend to increase with iron biofortification. Short-term human isotope studies indicate that iron absorption from beans is low, PA is the major inhibitor, and bean PP play a minor role. Multiple composite meal studies indicate that decreasing the PA level in the biofortified varieties substantially increases iron absorption. Fractional iron absorption from composite meals was 4%–7% in iron deficient women; thus the consumption of 100 g biofortified beans/day would provide about 30%–50% of their daily iron requirement. Beans are a good vehicle for iron biofortification, and regular high consumption would be expected to help combat iron deficiency (ID). PMID:25679229

  13. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  14. Enzymatic processing of pigmented and non pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity.

    PubMed

    Prabhu, Ashish A; Jayadeep, A

    2015-10-01

    Bran from different rice varieties is a treasure of nutrients and nutraceuticals, and its use is limited due to the poor sensory and functional properties. Application of enzymes can alter the functional and phytochemical properties. So the effect of endo-xylanase, cellulase and their combination on microstructural, nutraceutical and antioxidant properties of pigmented (Jyothi) and non-pigmented (IR64) rice bran were investigated. Scanning electron micrograph revealed micro structural changes in fibre structures on processing. All the enzymatic processing methods resulted in an increase in the content of oryzanol, soluble, bound and total polyphenols, flavonoid and tannin. It also showed an increase in the bioactivity with respect to free radical scavenging activity and total antioxidant activity. However, extent of the increase in bio-actives varied with the type of bran and enzyme application method. Endo-xylanase showed higher percentage difference compared to controls of Jyothi and IR64 bran extracts respectively in the content of the bound (10 & 19 %) and total (20 & 14 %) polyphenols. Combination of both the enzymes resulted in higher percentage increase of bioactive components and properties. It resulted in greater percentage difference compared to controls of Jyothi and IR64 extracts respectively in the content of soluble (58 & 17 %) and total (21 & 14 %) polyphenols, flavonoids (12 & 38 %), γ-oryzanol (10 & 12 %), free radical scavenging activity (64 & 30 %) and total antioxidant activity (82 & 136 %). It may be concluded that enzymatic bio-processing of bran with cellulose and hemicellulose degrading enzymes can improve its nutraceutical properties, and it may be used for development of functional foods.

  15. Extract of Aronia melanocarpa-modified hemostasis: in vitro studies.

    PubMed

    Sikora, Joanna; Markowicz-Piasecka, Magdalena; Broncel, Marlena; Mikiciuk-Olasik, Elżbieta

    2014-10-01

    Aronia melanocarpa has an extremely high content of procyanidins and anthocyanins. The multidirectional benefits of consumption of these berries are widely reported. Although numerous studies confirmed the influence of polyphenols on various stages of hemostasis, the exact mechanism of this phenomenon is not understood. The aim of our study was to evaluate the in vitro effect of A. melanocarpa extract on various parameters of hemostasis. Adenosine 5'-diphosphate (ADP)-induced aggregation was measured with turbidimetric method. Spontaneous and ADP-activated platelet adhesion were investigated using a colorimetric method. The global assay of coagulation and fibrinolysis was performed with the use of optical clotting and lysis (CL) test. Thrombin (0.5 IU/mL) and tissue plasminogen activator (60 ng/mL) were used to obtain a CL curve. The activity of thrombin and plasmin was determined by means of chromogenic substrate (S-2238, S-2251) RESULTS: The aronia extract contributed to the reduction in spontaneous and ADP-activated platelet adhesion. A significant increase in overall potential of CL as well as significant changes in key parameters of these processes (T t-thrombin time, F vo-initial plasma clotting velocity, and L max-maximum lysis) was reported. Chokeberry extract significantly inhibited the amidolytic activity of thrombin and plasmin. Our in vitro findings indicate a complex mechanism of influence of chokeberry polyphenols on platelet activity and the overall potential of CL. We confirmed that chokeberry inhibits the amidolytic activity of thrombin. It was demonstrated for the first time that chokeberry polyphenols inhibit the amidolytic activity of another serine protease, i.e., plasmin, which is the main fibrinolytic enzyme. Furthermore, our research points out a significant contribution of other plasma components and fibrinogen in the modulation of hemostasis by polyphenols.

  16. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway

    PubMed Central

    Amawi, Haneen; Ashby, Charles R.; Peraman, Ramalingam

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) has received significant interest as a novel target in cancer prevention, metastasis, and resistance. The conversion of cells from an epithelial, adhesive state to a mesenchymal, motile state is one of the key events in the development of cancer metastasis. Polyphenols have been reported to be efficacious in the prevention of cancer and reversing cancer progression. Recently, the antimetastatic efficacy of polyphenols has been reported, thereby expanding the potential use of these compounds beyond chemoprevention. Polyphenols may affect EMT pathways, which are involved in cancer metastasis; for example, polyphenols increase the levels of epithelial markers, but downregulate the mesenchymal markers. Polyphenols also alter the level of expression and functionality of important proteins in other signaling pathways that control cellular mesenchymal characteristics. However, the specific proteins that are directly affected by polyphenols in these signaling pathways remain to be elucidated. The aim of this review is to analyze current evidence regarding the role of polyphenols in attenuating EMT-mediated cancer progression and metastasis. We also discuss the role of the most important polyphenol subclasses and members of the polyphenols in reversing metastasis and targeting EMT. Finally, limitations and future directions to improve our understanding in this field are discussed. PMID:28825675

  17. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: relationship between total polyphenol and individual catechin content.

    PubMed

    Roy, Molay K; Koide, Motoki; Rao, Theertham P; Okubo, Tsutomu; Ogasawara, Yutaka; Juneja, Lekh R

    2010-03-01

    Commercially available tea infusions are the major source of catechins for preparing bottled tea beverages and tea supplements available in the market today. In the present study, we analyzed five tea infusions to measure the total antioxidant capacity (TAC) by oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (DRSC) assays, total polyphenol content by the colorimetric method and individual catechin content by high-performance liquid chromatography. Four major tea catechins were also analyzed for their TAC to reveal differential antioxidant behavior of the tea infusions, resulting in the ORAC and DRSC methods. The correlation coefficients between DRSC and the total polyphenol or total catechin content of the tea infusions were 1.0 and 0.99. However, the values fall to 0.73 and 0.69, respectively, while the ORAC activity was correlated with total polyphenol and total catechin content. Determining the TAC of individual tea catechins showed that ORAC of epicatechin was seven-fold higher than that of epigallocatechin gallate; on the contrary, epigallocatechin gallate showed significantly (P < 0.05) stronger DRSC activity than epicatechin. By evaluating the structure-activity relationship, this study further revealed that OH substitution at the 3' position in pyrogallol moieties contributes to the lower ORAC value of epigallocatechin and epigallocatechin gallate comparing with their non-3'-OH counterparts, such as epicatechin and epicatechin gallate, respectively. Also, numbers of OH substitutions were poorly correlated with the observed ORAC value unlike the DRSC. Overall, results of this study enabled us to hypothesize that substances having a lower TAC value in the ORAC assay compared with that in DPPH assays may pertain to a pro-oxidant effect by generating reactive oxygen species in an aqueous buffer, at a physiological pH. We also propose that substances exhibiting lower TAC value in the ORAC assay compared with that in the DPPH assay are powerful pro-oxidants compared with the substances showing a higher TAC value in the ORAC assay than that in the DPPH assay.

  18. Characterization of nine polyphenols in fruits of Malus pumila Mill by high-performance liquid chromatography.

    PubMed

    Bai, Lu; Guo, Sen; Liu, Qingchao; Cui, Xueqin; Zhang, Xinxin; Zhang, Li; Yang, Xinwen; Hou, Manwei; Ho, Chi-Tang; Bai, Naisheng

    2016-04-01

    Polyphenols are important bioactive substances in apple. To explore the profiles of the nine representative polyphenols in this fruit, a high-performance liquid chromatography method has been established and validated. The validated method was successfully applied for the simultaneous characterization and quantification of these nine apple polyphenols in 11 apple extracts, which were obtained from six cultivars from Shaanxi Province, China. The results showed that only abscission of the Fuji apple sample was rich in the nine apple polyphenols, and the polyphenol contents of other samples varied. Although all the samples were collected in the same region, the contents of nine polyphenols were different. The proposed method could serve as a prerequisite for quality control of Malus products. Copyright © 2015. Published by Elsevier B.V.

  19. [Polyphenol availability in fruits and vegetables consumed in Brazil].

    PubMed

    Faller, Ana Luísa Kremer; Fialho, Eliane

    2009-04-01

    To estimate total polyphenol availability in fruits and vegetables commonly consumed in Brazil and its regions, and to identify the main food sources that constitute food habits in this country. Total polyphenols were determined by the Folin-Ciocalteu method and the availability estimated according to the Pesquisa de Orçamentos Familiares 2002/ 2003 (2002/2003 Family Budget Survey). Twelve highly consumed food items were chosen, of which six were 'tropical fruits' and six were vegetables under the categories of 'leafy and flower vegetables', 'fruit vegetables' and 'tuberous vegetables'. Polyphenol quantification was performed with three independent experiments, each one in duplicate. The national polyphenol availability was estimated in grams per fresh weight of each analyzed food. Daily per capita availability in Brazil and its regions was calculated using the amount of polyphenol provided by the consumption of the 12 foods analyzed. Polyphenol contents of foods varied from 15.35 to 214.84 mg GAE/ 100 g of fresh weight. Polyphenol availability in Brazil, based on the amount in kilograms that is annually acquired in Brazil, of the 12 selected foods was 48.3 mg/ day, and the Southeast and Central-West regions had the highest and lowest values, respectively. Banana was the main polyphenol source consumed in Brazil, even though this pattern varied among regions. The estimated daily polyphenol availability in Brazil was similar to other countries. Differences observed among regions could be directly related to distinct cultural habits. Although there is no recommended daily availability of polyphenols, consumption of the recommended daily amount of fruits and vegetables can increase the availability of polyphenols 16 times, showing a clear relationship between the consumption of these food groups and the availability of beneficial bioactive compounds.

  20. Antibacterial activities and antioxidant capacity of Aloe vera

    PubMed Central

    2013-01-01

    Background The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Results Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Conclusion Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes. PMID:23870710

  1. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons.

    PubMed

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan

    2016-01-01

    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  2. Olive polyphenol effects in a mouse model of chronic ethanol addiction.

    PubMed

    Carito, Valentina; Ceccanti, Mauro; Cestari, Vincenzo; Natella, Fausta; Bello, Cristiano; Coccurello, Roberto; Mancinelli, Rosanna; Fiore, Marco

    2017-01-01

    Alcohol addiction elicits oxidative imbalance and it is well known that polyphenols possess antioxidant properties. We investigated whether or not polyphenols could confer a protective potential against alcohol-induced oxidative stress. We administered (per os) for two months 20 mg/kg of olive polyphenols containing mostly hydroxytyrosol in alcoholic adult male mice. Hydroxytyrosol metabolites as hydroxytyrosol sulfate 1 and hydroxytyrosol sulfate 2 were found in the serum of mice administered with polyphenols with the highest amount in animals treated with both polyphenols and alcohol. Oxidative stress was evaluated by FORT (free oxygen radical test) and FORD (free oxygen radical defense) tests. Alcoholic mice showed a worse oxidative status than nonalcoholic mice (higher FORT and lower FORD) but polyphenol supplementation partially counteracted the alcohol pro-oxidant effects, as evidenced by FORT. A better understanding of the antioxidant protection provided by polyphenols might be of primary interest for drug discovery and dietary-based prevention of the damage associated with chronic alcohol abuse. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics.

    PubMed

    Braakhuis, Andrea J; Campion, Peta; Bishop, Karen S

    2016-09-06

    Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5-10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.

  4. Simultaneous determination of all polyphenols in vegetables, fruits, and teas.

    PubMed

    Sakakibara, Hiroyuki; Honda, Yoshinori; Nakagawa, Satoshi; Ashida, Hitoshi; Kanazawa, Kazuki

    2003-01-29

    Polyphenols, which have beneficial effects on health and occur ubiquitously in plant foods, are extremely diverse. We developed a method for simultaneously determining all the polyphenols in foodstuffs, using HPLC and a photodiode array to construct a library comprising retention times, spectra of aglycons, and respective calibration curves for 100 standard chemicals. The food was homogenized in liquid nitrogen, lyophilized, extracted with 90% methanol, and subjected to HPLC without hydrolysis. The recovery was 68-92%, and the variation in reproducibility ranged between 1 and 9%. The HPLC eluted polyphenols with good resolution within 95 min in the following order: simple polyphenols, catechins, anthocyanins, glycosides of flavones, flavonols, isoflavones and flavanones, their aglycons, anthraquinones, chalcones, and theaflavins. All the polyphenols in 63 vegetables, fruits, and teas were then examined in terms of content and class. The present method offers accuracy by avoiding the decomposition of polyphenols during hydrolysis, the ability to determine aglycons separately from glycosides, and information on simple polyphenol levels simultaneously.

  5. Retention and distribution of polyphenols after pan-frying of French fries in oils enriched with olive leaf extract.

    PubMed

    Chiou, A; Salta, F N; Kalogeropoulos, N; Mylona, A; Ntalla, I; Andrikopoulos, N K

    2007-10-01

    Palm oil, olive oil, and sunflower oil were supplemented with an extract rich in polyphenols obtained from olive tree (Olea europaea) leaves at levels of 120 and 240 mg total polyphenols per kilogram of oil. Pan-frying of potatoes was performed in both the enriched and the nonsupplemented oils under domestic frying conditions. Total polyphenol content was estimated by the Folin-Ciocalteau assay, oleuropein was determined by HPLC analysis, while other individual polyphenols by GC/MS analysis. Fourteen polyphenol species were identified in the olive leaf extract, among which oleuropein predominated (1.25 g/kg olive leaves). All the enriched oils contained oleuropein before and after frying. Oleuropein as well as other polyphenol species were detected in all French fries cooked in enriched oils. Polyphenol intake by consuming French fries pan-fried in the enriched oils was calculated to be 6 to 31 times higher than that in the case of French fries fried in commercial oils, being dependent on the frying oil type.

  6. Efficacy of new natural biomodification agents from Anacardiaceae extracts on dentin collagen cross-linking.

    PubMed

    Moreira, M A; Souza, N O; Sousa, R S; Freitas, D Q; Lemos, M V; De Paula, D M; Maia, F J N; Lomonaco, D; Mazzetto, S E; Feitosa, V P

    2017-10-01

    Several polyphenols from renewable sources were surveyed for dentin biomodification. However, phenols from cashew nut shell liquid (CNSL, Anacardium occidentale) and from Aroeira (Myracrodruon urundeuva) extract have never been evaluated. The present investigation aimed to compare the dentin collagen crosslinking (biomodification) effectiveness of polyphenols from Aroeira stem bark extract, proanthocyanidins (PACs) from grape-seed extract (Vitis vinifera), cardol and cardanol from CNSL after clinically relevant treatment for one minute. Three-point bending test was used to obtain the elastic modulus of fully demineralized dentin beams before and after biomodification, whilst color change and mass variation were evaluated after four weeks water biodegradation. Color aspect was assessed by optical images after biodegradation whereas collagen cross-linking was investigated by micro-Raman spectroscopy. Statistical analysis was performed with repeated-measures two way ANOVA and Tukey's test (p<0.05). The increase in elastic modulus after biomodification was in the order cardol>cardanol>aroeira=PACs with cardol solution achieving mean 338.2% increase. The mass increase after biomodification followed the same order aforementioned. Nevertheless, after four weeks aging, more hydrophobic agent (cardanol) induced the highest resistance against water biodegradation. Aroeira and cardol attained intermediate outcomes whereas PACs provided the lower resistance. Tannin-based agents (Aroeira and PACs) stained the specimens in dark brown color. No color alteration was observed with cardol and cardanol treatments. All four agents achieved crosslinking in micro-Raman after one minute application. In conclusion, major components of CNSL yield overall best dentin biomodification outcomes when applied for one minute without staining the dentin collagen. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  8. Effect of fermentation and drying on cocoa polyphenols.

    PubMed

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  9. Biomarkers of Dietary Polyphenols in Cancer Studies: Current Evidence and Beyond.

    PubMed

    Wang, Jincheng; Tang, Lili; Wang, Jia-Sheng

    2015-01-01

    Polyphenols, commonly contained in fruits and vegetables, have long been associated with a protective role against multiple diseases and adverse health effects. Generally, in vitro and animal experiments have provided strong positive evidence, whereas evidence from in vivo and human epidemiological studies is not strong enough. Most epidemiological studies to date use food frequency questionnaire based dietary intake estimations, which inevitably incur imprecision. Biomarkers of polyphenol have the potential to complement and enhance current studies. This review performed a literature search of all epidemiological studies or controlled clinical/intervention trials which employed biomarkers of exposure for polyphenols to help assess their anticarcinogenic role, using studies on green tea polyphenols as a study model. Currently, studies on this topic are still limited; breast cancer and prostate cancer were the only widely studied cancer types. Isoflavone is the only widely studied polyphenol. In addition to associations between polyphenols and cancer risks, factors such as host genetic susceptibility, epigenetic modification, and gut microbiome patterns may also impact on the protective roles of polyphenols. More evidence should be collected by utilizing biomarkers of exposure for polyphenols in future epidemiological studies before a clear conclusion can be made.

  10. [Study on adsorption of tea polyphenol and caffine with polyamide resin].

    PubMed

    Tang, Ke-wen; Zhou, Chun-shan; Zhong, Shi-an; Zhu, Jie-ding

    2003-02-01

    The performance of adsorption of tea polyphenol and caffine with polyamide resin was investigated. The results obtained by spectrophotometry and HPLC show that the ability of adsorption of tea polyphenol with polyamide is stronger than that of caffine, in which hydrogen bond plays a very important role. The adsorption amount of caffine is 2.65 mg.g-1 with 7.5% adsorption ratio when 100 mL of 0.71 g.L-1 caffine is adsorbed on polyamide resine, but the adsorption amount of tea polyphenol is up to 148.13 mg.g-1 with 85% adsorption ratio when 700 mL of 1.98 g.L-1 tea polyphenol is adsorbed on polyamide resine. The dilution ratios of caffine and tea polyphenol are 74% and 90%, respectively, when they are diluted by 85% alcohol. The static adsorptions of caffine and tea polyphenol on polyamide resine reach equilibrium quickly in 80 min, and the plots of adsorption kinetics are nearly linear. Tea polyphenol and caffine are successfully separated on polyamide resine, and the obtained product contains more than 96% of tea polyphenol and 80% of EGCC with caffine less than 2.8%.

  11. Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia

    USDA-ARS?s Scientific Manuscript database

    Polyphenols are natural substances with variable phenolic structures and are enriched in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. Recent interest...

  12. Dietary polyphenols exert neuroprotective effects by attenuating neuronal and astrocytic damage in cerebral ischemia

    USDA-ARS?s Scientific Manuscript database

    Polyphenols are natural substances with variable phenolic structures and are found in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. Recent interest in...

  13. In vitro and in vivo antioxidant and antimutagenic activities of polyphenols extracted from hops (Humulus lupulus L.).

    PubMed

    Wang, Xuping; Yang, Lei; Yang, Xiaolan; Tian, Yanhua

    2014-06-01

    Hops (Humulus lupulus L.) contain 40-140 mg g(-1) polyphenols. The objective of this study was to determine the phenolic composition of a high-purity (total phenolic content = 887 mg g(-1) ) hop polyphenol extract (HPE) and evaluate its antioxidant activities in vivo and in vitro and its antimutagenic activity. The antioxidant activity of HPE was compared with the activity of green tea polyphenols. The phenolic compositions of HPE were more than 55% proanthocyanidins and more than 28% flavonoid glycosides. In vitro, HPE effectively scavenged α,α-diphenyl-β-picrylhydrazyl, hydroxyl and superoxide anion radicals, and inhibited DNA oxidative damage. In vivo, oral HPE at a polyphenol dose of 200-800 mg kg(-1) body weight significantly prevented a bromobenzene-induced decrease in liver superoxide dismutase and glutathione peroxidase activity, and decreased levels of liver thiobarbituric acid reactive substances in bromobenzene-treated mice. An oral dose of 20-80 mg kg(-1) body weight HPE significantly reduced the frequency of bone marrow micronuclei induced by cyclophosphamide. The antioxidant activities of hop polyphenols in vitro and in vivo were higher than green tea polyphenols at the same concentration. Hop polyphenols had the same or higher antioxidant activity than tea polyphenols. Hop polyphenols might be useful as natural antioxidants and antimutagens. © 2013 Society of Chemical Industry.

  14. Nutritional Genomics, Polyphenols, Diets, and Their Impact on Dietetics

    PubMed Central

    Barnes, Stephen

    2009-01-01

    Nutritional genomics offers a way to optimize human health and the quality of life. It is an attractive endeavor, but one with substantial challenges. It encompasses almost all known aspects of science, ranging from the genomes of humans, plants and microorganisms, to the highest levels of food science, analytical science, computing and statistics of large systems, as well as human behavior. The underlying biochemistry that is targeted by the principal issues in nutritional genomics is described and entails genomics, transcriptomics, proteomics and metabolomics. A major feature relevant to nutritional genomics is the single nucleotide polymorphisms in genes that interact with nutrients and other bioactive food components. These genetic changes may lead to alterations in absorption, metabolism and functional responses to bioactive nutritional factors. Bioactive food components may also regulate gene expression at the transcriptome, protein abundance and/or protein turnover levels. Even if all of these variables are known, additional variables to be taken into account include the nutritional variability of the food (unprocessed and processed), the amount that is actually eaten, and the eating-related behaviors of those consuming the food. These challenges are explored within the context of soy intake. Finally, the importance of international co-operation in nutritional genomics research is presented. PMID:18954579

  15. Production of plant-derived polyphenols in microorganisms: current state and perspectives.

    PubMed

    Milke, Lars; Aschenbrenner, Jennifer; Marienhagen, Jan; Kallscheuer, Nicolai

    2018-02-01

    Plants synthesize several thousand different polyphenols of which many have the potential to aid in preventing or treating cancer, cardiovascular, and neurodegenerative diseases. However, plants usually contain complex polyphenol mixtures impeding access to individual compounds in larger quantities. In contrast, functional integration of biosynthetic plant polyphenol pathways into microorganisms allows for the production of individual polyphenols as chemically distinct compounds, which can be synthesized in large amounts and can be more easily isolated. Over the last decade, microbial synthesis of many plant polyphenols could be achieved, and along the way, many decisive bottlenecks in the endogenous microbial host metabolism as well as in the heterologous plant pathways could be identified. In this review, we present recent advancements in metabolic engineering of microorganisms for the production of plant polyphenols and discuss how current challenges could be addressed in the future.

  16. Protective effect of Aronia melanocarpa polyphenols against cadmium-induced disorders in bone metabolism: a study in a rat model of lifetime human exposure to this heavy metal.

    PubMed

    Brzóska, Malgorzata M; Rogalska, Joanna; Galazyn-Sidorczuk, Malgorzata; Jurczuk, Maria; Roszczenko, Alicja; Tomczyk, Michal

    2015-03-05

    It was investigated, in a female rat model of low and moderate lifetime human exposure to cadmium (Cd), whether polyphenols from Aronia melanocarpa berries (chokeberry; AMP) may offer protection from this heavy metal-induced disorders in bone metabolism. For this purpose, numerous indices of bone formation (osteocalcin, alkaline phosphatase, osteoprotegerin) and resorption (carboxy-terminal cross-linking telopeptides of type I collagen, soluble receptor activator of nuclear factor-κB ligand) in the serum and/or distal femur epiphysis (trabecular bone region), as well as bone mineral status (volumetric bone mineral density of the femur and content of mineral components, including calcium, in the bone tissue at the distal femur epiphysis) were evaluated in female Wistar rats that received a 0.1% aqueous extract of AMP, as the only drinking fluid (prepared from lyophilized extract by Adamed Consumer Healthcare), and/or Cd in diet (1 and 5mg/kg) for 3, 10, 17, and 24 months. Examination of the phytochemical profile of the aronia extract revealed high content of polyphenols (612.40 ± 3.33 mg/g), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among detected compounds anthocyanins were identified as dominating. The exposure to Cd, dose- and duration-dependently, enhanced resorption and inhibited formation of the bone tissue resulting in its decreased mineralization. The administration of AMP under the exposure to 1 and 5 mgCd/kg diet provided important protection from this heavy metal-induced disturbances in the bone turnover and changes in the bone mineral status, and the beneficial impact of polyphenols resulted from their independent action and interaction with Cd. These findings suggest that consumption of Aronia melanocarpa polyphenols may play a role in prevention against female skeleton damage due to chronic exposure to Cd and that chokeberry represents the good natural plant candidate for further investigations of its prophylactic use under environmental exposure to this heavy metal. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Leptin, Insulin, and Cinnamon Polyphenols Attenuate Glial Swelling and Mitochondrial Dysfunction in Ischemic Injury

    USDA-ARS?s Scientific Manuscript database

    Obesity is a major risk factor for stroke, and tissue injury following a stroke may be more severe in the obese. A key feature of obesity is increased serum levels of obesity-related hormones including leptin and insulin, indicating a state of resistance to these hormones. Insulin resistance is gen...

  18. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links12

    PubMed Central

    Burton-Freeman, Britt M; Sandhu, Amandeep K; Edirisinghe, Indika

    2016-01-01

    Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease—all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases. PMID:26773014

  19. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  20. Aroma changes of black tea prepared from methyl jasmonate treated tea plants*

    PubMed Central

    Shi, Jiang; Wang, Li; Ma, Cheng-ying; Lv, Hai-peng; Chen, Zong-mao; Lin, Zhi

    2014-01-01

    Methyl jasmonate (MeJA) was widely applied in promoting food quality. Aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (P<0.01); however, the gene expression of β-glucosidase was downregulated to a half level. In general, the aroma quality of the MeJA-treated black tea was clearly improved. PMID:24711352

  1. Daily Coffee Intake Inhibits Pancreatic Beta Cell Damage and Nonalcoholic Steatohepatitis in a Mouse Model of Spontaneous Metabolic Syndrome, Tsumura-Suzuki Obese Diabetic Mice.

    PubMed

    Watanabe, Syunsuke; Takahashi, Tetsuyuki; Ogawa, Hirohisa; Uehara, Hisanori; Tsunematsu, Takaaki; Baba, Hayato; Morimoto, Yuki; Tsuneyama, Koichi

    2017-05-01

    Metabolic syndrome is one of the most important health issues worldwide. Obesity causes insulin resistance, hyperlipidemia, diabetes, and various diseases throughout the body. The liver phenotype, which is called nonalcoholic steatohepatitis (NASH), frequently progresses to hepatocellular carcinoma. We recently established a new animal model, Tsumura-Suzuki obese diabetic (TSOD) mice, which spontaneously exhibit obesity, diabetes, hyperlipidemia, and NASH with liver nodules. We examined the effects of coffee intake on various conditions of the metabolic syndrome using TSOD mice. The daily volume of coffee administered was limited so that it reflected the appropriate quantities consumed in humans. To clarify the effects of the specific components, animals were divided into two coffee-intake groups that included with and without caffeine. Coffee intake did not significantly affect obesity and hyperlipidemia in TSOD mice. In contrast, coffee intake caused various degrees of improvement in the pancreatic beta cell damage and steatohepatitis with liver carcinogenesis. Most of the effects were believed to be caused by a synergistic effect of caffeine with other components such as polyphenols. However, the antifibrotic effects of coffee appeared to be due to the polyphenols rather than the caffeine. A daily habit of drinking coffee could possibly play a role in the prevention of metabolic syndrome.

  2. A Review of Polyphenolics in Oak Woods

    PubMed Central

    Zhang, Bo; Cai, Jian; Duan, Chang-Qing; Reeves, Malcolm J.; He, Fei

    2015-01-01

    Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods. PMID:25826529

  3. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer

    PubMed Central

    Siddiqui, Imtiaz A.; Asim, Mohammad; Hafeez, Bilal B.; Adhami, Vaqar M.; Tarapore, Rohinton S.; Mukhtar, Hasan

    2011-01-01

    Androgen deprivation therapy is the major treatment for advanced prostate cancer (PCa). However, it is a temporary remission, and the patients almost inevitably develop hormone refractory prostate cancer (HRPC). HRPC is almost incurable, although most HRPC cells still express androgen receptor (AR) and depend on the AR for growth, making AR a prime drug target. Here, we provide evidence that epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is a direct antagonist of androgen action. In silico modeling and FRET-based competition assay showed that EGCG physically interacts with the ligand-binding domain of AR by replacing a high-affinity labeled ligand (IC50 0.4 μM). The functional consequence of this interaction was a decrease in AR-mediated transcriptional activation, which was due to EGCG mediated inhibition of interdomain N-C termini interaction of AR. Treatment with EGCG also repressed the transcriptional activation by a hotspot mutant AR (T877A) expressed ectopically as well as the endogenous AR mutant. As the physiological consequence of AR antagonism, EGCG repressed R1881-induced PCa cell growth. In a xenograft model, EGCG was found to inhibit AR nuclear translocation and protein expression. We also observed a significant down-regulation of androgen-regulated miRNA-21 and up-regulation of a tumor suppressor, miRNA-330, in tumors of mice treated with EGCG. Taken together, we provide evidence that EGCG functionally antagonizes androgen action at multiple levels, resulting in inhibition of PCa growth.—Siddiqui, I. A., Asim, M., Hafeez, B. B., Adhami, V. M., Tarapore, R. S., Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. PMID:21177307

  4. Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts.

    PubMed

    Kabir, Faisal; Sultana, Mosammad Shahin; Kurnianta, Heri

    2015-09-01

    Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu's assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas gluco-amylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant.

  5. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.

  6. Polyphenol contents and antioxidant activity of Maydis stigma extracts.

    PubMed

    Maksimović, Zoran; Malencić, Dorde; Kovacević, Nada

    2005-05-01

    The antioxidant activity and contents of various polyphenol classes in the silks of fifteen maize hybrids with economic importance in Serbia were evaluated. Total polyphenols, tannins and proanthocyanidins were determined spectrophotometrically, after extraction of plant material with 70% aqueous acetone under sonication at room temperature. In addition, flavonoid content was determined. Antioxidant activity of aqueous acetone extracts was evaluated by FRAP assay. A positive linear correlation between antioxidant activity and contents of all investigated polyphenol classes was established. The highest antioxidant activity was observed in the extract of NS 640 hybrid, which had high levels of all polyphenol classes examined. Results suggested strongly that polyphenol content should be considered as an important feature of the herbal drug Maydis stigma. For that reason, the biological source of this herbal drug needs to be more precisely defined, as observed activities and polyphenol contents were greatly dependent on plant material source.

  7. Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts

    PubMed Central

    Kabir, Faisal; Sultana, Mosammad Shahin; Kurnianta, Heri

    2015-01-01

    Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu’s assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas gluco-amylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant. PMID:26451359

  8. Identification of black bean (Phaseolus vulgaris L.) polyphenols that inhibit and promote iron uptake by caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    In nutritional studies, polyphenolic compounds are considered to be inhibitors of Fe bioavailability. Because they are presumed to act in a similar manner, total polyphenols are commonly measured via the Folin-Ciocalteu colorimetric assay. In this study, we measured the content of polyphenolic compo...

  9. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death, brain edema, and cell swelling in cerebral ischemia

    USDA-ARS?s Scientific Manuscript database

    Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. while there are over 8000 polyphenolic structures identified in plants, edible plants contain only several hundred polyphenolic structures. In addition t...

  10. Effects of plant polyphenols and a-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (tea polyphenol, grape seed extract, and gingerol) and a-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and a-tocopherol significantly...

  11. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    PubMed

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-01

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.

  12. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics

    PubMed Central

    Braakhuis, Andrea J.; Campion, Peta; Bishop, Karen S.

    2016-01-01

    Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5–10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched. PMID:27608040

  13. Bioavailability of anthocyanins and colonic polyphenol metabolites following consumption of aronia berry extract.

    PubMed

    Xie, Liyang; Lee, Sang Gil; Vance, Terrence M; Wang, Ying; Kim, Bohkyung; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W

    2016-11-15

    A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modulation of interferon-γ synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions.

    PubMed

    Yamanaka, Daisuke; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2013-12-15

    Lignin-like polymerized polyphenols strongly activate lymphocytes and induce cytokine synthesis. We aimed to characterise the mechanisms of action of polymerized polyphenols on immunomodulating functions. We compared the reactivity of leukocytes from various organs to that of polymerized polyphenols. Splenocytes and resident peritoneal cavity cells (PCCs) responded to polymerized polyphenols and released several cytokines, whereas thymocytes and bone-marrow cells showed no response. Next, we eliminated antigen-presenting cells (APCs) from splenocytes to study their involvement in cytokine synthesis. We found that APC-negative splenocytes showed significantly reduced cytokine production induced by polymerized polyphenols. Additionally, adequate interferon-γ (IFN-γ) induction by polymerized polyphenols was mediated by the coexistence of APCs and T cells because the addition of T cells to PCCs increased IFN-γ production. Furthermore, inhibition of the T cell-APC interaction using neutralising antibodies significantly decreased cytokine production. Thus, cytokine induction by polymerized polyphenols was mediated by the interaction between APCs and T cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Potential Health Benefits of Olive Oil and Plant Polyphenols.

    PubMed

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-02-28

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  16. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells.

    PubMed

    Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J

    2006-07-12

    Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.

  17. Changes of Polyphenolic Substances in the Anatomical Parts of Buckwheat (Fagopyrum esculentum Moench.) during Its Growth Phases

    PubMed Central

    Bystricka, Judita; Musilova, Janette; Tomas, Jan; Vollmannova, Alena; Lachman, Jaromir; Kavalcova, Petra

    2014-01-01

    In this study the changes of total polyphenolics in different anatomical parts (stems, leaves, flowers and seeds) of common buckwheat (Fagopyrum esculentum Moench.) during vegetation period were analysed. The content of total polyphenolics was evaluated in growth phase I (formation of buds), phase II (at the beginning of flowering), phase III (full blossoming) and phase IV (full ripeness). In all growth phases (GP) the stems and leaves were evaluated and statistically significant differences in polyphenolics content between the two parts were confirmed. Statistically significant differences (p < 0.01) in polyphenolics content (in GP II and III) between stems and leaves; and between stems and flowers were found. In flowers an average of 13.8 times higher and in leaves 6 times higher concentration of polyphenolics in comparison with stems was measured. In GP III the content of polyphenolics in common buckwheat was following: flowers > leaves > achene > stems. In flowers an average of 11.9 times higher, in leaves 8.3 times higher and in achenes 5.9 times higher contents of polyphenolics compared with stems were found. In GP III and IV (leaves, achenes, stems) the leaves contained in average 20 times higher and achenes 5.6 times higher polyphenolics than stems. PMID:28234337

  18. Optimal conditions for peripheral nerve storage in green tea polyphenol: an experimental study in animals.

    PubMed

    Matsumoto, Taiichi; Kakinoki, Ryosuke; Ikeguchi, Ryosuke; Hyon, Suong-Hyu; Nakamura, Takashi

    2005-06-30

    Our previous study demonstrated successful peripheral nerve storage for 1 month using polyphenol solution. We here report two studies to solve residual problems in using polyphenols as a storage solution for peripheral nerves. Study 1 was designed to determine the optimal concentration of the polyphenol solution and the optimal immersion period for nerve storage. Rat sciatic nerve segments were immersed in polyphenol solution at three different concentrations (2.5, 1.0, and 0.5 mg/ml) for three different periods (1, 7, and 26 days). Electrophysiological and morphological studies demonstrated that nerve regeneration from nerve segments that had been immersed in 1mg/ml polyphenol solution for 1 week and in Dulbecco's modified Eagle's medium (DMEM) for the subsequent 3 weeks was superior to the regeneration in other treatment groups. In study 2, the permeability of nerve tissue to polyphenol solution was investigated using canine sciatic nerve segments stored in 1.0mg/ml polyphenol solution for 1 week and in DMEM for the subsequent 3 weeks. Electron microscopy revealed that the Schwann cell structure within 500-700 microm of the perineurium was preserved, but cells deeper than 500-700 microm were badly damaged or had disappeared. The infiltration limit for polyphenol solution into neural tissue is inferred to be 500-700 microm.

  19. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    PubMed

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  20. Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study.

    PubMed

    Zamora-Ros, Raul; Knaze, Viktoria; Rothwell, Joseph A; Hémon, Bertrand; Moskal, Aurelie; Overvad, Kim; Tjønneland, Anne; Kyrø, Cecilie; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Touillaud, Marina; Katzke, Verena; Kühn, Tilman; Boeing, Heiner; Förster, Jana; Trichopoulou, Antonia; Valanou, Elissavet; Peppa, Eleni; Palli, Domenico; Agnoli, Claudia; Ricceri, Fulvio; Tumino, Rosario; de Magistris, Maria Santucci; Peeters, Petra H M; Bueno-de-Mesquita, H Bas; Engeset, Dagrun; Skeie, Guri; Hjartåker, Anette; Menéndez, Virginia; Agudo, Antonio; Molina-Montes, Esther; Huerta, José María; Barricarte, Aurelio; Amiano, Pilar; Sonestedt, Emily; Nilsson, Lena Maria; Landberg, Rikard; Key, Timothy J; Khaw, Kay-Thee; Wareham, Nicholas J; Lu, Yunxia; Slimani, Nadia; Romieu, Isabelle; Riboli, Elio; Scalbert, Augustin

    2016-06-01

    Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations. The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort. Dietary data at baseline were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing. Mean total polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group, followed by non-Mediterranean (non-MED) and MED countries. The main polyphenol contributors were phenolic acids (52.5-56.9 %), except in men from MED countries and in the UK health-conscious group where they were flavonoids (49.1-61.7 %). Coffee, tea, and fruits were the most important food sources of total polyphenols. A total of 437 different individual polyphenols were consumed, including 94 consumed at a level >1 mg/day. The most abundant ones were the caffeoylquinic acids and the proanthocyanidin oligomers and polymers. This study describes the large number of dietary individual polyphenols consumed and the high variability of their intakes between European populations, particularly between MED and non-MED countries.

Top